597

598
599
600
601

603

604

605

606

607

608

609

610

611

612

613

Appendix Overview: Unpacking Failure Modes of Generative Policies

The appendix offers additional details with respect to the implementation of our failure detection
framework (§A), the experiments conducted (§B), along with extended results and analysis (§C),
and finally, supporting derivations (§D) for our proposed detectors. Qualitative results and a video
abstract are made available at sites.google.com/view/detecting-policy-failure.

Appendix A Method Details 16
A.l Temporal Consistency Detection with STAC 16
A.2 Runtime Monitoring with Vision-Language Models 17

Appendix B Experiment Details 20
B.1 Environments e 20
B.2 Baselines 20
B.3 EvaluationProtocol 25

Appendix C Additional Results 27
C.1 PushT Ablation e 27
C.2 Vision-Language Model Ablation 27
C.3 Extended Discussion 28

Appendix D Derivations 30

15

6

4

615
616
617
618
619
620

621

622
623
624
625
626
627
628
629

630
631
632
633
634
635
636
637
638

639
640
641
642

643

644
645
646

647

648
649
650

A Method Details

As shown in Fig. 2, our proposed failure detection framework consists of the parallel operation of
two complementary failure detectors, each assigned to the detection of a particular failure category of
generative policies. The first is a temporal consistency detector that monitors for erratic policy behavior
via statistical temporal action consistency (STAC) measures. The second is a Vision-Language Model
(VLM) that monitors for failure of the policy to make progress on its task. In this section, we provide
additional details w.r.t. the implementation of STAC (§A.1) and the VLM runtime monitor (§A.2).

A.1 Temporal Consistency Detection with STAC

Background To summarize §3, STAC assumes the use of a stochastic policy 7 that, at each policy
inference timestep ¢, predicts an action sequence for the next i timesteps as a4 ¢ ~ 7 (-] s¢), executes
the first £ actions a4 ¢, before re-evaluating the policy at timestep ¢ + k. Here, range subscripts
denote a sequence of actions. Between two contiguous inference timesteps ¢ and ¢+ k, sampled action
SeqUENCES sy k:¢4n(¢ AN Gy y ¢4 p[¢4k (DOt in R(=R)x]Aly overlap for h — k timesteps. At a high-
level, STAC seeks to quantify how much a generative policy’s action distributions are changing over
time. It does this by computing statistical distances between the distributions of overlapping actions,
ie., given Ty =T (A qp.pn|e|St) and Ty g :=T(Apy otttk St k), We compute D(7y, ey).

Hypothesis Our central hypothesis is that large statistical distances correlate with downstream policy
failure. Intuitively, a predictive policy can be likened to possessing an internal world model that
simulates how robot actions affect environment states. When the policy is in-distribution, we expect
this world model to be accurate, thus resulting in smaller statistical distances. More concretely, if
the policy’s internal model of state s, at timestep ¢ coincides with the actual observed state s, at
timestep ¢+ k, the distribution of actions 7 ;, should be well-represented by the distribution 7;. As a
result, the distance D (7,7) will be small (for the right choice of statistical distance function D).
Conversely, when the policy is out-of-distribution (OOD), its internal model of state s 5, at timestep ¢
may be inaccurate, yielding a divergence between 7; and 7y 1, and a larger statistical distance.

Implementation Details As mentioned in §4.1, we propose to approximate D (7,74) With an
empirical distance function D instead of computing it analytically, as doing so presents the challenge of
marginalizing out both the non-overlapping actions (between timesteps ¢ and ¢+ k) and the intermediate
steps of the diffusion process [63]. We found the following approximations to work well in practice:

* Maximum Mean Discrepancy (MMD) with radial basis function (RBF) kernels. We compute
D(ﬁtaﬁ—t-‘rk) =]Eat ,ay~TTE [k(atva’;&)} +Eat+ksa;+k’\’7~7t+k [k(a’t-l-k 7a;+k)}

r—uyll2
_2Eat"’ﬁ't»at+k~7~7t+k [k(atvat+k)]v where k‘(x,y; ﬁl) =exp (_Hﬂy”) .
1
That s, k: R —F) XAl R(A=F)xIAl R computes the similarity between two overlapping
action sequences, and 31 denotes the bandwidth of the RBF kernel. The expectations are
taken over a batch of B action sequences sampled from the generative policy.

* Forward KL-divergence via Kernel Density Estimation (KDE) of the policy distributions:

_ . platyk
D(Wt77t+k):]Eat+k~7?t+k {IOg (H_k)]v

q(at+k)
where p and q are KDEs of 7, and 7 fit on a batch of B action sequences sampled from each

distribution, respectively. As before, we use Gaussian RBF kernels of the form k(z,y; 82),
where 35 denotes the bandwidth of the RBF kernels used for KDE.

16

651

652
653

654
655
656
657
658

660

662
663
664
665
666
667
668
669
670

671

672
673

674
675
676
677
678
679
680
681
682
683
684
685
686

» Reverse KL-divergence via KDE of the policy distributions:

A~ plar)
D(ﬂ—taﬂ—tka) = Eat""ﬁ't |:10g q(a:t) :| ;
where p and g are KDEs of 7y and 7,1, fit on a batch of B action sequences sampled from
each distribution, respectively, and all other parameters follow the forward KL definitions.

The batch size B, MMD bandwidth (31, and KDE bandwidth 3, are hyperparameters that we select for
a given environment. As expected, we found that larger batch sizes are necessary for accurate mean
embeddings and density estimates in domains with higher degrees of multi-modality (i.e., PushT). We
also found that using either default settings or dynamic calibration techniques are sufficient to obtain
suitable MMD and KDE bandwidth parameters 3; and f32, respectively. For example, setting 35 in
proportion to the maximum eigenvalue of the covariance of overlapping actions a; j.; 1 |. sampled
from 7; and 7, . Further details on selecting hyperparameters are provided in Table 2.

| Hyperparameters | PushT Domain (1 Multi-Modal) Mobile Manip. Domains (| Multi-Modal) |
MMD + KDE batch size (B) 256 32
MMD bandwidth (31) Median Heuristic [64, 65] 1.0/]A|
KDE bandwidth (85) V/Amax(Cov(ayykiarn)-)) 1.0
Policy action space (A) Linear Velocity Linear + Angular Velocity
Policy prediction horizon (h) 16 16
Policy execution horizon (k) 8 4

Table 2: Hyperparameters settings for temporal consistency detection with STAC.

Additional Design Choices There are several additional settings that one could adjust to increase
STAC’s detection performance on their task. First, filtering components of the policy’s action space that
are either noisy or discrete can increase the quality of the statistical distance estimates. For example,
the policy’s action space in our bi-manual mobile robotic manipulator domains (i.e., Close Box and
Cover Object) include end-effector linear and angular velocities, as well as a binary gripper command.
However, when computing statistical distances, we omit all binary gripper commands. Next, reducing
the execution horizon k of the generative policy to compare action distributions that are closer in
time can mitigate excessively large statistical distances in highly dynamic or stochastic environments.
Likewise, comparing action distributions over a shorter prediction horizon h may be suitable if the tails
of predicted action sequences e.g., exhibit high variance. Table 2 summarizes our design choices.

A.2 Runtime Monitoring with Vision-Language Models

In this section, we provide details surrounding the implementation of our VLM runtime monitor, after
which we provide the prompt templates used in our experiments.

Implementation Details We use OpenAl’s gpt-4o multi-modal model to reason about the behavior
of the policy and detect failures. To do so, we provide the VLM with both a parsed text prompt
describing the monitoring task and the video recorded by the robot’s camera system up to the current
timestep. Specifically, as described in §4.2, we query the VLM online at each timestep aligned with
the robot’s execution horizon (i.e., for each ¢ = jk for j € {0,1,...}) using the history of observed
images Io.+ := (Io,Iyk,[2vk,.--,It) up to the current timestep ¢. Here, the hyperparameter v specifies
the frequency of the images relative to the execution horizon k of the DP (§3) for generality, as the
video may be captured at a much higher frame rate than the diffusion policy’s execution rate. In our
implementation, we simply set v =1 and found that this provided sufficient granularity for the model to
identify the robot’s motion. To format the video so that it can be passed to the model, we follow the
OpenAl API template by converting each individual image frame in the video to a jpg file, encoding
the jpg with a base64 encoding, and then converting them to utf-8 strings. We then prompt the model
by providing an input tuple consisting of the text prompt and each of the individually encoded images.

17

687
688

689
690

692
693
694
695
696
697
698
699
700
701
702
703
704

710
71
712
713
714
715

716

77

We do so because this is the recommended method of providing gpt-4o with video; at the time of
writing, the OpenAl Python API does not support direct video (mp4) inputs.

The prompt template consists of three parts. First is a brief description of the model’s role as the runtime
monitor of a manipulator robot, which the VLM must execute by analyzing the attached video of the
robot’s current progress. Second is a description of the task that the robot has to complete, as well
as the total amount of time that has elapsed relative to the episode time limit (corresponding to the
MDP horizon in §3). We make sure that the task description is sufficiently detailed, so that there is no
ambiguity over what the expected behavior of the robot is and what constitutes task completion. For
example, we specify that the object must be fully covered by the blanket in the Cover Object domain,
and that the robot must close all three of the box’s lids in the Close Box domain. We also found that it
is necessary to specify the elapsed time, since we query the VLM at each timestep within an episode
rather than making a success/failure classification after the episode completes. Online monitoring
requires the VLM to differentiate whether the robot is still in-progress of completing the task correctly
(in which case the current video represents partial progress), or whether the robot will fail to complete
the task (by e.g., stalling in a partially completed state). Differentiating between partial progress and
task failure can be ambiguous for a slow moving robot, and thus, providing the model with the current
elapsed time serves as a reference to gauge whether or not the rate at which the robot is executing the
task will result in a timely task completion. The third component of the prompt contains instructions
to elicit a chain-of-thought response [59], ensuring that the VLM describes and analyzes the robot’s
motion and outputs a classification that can be easily parsed.

The chain-of-thought instructions prompt the model to analyze the video in three steps. The first is to
ensure the VLM describes the observed motion of the robot and task-relevant objects in detail. The
second is to analyze the observed motion and reason about whether the robot is behaving incorrectly
or not. The final step is to conclude with a classification in {ok, failure}. Our objective with the
runtime monitor is to interfere if the robot is likely to enter a state that is difficult to reset from (e.g.,
because it potentially unsafe) or cannot complete the task. We therefore note that the role of the runtime
monitor is only to interfere with the operation of the robot if it is clearly failing to complete the task,
for example if the robot is behaving in a manner that is potentially unsafe, or if the robot is unlikely to
complete the task in the remaining time budget.

Prompt template We include our prompt template below.

"I am the runtime monitor for an autonomous mobile manipulator capable of

18

718

719

solving common household tasks. These are frames of the video recorded by
the manipulator’s camera system at approximately 1Hz as it is executing its
current task. My job is to analyze the observations of the manipulator and
identify whether it is acting incorrectly or unsafely. The robot may take up
to {TIME_LIMIT} seconds to complete the task.\n

The manipulator’s current task is to {TASK}.\n
The current elapsed time is {TIME} seconds.\n

I will format my output in the following form:\n

[start of output]\n

Analysis: On this line, I will precisely describe the full motion of the
manipulator and all task-relevant objects from the beginning to the end of
the accompanying video. I will also carefully describe the final state of
each of the task-relevant objects and the manipulator. Then, I will
characterize whether the robot is clearly failing the task or not, for
example by behaving erratically.

Since the video only represents the progress up to the current timestep and the
robot moves slowly, I will refrain from making a failure classification
unless the robot takes an unsafe action or the robot clearly can not
complete the task in the allotted time. After explicitly noting the amount
of time that has passed in seconds and explicitly comparing it with the time

limit (e.g., x out of {TIME_LIMIT} seconds), I will decide whether the
robot is in-progress, or whether the robot will fail the task or is behaving
erratically.\n

Overall assessment: {CHOICE: [ok, failure]l}\n

[end of output]\n

Rules:\n

1. If you see phrases like {CHOICE: [choicel, choice2]}, it means you should
replace the entire

phrase with one of the choices listed. For example, replace the entire phrase ’
{CHOICE: [A, B]}’ with ’B’ when choosing option B. Do NOT enclose your
choice in ’{’ ’}’ brackets. If you are not sure about the value, just use
your best judgement.\n

3. Do NOT forget to conclude your analysis with an overall assessment. As
indicated above with ‘{CHOICE: [ok, failure]}‘, your only options for the
overall assessment are ’ok’, or ’failure’.\n

4. Always start the output with [start of output] and end the output with [end of
output] .\n

Output:"

The task descriptions we use are as follows:

task_descriptions:

cover: "pick up the white blanket and use it to fully cover the white box, then
let go of the blanket"

close: "close the white box by folding in the two smaller white side lids and
the bigger white back 1id. First, the robot should concurrently push both
side lids up, followed by folding up the back lid with both arms, without
grasping the lids with the grippers. Then, the robot’s arms should back
away from the box"

19

720

721

722
723
724
725
726

727
728
729
730
731
732
733
734
735
736

737
738
739
740
741
742
743
744
745
746

747
748
749
750
751
752
753
754

755

756
757

759
760
761
762

764
765

B Experiment Details

B.1 Environments

We provide additional details on the simulated environments used to test our failure detection approach.
These environments vary in terms of the properties of their training distributions and the distribution
shifts under which their policies are evaluated. This results in different qualitative modes of policy
failure. Specifically, we consider the PushT domain from [1] and two high-dimensional bi-manual
mobile manipulation domains. A visualization is provided in Fig. 6.

* PushT Domain: The policy is tasked with pushing a planar “T”-shaped object into a goal
configuration. A trajectory is considered successful if the overlap between the “T”-shaped
object and its goal exceeds 90% within 300 environment steps. The action space is the
2-DoF linear velocity of the end-effector. We generate OOD test scenarios by non-uniformly
randomizing the scale and dimensions of the “T”’-shaped object beyond the randomizations
contained in the policy’s demonstration data. The policy tends to fail by converging to a
locally optimal configuration, where the “T” overlaps with its goal but in the wrong orientation.
Since the task can be solved in a number of ways, we include this domain to evaluate the
performance of various score functions in the presence of action multi-modality. We refer to
[1] for the process of generating demonstration data in this domain.

* Close Box Domain: The policy is tasked with closing a box with three lids. A trajectory is
considered successful if all three lids are closed within 120 environment steps (24 seconds).
The action space is the 14-DoF linear + angular velocities and gripper command for the
end-effectors of two mobile manipulators. Demonstration data is generated by an oracle
policy that sets a series of waypoints for the end-effectors based on the initial state. We
generate OOD test scenarios by non-uniformly randomizing the scale of the box beyond
the randomizations contained in the policy’s demonstration data. The policy tends to fail
erratically when the robots e.g., collide with the box or its lids, however, task progression
failures may also occur. This domain is primarily used to evaluate the detection of erratic
policy failures in a bi-manual robot system with a high-dimensional action space.

* Cover Object Domain: The policy is tasked with covering a rigid object with a cloth. A
trajectory is considered successful if over 75% of the object is covered by the cloth within 80
environment steps (16 seconds). The action space and process of generating demonstration
data is identical to that of Close Box. We generate OOD test scenarios by non-uniformly
randomizing the position of the object beyond the randomizations contained in the policy’s
demonstration data. The policy tends to fail by releasing the cover before reaching the object,
i.e., placing it on the ground. This domain is used to evaluate the detection of task progression
failures, where contextual reasoning over longer durations is required to assess task progress.

B.2 Baselines

We outline the implementation details of our baselines as introduced in §5. First, with the exception
of the VLM runtime monitors, all evaluated failure detection methods consist of computing a score
S(-) at each policy inference timestep, taking the cumulative sum of scores up to the current timestep ¢,
and then checking if the cumulative sum exceeds a calibrated threshold to detect policy failure. As
such, the baselines differ in their score function, i.e., how they compute the per-timestep scores that are
then summed and thresholded. Intuitively, a good score function should be well-correlated with policy
failure, that is, it should output small scores when the policy is succeeding and large ones when it is
failing. For example, Fig. 3 demonstrates this property for our proposed temporal consistency detector.
We baseline against an extensive suite of score functions, some of which we newly introduce for the
case of generative policies, and others that are common in the OOD detection literature [4].

20

766

767

769
770
771
772
773

774
775

776
77

778
779
780
781
782
783
784
785
786

787
788
789
790
791
792
793

PushT Domain Close Box Domain Cover Object Domain

(Mutlti-Modal) (Erratic Failures) (Task Progression Failures)
c Start End ‘ Start | [~ A End Start End
5 3 i
3 R > ¢
=4 ; ¥ 8 || ¢
£ ° Nal I/ 3
8 / 7 Start End i\‘ start | [}, End Start End
3 4 \‘\y,
2 * [3 K3 3
z ’ & N g RS 2 g &
a t ¥ ; S :
3 \ ¥ %
2 ¢ <f. {
o

Figure 6: Task suite. We evaluate our failure detection approach across three simulated domains. These
domains provide coverage over different data distributions (e.g., multi-modality, high-dimensional
action spaces) and modes of generative policy failure. For example, generative policies tend to fail
erratically in the Close Box domain, but smoothly in the Cover Object domain. An effective failure
detector should be performant across multiple domains rather than just one.

B.2.1 STAC Baselines (Policy Level)

* Policy Encoder Embedding quantifies the dissimilarity of the current point cloud observation
o, w.r.t. to the point clouds in the calibration dataset of M successful policy rollouts D, =
{7}M, (§3) within the embedding space of the policy’s encoder (here, o; denotes the point
cloud input to the policy, including the point cloud at the current and previous timestep). More
concretely, let E be the policy’s encoder, z; = E'(0;) be the current point cloud embedding,
and D, = E(D;) be the embeddings of all point clouds contained in the calibration dataset.
We compute the per-timestep score as the Mahalanobis distance

Sz Do) = (e —pa) TS (=), 3)
where 1, is the mean and X, is the covariance of the embeddings in D,. At test time, we
raise a failure warning if the cumulative score 7; exceeds a calibrated detection threshold ~

t

ne>7, where ZZS(%; D,).
=0

Here, +y is set to the 1 — § quantile of cumulative scores computed over the calibration
trajectories {nllTi‘ MM, where 7' € D,. Importantly, when computing the calibration scores

ni, we do so in a leave-trajectory-out fashion: i.e., for a point cloud o; € 7% where 7t € D,,, we
compute the per-timestep score as S(E(o;); E(D,\7")). This ensures that the dissimilarity
of observation o, is computed w.rt. trajectories other than its own, which a) aligns with how
scores are computed at test time and b) ensures that calibration scores are not trivially low.
We experimented with alternatives to the Mahalanobis distance in Eq. (3), substituting it with
top-k scoring for k € {1,5,10} based on cosine similarity or L2 distance metrics. However,
we found the Mahalanobis distance to be most stable. We also evaluated variants of this
baseline that compute the dissimilarity of the full policy state s, (including both the point
cloud embedding and the robots’ end-effector poses) but found equivalent performance.

* CLIP Pretrained Embedding quantifies the dissimilarity of the current image observation
I; w.r:t. to the images in the calibration dataset D, = {7°} | within the embedding space
of a pretrained CLIP encoder [66]. The score function (Eq. 3) and calibration process are
identical to Policy Encoder Embedding. Importantly, the encoder used here is trained
with a representation learning objective, which results in a structured embedding space and
more interpretable embedding similarity scores. In our experiments, we use the open-source
clip-vit-base-patch32 version of CLIP without any fine tuning.

21

794
795

796
797
798

800

801
802
803

805
806
807

808
809
810

811
812
813
814
815
816
817
818
819

820
821
822

823
824

826
827
828
829
830
831

832
833

834
835

* ResNet Pretrained Embedding is identical to CLIP Pretrained Embedding, except quanti-
fies image-space dissimilarity using embeddings from a ResNet18 pretrained model [67].

* Temporal Minimum is similar to STAC (§A.1) in that it seeks to compute a consistency score
between overlapping actions a;y y.¢4-n¢ and Gy g4 n|t+, Sampled from the generative policy
at contiguous policy-inference timesteps ¢ and ¢ + k, respectively. However, it does so by
using a non-statistical distance function. In particular, this baseline computes the per-timestep
temporal consistency score at timestep t+k as

— ; b b ~
S(st+x)=_min ‘at+k:t+h|t_at+k:t+h\t+k7 where 4y pjepr ™~ Ttk ([St4n)-

be{l1..B}
That is, we sample a batch of B actions sequences at timestep ¢+ k, compute their L2 distances
w.r.t. the overlapping actions of the previously executed action sequence a;yy.¢4n¢» and
return the L2 distance associated with the most similar action sequence. Intuitively, this
baseline attempts to find the closest action sequence at timestep ¢+ k to previously executed
action sequence, in contrast to STAC, which quantifies how well the action distribution 74 5,
at timestep t + k is represented in the distribution 7, at timestep ¢. The values of B are in
Table 2. The calibration and runtime procedures of this baseline are identical to STAC (§4.1).

* Diffusion Reconstruction adapts the diffusion-based OOD detection approach of Graham
et al. [62] for the case of diffusion policy. Specifically, this baseline computes the reconstruc-
tion error on re-noised action sequences sampled from the diffusion policy as

S(st) :anww(-|st),ei,i |:Ha0_61é:0(\/67ia/0+ \% 1_@i€i73t) H2:| ’ (4)

where €;;° denotes the reverse diffusion process from the i-th denoising iteration to the 0-th
iteration, resulting in the reconstructed action. We approximate the expectation in Eq. 4 over
a batch of B =256 action sequences sampled from the diffusion policy, each re-noised for
i € {5,10,25,50} forward diffusion steps (also referred to as reconstruction depths). We
experimented with several sets of reconstruction depths and found comparable performance.
We note that this baseline comes with significant computational expense as it needs to perform
the denoising process multiple times: i.e., if we would like to compute R reconstructions, this
baseline is approximately R times more expensive than simply sampling the diffusion policy.
The calibration and runtime procedures of this baseline are identical to that of STAC (§4.1).

» Temporal Diffusion Reconstruction is a temporal variant of Diffusion Reconstruction
that also computes the reconstruction error on re-noised action sequences sampled from the
diffusion policy, but reconstructs the action sequences conditioned on the previous state s; as

do—ﬁgo(\/ @i&0+ V 1—071'61.,815)”2] .

Here, a" denotes the action sequence on which reconstructions are computed, concatenating
the first £ (executed) actions sampled at timestep ¢ with following k£ — h (predicted) actions
sampled at timestep ¢+ k: that is, A = sk & a?+k:t+h‘t+k. This step is necessary to
ensure that the denoising process conditioned on s; only considers actions within the policy’s
prediction horizon. This baseline represents an alternative form of temporal consistency.
Intuitively, it asks whether action sequences sampled at timestep ¢+ % would also be sampled
at timestep ¢, to which the answer is likely yes if the policy is in-distribution, and likely no if
the policy is OOD—because the marginal distributions conditioned on s; versus s;j may be
different. The hyperparameters of this baseline follow Diffusion Reconstruction.

S(st’st+k) :Ea?+k;t+h\t+kwﬁt+k’fi:i [

* DDPM Loss computes the empirical DDPM loss on re-noised action sequences sampled
from the diffusion policy as

S(St) :anwﬁ(.‘st)iiﬁi {Hei 769(o‘zia0+\/ 1*@i€i,st,i) ||2:| .

Here, the expectation is taken over a batch of B = 256 sampled action sequences and 10
sampled denoising iterations i ~/[0,IV), where N is the total number of denoising iterations

22

836
837
838
839

840
841
842

843
844
845

846
847
848
849
850
851
852
853

854
855
856
857
858
859
860
861
862
863
864

865

866
867
868

869
870
871
872
873
874

875
876
877
878
879
880
881

(§B.3.1). We can think of this baseline as a more efficient version of Diffusion Reconstruction,
since it directly quantifies the diffusion policy’s performance on its training task without the
need to reconstruct actions over numerous denoising iterations. The calibration and runtime
procedures of this baseline are identical to that of STAC (§4.1).

* Temporal DDPM Loss is a temporal variant of DDPM Loss that also computes the empirical
DDPM loss on re-noised action sequences sampled from the diffusion policy, but does so
conditioned on the previous state s; as

; — — NI
S(St,3t+k):EagM:HWJrkNﬁHk,ei,i[Hﬁl—ﬁe(vaiao—ﬂ/1—0%61,31571)” }7

where 6% = appqpp @ ay, ., njt+ (as defined in Temporal Diffusion Reconstruction).
The hyperparameters of this baseline follow DDPM Loss, over which it is expected to offer
advantages via temporal consistency.

 Diffusion Output Variance computes the variance B action sequences sampled from the
diffusion policy and thresholds it w.zz. the 1— 4 quantile of sample variances computed over
the calibration dataset D.. This baseline reflects an alternative output metric to temporal
consistency that can be monitored to detect policy failure. While computing output variances
might bear resemblance to ensemble methods [68], we note that this approach does not
quantify epistemic model uncertainty. Doing so would require training multiple diffusion
policies and performing inference with each at test time, which we avoid due to computational
expense. The hyperparameters of this baseline are identical to STAC (see Table 2).

Key Characteristics of Baselines First, we highlight that the embedding-based approaches predict
failure solely based on the dissimilarity or atypicality of the current state. Hence, these baselines are not
policy aware: they may raise failure warnings for states that are dissimilar from those contained in the
calibration dataset D, without understanding how the policy behaves in those states. In some cases, the
policy may still succeed or generalize to minor distribution shifts in state, for which the performance of
these baselines will significantly diminish. The reconstruction-based approaches may account for the
generalization characteristics of the policy but come with computational expense, which may prohibit
their use in real-time settings. The DDPM loss approaches present the next best alternative to our
proposed temporal consistency detector, as its score function coincides with the diffusion policy’s
training task and do so at negligible computational cost. Importantly, we note that the DDPM loss
baseline is specific to diffusion policies, whereas STAC is agnostic to the generative policy formulation.

B.2.2 VLM Baselines (Task Level)

As described in §4.2 and §A.2, our primary method for monitoring the robot using the VLM is to
prompt the model to analyze a video of the robot’s current task progress in a zero-shot fashion. We
contrast the VLMs performance with two baseline variations of this approach.

* GPT-40 Image: We introduce a VLM baseline that performs the monitoring task based on a
single image rather than the full video of the current progress. The goal of this baseline is to
identify the value of video-based VLM reasoning compared to single images. We implement
this baseline by querying the VLM using only I;, the image recorded at the current timestep ¢,
rather than the full video Ij.;. We also minimally modified the prompt given in §A.2 to refer
to the given observation as the “image recorded at the current timestep” instead of a video.

* GPT-40 Video Success In-Context: Our primary VLM methodology queries the model in a
zero-shot fashion, using only the video of the current task execution and a text description
of the task as a reference. Since we provide STAC and the other baselines with a calibration
dataset of in-distribution nominal trajectories wherein the policy succeeded at the task, we also
investigate whether providing additional videos of successful task execution as a reference
can improve the accuracy of the VLM monitor. To do so, we select a single video of an
in-distribution successful rollout and provide it to the VLM in-context together with the video

23

882
883

885
886
887
888
889
890

891

of the current task execution. Since the OpenAl API currently only supports video reasoning
by querying the model with a list of images, we cannot directly upload two separate videos
and reference their filenames in the prompt. Instead, we combine both videos into a long
sequence of images with an all-black frame in the middle to mark the end of the reference
video and the start of the test video. We then modify the prompt in §A.2 to the below prompt,
which explicitly asks the model to compare the two videos. We also tried a version wherein
an example generation describing the successful reference video is included as an in-context
example, but did not notice meaningful differences in performance, so we only include the
prompt that explicitly compares the videos in this appendix.

"I am the runtime monitor for a bimanual autonomous mobile manipulator

24

892

893

895
896
897
898

capable of solving common household tasks. These are the frames of
two videos recorded by the manipulator’s camera system at
approximately 1Hz. The two videos are seperated by a single fully
black frame. The first video is a reference video that shows the
robot correctly executing the task within {TIME_LIMIT} seconds. The
second video shows the robot executing its current task and the
frames contain the image observations up to the current timestep. My
job is to compare the first reference video with the video of the
current task in progress and determine if the robot is still
executing the task, or whether it is acting incorrectly or unsafely
and should be stopped. In my analysis, I will keep in mind that the
reference video shows a completed successfull trial, whereas the
current video may be shorter: It only shows the current progress and
the robot may take up to {TIME_LIMIT} seconds to complete the task.
Therefore, I will only interfere when the robot is clearly failing
to complete the task or behaving unsafely.\n

The manipulator’s current task is to {TASK}.\n
The current elapsed time is {TIME} seconds.\n

I will format my output in the following form:\n

[start of output]\n

Analysis:\n

1. On this line, I will note the differences between the reference video
and the current task video. \n

2. On this line, I will explicitly note the amount of time that has
passed in seconds and compare it with the time limit (e.g., x out of
{TIME_LIMIT} seconds).

Then, I will decide whether the robot is in-progress, or whether the
robot has failed the task or is behaving erratically. Since the
video only represents the progress up to the current timestep and
the robot moves slowly and takes time to pre-plan its movements, I
will refrain from making a failure classification unless the robot
takes an unsafe action or the robot has not completed the task in
the allotted time.\n

Overall assessment: {CHOICE: [ok, failure]l}\n

[end of output]\n

Rules:\n

1. If you see phrases like {CHOICE: [choicel, choice2]}, it means you
should replace the entire phrase with one of the choices listed. For
example, replace the entire phrase >{CHOICE: [A, B]}’ with ’B’ when
choosing option B. Do NOT enclose your choice in ’{’ ’}’ brackets.
If you are not sure about the value, just use your best judgement.\n

3. Do NOT forget to conclude your analysis with an overall assessment. As
indicated above with ‘{CHOICE: [ok, failure]}‘, your only options
for the overall assessment are ’ok’ or ’failure’.\n

4. Always start the output with [start of output] and end the output with
[end of output].\n

Output:"

B.3 Evaluation Protocol

B.3.1 Diffusion Policies

We train a diffusion policy for each environment, using 200 demonstrations for the PushT domain
and 50 demonstrations for each of the Close Box and Cover Object domains. We use a diffusion

policy architecture identical to the original paper [1] except for the visual encoder. That is, because
we use point cloud inputs for our tasks, we substitute the ResNet-based encoder for a PointNet-based

25

899
900
901

903

904
905
906
907

908
909
910
911
912
913

914
915
916
917
918
919
920
921

922

924
925
926
927

928

929
930
931
932
933

934

935
936
937
938
939
940

one: a 4-layer PointNet++ encoder [69] with hidden dimension 128. The output of this encoder is
concatenated with the proprioceptive inputs and then fed to the noise prediction network. All diffusion
policies are specified to perform /N = 100 denoising iterations. Unless otherwise specified, we use
standard settings for the prediction i and execution horizon k of the diffusion policy (details in Table 2).

B.3.2 Constructing the Calibration Dataset

Calibrating STAC (§A.1) and its baselines (§B.2.1) requires a small dataset of successful policy rollouts
D, ={7"}M . These rollouts provide grounding on the nominal behavior of the policy as it operates
on in-distribution test cases. This allows us to evaluate the test-time behavior of a potentially failing
policy w.r.t. its known nominal behavior.

Calibration Data Quality We found it important to ensure the quality of trajectories ¢ € D,.
Specifically, trajectories in which the policy succeeds but in an undesired or unacceptable manner
should not be used for calibration. For example, the policy may solve the Close Box task (Fig. 6), but
damage the lids of the box in the process. Including such a trajectory in the calibration dataset would
define this behavior as nominal and degrade the sensitivity of the detectors at test time. Returning to our
example, the detectors may not raise a failure warning if the policy damages the box while closing it.

Collecting the Calibration Dataset In practice, such a calibration dataset could be collected during a
policy validation phase prior to deployment. For instance, we collect M =50 successful policy rollouts
for each simulated domain, manually filtering episodes where the policy succeeded with unacceptable
behavior (e.g., with jitter). We hypothesize that the performance of the detectors w.r.z. the number of
rollouts M is task specific. For example, a smaller calibration dataset may be sufficient for tasks with
low varability (i.e., in a single, structured environment), while a larger dataset may be necessary if the
policy is to be deployed at scale. We note, however, that increasing the calibration dataset size may be
desirable to achieve stronger conformal guarantees on the detector’s FPR (as derived in §D).

Calibrating on Demonstration Data Finally, we experimented with variants of STAC that calibrated
on trajectories contained in the policy’s demonstration dataset, in attempt to eliminate the need to
collect an additional calibration dataset of policy rollouts. However, doing so led to a significant
increase in the detector’s FPR. We attribute this to the well-known covariate shift problem for imitation
learned policies [24, 25]. That is, their prediction error increases quadratically on states induced under
the policy, causing the detectors’ to mistake successful test-time rollouts for failures.

B.3.3 Testing & Evaluation

Instead of evaluating the failure detectors online during policy rollouts, we collect several test datasets
of policy rollouts, which may consists of both successes and failures. Each trajectory is labeled either
success or failure by thresholding the return at the final state of the episode (as per the definition in §3).
We then perform offline evaluation of the failure detectors by invoking them at each timestep of the
trajectory, which allows us to identify the first timestep at which the detectors issue a warning.

B.3.4 Definitions & Reported Metrics

We expand on the definitions and metrics described in §3 and §5. We first define a positive as a trajectory
where the policy fails and a negative as trajectory where the policy succeeds. A true positive is counted if
the failure detector raises a warning at any timestep in a trajectory where the policy fails. A true negative
is counted if the failure detector never raises a warning in a trajectory where the policy succeeds. A
false positive is counted if the failure detector raises a warning at any timestep in a trajectory where the
policy succeeds. A false negative is counted if the failure detector never raises a warning in a trajectory

26

941
942

943
944
945

947
948
949
950

951

952

953
954
955
956
957
958
959
960

961
962
963
964
965
966
967
968
969
970
971
972

973

974
975

976
977
978
979
980
981
982
983
984
985

where the policy fails. Detection time is defined as the earliest timestep in which the failure detector
raises a warning in a trajectory where the policy fails.

In our experiments, we report true positive rate (TPR), true negative rate (TNR), false positive rate
(FPR), detection time (DT), accuracy, and balanced accuracy. TPR, also referred to as sensitivity,
measures the number of true positives (detected failures) over total number of positives (failures). TNR,
also referred to as specificity, measures the number of true negatives (detected successes) over total
number of negatives (successes). FPR measures the number of false positives (incorrectly detected
failures) over the total number of negatives (successes). Accuracy and balanced accuracy account for
both the TPR and TNR of the detector. However, we report balanced accuracy when test set contains a
non-negligible imbalance of positives and negative trajectories.

C Additional Results

C.1 PushT Ablation

We conduct an ablation study on the PushT domain to test how 10.Fred. and Exec. Horizon Ablation
the performance of STAC varies with respect to the prediction
horizon h and execution horizon k of the diffusion policy. To-
gether, the prediction and execution horizons determine the num-
ber of temporally overlapping action components (i.e,. between
Oyt k:t+h|t A0 Qg gopyp)e4k) that are statistically compared by
STAC, while the execution horizon governs how far apart in time

o
©

°
&
I

Balanced Accuracy
3
|

o
>
I

1] o 1 Pt d Execution Execution Execution
the action distributions 7, and 7, are generated. i N S
h=8 h=12 mm h=16

The result is shown in Fig. 7. We find that STAC (MMD) per-
forms comparatively across execution horizons of k = 4 and
k =8, but performs best with the standard diffusion policy set-
tings of k=8 and h =16 (used for the main result in Fig. 4). The
detector’s performance drops when using the smallest execution
horizon of k =2. We attribute this to the relatively small amount
of environment change that occurs within two execution steps,
which causes 7; and 7,4, be similarly distributed and leads to overly conservative statistical distances.
This is corroborated by our findings, where the detectors attain > 95% TNRs across various execution
horizons, but using k = 2 leads to a significant drop in TPR to 61%. In comparison, k=4 and k=8
attain TPRs of 78% and 95%, respectively. Overall, STAC’s performance may vary with the selection of
the policy’s execution horizon, but is relatively stable across choices of the policy’s prediction horizon.

Figure 7: PushT ablation on the
performance of STAC subject to
varying policy prediction and exe-
cution horizon settings (Table 2).

C.2 Vision-Language Model Ablation

In this section, we include an additional ablation of our VLM method, as well as an extended discussion
on the performance of the VLM methods in §5.

First, we present an additional ablation, augmenting the VLM methods presented in Table 1 with
the GPT-40 Video Success In-Context baseline presented in §B.2.2. Table 3 shows that providing
the VLM with an in-context video of a successful task execution does not significantly change the
performance of the VLM reasoner as compared to the zero-shot video approach. While it is intuitive
to expect that providing a reference video would facilitate describing the motion of the robot, it is
difficult to identify why providing a reference video resulted in negligible changes in performance.
Qualitatively, we found the in-context video approach seems to describe the motion of the robot in the
video more clearly than zero-shot. However, the successes on the Close Box task under distribution
shift look different from the nominal successes: Even if the robot succeeds under distribution shift, the
robot moves slower than normally. This visual difference in speed leads to some false positives, so

27

986
987
988
989

990

992
993
994
995

997
998

999
1000

1001

1002
1003
1004
1005
1006
1007
1008

1009
1010
1011
1012
1013

that the overall performance is roughly the same as the zero-shot method. Another possibility is that
analyzing the difference between videos is a more challenging task for a VLM compared to describing
a single video, or that the manner in which we provide the reference video to the VLM (see §B.2.2)
complicates the task.

Second, we discuss the poor performance of the GPT-40 Single Image baseline. As shown in Table 1
and Table 3, the single image baseline suffers a 100% false positive rate on the Close Box domain. It
performs poorly on this task for a simple reason: Without observing the initial state of the box with its
lids in an opened position, and without observing the motion of the robot closing the lids, the VLM is
unable to clearly identify the lids of the box and whether the box is closed. Therefore, once the time
limit to complete the task is exceeded, the monitor declares a failure. We iterated on several prompts
that asked more detailed questions about the location of the box and lids in an attempt to coerce this
baseline to identify the lids, but to no avail. As a result, all the outputs of the single image baseline
resemble the following example of a false positive:

"[start of output]

Analysis: The current observation shows the manipulator’s arms positioned near
the white box, with the grippers open and not grasping the lids. The two
smaller white side lids and the bigger white back 1lid of the box are not
visible, suggesting they are not yet folded. The elapsed time is 30 out of
30 seconds, which means the robot has reached the time limit for completing
the task. Given that the lids are not folded and the task is not completed,
the robot is clearly failing the task.

Overall assessment: failure
[end of output]"

Overall, we consider these results clear evidence that video-based reasoning offers strict improvements
over single image-based reasoning for the assessment of task progression failures.

Close Box: In-Distribution Close Box: Out-of-Distribution \ Close Box: Combined

Failure Detector TPRT TNRT Det. Time(s)l TPR1T TNR?T Det. Time (s) | \ TPRT TNR?T Accuracy
= GPT-40 Image 1.00 0.00 24.00 1.00 0.00 24.00 1.00 0.00 0.32
§ GPT-40 Video (Ours) 0.60 1.00 22.40 0.52 0.75 21.42 0.53 0.94 0.81
GPT-40 Video + IC success ~ 0.60 1.00 24.00 0.48 0.75 24.00 0.48 0.94 0.80

Table 3: Comparison of VLM runtime monitors on the Close Box domain. Note that the GPT-40 Video
+ IC Success is the only additional baseline that is not already included in Table 1.

C.3 Extended Discussion

Vision-Language Model Analysis While Fig. 5 shows that the VLM provides accurate failure
assessments on distribution shifts that result in smooth task-progression failures, it still does not
achieve 100% accuracy. Table 1 shows that the VLM struggles to identify erratic policy failures, but
well-equipped to detect policy successes, as evidenced by its 94% overall TNR. That is, while the TNR
is only 75% on the Close Box out-of-distribution split, this only corresponds to 4 problematic false
positive episodes (because the robot almost always fails in the out-of-distribution split). Therefore, in
this section, we seek to develop an intuition for the reasons why the VLM may miss a detection.

Firstly, a key difference between the erratic failures and the task progression failures is that the erratic
failures are often more visually subtle, and hence more challenging to interpret. For example, erratic
failures include cases where the robot collides with the box, or moves the lids but does not fully close
them. In contrast, the robot takes more obviously wrong actions (e.g., stalling, clearly misplacing the
cover) in the task progression failures (see Fig. 5).

28

1014
1015
1016
1017
1018
1019

1020
1021
1022
1023
1024
1025

1026
1027
1028

1029
1030

1031
1032

Cover Object: Out-of-Distribution Close Box: Out-of-Distribution | Combined: Cover + Close

Failure Detector TPRT TNRT Det. Time (s) | TPR1T TNR?T Det. Time(s) | ‘ TPR1T TNR?T Accuracy
STAC + GPT-4o Video (Full) 0.45 0.92 6.22 0.98 0.60 12.99 0.81 0.83 0.81
» GPT-4o Video 0.35 1.00 7.10 091 0.80 20.68 0.73 0.94 0.78
5 STACMMD 0.35 0.92 6.29 0.58 0.80 9.02 0.51 0.89 0.59
© STACRev.KL 0.35 0.77 6.51 0.58 0.80 9.89 0.51 0.78 0.57
STAC For. KL 0.35 0.92 6.40 0.58 0.80 8.00 0.51 0.89 0.59
§ Policy Encoder 1.00 0.69 3.28 0.98 0.20 227 0.98 0.56 0.89
< CLIP Pretrained 0.20 0.92 8.80 1.00 0.40 10.53 0.75 0.78 0.75
E ResNet Pretrained 0.05 1.00 8.80 1.00 0.40 16.22 0.70 0.83 0.73
Temporal Min. 0.20 0.77 5.60 0.63 0.80 6.84 0.49 0.78 0.56
= Diffusion Recon. [62] 0.00 0.92 - 0.35 1.00 9.81 0.24 0.94 0.40
- Temporal Diffusion Recon. 0.30 0.92 5.73 0.56 0.80 10.27 0.48 0.89 0.57
%’ DDPM Loss (Eq. (1)) 0.50 0.85 6.32 0.95 1.00 10.60 0.81 0.89 0.83
& Temporal DDPM Loss 0.30 0.92 5.73 0.63 0.80 8.15 0.52 0.89 0.60
Diffusion Output Variance 0.00 0.92 - 0.23 1.00 10.64 0.16 0.94 0.33

Table 4: Detecting task progression failures in the Cover Object and Close Box domains. Our full
approach, which combines STAC with the VLM runtime monitor, achieves performance on-par with
the top performing baselines for the detection of task progression failures. Importantly, baselines that
perform well on this domain, such as Policy Encoder and DDPM Loss, do not maintain consistent
perform across the multi-modal (Fig. 4) or erratic failure (Table 1) domains, in contrast to STAC, which
achieves both high TPRs and TNRs on these domains. Thereby, the VLM runtime monitor is essential
to complementing STAC beyond the detection of erratic failures, resulting in the best overall detector.

Secondly, we can examine the chain-of-thought generation of the VLM to develop an intuition for the
VLMs failure modes: We prompt the VLM to first describe the motion of the robot, after which we ask
the VLM to assess whether the described motion constitutes nominal execution or a failure. Therefore,
we manually examine the VLM outputs for all episodes in which it incorrectly classified an episodes as
nominal or as a failure, and then attribute the failure to either errors in a) the VLMs description of the
video or b) its reasoning as to whether the video constituted nominal behavior or failure.

The result shown in Table 5 indicate that the vast majority of mistakes made by the VLM are caused by
the model failing to correctly describe the video. In part, we can attribute this to a visual domain gap
between our simulation-based evaluations and the models’ real-world training data: Deficiencies in the
simulator’s fidelity may make it difficult for the VLM to correctly identify the cover and the lids of
the box. This is mirrored by a similar result in [44], where the authors found open-source VLMs to
perform poorly at interpreting images from a self-driving simulator.

Domain ‘ FPR FNR
Close Box 100% 75%
Cover Object - 85%

Table 5: Error attribution of VLM errors. For each domain, we tabulate what percentage of
erroneous VLM classifications result from the VLM describing the video in a way that fundamentally
mischaractarizes the motion of the robot. FPR denotes the percentage of false positives: cases in
which the VLM incorrectly raises an alarm, caused by visual understanding errors. FNR denotes the
percentage of false negatives: cases in which the VLM deems a failure episode as a success. Note
that the VLM achieved a 100% FPR on the Close Box domain, indicating the all false positives in this
domain resulted from the VLM misunderstanding the robot’s motion.

Finally, we remark that our evaluations primarily use GPT-4o0. In early experimentation, we compared
the use of both GPT-40 and GPT-4-turbo and found they performed similarly. Therefore, we ran the
full evaluations with GPT-40 only, as GPT-40 is significantly faster and cheaper than GPT-4-turbo.

Task Progression Failure Analysis We evaluate our proposed approach and the baselines on domains
where the policies exhibit task progression failures. The result is shown in Table 4.

First, we observe that the combination of STAC and GPT-40 results in a better overall accuracy than
using STAC alone (coinciding with Fig. 5). Upon further analysis, we find that two baselines perform

29

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

1045
1046
1047
1048
1049
1050
1051

1052
1053
1054
1055
1056
1057
1058
1059
1060

1061
1062
1063

1064

1065

1066
1067
1068
1069
1070
1071
1072

1073
1074

comparatively. The first is Policy Encoder, which tends to raise a failure warning when the point cloud
state deviates from those in the calibration dataset. This strategy performs well because almost all
distribution shifts result in policy failure in this domain. However, it incurs a 100% FPR on the erratic
failure domain (Table 1), where the policy may succeed under distribution shifts. The DDPM Loss
baseline also achieves appreciable performance here, however, it experiences notable performance
drops relative to STAC on the multi-modal domain (Fig. 4). These findings highlight the value of
our proposed failure categorization. Specifically, because STAC is best able to detect erratic failures
among all baselines and the VLM monitor can amicably capture task progression failures (whilst both
maintain high TNRs), their combination yields the best overall detector. Moreover, we expect our
failure detector’s performance to further improve with the development of more capable VLLMs that,
for example, may contend with the current shortcomings revealed by our VLM analysis above.

D Derivations

To validate our design choices, we show in this section that the STAC score function and the calibration
procedure in §4.1 provably result in a low false positive rate. To do so, we apply recently popularized
tools from conformal prediction because they are sample efficient and distribution-free, meaning that
they do not require distributional assumptions on the trajectory rollouts. Our guarantee is a direct
application of the standard results in split conformal prediction [54], but to ensure the self-containedness
of this manuscript, we first briefly reintroduce the core concepts in conformal prediction (taken from
[54]) using the notation in our paper.

Background on Conformal Inference In its most basic form, the goal of conformal prediction is to
construct a prediction set C that will contain the true value of a new test point Xs¢ with a user defined
probability of at least 1 —§ [54]. To do so, a conformal algorithm requires a sequence of calibration
samples {X*}M | with all samples X*,..., XM X, i.i.d., as well as a conformity score function
n(X) € R. Intuitively, conformal methods use {n(X?)}*, to identify how likely 7(X;est) is to lie
within the range of a 1 — § fraction of the calibration samples (i.e., how well Xqst conforms to the
calibration data). We emphasize that this approach ensures that we construct a valid prediction set C,
regardless of the choice of conformity score and without knowing any properties of the data generating
distribution:

Theorem 1 (Adapted from Thm. D.1in [54]). Let Deati, = {X*',...,X M} be a calibration dataset and
let Xiest, e a test sample. Suppose that the samples in Dy, and Xiest are independent and identically
distributed (i.i.d.). Then, defining

: {in(X) <&} [(M+1)(1-9)]
:=inf R: >
~v:=in {56 >
as the 7HM+B[(1_5)] empirical quantile of the calibration data ensures that

P(U(Xtest) S’Y) >1-4.

Here, [-] denotes the ceiling function.

Conformal guarantee of STAC The base split conformal procedure outlined by Theorem 1 requires
that the samples used for calibration and test are i.i.d. This is not the case for states and actions observed
sequentially within a trajectory, complicating the analysis of applying the STAC detector at each
timestep within a trajectory. To solve this issue and provide a guarantee when we sequentially apply
our detector on the correlated state action pairs within a trajectory, we calibrate the detector using the
consistency scores generated across trajectories in §4.1. This allows us to rigorously bound the false
positive rate using Theorem 1.

Corollary 1 (STAC has low FPR). Let D, = {r'} M, Y P, be the validation dataset of successful
trajectories, each consisting of H; timesteps and drawn i.i.d. from the closed-loop nominal distribution

30

1075
1076
1077
1078

1079

1080
1081

1082
1083
1084
1085

1086

1087

1088
1089
1090
1091
1092
1093
1094
1095

1096
1097
1098
1099

1100
1101
1102
1103
1104
1105

P.. Moreover, let n; be defined as the STAC temporal consistency score at some timestep t > 0 in
equation Eq. (2) and set vy equal to the empirical ((M+17]\)4(1—6)] quantile of the terminal STAC scores
{n}li M. of the trajectories in D,. Then, the false positive rate, that is, the probability that we raise a
false alarm at any point during a new successful test trajectory T ~ Py, is at most 6. Le.,

FPR:=Pp, (3t>0s.t.7m,>7) <4. 5)

Proof. Let H be the length of the test trajectory 7. If there is no distribution shift, i.e., when the test

trajectory 7 is i.i.d. with respect to D, M P, it holds that nz and {n}{ }M | arei.i.d. Therefore, by
Theorem 1, we have that
Pp, (na>7) <6.

Moreover, since we define 7, = Zg;&b(ﬁkﬁ(iﬂ)k) fort=jkin Eq. (2) and since D(7) > (0 because
it is a statistical distance, it follows that 7, is increasing. That is, 79 <np < 1o < --- <ng. Therefore, if
71 crosses the threshold «y at any time, it also holds that 7z > ~. This immediately implies the corollary,
as we then have that

Pp, (3 t>0s.t. >’y) =Pp, (UH >’y) <.

‘We conclude this section with three remarks:

1. We only bound the false positive rate, which ensures that our algorithm does not raise a false
alarm with high probability, so that any warnings likely correspond to an OOD scenario. We
do so because a system that raises too many false alarms is impractical to use. Our calibration
approach does not guarantee the detection of failure modes, nor does it guarantee that we
do not issue warnings on OOD successes, as this is not possible without any distributional
assumptions on the OOD scenarios or without using failure data for calibration [70]. Instead,
we empirically find that our temporal consistency score performs amicably at detecting
failures in our experiments (§5).

2. Corollary 1 only certifies that the false positive rate of the STAC detector is low. We make
no claims on the overall performance of the combination of the VLM and STAC, as we use
the VLM as a zero-shot black-box classifier. Future work could investigate methodologies to
jointly calibrate an ensemble of failure detectors.

3. We emphasize that conformal guarantees, like those in Theorem 1 and Corollary 1, are
marginal with respect to the calibration data: They may not hold exactly when given a
particular calibration dataset, but if we were to sample thousands of calibration datasets, we
would find our guarantees hold on average. Therefore, as expected, STAC does not exactly
satisfy Eq. (5) in our experiments (§5), as compute budgets limited our experimentation to
repetitions on a limited number of random seeds.

31

