
UniCLIP: Unified Framework for
Contrastive Language–Image Pre-training

Janghyeon Lee∗
LG AI Research

janghyeon.lee@lgresearch.ai

Jongsuk Kim∗†

KAIST
jskpop@kaist.ac.kr

Hyounguk Shon†

KAIST
hyounguk.shon@kaist.ac.kr

Bumsoo Kim
LG AI Research

bumsoo.kim@lgresearch.ai

Seung Hwan Kim
LG AI Research

sh.kim@lgresearch.ai

Honglak Lee
LG AI Research

honglak@lgresearch.ai

Junmo Kim
KAIST

junmo.kim@kaist.ac.kr

Abstract

Pre-training vision–language models with contrastive objectives has shown promis-
ing results that are both scalable to large uncurated datasets and transferable to
many downstream applications. Some following works have targeted to improve
data efficiency by adding self-supervision terms, but inter-domain (image–text)
contrastive loss and intra-domain (image–image) contrastive loss are defined on
individual spaces in those works, so many feasible combinations of supervision are
overlooked. To overcome this issue, we propose UniCLIP, a Unified framework
for Contrastive Language–Image Pre-training. UniCLIP integrates the contrastive
loss of both inter-domain pairs and intra-domain pairs into a single universal space.
The discrepancies that occur when integrating contrastive loss between different
domains are resolved by the three key components of UniCLIP: (1) augmentation-
aware feature embedding, (2) MP-NCE loss, and (3) domain dependent similarity
measure. UniCLIP outperforms previous vision–language pre-training methods
on various single- and multi-modality downstream tasks. In our experiments, we
show that each component that comprises UniCLIP contributes well to the final
performance.

1 Introduction

Recent advances in deep learning have shown significant progress in pre-training large-scale models
that transfer well to various downstream applications. Following the success of this paradigm
in both fields of computer vision and natural language processing, vision–language pre-training
models [16, 32] that learn image representations from natural language supervision have been
proposed. In those works, pre-training is done under a simple contrastive loss that makes the
embedding of an image and its matching text description (positive pair) more similar to each other
than other arbitrary image–text pairs (negative pairs).

Towards a more data-efficient pre-training objective, subsequent works [21, 24] introduced additional
self-supervision terms to the image–text contrastive loss, including self-supervision for augmented

∗Equal contribution. Alphabetical order.
†Work done during an internship at LG AI Research.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

images [3, 4], augmented texts [44], and masked texts [21]. Involving more pairs of positive/negative
supervisions into the final contrastive loss leads to a more mathematically pleasing objective [3],
thus enabling the model to be more data-efficient. Yet, these works entail a major limitation since
the contrastive loss for intra-domain pairs, such as image–image pairs, and inter-domain pairs, such
as image–text pairs, are defined independently in separated spaces. This means that the contrastive
loss is unaware of a substantial set of feasible combinations for negative supervision, for instance
image–image pairs are not included when calculating the contrastive loss for image–text supervision,
leaving a huge room for improvement in terms of data-efficiency and feature-diversity. Based on this
observation, we set the goal of this paper to build a contrastive image–text pre-training framework
where the contrastive learning of all possible intra-domain and inter-domain pairs is defined in the
same single unified embedding space.

A red apple is on the right
of sliced green apples.

flip

grayscale

crop

A red apple is on the right
of sliced green apples.

A red apple is on the right
of sliced green apples.

A red apple is on the right
of sliced green apples.

Figure 1: Image–text misalignments
caused by data augmentations. The mis-
aligned texts are highlighted in red (best
viewed in color).

Though this goal sounds intuitive, defining a contrastive
loss between the multiple modalities in a unified space
has several challenges. First, misalignments can occur
between the image–text semantics when applying image
augmentations. For example in Figure 1, the semantic of
‘a red apple is on the right of sliced green apples’ can be
easily broken by simple image augmentations like horizon-
tal flipping, converting to grayscale, or cropping, whereas
they are fundamental augmentations used in image–image
contrastive self-supervised learning [3]. We validate from
our experiments that leaving this discrepancy unattended
hinders training and degrades final performance. Secondly,
existing contrastive losses in literature for multi-positive
pairs [17, 23] are not compatible with our training ob-
jective that deals with embedding of different modalities.
This is because intra-domain pairs, like two different aug-
mented views of a single image, serve as relatively easier
examples than inter-domain pairs like image–text pairs.
Existing losses [17, 23] are vulnerable to this condition as
easy-positive examples and hard-positive examples inter-
fere with each other. Lastly, we discovered that applying
the same similarity measure between embeddings from
different modalities in our contrastive loss results in a suboptimal performance, because there are
inherent differences in similarity measures between inter-domain and intra-domain pairs, i.e., samples
in an intra-domain pair can be arbitrarily close but samples in an inter-domain pair cannot.

In this paper, we propose UniCLIP: a Unified framework for Contrastive Language–Image Pre-
training, that unifies contrastive objectives between multiple modalities on a single embedding space.
Each challenge above is addressed with our key components of UniCLIP: (1) augmentation-aware
feature embedding that makes UniCLIP aware of misalignments caused by data augmentations, (2)
MP-NCE loss that is designed to stabilize training for both easy- and hard-positive pairs, and (3)
domain dependent similarity measure that adjusts the difference in similarity scales between inter-
domain pairs and intra-domain pairs. UniCLIP outperforms existing vision–language pre-training
methods in various single- and multi-modal downstream tasks such as linear probing, zero-shot
classification, fine-tuning, and image–text retrieval, by addressing the three problems described
above. We validate that each component of UniCLIP successfully addresses the issues of contrastive
learning in a unified space and meaningfully contributes to the final performance. Our contribution is
summarized as follows:

• We propose UniCLIP, a unified framework for visual–language pre-training that improves
data-efficiency by integrating contrastive losses defined across multiple domains into a
single universal space. We study new technical challenges that occur from this integration.

• We design new components for UniCLIP to address the aforementioned challenges:
augmentation-aware feature embedding, MP-NCE loss, and domain dependent similar-
ity measure. Our extensive experiments show that each of our proposed components serves
a key role in the final performance.

• UniCLIP outperforms existing vision–language pre-training methods across multiple down-
stream tasks that include various modalities.

2

...

Unified Embedding Space

misalignment adjustments
by UniCLIP

text caption

Image
Encoder

1st image
augmented view

M-th image
augmented view

... ...

Image
Projection

Head

Augmentation
Encoder

Augmentation
Encoder

image

concat

A red apple is on the right of sliced green apples
Text

Encoder

hflip 1
crop ...

...
color jitter ...
grayscale 0

hflip 0
crop ...

...
color jitter ...
grayscale 0

Text
Projection

Head

Figure 2: Overview of the UniCLIP framework.

2 Methods

The UniCLIP architecture (Figure 2) consists of an augmentation encoder fA, an image encoder
fI , a text encoder fT , and corresponding projection heads gI and gT . fI encodes an image to
an augmentation-agnostic image representation and then gI outputs an augmentation-aware image
embedding. For text caption data, fT and gT produce text embeddings on the same embedding space
as the image embedding space. Image and text representations are learned by our multi-positive
NCE loss with domain-dependent similarity scores measured on the unified embedding space. Each
element of our method is described in detail in the following sections.

2.1 Architecture

Augmentation Encoder To enable an augmentation instruction A to be used as an input to a
network, we first describe it as a real vector containing information about how much each basic
transformation in A is applied to data. For example, image augmentations that frequently appear in
contrastive learning can be converted to real vectors as follows:

• Crop & Resize: A RandomResizedCrop augmentation is encoded to a four-dimensional
vector of (x, y, w, h), where (x, y) is the top left corner coordinate of a cropped image and
(w, h) is the size of the cropped image, in a normalized coordinate system (i.e., the top left
corner of the original image is (0, 0) and the bottom right corner is (1, 1)).

• Color Jitter: As a ColorJitter augmentation changes the brightness, contrast, saturation,
and hue of an image, this augmentation is encoded to a four-dimensional vector consisting
of the changes in those four factors.

• Gaussian Blur: A GaussianBlur augmentation is encoded to the standard deviation of its
Gaussian blurring kernel.

• Horizontal Flip: A RandomHorizontalFlip augmentation is encoded to 1 if an image is
actually flipped and 0 otherwise.

• Grayscale Convert: A RandomGrayscale augmentation is encoded to 1 if an image is
actually converted to grayscale and 0 otherwise.

If an image augmentation A is composed of all five augmentations described above, A will be first
encoded to an 11-dimensional vector according to the above rules and then pass through an MLP to
obtain the augmentation embedding fA(A). Note that fA(A) will be different for each forward and
each sample because of the randomness of the augmentation.

3

Image Encoder & Image Projection Head For the model to learn how to adjust for image–text
misalignment caused by image augmentations, the image encoder or projection head must take the
augmentation information as input. However, the encoder cannot fully benefit from augmented data
if it knows which augmentation was applied to the image. For example, when the encoder is trained
with horizontal flip augmentation, and if it takes an augmented image and an flag of whether the
image is flipped or not as input of the form (image, not flipped flag) or (flipped image, flipped flag),
then the encoder may exhibit undesirable behavior when it has to encode (flipped image, not flipped
flag) from some downstream task, since the encoder was not trained on this kind of data, which
means that the model has lost some generalization ability. Therefore, the image encoder must be
augmentation-agnostic and the image projection head must be augmentation-aware. In this way, the
encoder can fully enjoy the benefits of data augmentation and generalizes better, while the projection
head is still able to correct inter-domain misalignments caused by the augmentations.

To make image representations augmentation-agnostic and image embeddings augmentation-aware,
the augmentation information is provided only to the projection head, whereas the encoder only sees
the augmented image without knowing which augmentation has been applied. Therefore, for an
image x, the image encoder fI takes an augmented image A(x) as input to get an augmentation-
agnostic image representation h = fI(A(x)). Then, an augmentation-aware image embedding
z = gI(fI(A(x)), fA(A)) in the unified embedding space is obtained from the image representation
h and the augmentation embedding fA(A) by the image projection head gI . We adopt ViT (Vision
Transformer) [11] as the image encoder fI with learnable positional embeddings and the image
projection head gI is composed of three residual blocks. The last activation value of the [cls] token
is used as the image representation h.

Text Encoder & Text Projection Head A raw text is first tokenized by byte pair encoding and
wrapped with a start token and an end token, resulting in a tokenized text x. Any text augmentation
method can also be applied here as in the case of the image embedding, but we do not create multiple
augmented views for a text as we found it not very helpful. So, the text representation h = fT (x) and
the text embedding z = gT (fT (x)) in the unified latent space are obtained without any augmentation
embedding. We use Transformer [42] for the text encoder fT with learnable positional embeddings
and a linear layer for the text projection head gT . The last activation value of the start token is used
as the text representation h.

2.2 Contrastive Loss Functions for Multiple Positive Pairs

Contrastive loss functions can be classified according to the number of positive and negative pairs
taken by the loss for one data point. For example, triplet loss [36] takes only a single positive pair
and a single negative pair, N -pair loss [38] and InfoNCE loss [41] take a single positive pair and
multiple negative pairs, and MIL-NCE loss [23] and SupCon loss [17] take multiple positive pairs
and multiple negative pairs. As there are multiple positive pairs in our unified framework, we first
review MIL-NCE loss and SupCon loss functions and discuss their drawbacks.

For an i-th embedding zi in a batch of embeddings {zi}i, let Pi be the set of all positive sample
indices of the i-th sample excluding i itself and Ni be the set of all negative sample indices of the
i-th sample.

Pi = {j|(zi, zj) is a positive pair and j ̸= i} (1)
Ni = {j|(zi, zj) is a negative pair} (2)

A similarity score between the i-th and j-th embedding is denoted by si,j > 0. A contrastive loss
function will try to maximize the similarity scores of positive pairs, while minimize the similarity
scores of negative pairs. For example, if there is only one positive sample for each sample in a batch,
say Pi = {pi}, then InfoNCE loss [41] or NT-Xent loss [3] for the i-th sample can be described by

LInfoNCE
i = − log

si,pi

si,pi
+

∑
n∈Ni

si,n
. (3)

MIL-NCE Loss MIL-NCE loss [23] for the i-th embedding is defined by

LMIL-NCE
i = − log

∑
p∈Pi

si,p∑
p∈Pi

si,p +
∑

n∈Ni
si,n

. (4)

4

The MIL-NCE loss function is configured to maximize the sum of all positive pair similarity scores∑
p∈Pi

si,p and minimize the sum of all negative pair similarity scores
∑

n∈Ni
si,n. However, hard

positive pairs cannot receive enough gradients from LMIL-NCE
i when there are easy positive pairs

whose similarity scores are sufficiently large to dominate the numerator and denominator, as the
MIL-NCE loss compares negative pairs with the sum of positive scores

∑
p∈Pi

si,p only, not each
positive pair si,p individually. For some q ∈ Pi, the gradient from LMIL-NCE

i to si,q is

∂LMIL-NCE
i

∂si,q
= −

∑
n∈Ni

si,n(∑
p∈Pi

si,p

)(∑
p∈Pi

si,p +
∑

n∈Ni
si,n

) , (5)

therefore the gradient will vanish to zero when
∑

p∈Pi
si,p is already large because of easy positive

pairs even if the positive pair’s score si,q is small. In other words, easy positive pairs hinder the
training of hard positive pairs in MIL-NCE loss. This problem will be more pronounced in our
unified framework because hard positives and easy positives frequently coexist with supervisions
from intra-domain and inter-domain.

SupCon Loss SupCon loss [17] for the i-th embedding is described by

LSupCon
i = Ep∈Pi

[
− log

si,p∑
p′∈Pi

si,p′ +
∑

n∈Ni
si,n

]
. (6)

In this case, each positive score si,p is compared with the negative pairs, but the sum of the positive
scores in the denominator still causes an undesirable side effect. For an easy positive pair with a large
similarity score, it can be possible to decrease the loss by decreasing its score and so the denominator.
For q ∈ Pi,

∂LSupCon
i

∂si,q
=

si,q − 1
|Pi|

(∑
p∈Pi

si,p +
∑

n∈Ni
si,n

)
si,q

(∑
p∈Pi

si,p +
∑

n∈Ni
si,n

) , (7)

so hard positives would be trained better than MIL-NCE loss because of a relatively large update by
the si,q term in the denominator. However, if we assume the sum of positive scores is much greater
than the sum of negative scores, then

∂LSupCon
i

∂si,q
∝ si,q −

1

|Pi|

∑
p∈Pi

si,p +
∑
n∈Ni

si,n

 ≈ si,q − Ep∈Pi
[si,p] . (8)

As gradient is not always negative, LSupCon
i will try to decrease the similarity score of an easy positive

pair (zi, zq) since si,q will be larger than the average positive score, instead of increasing or at least
maintaining it. In other words, hard positive pairs hinder the convergence of easy positive scores in
SupCon loss.

Multi-positive NCE Loss As the sum of the positive scores in the denominator causes easy and
hard positive pairs to interfere with each other, we can just use a multi-positive version of InfoNCE
loss to make each positive pair independently contribute to the loss as follows.

Li = Ep∈Pi

[
− log

si,p
si,p +

∑
n∈Ni

si,n

]
(9)

As can be seen in the gradient

∂Li

∂si,q
= −

∑
n∈Ni

si,n

|Pi|si,q
(
si,q +

∑
n∈Ni

si,n
) , (10)

hard positive samples can be trained with sufficiently large update from the si,q term in the denomina-
tor, and the decreasing easy positive pair similarity problem does not occur as the gradient is always
negative.

With this multi-positive version of InfoNCE loss, we reconsider excluding i from the positive set
Pi in Equation 1. If a contrastive loss can handle multiple positive pairs, then there is no reason to

5

exclude the trivial pair (zi, zi) from the loss definition. Since zi is most similar to zi itself, the trivial
pair must be also utilized as a strong positive pair, which will result in

Li = Ep∈Pi∪{i}

[
− log

si,p
si,p +

∑
n∈Ni

si,n

]
. (11)

Here, we propose a multi-positive NCE loss for our unified contrastive learning framework called
MP-NCE loss, which is a weighted version of Equation 11 defined as

LMP-NCE
i = Ep∈Pi∪{i}

[
−wD(i,p) log

si,p
si,p +

∑
n∈Ni

si,n

]
, (12)

where D(i, p) indicates the domain combination from which the i-th and p-th data were sampled,
and wD(i,p) is a domain-specific balancing hyperparameter which makes each inter-domain and
intra-domain supervision equally contributes to the loss. For example, when we use three augmented
views of an image and one corresponding text for each original image–text pair from dataset, there
are a total of 9N image–image positive pairs, 6N image–text positive pairs, and N text–text positive
pairs in a batch, so wD(i,p) is set to 1/9, 1/6, 1 if (zi, zp) is an image–image pair, image–text pair,
text–text pair, respectively.

Although we have proposed MP-NCE loss in a multi-positive setting, one should consider using
MP-NCE loss even in single positive settings, such as image self-supervised contrastive learning, by
treating a trivial pair (zi, zi) as positive as well since MP-NCE involves negligible computational
overhead compared to backbone networks.

2.3 Domain-Dependent Similarity Score

In SimCLR [3] and CLIP [32], the similarity score si,j between the i-th embedding zi and j-th
embedding zj is defined by

si,j = exp

(
1

τ
· z⊤i zj
∥zi∥∥zj∥

)
, (13)

where τ is a positive real number, usually smaller than 1. As the cosine similarity of two embeddings
cannot have a value outside the interval [−1, 1], the cosine similarity is divided by the temperature τ
to extend its range. τ can be a pre-defined hyperparameter, or can rather be a learnable parameter
allowing the model to choose an appropriate scale for the convergence of a contrastive loss.

To classify an input pair (zi, zj) as positive or negative, we can define a threshold b and classify it as
positive if the cosine similarity between zi and zj is greater than b, and negative otherwise. We may
absorb this threshold b into the similarity score as an offset like

si,j = exp

(
1

τ

(
z⊤i zj

∥zi∥∥zj∥
− b

))
, (14)

and expect that the optimal threshold will be learned by the model, as in the case of the temperature.
Note that the temperature will amplify the score if the cosine similarity is greater than b otherwise
reduce it, so Equation 14 is a reasonable similarity measure with which the threshold can be treated
as a decision boundary for the binary classification problem. However, unfortunately, the offset b
does not contribute to InfoNCE loss (Equation 3) at all since b’s in the numerator and denominator
cancel out as

LInfoNCE
i = − log

si,pi

si,pi
+
∑

n∈Ni
si,n

= − log
exp(b/τ)si,pi

exp(b/τ)si,pi
+
∑

n∈Ni
exp(b/τ)si,n

(15)

for any τ and b, which means ∂LInfoNCE
i /∂b is always zero.

On the other hand, when data pairs are sampled from multiple domains as in our unified framework,
the threshold can be different depending on whether the sampled data pair is an intra-domain pair or
an inter-domain pair, as it would be easier to classify intra-domain positive pairs than inter-domain
positive pairs in general. This motivates us to introduce domain-specific temperature τD(i,j) and
offset bD(i,j), and propose a domain-dependent similarity score

si,j = exp

(
1

τD(i,j)

(
z⊤i zj

∥zi∥∥zj∥
− bD(i,j)

))
. (16)

6

Table 1: Zero-shot image classification performance and linear probing performance on 11 down-
stream datasets. †Results reported in the original paper.

Method
Pre-train
dataset Pe

ts

C
IF

A
R

-1
0

C
IF

A
R

-1
00

SU
N

39
7

Fo
od

-1
01

Fl
ow

er
s

C
ar

s

C
al

te
ch

-1
01

A
ir

cr
af

t

D
T

D

Im
ag

eN
et

Av
er

ag
e

Zero-shot classification:
CLIP-ViT-B/32 YFCC15M 19.4 62.3 33.6 40.2 33.7 6.3 2.1 55.4 1.4 16.9 31.3 27.5
SLIP-ViT-B/32 YFCC15M 28.3 72.2 45.3 45.1 44.7 6.8 2.9 65.9 1.9 21.8 38.3 33.9
DeCLIP-ViT-B/32 YFCC15M 30.2 72.1 39.7 51.6 46.9 7.1 3.9 70.1 2.5 24.2 41.2 35.4
UniCLIP-ViT-B/32 YFCC15M 32.5 78.6 47.2 50.4 48.7 8.1 3.4 73.0 2.8 23.3 42.8 37.3

DeCLIP-ResNet50† [21] Open30M - - - - - - - - - - 49.3 -
UniCLIP-ViT-B/32 Open30M 69.2 87.8 56.5 61.1 64.6 8.0 19.5 84.0 4.7 36.6 54.2 49.7

Linear probing:
CLIP-ViT-B/32 YFCC15M 71.2 89.2 72.1 70.1 71.4 93.2 34.9 84.3 29.7 60.9 61.1 67.1
SLIP-ViT-B/32 YFCC15M 75.4 90.5 75.3 73.5 77.1 96.1 43.0 87.2 34.1 71.1 68.1 71.9
DeCLIP-ViT-B/32 YFCC15M 76.5 88.6 71.6 75.9 79.3 96.7 42.6 88.0 32.6 69.1 69.2 71.8
UniCLIP-ViT-B/32 YFCC15M 83.1 92.5 78.2 77.0 81.3 97.1 49.8 88.9 36.2 72.8 70.8 75.2
UniCLIP-ViT-B/32 Open30M 85.4 95.1 81.5 79.2 84.4 97.3 67.3 91.1 39.0 77.2 74.0 79.1

For image–text unified contrastive learning, we have three possible domain combinations, so there
will be three different temperatures and three offsets respectively for image–image pairs, image–text
pairs, and text–text pairs.

With the proposed domain-dependent similarity score (Equation 16) and MP-NCE loss (Equation 12),
the offsets are no longer cancelled out as negative pairs are sampled from multiple different domains.
Specifically, because any real number can be added to the cosine similarity term as in Equation 15
without changing the loss function, the offsets lose only 1 intrinsic dimension and thus the model is
able to learn relative thresholds. In other words, it is now possible to learn the domain-specific offsets
so that we can expect the offset of an easier domain combination to be greater than that of harder one.

3 Experiments

Datasets For reproducibility, we use publicly available datasets for training and evaluation in
our experiments, including CC3M [37], CC12M [2], DeCLIP YFCC15M [21, 40] for training
and Pets [28], CIFAR-10, CIFAR-100 [20], SUN397 [45], Food-101 [1], Flowers [25], Cars [19],
Caltech-101 [12], Aircraft [22], DTD [6], ImageNet-1k [35], Flickr30k [31], COCO Captions [5] for
evaluation. We define the union of CC3M, CC12M, and YFCC15M as Open30M dataset.

Settings For each original image and corresponding text caption, one weakly augmented image,
two strongly augmented images, and one text form a positive group in our experiments. Detailed
augmentation and optimization configurations can be found in Appendix.

3.1 Main Results

We evaluate the transferability of our model in single-modal and multi-modal downstream tasks. Lin-
ear probing and fine-tuning on image classification tasks are performed for single-modal benchmarks,
and image–text retrieval tasks and zero-shot image classification tasks are evaluated for multi-modal
benchmarks.

Table 2: ImageNet-1k fine-tuning accuracy
for the models pre-trained on YFCC15M.

Method Accuracy

CLIP-ViT-B/32 72.27
SLIP-ViT-B/32 75.64

DeCLIP-ViT-B/32 74.34
UniCLIP-ViT-B/32 76.54

Linear Probing & Fine-Tuning For single-modal
experiments, we remove the image projection head gI
and augmentation encoder fA, and use only the im-
age encoder fI . Table 1 reports linear classification
performances on 11 downstream datasets. We report
ImageNet fine-tuning accuracy in Table 2. UniCLIP
consistently outperforms other methods on all down-
stream datasets in the single-modal experiments.

7

Table 3: Zero-shot image–text retrieval on the test splits of Flickr30k and COCO Captions with
models pre-trained on YFCC15M. †Pre-trained on Open30M.

Image-to-text retrieval Text-to-image retrieval
Flickr30k COCO Captions Flickr30k COCO Captions

Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP-ViT-B/32 34.9 63.9 75.9 20.8 43.9 55.7 23.4 47.2 58.9 13.0 31.7 42.7
SLIP-ViT-B/32 47.8 76.5 85.9 27.7 52.6 63.9 32.3 58.7 68.8 18.2 39.2 51.0
DeCLIP-ViT-B/32 51.4 80.2 88.9 28.3 53.2 64.5 34.3 60.3 70.7 18.4 39.6 51.4
UniCLIP-ViT-B/32 52.3 81.6 89.0 32.0 57.7 69.2 34.8 62.0 72.0 20.2 43.2 54.4

UniCLIP-ViT-B/32† 75.6 94.2 97.3 46.1 74.0 83.0 61.4 85.2 91.5 35.2 61.3 71.7

Zero-Shot Classification & Image–Text Retrieval Table 1 shows zero-shot classification perfor-
mances on 11 downstream datasets. We perform prompt ensembling for each class with the same
prompt templates as [24, 32]. Table 3 shows the results of zero-shot image–text retrieval on Flickr30k
and COCO Captions benchmarks.

3.2 Ablation Studies

In this section, we report experiments to inspect how each component of UniCLIP contributes to the
final performance. We pre-train all variants of UniCLIP with a ViT-B/16 backbone on the CC3M
dataset for 50 epochs, and compare their ImageNet-1k zero-shot evaluation performances.

Image Projection Head Types We tried several different architectures for the image projection
head including a linear layer, MLP layers, and residual blocks, when the head takes augmentation
embeddings as input or not, as in Table 4a. It turns out that MLP shows a strong tendency to overfit,
even performs worse than a linear layer. By adding skip connections to the head, it can fully utilize
augmentation information with increased capabilities while avoiding overfitting. Making the image
projection head augmentation-aware improves the performance for all head types as the head can
handle the inter-domain misalignments.

Augmentation Configurations Table 4b studies the effect of augmentation encoding on vari-
ous augmentation configurations. Using only strongly augmented images severely degrades the
performance without augmentation embedding, because strong augmentations will generate more
image–text misalignments. Since it is observed that including one weakly augmented image works
better than using only strongly augmented ones, we choose to keep one weakly augmented image in
the positive set as a stable reference sample.

Table 4: ImageNet-1k zero-shot accuracy with varying image projection head types and augmentation
configurations.

(a) Image projection head types. One weak and
two strong image augmentations are used.

Augmentation
embedding Head type Accuracy

✗

MLP 3 layers 24.01
MLP 6 layers 23.62
1 ResBlock 24.76
3 ResBlocks 24.46

✓

Linear layer 24.68
MLP 3 layers 24.54
MLP 6 layers 24.15
1 ResBlock 27.67
3 ResBlocks 27.84

(b) Augmentation configurations. 1-ResBlock
head is used for no augmentation embedding con-
fig and 3-ResBlock head is used with augmentation
embedding.

Augmentation
embedding Augmentation Accuracy

✗
3 weak 24.49

1 weak, 2 strong 24.76
3 strong 22.60

✓
3 weak 23.40

1 weak, 2 strong 27.84
3 strong 26.43

8

Domain-dependent Similarity Score and Unified Supervision In Table 5, we can see how the
performance changes depending on whether the shared similarity score (Equation 14) or the domain-
dependent score (Equation 16) is used. We also run experiments where positive and negative sets are
formed separately with respect to the domain combination as in SLIP [24] and DeCLIP [21]. The
best performance comes out from the domain-dependent similarity measure with unified supervisions,
as expected.

Table 5: ImageNet-1k zero-shot accuracy with domain-dependency of similarity score and supervi-
sion.

Temperature and offset Supervision Accuracy

Shared across domains Unified 25.51
Domain-dependent Separated 26.59
Domain-dependent Unified 27.84

Loss Functions As analyzed in Section 2.2, SupCon loss [17] outperforms MIL-NCE loss [23],
but performs worse than the multi-positive version of InfoNCE loss (Equation 9), as in Table 6. The
balancing weight wD(i,p) can boost the performance, and surprisingly, we can significantly improve
performance with negligible additional computations by simply adding a trivial pair (zi, zi) to the
positive set Pi.

Table 6: ImageNet-1k zero-shot accuracy with different loss functions.
Loss function Accuracy

MIL-NCE 22.23
SupCon 23.04

MP-NCE w/o trivial pair (zi, zi) and wD(i,p) (Eq. 9) 24.60
MP-NCE w/o wD(i,p) (Eq. 11) 26.41

MP-NCE 27.84

4 Conclusion

We have proposed UniCLIP, a unified framework for visual–language pre-training that improves data-
efficiency by integrating contrastive losses defined across multiple domains into a single universal
space. In this paper, image–text datasets were used to validate our method since vision and language
are among the most actively studied fields in deep learning. Although we have experimented with
vision–language multimodal datasets only, the proposed UniCLIP framework can be easily extended
to other types of multimodal datasets because it is designed in a modality-agnostic way except for
the augmentation encoding part. All modality-specific knowledge required to apply UniCLIP to
different types of modality is to describe each modality-specific augmentation as a real vector, as in
Section 2.1, which is quite straightforward. We leave it for future work to see how well the UniCLIP
framework works with various types of multimodal datasets.

Acknowledgements

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government(MSIT). (No. 2022-0-00184, Development
and Study of AI Technologies to Inexpensively Conform to Evolving Policy on Ethics)

References
[1] L. Bossard, M. Guillaumin, and L. V. Gool. Food-101–mining discriminative components with random

forests. In European conference on computer vision, pages 446–461. Springer, 2014. 7

[2] S. Changpinyo, P. Sharma, N. Ding, and R. Soricut. Conceptual 12m: Pushing web-scale image-text
pre-training to recognize long-tail visual concepts. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3558–3568, 2021. 7

9

[3] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual
representations. In International conference on machine learning, pages 1597–1607. PMLR, 2020. 2, 4, 6

[4] X. Chen and K. He. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 15750–15758, 2021. 2

[5] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zitnick. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint arXiv:1504.00325, 2015. 7

[6] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the wild. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3606–3613, 2014.
7

[7] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment: Practical automated data augmentation with
a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 702–703, 2020. 19

[8] Y. Cui, L. Zhao, F. Liang, Y. Li, and J. Shao. Democratizing contrastive language-image pre-training: A
clip benchmark of data, model, and supervision. arXiv preprint arXiv:2203.05796, 2022. 19

[9] C. Doersch and A. Zisserman. Multi-task self-supervised visual learning. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2051–2060, 2017. 13

[10] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction.
In Proceedings of the IEEE international conference on computer vision, pages 1422–1430, 2015. 13

[11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations, 2021. 4

[12] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An
incremental bayesian approach tested on 101 object categories. In 2004 conference on computer vision
and pattern recognition workshop, pages 178–178. IEEE, 2004. 7

[13] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by predicting image
rotations. arXiv preprint arXiv:1803.07728, 2018. 13

[14] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, R. Desai, T. Zhu, S. Parajuli, M. Guo,
et al. The many faces of robustness: A critical analysis of out-of-distribution generalization. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 8340–8349, 2021. 15

[15] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song. Natural adversarial examples. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15262–15271, 2021. 15

[16] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H. Sung, Z. Li, and T. Duerig. Scaling up
visual and vision-language representation learning with noisy text supervision. In International Conference
on Machine Learning, pages 4904–4916. PMLR, 2021. 1

[17] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan.
Supervised contrastive learning. Advances in Neural Information Processing Systems, 33:18661–18673,
2020. 2, 4, 5, 9

[18] G. Kim and J. C. Ye. Diffusionclip: Text-guided image manipulation using diffusion models. arXiv
preprint arXiv:2110.02711, 2021. 14

[19] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained categorization. In
Proceedings of the IEEE international conference on computer vision workshops, pages 554–561, 2013. 7

[20] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009. 7

[21] Y. Li, F. Liang, L. Zhao, Y. Cui, W. Ouyang, J. Shao, F. Yu, and J. Yan. Supervision exists everywhere: A
data efficient contrastive language-image pre-training paradigm. In International Conference on Learning
Representations, 2022. 1, 2, 7, 9, 14

[22] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of aircraft.
arXiv preprint arXiv:1306.5151, 2013. 7

[23] A. Miech, J.-B. Alayrac, L. Smaira, I. Laptev, J. Sivic, and A. Zisserman. End-to-end learning of visual
representations from uncurated instructional videos. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9879–9889, 2020. 2, 4, 9

10

[24] N. Mu, A. Kirillov, D. Wagner, and S. Xie. Slip: Self-supervision meets language-image pre-training.
arXiv preprint arXiv:2112.12750, 2021. 1, 8, 9, 14, 19

[25] M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pages 722–729. IEEE, 2008.
7

[26] M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In
European conference on computer vision, pages 69–84. Springer, 2016. 13

[27] M. Noroozi, H. Pirsiavash, and P. Favaro. Representation learning by learning to count. In Proceedings of
the IEEE International Conference on Computer Vision, pages 5898–5906, 2017. 13

[28] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar. Cats and dogs. In 2012 IEEE conference on
computer vision and pattern recognition, pages 3498–3505. IEEE, 2012. 7

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. Advances in neural
information processing systems, 32, 2019. 19

[30] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature learning
by inpainting. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
2536–2544, 2016. 13

[31] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, J. Hockenmaier, and S. Lazebnik. Flickr30k
entities: Collecting region-to-phrase correspondences for richer image-to-sentence models. In Proceedings
of the IEEE international conference on computer vision, pages 2641–2649, 2015. 7

[32] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763. PMLR, 2021. 1, 6, 8, 14, 19

[33] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever. Zero-shot
text-to-image generation. In International Conference on Machine Learning, pages 8821–8831. PMLR,
2021. 14

[34] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do imagenet classifiers generalize to imagenet? In
International Conference on Machine Learning, pages 5389–5400. PMLR, 2019. 15

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of computer
vision, 115(3):211–252, 2015. 7

[36] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and
clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
815–823, 2015. 4

[37] P. Sharma, N. Ding, S. Goodman, and R. Soricut. Conceptual captions: A cleaned, hypernymed, image alt-
text dataset for automatic image captioning. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 2556–2565, 2018. 7

[38] K. Sohn. Improved deep metric learning with multi-class n-pair loss objective. Advances in neural
information processing systems, 29, 2016. 4

[39] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1–9, 2015. 19

[40] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li. Yfcc100m:
The new data in multimedia research. Communications of the ACM, 59(2):64–73, 2016. 7

[41] A. Van den Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding. arXiv
e-prints, pages arXiv–1807, 2018. 4

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017. 4

[43] H. Wang, S. Ge, Z. Lipton, and E. P. Xing. Learning robust global representations by penalizing local
predictive power. Advances in Neural Information Processing Systems, 32, 2019. 15

11

[44] J. Wei and K. Zou. Eda: Easy data augmentation techniques for boosting performance on text classification
tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
6382–6388, 2019. 2, 19

[45] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva. Sun database: Exploring a large collection of
scene categories. International Journal of Computer Vision, 119(1):3–22, 2016. 7

[46] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In European conference on computer
vision, pages 649–666. Springer, 2016. 13

[47] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel
prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1058–1067, 2017. 13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

12

A Related Works

SA

SA

SA

Text

SA Text

WA

WA

(a) SSL (SimCLR)

SA

SA

SA

Text

SA Text

WA

WA

(b) CLIP

SA

SA

SA

Text

SA Text

WA

WA

(c) SLIP

SA

SA

Masked
Text

EDA Text

Masked
Text EDA Text

SA

NNT

NNTSA

(d) DeCLIP

SA

SA

SA

Text

SA Text

WA

WA

(e) UniCLIP – Ours

Image self-
supervision

Image-text
supervision

Don’t care

Text self-
supervision

Figure A: Similarity matrices in various contrastive learning methods. Darker colors represent
positive pairs and lighter colors represent negative pairs. WA: Weakly Augmented image, SA:
Strongly Augmented image, NNT: Nearest Neighborhood Text.

Positive Negative Negative Self Negative Negative Positive Negative Negative Positive Negative Negative

Self Negative Negative Positive Negative Negative Positive Negative Negative

Unified
supervision

Separated
supervision

(SLIP)

Figure B: Separated supervision and unified supervision. All possible pairs including intra-domain
and inter-domain pairs contribute to contrastive learning across different supervisions in our unified
framework, whereas each supervision is considered independently in previous works.

Self-Supervised Learning Recently, self-supervised learning (SSL) has drawn a huge attention
as a pre-training method that is scalable to large and uncurated datasets. Among the various pretext
tasks proposed for self-supervised learning [10, 26, 46, 30, 47, 27, 9, 13], it has been demonstrated
that minimizing the contrastive cross entropy loss between positive pairs (i.e., an augmented view of
the original data) against negative pairs (i.e., other data samples) yields representations that show
solid performance throughout multiple tasks and datasets.

13

Contrastive Language–Image Pre-training CLIP [32] introduced a new paradigm of pre-training
by defining a contrastive loss with large-scale image–text pairs (Figure Ab). Here, the image and its
matching text description comprise a positive pair, and the representations of the two are learned to
be similar to each other than other arbitrary image–text pairs. CLIP learns powerful representations
that are transferable throughout a wide set of datasets and tasks, showing robust performance even
in zero-shot evaluations. The image–text representation obtained by CLIP revolutionized multiple
research directions in various fields since it provides a standard measure for how semantically similar
a given image–text pair is [18, 33].

Self-Supervised Learning Meets CLIP Following works of SLIP [24] and DeCLIP [21] improved
CLIP by introducing additional SSL terms to the original image–text contrastive loss formula.
However, these methods have limited supervisions since the contrastive loss between inter-domain
pairs and intra-domain pairs are defined in separate spaces. To address this issue, our UniCLIP
defines the contrastive loss of both inter-domain pairs and intra-domain pairs in a single unified space,
utilizing the supervision from all possible combinations throughout multiple domains at once.

B Algorithm

The main algorithm of UniCLIP is summarized in Algorithm A.

Algorithm A UniCLIP

Input: image encoder fI , text encoder fT , image projection head gI , text projection head gT ,
augmentation encoder fA, batch size N , temperature τ ∈ R3, offset b ∈ R3,
weak augmentation distribution pwa, strong augmentation distribution psa

1: for sampled mini-batch {(xI
k, x

T
k)}Nk=1 do

2: for all k ∈ {1, . . . , N} do
3: draw augmentation instructions A1 ∼ pwa, A2 ∼ psa, A3 ∼ psa
4: zk = gI(fI(A1(x

I
k)), fA(A1))

5: zk+N = gI(fI(A2(x
I
k)), fA(A2))

6: zk+2N = gI(fI(A3(x
I
k)), fA(A3))

7: zk+3N = gT (fT (x
T
k))

8: end for
9: for all i ∈ {1, . . . , 4N} do

10: for all j ∈ {1, . . . , 4N} do

11: D(i, j) =


1, if i ≤ 3N and j ≤ 3N

3, if i > 3N and j > 3N

2, otherwise

12: si,j = exp
(

1
τD(i,j)

(
z⊤
i zj

∥zi∥∥zj∥ − bD(i,j)

))
13: end for
14: Pi = {j ∈ {1, . . . , 4N} \ {i}|(j − i)/N ∈ Z}
15: Ni = {1, . . . , 4N} \ Pi \ {i}
16: w = (1/9, 1/6, 1)

17: Li = Ep∈Pi∪{i}

[
−wD(i,p) log

si,p
si,p+

∑
n∈Ni

si,n

]
18: end for
19: L = 1

4N

∑4N
i=1 Li

20: update networks, temperature, offset to minimize L
21: end for

14

C Additional Experimental Results

Zero-Shot Classification on ImageNet Variations We report zero-shot classification performance
on ImageNet variations such as ImageNet-R [14], ImageNet-Sketch [43], ImageNetV2 [34], and
ImageNet-A [15] in Table A.

Table A: Zero-shot accuracy on ImageNet variations.

Method
Pre-train
dataset ImageNet ImageNet-R ImageNet-Sketch ImageNetV2 ImageNet-A

CLIP-ViT-B32 YFCC15M 31.3 22.6 7.2 25.5/30.6/33.6 8.1
SLIP-ViT-B32 YFCC15M 38.3 31.7 11.9 33.2/37.8/41.8 13.2
DeCLIP-ViT-B32 YFCC15M 41.2 34.3 14.5 35.4/40.4/43.8 15.0
UniCLIP-ViT-B32 YFCC15M 42.8 37.8 15.7 36.5/41.9/46.3 14.4

UniCLIP-ViT-B/32 Open30M 54.2 61.8 36.0 47.1/54.0/58.6 18.3

Zero-Shot Image–Text Retrieval on Validation Splits Table B shows the results of zero-shot
image–text retrieval on the validation splits of Flickr30k and COCO Captions benchmarks.

Table B: Zero-shot image–text retrieval on the validation splits of Flickr30k and COCO Captions
with models pre-trained on YFCC15M. †Pre-trained on Open30M.

Image-to-text retrieval Text-to-image retrieval
Flickr30k COCO Captions Flickr30k COCO Captions

Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP-ViT-B/32 37.3 66.2 77.1 20.1 42.9 55.1 24.9 49.0 60.0 13.3 31.7 42.3
SLIP-ViT-B/32 48.7 75.2 84.7 26.9 51.9 63.8 33.1 59.0 68.8 18.2 39.6 51.1
DeCLIP-ViT-B/32 51.3 79.3 88.7 28.1 53.6 65.2 34.8 62.2 71.5 17.9 39.8 51.6
UniCLIP-ViT-B/32 55.7 82.9 90.0 32.0 58.8 70.3 36.7 62.6 72.4 20.3 43.1 54.5

UniCLIP-ViT-B/32† 76.7 94.2 96.9 47.8 74.4 84.2 62.4 86.7 92.2 35.4 61.6 72.0

Fine-tuning Results on Image–Text Retrieval We fine-tuned YFCC15M pre-trained models on
Flickr30k and COCO Captions for 10 epochs and report the results in Table C and Table D. Our
method consistently outperforms on fine-tuned image–text retrieval benchmarks.

Table C: Fine-tuned image–text retrieval on the test splits of Flickr30k and COCO Captions with
models pre-trained on YFCC15M. †Pre-trained on Open30M.

Image-to-text retrieval Text-to-image retrieval
Flickr30k COCO Captions Flickr30k COCO Captions

Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP-ViT-B/32 57.4 84.7 90.2 34.4 63.5 75.2 40.4 69.5 79.6 24.0 50.8 63.5
SLIP-ViT-B/32 68.9 91.9 95.1 43.7 71.8 82.4 51.0 79.5 86.8 31.0 58.8 70.3
DeCLIP-ViT-B/32 73.6 93.9 97.2 47.9 75.5 84.6 55.9 83.4 90.2 33.8 62.7 74.4
UniCLIP-ViT-B/32 77.9 95.1 98.0 52.7 78.6 87.4 61.0 85.9 92.2 37.6 66.3 77.0

UniCLIP-ViT-B/32† 87.8 98.2 99.2 62.2 85.3 91.9 70.7 91.5 95.4 45.6 73.5 82.5

Table D: Fine-tuned image–text retrieval on the validation splits of Flickr30k and COCO Captions
with models pre-trained on YFCC15M. †Pre-trained on Open30M.

Image-to-text retrieval Text-to-image retrieval
Flickr30k COCO Captions Flickr30k COCO Captions

Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP-ViT-B/32 58.3 84.8 91.5 36.1 65.0 76.4 43.1 71.1 80.3 24.9 51.7 64.1
SLIP-ViT-B/32 69.6 90.4 95.7 45.0 74.0 83.0 52.1 79.4 86.9 31.6 59.5 71.3
DeCLIP-ViT-B/32 75.6 93.0 96.6 48.7 77.3 86.2 57.8 83.3 90.3 34.2 63.1 74.6
UniCLIP-ViT-B/32 78.1 94.9 97.7 54.5 80.9 89.1 61.0 86.0 91.9 38.0 67.2 78.0

UniCLIP-ViT-B/32† 88.0 97.7 99.3 63.0 86.3 92.4 72.1 92.1 95.9 46.2 73.7 83.1

15

D Additional Ablation Studies

Augmentation-Agnostic vs. Augmentation-Aware Image Encoder Making the image encoder
augmentation-agnostic is a key design idea for better generalization in a unified contrastive learning
framework. To verify this, we feed the image encoder with the augmentation embedding instead
of the projection head and performed the same experiment with this augmentation-aware image
encoder. As seen in Table E, the augmentation-aware encoder performs much worse than the
augmentation-agnostic encoder.

Table E: ImageNet-1k zero-shot accuracy with respect to augmentation-awareness of image encoder.
Image encoder Accuracy

Augmentation-aware 23.25
Augmentation-agnostic 27.84

Number of Augmentations We investigate the effect of the number of image views and text views
that make up our multi-view batch for a given original image–text pair. As there exists a trade-off
between the number of augmentations and the number of original image–text pairs in a batch, the
number of image views and text views should be set to appropriate values for a balanced learning of
intra-domain features and inter-domain features. As seen in Table F, using more text views is not
helpful and actually hurts performance, which means that the benefits from increasing text views do
not outweigh the losses due to decreased diversity in data samples, so we instead increase the number
of image views. We have observed that the performance increases until the number of image views is
4, but the improvement was not that significant compared to the increased training time due to the
decrease in the number of original pairs in a batch, so we decided to use 3 image views for faster
training with acceptable performance. We leave it as a future work to find effective text augmentation
methods in contrastive learning.

Table F: ImageNet-1k zero-shot accuracy with varying the number of image views and text views.
of image views # of text views # of original pairs Accuracy

1 1 192 21.80
2 1 128 25.54
2 2 96 24.60
3 1 96 27.67
3 2 72 24.57
4 1 72 28.25

E Misalignment Adjustments in UniCLIP

Several image–text pairs that are vulnerable to inter-domain misalignment due to augmentations
and their similarity scores are presented in Tables G–J. In each table, there are two images and
two captions, where the top image and the left caption are the original pair, the bottom image is an
augmented image, and the right caption is a modified caption to pair with the augmented image.

For example in Table G, the image of yellow flowers is augmented to the image of orange flow-
ers by a ColorJitter augmentation and as a consequence the corresponding caption on the left
should be modified to the right one to correct the misalignment. Since CLIP and SLIP only employ
RandomResizedCrop augmentation on image–text pairs, they do not experience severe inter-domain
misalignment issues, resulting in higher similarity scores on the correct pairs. UniCLIP also produces
correct results even if it has been trained with strong augmentations, which means the inter-domain
misalignment problem is well addressed. In contrast, DeCLIP suffers from inter-domain misalign-
ments and shows unpredictable results.

Interestingly, the projection head in UniCLIP can adjust inter-domain misalignments when infor-
mation about the applied augmentation A is known to it via the augmentation encoder fA. As in

16

Tables G–J, even for augmented images, UniCLIP can give the original captions higher similarity
scores than the modified captions if augmentation information is provided by adjusting misalignment.
For example in Table H, if the model knows that grayscale augmentation has been applied to the
image and we let the model adjust the misalignment due to the augmentation, then it will try to guess
what the color of the apples were if the image was an RGB image, which would be red with high
probability in this case, thus putting a higher score on the original caption than the modified one.

Table G: Similarity scores between images and captions. Top row: original image, bottom row:
jittered image.

Image Method “Flowers of yellow color.” “Flowers of orange color.”

CLIP 2.6907 2.6076
SLIP 2.7534 2.7512
DeCLIP 0.8485 0.8758
UniCLIP 4.0810 2.6024

CLIP 2.6213 2.8758
SLIP 2.6075 2.8258
DeCLIP 0.8412 0.8578
UniCLIP 2.8236 3.8955
UniCLIP w/ fA(A) 4.0754 2.7188

Table H: Similarity scores between images and captions. Top row: original image, bottom row:
grayscale image.

Image Method “Red apples hanging from the tree.” “Gray apples hanging from the tree.”

CLIP 3.3721 2.7227
SLIP 3.1031 2.4363
DeCLIP 1.3140 1.1168
UniCLIP 3.0319 2.6291

CLIP 3.5971 4.4252
SLIP 2.9678 3.2464
DeCLIP 1.2837 1.1374
UniCLIP 3.5288 3.9235
UniCLIP w/ fA(A) 3.0319 2.6291

Table I: Similarity scores between images and captions. Top row: original image, bottom row:
cropped image.

Image Method “A tiny chair.” “A close-up of a chair.”

CLIP 2.1118 1.9880
SLIP 2.1535 1.8063
DeCLIP 1.1831 1.0541
UniCLIP 3.4089 2.9047

CLIP 2.5919 3.2560
SLIP 2.4766 2.6049
DeCLIP 1.2042 1.0317
UniCLIP 2.5598 2.7660
UniCLIP w/ fA(A) 2.1417 1.9606

17

Table J: Similarity scores between images and captions. Top row: original image, bottom row: flipped
image.

Image Method “From left, orange, mango, and apple.” “From right, orange, mango, and apple.”

CLIP 2.6101 2.5720
SLIP 2.6285 2.5901
DeCLIP 1.1800 1.2625
UniCLIP 4.1929 3.9725

CLIP 2.7728 2.8746
SLIP 2.9061 2.9916
DeCLIP 1.1615 1.2455
UniCLIP 3.9946 4.0283
UniCLIP w/ fA(A) 4.2233 4.0072

F Analysis

Distribution of Similarities w.r.t Loss Functions Figure C shows distribution of similarities
with respect to loss functions. MIL-NCE and SupCon losses show worse separation of positives–
negatives compared to MP-NCE loss. In MIL-NCE (red), hard-positives are concentrated around
a lower similarity region. SupCon loss (green) shows better separation of positives-negatives, but
converges to decreased scores of easy-positives. MP-NCE (blue) shows the best separation of
positives–negatives, as well as better convergence of easy-positives compared to SupCon loss. This
result is consistent with the analysis in Section 2.2.

4 2 0 2 4
Log Similarity

De
ns

ity

Density Plot with Similarity Score
pos_milnce
neg_milnce
pos_supcon
neg_supcon
pos_mpnce(ours)
neg_mpnce(ours)

Figure C: Density plot of similarity scores with respect to loss functions.

Distribution of Similarities w.r.t Domain Dependency of Similarity Measure Figure Da and
Figure Db show distribution of similarities with respect to domain dependency of similarity measure.
We can find that positives–negatives of image–image pairs separate better than positives–negatives
of image–text pairs, which means the former pairs are easier to classify than the latter cases. With
domain-dependent τ and b, those separations are more pronounced depending on the domain difficul-
ties, resulting in better performance.

1 0 1 2 3
Log Similarity

De
ns

ity

pos(img-img)
neg(img-img)
pos(img-text)
neg(img-text)

(a) Shared τ, b across domains.

1 0 1 2 3
Log Similarity

De
ns

ity

pos(img-img)
neg(img-img)
pos(img-text)
neg(img-text)

(b) Domain-dependent τ, b.

Figure D: Density plot of similarity scores with respect to domain dependency of similarity measure.

18

G Implementation Details

Experimental Settings For the main experiments in Section 3.1, we used settings in Table K
for UniCLIP training. For the baselines, we used learning rate and weight decay of (5e-4, 2e-1)
for CLIP [32], (3e-3, 1e-1) for SLIP [24], and (1e-3, 1e-1) for DeCLIP [8], while the remaining
hyperparameters are the same as our method. We used the implementation of CLIP and SLIP from
https://github.com/facebookresearch/SLIP, and DeCLIP from https://github.com/Sense-GVT/DeCLIP.
For a fair comparison, CLIP doubled the batch size to match memory usage. All models are trained
with the automatic mixed precision in PyTorch [29]. Standard cropping and flipping augmenta-
tions [39] are used for linear probing, and RandAugment [7] is used for fine-tuning.

Table K: Training settings.
Pre-train Linear probing Fine-tuning

Dataset → YFCC15M Open30M 11 downstream ImageNet
Config ↓

Base learning rate 1e-3 1e-3 1e-1 5e-4
Weight decay 0.2 0.1 0 0.05

Epoch 50 32 90 100
Linear warmup epoch 2 1 0 5
Learning rate schedule Cosine decay - -

Optimizer AdamW SGD AdamW
Optimizer momentum 0.9, 0.98 0.9 0.9, 0.999

Total batch size 4096 128 256
GPU 16×A100 40GB 1×V100 16GB 4×V100 16GB

Augmentation Configurations Following our ablation studies in Tables 4b and F, one weakly
augmented image view, two strongly augmented image views, and one text is used to train our
networks. Detailed image augmentation policies are described in Table L. For text augmentations,
EDA [44] is applied only to CC3M since it has much more refined text data than other web-crawled
noisy datasets like CC12M and YFCC15M. EDA is applied with a random replacement probability
of 0.2 and a random deletion probability of 0.1.

Table L: Image augmentation configurations in PyTorch style.
Augmentation Parameter Value Applying probability

Weak augmentation
RandomResizedCrop size, scale, ratio 224, [0.5, 1], [3/4, 4/3] 1

ColorJitter brightness, contrast, saturation, hue 0.4, 0.4, 0.4, 0.1 0.8
GaussianBlur kernel_size, sigma 11, [0.1, 2] 0.5

Strong augmentation

RandomResizedCrop size, scale, ratio 224, [0.08, 1], [3/4, 4/3] 1
ColorJitter brightness, contrast, saturation, hue 0.4, 0.4, 0.4, 0.1 0.8
GaussianBlur kernel_size, sigma 11, [0.1, 2] 0.5

RandomHorizontalFlip - - 0.5
RandomGrayscale - - 0.2

Strong augmentation (DeCLIP)

RandomResizedCrop size, scale, ratio 224, [0.2, 1], [3/4, 4/3] 1
ColorJitter brightness, contrast, saturation, hue 0.4, 0.4, 0.4, 0.1 0.8
GaussianBlur kernel_size, sigma 11, [0.1, 2] 0.5

RandomHorizontalFlip - - 0.5
RandomGrayscale - - 0.2

Network Configurations Network configurations are summarized in Table M. The augmentation
encoder is composed of 11-256-256-256 MLP with GELU activations. A residual block in the
projection head is identical to the feedforward module in Transformers and ViTs. A linear layer
follows 3 residual blocks in the projection head.

Dataset Configurations Table N describes all dataset configurations used in our experiments.

19

https://github.com/facebookresearch/SLIP
https://github.com/Sense-GVT/DeCLIP

Table M: Network configurations.
Input Output Transformer

Architecture dimension dimension layers width heads

Image
Encoder fI ViT-B/32 224×224 - 12 768 12

Augmentation encoder fA 3-layer MLP 11 256 - - -
Projection head gI 3 ResBlocks 1024 512 - - -

Text Encoder fT Transformer 77 - 12 512 8
Projection head gT Linear 512 512 - - -

Table N: Dataset configurations. Flickr30k and COCO Captions have 5 captions per image.
Dataset # Classes # Training # Validation (# Test)

Pre-training

CC3M - 2,891,358 -
CC12M - 10,663,994 -

YFCC15M - 15,171,110 -
Open30M - 28,726,462 -

Zero-shot classification
& linear probing

Pets 37 3,680 3,669
CIFAR-10 10 50,000 10,000

CIFAR-100 100 50,000 10,000
SUN397 397 19,850 19,850
Food-101 101 75,750 25,250
Flowers 102 2,040 6,149

Cars 196 8,144 8,041
Caltech-101 102 3,060 6,085

Aircraft 100 6,667 3,333
DTD 47 3,760 1,880

ImageNet 1,000 1,281,167 50,000

Image–text retrieval Flickr30k - 31,784 1,000 (1,000)
COCO Captions - 82,783 5,000 (5,000)

ImageNet variations

ImageNet-R 200 - 30,000
ImageNet-Sketch 1,000 - 50,000

ImageNetV2 1,000 - 30,000
ImageNet-A 200 - 7,500

20

