
Vocal Sandbox – Supplementary Material

Overview
In the appendices below, we provide additional details around the implementation of the various
components of both Vocal Sandbox systems (i.e., for both the collaborative gift-bag assembly and the
LEGO stop-motion settings), including details around the rest of the system architecture (e.g., speech
recognition, text-to-speech). We then extend our discussion from the main body of paper, building on
additional opportunities provided by our framework for future research.

A large portion of our paper is grounded in user studies and extended interactions; all those videos
are best viewed in (1) the attached supplementary video, and (2) on our anonymous project website:
https://vsandbox-corl-2024.github.io.
Furthermore, our work involves prompting GPT-3.5 Turbo with function calling [v11-06; 1, 2]
through the public OpenAI API; we provide these prompts directly (as code) on our website as well:
https://vsandbox-corl-2024.github.io/#language-prompts

An overview of each appendix can be found below:

Appx. A – Motivating Questions

We index a list of “motivating” questions that may arise from reading the main text and
that we expand on further here (e.g., “why adopt a modular vs. an end-to-end approach?”).
Our answers here are direct, linking to concrete sections further on in the appendices.

Appx. B – Implementing Vocal Sandbox

We provide complete implementation details for both Vocal Sandbox systems we present in
the main body of the paper; we additionally include details around the rest of the system
architecture (e.g., speech-to-text, robot control, etc.):

§B.1 – System Architecture
Additional system details around implementing real-time speech recognition and text-to-
speech, with latency and pricing statistics.

§B.2 – Language Models for Task Planning and Skill Induction
GPT-3.5 Turbo prompting details, generation hyperparameters, and latency statistics.

§B.3 – Visual Keypoint-Conditioned Policy Implementation
Additional implementation details and static evaluations for our visual keypoint-
conditioned policy (for robust object manipulation).

§B.4 – Learning Discrete Dynamic Movement Primitives from Demonstration
Formalism of discrete dynamic movement primitives (DMP) and learning algorithm;
additional details about the DMP features we employ (re-timing and goal editing).

§B.5 – Robot Platform & Low-Level Controller Implementation
Robot platform and controller implementation; ensuring compliant control and safety.

Appx. C – Extended Discussion & Future Work

We provide an extended discussion on themes from the paper, from the importance of
modularity and transparency in developing Vocal Sandbox, the broader impact of Vocal
Sandbox in the context of human-robot collaboration, and directions for future work.

1

https://vsandbox-corl-2024.github.io
https://vsandbox-corl-2024.github.io/#language-prompts

A Motivating Questions

Q1. If I wanted to implement a Vocal Sandbox from scratch, what other components would I need?
How do the current experiments handle real-time speech-to-text and text-to-speech? What about
pricing – what was the cost of running the Gift-Bag Assembly User Study (N = 8)?

Beyond the language model task planner that uses GPT-3.5 Turbo with function calling [v11-06;
1, 2], and the (lightweight) learned skill policy, we use a combination of Whisper [3] for real-time
speech recognition (mapping user utterances to text), and the OpenAI text-to-speech (TTS) API [4]
for vocalizing confirmation prompts and querying users for teaching feedback. All models, cameras,
and API calls are run through a single laptop equipped with an NVIDIA RTX 4080 GPU (12 GB).
For the gift-bag assembly user study (N = 8), the total cost of all external APIs (Whisper, OpenAI
TTS, GPT-3.5 Turbo) amounted to $0.47 + $0.08 + $1.24 = $1.79. For the entirety of the project,
GPT-3.5 API spend was $5.79, with ∼$4.00 spent on Whisper and TTS (< $10.00 total).

Q2. Given the use of powerful closed-source foundation models such as GPT-3.5/GPT-4, why adopt a
modular approach for implementing the visual keypoints (and similarly dynamic movement primitives
for learning policies)? Why not adopt an end-to-end approach building on top of GPT-4 with Vision,
or existing pretrained multitask policies?

We choose to adopt a modular approach in this work for two reasons. First, existing end-to-end
models are still limited when it comes to fine-grained perception and grounding; we quantify this
more explicitly through head-to-head static evaluations of our keypoint model vs. pretrained models
such as OWLv2 [5, 6] in §B.3. Second, we argue that modularity allows users to systematically
isolate failures and address them via multimodal feedback, at the right level of abstraction. We
expand on this further in §C.1.

Q3. How does Vocal Sandbox fit into the context of prior human-robot interaction works? What are
the new capabilities Vocal Sandbox is bringing to the table?

While the main body of the paper situates our framework against prior work in task planning and
skill learning from different modalities, Vocal Sandbox builds on a rich history of work that develops
systems for different modes of human-robot interaction. We provide an extended treatment of related
work, as well as directions for future work in §C.2.

B Implementing Vocal Sandbox
Implementing a system in the Vocal Sandbox framework requires not only the learned components for
language-based task planning and low-level skill execution, but broader support for interfacing with
users via automated speech-to-text, text-to-speech for vocalizing failures or confirmation prompts, as
well as a screen for visualizing the graphical user interface. We describe these additional components,
as well as provide more detail around the implementation of the learned components of the systems
instantiated in our paper over the following sections.

B.1 System Architecture
For robust and cheap automated speech recognition (mapping user utterances to text), we use Whisper
[1, 3], accessed via the OpenAI API endpoint. Whisper is a state-of-the-art model meant for natural
speech transcription, and we find that the latency for a given transcription request (< 0.5s round-trip)
is more than enough for all of our use-cases. API pricing is also affordable, with the Whisper API
(through OpenAI) charging $0.006 / minute of transcription (less than $0.50 to run our entire gift-bag
assembly user study). Note that we implement speech-to-text via explicit “push-to-talk” interface,
rather than an alternative “always-listening” approach; we find that this not only allows us to keep cost
and word-error rate down, but improves user experience. By gating the listening and stop-listening
features with explicit audio cues, users are more aware of what the system is doing, and can more
quickly localize any failures stemming from malformed speech transcriptions.

2

In addition to automated speech-to-text, we adopt off-the-shelf solutions for real-time text-to-speech;
this is mostly for implementing confirmation prompts (“does this plan look ok to you?”) and
for vocalizing the system state, but also includes an adaptive component when probing users to
teach new visual concepts or behaviors (“I’m sorry, I’m not sure what the ‘jelly-candy thing’ looks
like, could you teach me?”). For these queries, we use the OpenAI TTS API [4] with a similarly
affordable pricing scheme of $15.00 per 1M characters (or approximately 200K words); to run our
gift-bag assembly study, this cost fewer than $0.08. For hardware (for both speech recognition and
text-to-speech), we use a standard USB speaker-microphone (the Anker PowerConf S3).
To visualize the graphical user interface to users, we use a standard external monitor (27 inches),
placed outside of the robot’s workspace. We drive the GUI, all API calls (speech recognition, text-
to-speech, and language modeling via GPT-3.5 Turbo), ZED 2 camera, and all our learned models
– including our visual keypoint-conditioned policy, FastSAM [7], and XMem [8] – from a single
Alienware m16 laptop with an NVIDIA RTX 4080 GPU with 12 GB of VRAM; this laptop was
purchased matching the DROID platform specification [9].
Modifications for Gift-Bag Assembly User Study. For the gift-bag assembly user study (N = 8)
we implement the “push-to-talk” speech recognition interface with physical buttons placed on the
table; users are provided two buttons – one for “talking” and one for “cancelling” the prior actions
(which serves a dual function as a secondary, software-based emergency stop when the robot is
moving). These buttons are placed on the side of the user’s non-dominant hand, always within reach.
Modifications for LEGO Stop-Motion Animation. For the LEGO stop-motion animation study,
we use the same components as above, with two additions. As the expert user is directing and
framing individual camera shots during the course of the collaboration, they add an additional laptop
(a Macbook, running Stop Motion Studio) to the workspace (disconnected from the rest of the
system). As the user requires both hands free for this study (for articulating LEGO minifigures and
structures, or editing the clip on their laptop), we replace the tabletop “push-to-talk” buttons with a
USB-connected foot pedal with two switches with the same recognition and cancel functionality.

B.2 Language Models for Task Planning and Skill Induction
As described in the main body of the paper, we use GPT-3.5 Turbo with function calling [v11-06;
1, 2] as our base language model for the task planner. This was the latest, most affordable, and highest
latency language model at the time we began this work (prior to the release of GPT-4 and GPT-4o),
with a response time between 1-3s on average, and a cost of $2.00 / 1M tokens; for this work, the total
cost we spent on GPT 3.5 API calls (including development) was $5.79, with the gift-bag assembly
user study itself only amounting for $1.24 of the total spend.
We use the GPT-3.5 function calling capabilities throughout our work, requiring formatting our API
specification following a custom JSON schema set by OpenAI; we provide these function calling
prompts (and all GPT-3.5 prompts for our work) on our supplementary website for easy visualization:
https://vsandbox-corl-2024.github.io/#language-prompts. All language model outputs
were generated with low-temperature sampling (0.2).

B.3 Visual Keypoint-Conditioned Policy Implementation
As described in the main body of the paper, we use three components to implement Vocal Sandbox’s
low-level visual skills: (1) a learned language-conditioned keypoints model, (2) a pretrained mask
propagatation model [XMem; 8], and (3) a point-conditioned segmentation model [FastSAM; 7].
Our learned keypoint model predicts object centroids from language, enabling us to generalize
across object instances where XMem struggles. Given an RGB image ot ∈ RH×W×3 and natural
language literal cref from the high-level language planner, it predicts a matrix of per-pixel scores
H ∈ [0, 1]H×W . We take the coordinate-wise argmax of H as the predicted keypoint. We implement
our model with a two-stream architecture following Shridhar et al. [11] that fuses pretrained CLIP
[12] textual embeddings with a fully-convolutional architecture. We train this model on an small,
cheap-to-collect dataset of 25 unique images each annotated with 3 keypoints (75 examples total).
To fit our model, we create heatmaps from each ground-truth label, centering a 2D Gaussian around

3

https://vsandbox-corl-2024.github.io/#language-prompts

Figure 1: Visual Keypoint Static Evaluation & DMP Visualizer. We visualize visual keypoint
predictions for object locations across a clean environment [Left] and a more difficult, cluttered
environment [Middle]. We also highlight the trace generated by our Dynamic Movement Primitive
(DMP) skills, rendered in a Mujoco [10] simulation environment to display the robot path before
execution.

each keypoint with a fixed standard deviation of 6 pixels; we train our model by minimizing the
binary cross-entropy between model predictions and these heatmaps, augmenting images with various
label-preserving affine transformations (e.g., random crops, shears, rotations).

Our mask propagation model, XMem [8] tracks object segmentation masks from one image frame
to the next; we provide a brief overview here. XMem is comprised of three convolutional networks
(a query encoder e, a decoder d, and a value encoder v) and three memory modules (a short-term
sensory memory, a working memory, and a long-term memory). For a given image It, the query
encoder outputs a query q = e(It) and performs attention-based memory reading from working
and long-term memory stores to extract features Fcref , where cref is the language utterance (e.g.,
“candy”). The decoder d then takes as input q, F , and ht−1 (the short-term sensory memory) to output
a predicted mask Mt. Finally, the value encoder v(It,Mt) outputs new features to be added to the
memory history ht. The query encoder e and value encoder v are instantiated with ResNet-50 and
ResNet-18 [13] respectively. The decoder d concatenates the short-term memory history ht−1 with
the extracted features F , upsampling by a factor of 2x until reaching a stride of 4. While upsampling,
the decoder fuses skip connections from the query encoder e at every level. The final feature map is
passed through a 3× 3 convolution to output a single channel logit which is upsampled to the image
size. See Cheng and Schwing [8] for additional details.

Finally, our point-conditioned segmentation model, FastSAM [7], is used to extract an object mask
from a predicted keypoint. It has two components: a YOLOv8 [14] segmentation model s for
all-instance segmentation, and a point prompt-guided selection for identifying the object mask in
which the point lies. From a given predicted keypoint p, the segmentation model outputs the mask
M from s that encompasses p. We refer to [7] for additional details. This predicted mask M is
subsequently added to the XMem memory storage after being passed through the value encoder v.

Robot actions are coded as parameterized primitives (i.e., pick_up or go_to) that take object locations
as input and output trajectories.

Static Evaluations – Robust Object Grounding. To highlight the need for a data-efficient, domain-
specific vision system, we evaluate the performance of our vision module implementation (as
described above) compared to existing closed-source foundation models such as OWLv2 and GPT-4V.
To compare, we consider an (image, annotation) dataset of all visual queries from the N = 8 user
study, where the annotation is where the user confirmed or manually selected a correct object location.
We report measures for accuracy and precision – keypoint mean squared error in pixel distance
and success counts for predictions within a toy-car radius (14 pixels) from the annotation. For the
Vocal Sandbox predicted mask, the centroid of the mask is used for these point-to-point calculations.
We observe that while the mean squared error across all three methods are comparable, our Vocal
Sandbox vision module greatly outperforms the foundation model baselines in the precision metric.
This is because all the objects are clustered together on a table (Fig. 1) – randomly selecting between

4

these objects yields low MSE predictions, however a nearby prediction is not sufficient to identify
and isolate the correct object for grasping.

Keypoint MSE (px) Precision

OWLv2 Ensemble (ViT-L/14) 35.3 ± 1.01 1.83 ± 0.91
GPT-4-Turbo (w/ Vision) 36.39 ± 1.73 15.94 ± 2.55
Vocal Sandbox (Ours) 30.46 ± 3.61 69.41 ± 3.12

B.4 Learning Discrete Dynamic Movement Primitives from Demonstration
For our LEGO stop-motion animation setting, we implement our low-level skill policy as a library of
discrete Dynamic Movement Primitives [15, 16]. We adopt the traditional discrete DMP formulation
from Ijspeert et al. [16], defining a second-order point dynamical system in terms of the system state
y, a goal g, and phase variable x such that:

τ ÿ = αy(γy(g − y)− ẏ) + f(x, g); τ ẍ = −αxx

where α and γ define gain terms, τ ∈ (0, 1] denotes a temporal scaling factor, and f(x, g) is the
learned forcing function that drives a DMP to follow a specific trajectory to the goal g; f(x, g) is
implemented as a learned linear combination of J radial basis functions and the phase variable x
such that:

f(x, g) =

∑J
j=1 ψjwj∑J
j=1 ψj

x(g − y0); ψj = exp(−hj(x− cj)
2)

where cj and hj are the heuristically chosen centers and heights of the basis functions, respectively.
We fit the DMP weights β = {w1, w2 . . . wJ} with locally-weighted regression (LWR) from the
provided kinesthetic demonstration. For all DMPs in this work, we use J = 32, with gain values
αy = 25, γy = 25

4 and basis functions parameters set following prior work [16].

We choose (discrete) DMPs to implement skill learning as they permit efficient learning from a
kinesthetic demonstration, and have two properties that enable rich generalization to 1) new goals (by
specifying a new g) and 2) arbitrary temporal scaling (by rescaling τ). This lets us induce a simple
algebra for parameterizing our policy πd,β : (cref, l, N), indexing each learned DMP with a learned
referent cref, a new goal location l, and a number of waypoints N (used to set τ) – in other words,
allowing us to learn a new DMP – track(loc: Location) – that we can call with arbitrary new
locations (from novel initial states) with arbitrary timing parameters (e.g., “can you track around
Loki in 30 frames” or “I need a tracking shot around the tower... let’s try 2 seconds”).

Visualizing DMP Rollouts. Another advantage of using DMPs for parameterizing control is that they
allow us to visualize entire trajectories prior to execution. Similar to how we visualize the keypoints
and object segmentation masks in the collaborative gift-bag assembly setting, we provide a GUI that
shows the robot and the planned path (and end-effector poses) via a simple Mujoco-based viewer.
Fig. 1 (Right) provides an example – we plot the original kinesthetic demonstration relative to the
current robot pose in green (for reference), and the planned DMP trajectory in blue, along with the
end-effector orientation frames at the beginning and end of the trajectory. Users additionally can
dynamically advance the simulation to visualize the entire rollout (at the actual speed of execution).

B.5 Physical Robot Platform & Controller Parameters
We use a Franka Emika Panda 7-DoF robot arm with a Robotiq 2F-85 parallel jaw gripper following
the platform specification from DROID [9]. The robot and its base are positioned at one side of a
3’ x 5’ table, across from the user, such that the user and robot share the tabletop workspace. We
use an overhead ZED 2 RGB-D camera with known intrinsics and extrinsics. For robot control, we
use a modified version of the DROID control stack based on Polymetis [17]. Low-level policies
command joint positions at 10 Hz to the joint impedance controller from [17] which runs at 1 kHz.
We implement two compliance modes: a stiff mode which is activated when the robot is executing a
low-level skill, and a compliant mode for when the user provides a kinesthetic demonstration.

5

Safety. We include multiple safeguards to ensure user safety. Users have the option to cancel
any proposed behavior when an interpretable trace is presented with a physical Cancel button as
described in §B.1 – this prevents execution and immediately backtracks the Vocal Sandbox system.
Second, during execution of any low-level skill, the user can interrupt the robot’s motion with this
button as well. This halts the robot’s motion and it immediately becomes fully compliant. Lastly,
during user studies, both the user and proctor have access to the hardware emergency stop button
which cuts the robot’s power supply and mechanically locks the robot arm.

C Extended Discussion & Future Work
The following sections expand on the discussion from the main body of the paper, with a specific focus
on the benefits of Vocal Sandbox’s modular design, before providing an extended treatment of our
contributions and future directions in the broader context of systems for human-robot collaboration.

C.1 On Modular vs. End-to-End Approaches
We develop Vocal Sandbox as a modular framework; the decoupled nature of the high-level language
behavior planner from the low-level skill policies is explicit, and characterizes the rest of our
contributions. Yet, this choice poses an important question – why not an end-to-end approach?
An initial answer stems from limitations in current models; our user studies show that “flat” planning
with language models has several failure modes when it comes to reliability, while our static evalua-
tions in §B.3 indicate deficiencies in ability for current multimodal models (e.g., GPT-4 Turbo with
Vision) for high-precision language grounding in cluttered scenes. Yet, even if we consider a future
where we have stronger end-to-end approaches that unify language, vision, and action [e.g., building
on top of RT-2 or RT-H; 18, 19], we argue that modularity is an important feature in allowing users to
isolate system failures and localize their feedback at the right level of abstraction.
Consider a common failure mode of end-to-end policies learned from data: visual robustness.
Different degrees of distribution shift (e.g., introducing new distractor objects, or even perturbing the
scene in small ways) not only hurt success rate [20], but they also affect the closed-loop execution in
arbitrary ways [21], leading to suboptimal or unsafe trajectories. Worse is that errors only cascade as
the robot or scene go further out of distribution, leading to even more unpredictable behavior.
Conversely, one of the more salient observations from our user study was how quickly users were
able to not only identify failure modes in our system, but co-adapt to them. For example, within
assembling the first two gift bags in the study, many users identified that the learned keypoint model
was especially poor at predicting one category of object (Play-Doh). Rather than let this failure
completely derail the task, users leaned on the modularity of our system to isolate this failure to the
specific module (i.e., the visual keypoints-based policy) and sequence their feedback – teaching new
high-level behaviors while expecting when and where the robot would fail. Specifically, users opted
to teach a high-level behavior “assemble_bag()” that would always attempt to pack the Play-Doh
into the gift bag as the final step, affording them the ability to maximally “disengage” from actively
supervising the robot for the bulk of execution, only intervening at the last step. In other words,
modularity in Vocal Sandbox gives users the leverage to to quickly understand the robot’s capabilities,
as well as the power to meaningfully build on its strengths, and adapt around its weaknesses.

C.2 Broader Context and Future Work
While the main body of our paper situates our framework against methods that use language models
for task planning and learning low-level skills from multimodal feedback, Vocal Sandbox builds
off a much larger body of work that build systems for different forms of human-robot interaction.
The systems differ in the modes of collaboration they enable, from explicit human-robot teaming in
situated environments [22–26], to learned methods for shared autonomy [27–29], to platforms for
assistive robotics [30–32], amongst many others [33].
While Vocal Sandbox is heavily inspired by this prior work, especially those that learn language
interfaces for grounding user intent to low-level robot behavior [34–36], this is only the beginning.
Future iterations of our framework will build on the types of interactions and learning we permit
(e.g., multi-robot teaming or integrating modalities such as touch or nonverbal feedback), all driving
towards general and seamless human-robot collaboration.

6

References
[1] OpenAI. Introducing ChatGPT and Whisper APIs. https://openai.com/index/

introducing-chatgpt-and-whisper-apis/, 2022.

[2] OpenAI. GPT-3.5 – Function calling and other updates. https://openai.com/index/
function-calling-and-other-api-updates/, 2023.

[3] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever. Robust speech
recognition via large-scale weak supervision. ArXiv, abs/2212.04356, 2022. URL https:
//api.semanticscholar.org/CorpusID:252923993.

[4] OpenAI. Text-to-speech models. https://platform.openai.com/docs/guides/
text-to-speech, 2023.

[5] M. Minderer, A. A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn, A. Dosovitskiy,
A. Mahendran, A. Arnab, M. Dehghani, Z. Shen, X. Wang, X. Zhai, T. Kipf, and N. Houlsby.
Simple open-vocabulary object detection with vision transformers. In European Conference on
Computer Vision (ECCV), 2022.

[6] M. Minderer, A. A. Gritsenko, and N. Houlsby. Scaling open-vocabulary object detection. In
Advances in Neural Information Processing Systems (NeurIPS), 2023.

[7] X. Zhao, W. Ding, Y. An, Y. Du, T. Yu, M. Li, M. Tang, and J. Wang. Fast segment anything,
2023.

[8] H. K. Cheng and A. Schwing. Xmem: Long-term video object segmentation with an atkinson-
shiffrin memory model. In European Conference on Computer Vision, 2022.

[9] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany, M. K.
Srirama, L. Y. Chen, K. Ellis, P. Fagan, J. Hejna, M. Itkina, M. Lepert, Y. Ma, P. T. Miller, J. Wu,
S. Belkhale, S. Dass, H. Ha, A. Jain, A. Lee, Y. Lee, M. Memmel, S. Y. Park, I. Radosavovic,
K. Wang, A. Zhan, K. Black, C. Chi, K. B. Hatch, S. Lin, J. Lu, J.-P. Mercat, A. Rehman,
P. R. Sanketi, A. Sharma, C. B. Simpson, Q. H. Vuong, H. Walke, B. Wulfe, T. Xiao, J. H.
Yang, A. Yavary, T. Zhao, C. Agia, R. Baijal, M. G. Castro, D. L. Chen, Q. Chen, T. Chung,
J. Drake, E. P. Foster, J. Gao, D. A. Herrera, M. Heo, K. Hsu, J. Hu, D. Jackson, C. Le, Y. Li,
K. Lin, R. Lin, Z. Ma, A. Maddukuri, S. Mirchandani, D. Morton, T. Nguyen, A. O’Neill, R. M.
Scalise, D. Seale, V. Son, S. Tian, E. Tran, A. E. Wang, Y. Wu, A. Xie, J. Yang, P. Yin, Y. Zhang,
O. Bastani, G. Berseth, J. Bohg, K. Goldberg, A. Gupta, A. Gupta, D. Jayaraman, J. J. Lim,
J. Malik, R. Martín-Martín, S. Ramamoorthy, D. Sadigh, S. Song, J. Wu, M. C. Yip, Y. Zhu,
T. Kollar, S. Levine, and C. Finn. DROID: A large-scale in-the-wild robot manipulation dataset.
In Robotics: Science and Systems (RSS), 2024.

[10] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
International Conference on Intelligent Robots and Systems (IROS), pages 5026–5033, 2012.

[11] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipula-
tion. In Conference on Robot Learning (CoRL), 2021.

[12] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning (ICML),
volume 139, pages 8748–8763, 2021.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Computer
Vision and Pattern Recognition (CVPR), 2016.

[14] G. Jocher, A. Chaurasia, and J. Qiu. Ultralytics YOLO, Jan. 2023. URL https://github.
com/ultralytics/ultralytics.

7

https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/function-calling-and-other-api-updates/
https://openai.com/index/function-calling-and-other-api-updates/
https://api.semanticscholar.org/CorpusID:252923993
https://api.semanticscholar.org/CorpusID:252923993
https://platform.openai.com/docs/guides/text-to-speech
https://platform.openai.com/docs/guides/text-to-speech
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

[15] S. Schaal. Dynamic movement primitives - a framework for motor control in humans and
humanoid robotics. In H. Kimura, K. Tsuchiya, A. Ishiguro, and H. Witte, editors, Adaptive
Motion of Animals and Machines, pages 261–280. Springer Tokyo, Tokyo, 2006.

[16] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical movement
primitives: Learning attractor models for motor behaviors. Neural Computation, 25:328–373,
2013. URL https://api.semanticscholar.org/CorpusID:2431443.

[17] Y. Lin, A. S. Wang, G. Sutanto, A. Rai, and F. Meier. Polymetis. https://facebookresearch.
github.io/fairo/polymetis/, 2021.

[18] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, P. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, K. Hausman,
A. Herzog, J. Hsu, B. Ichter, A. Irpan, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, I. Leal,
L. Lee, T.-W. E. Lee, S. Levine, Y. Lu, H. Michalewski, I. Mordatch, K. Pertsch, K. Rao,
K. Reymann, M. Ryoo, G. Salazar, P. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut,
H. Tran, V. Vanhoucke, Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, J. Wu, F. Xia, T. Xiao,
P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-2: Vision-language-action models transfer web
knowledge to robotic control. In arXiv preprint arXiv:2307.15818, 2023.

[19] S. Belkhale, T. Ding, T. Xiao, P. Sermanet, Q. Vuong, J. Tompson, Y. Chebotar, D. Dwibedi,
and D. Sadigh. Rt-h: Action hierarchies using language. ArXiv, abs/2403.01823, 2024. URL
https://api.semanticscholar.org/CorpusID:268249108.

[20] K. Burns, Z. Witzel, J. I. Hamid, T. Yu, C. Finn, and K. Hausman. What makes pre-trained
visual representations successful for robust manipulation? arXiv preprint arXiv:2312.12444,
2023.

[21] A. Xie, L. Lee, T. Xiao, and C. Finn. Decomposing the generalization gap in imitation learning
for visual robotic manipulation. In International Conference on Robotics and Automation
(ICRA), 2024.

[22] G. Hoffman and C. L. Breazeal. Collaboration in human-robot teams. AIAA 1st Intelligent
Systems Technical Conference, 2004. URL https://api.semanticscholar.org/CorpusID:
1114471.

[23] C. L. Breazeal, G. Hoffman, and A. L. Thomaz. Teaching and working with robots as a
collaboration. Proceedings of the Third International Joint Conference on Autonomous Agents
and Multiagent Systems, 2004. AAMAS 2004., pages 1030–1037, 2004. URL https://api.
semanticscholar.org/CorpusID:14275016.

[24] J. Y. Chai, L. She, R. Fang, S. Ottarson, C. Littley, C. Liu, and K. Hanson. Collaborative effort
towards common ground in situated human-robot dialogue. 2014 9th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages 33–40, 2014. URL https://api.
semanticscholar.org/CorpusID:7617225.

[25] M. Natarajan, E. Seraj, B. Altundas, R. R. Paleja, S. Ye, L. Chen, R. Jensen, K. C. Chang, and
M. C. Gombolay. Human-robot teaming: Grand challenges. Current Robotics Reports, 4:81 –
100, 2023. URL https://api.semanticscholar.org/CorpusID:260747359.

[26] J. Brawer, O. Mangin, A. Roncone, S. Widder, and B. Scassellati. Situated human–robot
collaboration: predicting intent from grounded natural language. 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 827–833, 2018. URL https:
//api.semanticscholar.org/CorpusID:51998195.

[27] A. D. Dragan and S. S. Srinivasa. A policy-blending formalism for shared control. International
Journal of Robotics Research (IJRR), 32:790–805, 2013.

8

https://api.semanticscholar.org/CorpusID:2431443
https://facebookresearch.github.io/fairo/polymetis/
https://facebookresearch.github.io/fairo/polymetis/
https://api.semanticscholar.org/CorpusID:268249108
https://api.semanticscholar.org/CorpusID:1114471
https://api.semanticscholar.org/CorpusID:1114471
https://api.semanticscholar.org/CorpusID:14275016
https://api.semanticscholar.org/CorpusID:14275016
https://api.semanticscholar.org/CorpusID:7617225
https://api.semanticscholar.org/CorpusID:7617225
https://api.semanticscholar.org/CorpusID:260747359
https://api.semanticscholar.org/CorpusID:51998195
https://api.semanticscholar.org/CorpusID:51998195

[28] S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, and J. A. Bagnell. Shared autonomy
via hindsight optimization for teleoperation and teaming. International Journal of Robotics
Research (IJRR), 37:717–742, 2018.

[29] S. Karamcheti, M. Srivastava, P. Liang, and D. Sadigh. LILA: Language-informed latent actions.
In Conference on Robot Learning (CoRL), 2021.

[30] B. Driessen, H. Evers, and J. A. v Woerden. Manus—a wheelchair-mounted rehabilitation
robot. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering
in Medicine, 215:285 – 290, 2001. URL https://api.semanticscholar.org/CorpusID:
35700443.

[31] B. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. RAS, 57, 2009.

[32] D. P. Losey, C. G. McDonald, E. Battaglia, and M. K. O’Malley. A review of intent detection,
arbitration, and communication aspects of shared control for physical human-robot interaction.
Applied Mechanics Reviews, 70, 2018.

[33] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. O. Albu-Schäffer, K. Kosuge, and O. Khatib.
Progress and prospects of the human–robot collaboration. Autonomous Robots, 42:957 – 975,
2017. URL https://api.semanticscholar.org/CorpusID:21722736.

[34] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J. Teller, and N. Roy.
Understanding natural language commands for robotic navigation and mobile manipulation. In
Association for the Advancement of Artificial Intelligence (AAAI), 2011.

[35] S. Tellex, R. Knepper, A. Li, D. Rus, and N. Roy. Asking for help using inverse semantics. In
Robotics: Science and Systems (RSS), 2014.

[36] H. Wang, K. Kedia, J. Ren, R. Abdullah, A. Bhardwaj, A. Chao, K. Y. Chen, N. Chin, P. Dan,
X. Fan, G. Gonzalez-Pumariega, A. Kompella, M. A. Pace, Y. Sharma, X. Sun, N. Sunkara, and
S. Choudhury. Mosaic: A modular system for assistive and interactive cooking. arXiv preprint
arXiv:2402.18796, 2024.

9

https://api.semanticscholar.org/CorpusID:35700443
https://api.semanticscholar.org/CorpusID:35700443
https://api.semanticscholar.org/CorpusID:21722736

	Motivating Questions
	Implementing Vocal Sandbox
	System Architecture
	Language Models for Task Planning and Skill Induction
	Visual Keypoint-Conditioned Policy Implementation
	Learning Discrete Dynamic Movement Primitives from Demonstration
	Physical Robot Platform & Controller Parameters

	Extended Discussion & Future Work
	On Modular vs. End-to-End Approaches
	Broader Context and Future Work

