
Unpacking Failure Modes of Generative Policies:
Runtime Monitoring of Consistency and Progress

Anonymous Author(s)
Affiliation
Address
email

Abstract: Robot behavior policies trained via imitation learning are prone to failure1

under conditions that deviate from their training data. Thus, algorithms that monitor2

learned policies at test time and provide early warnings of failure are necessary3

to facilitate scalable deployment. We propose a runtime monitoring framework4

that splits the detection of failures into two complementary categories: 1) Erratic5

failures, which we propose to detect using a statistical measure of temporal action6

consistency, and 2) task progression failures, where we use VLMs to detect when7

the policy confidently and consistently takes actions that do not solve the task. Our8

approach has two key strengths. First, because learned policies exhibit diverse9

failure modes, combining complementary detectors leads to significantly higher10

accuracy at failure detection. Second, using a statistical temporal action consistency11

measure ensures that we quickly detect when multi-modal, generative policies12

exhibit erratic behavior at negligible computation cost. In contrast, we only use13

VLMs to detect failure modes that are less time-sensitive. We demonstrate our14

approach in the context of diffusion policies trained on a multi-modal domain and15

simulated bi-manual robotic manipulation domains. The resultant system, unifying16

temporal consistency detection with VLM runtime monitoring, detects 15% more17

failures than using either of the two detectors, thus highlighting the importance of18

assigning specialized detectors to complementary categories of failure. Qualitative19

results are made available at sites.google.com/view/detecting-policy-failure.20
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1 Introduction22

Imitation learning represents one of the simplest yet most effective ways of learning robotic23

control behaviors from demonstration. Herein, the use of generative modeling techniques has24

been instrumental in allowing robot policies to learn the multi-modal landscape of solutions25

demonstrated by humans [1, 2]. When deployed, however, such robot policies will inevitably encounter26

out-of-distribution (OOD) test cases—scenarios that differ from the training set—on which the policy’s27

behavior cannot be known beforehand [3]. Thus, we require methods that monitor the behavior of28

learned polices at deployment time to detect whether they are failing as a result of distribution shift.29

Identifying when a learned model is performing unreliably is typically formulated as an OOD detection30

problem, for which a taxonomy of methods exist [4, 5]. However, the use of such methods for detecting31

robot policy failure is met promptly with several challenges. For example, methods that detect when the32

world state differs from those contained in the training dataset [6, 7] do not account cases in which the33

policy succeeds or generalizes to unseen states, while other methods may not be directly applicable [8]34

to generative policy formulations; e.g., a diffusion policy (DP) which produces action sequences via35

iterative denoising [1]. The special case of multi-modal, generative robot policies necessitates the design36

of new failure detectors that can recognize their diverse failure modes beyond the training distribution.37

The key insight of this paper is that we can split the task of detecting policy failure into two comple-38

mentary categories, each of which can be addressed with a failure detector suited to the requirements of39
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their assigned category. The first is the detection of failures in which the policy exhibits erratic behavior40

as measured by the temporal inconsistency of its predicted actions over time. For example, if the policy41

repeatedly alternates between different action modes, causing the robot to bump into its surroundings.42

The second category is the detection of failures in which the policy is temporally consistent but struggles43

to make progress on its task, thereby requiring visually-grounded reasoning over longer durations of44

time by Vision-Language Models (VLMs). For example, the robot can stall in place or drift astray if the45

policy produces constant outputs. Notably, one would want to catch erratic failures (the first category)46

fast, whereas task progression failures (the second category) do not require immediate intervention.47

However, using naive temporal consistency checks on actions (e.g., the agreement of individual48

actions sampled from a DP over time) to detect erratic policy behavior is insufficient, simply because49

sampled actions are expected to change across inference steps of a generative policy. Thus, we propose50

to characterize how much a generative policy’s action distributions are changing across time using51

Statistical measures of Temporal Action Consistency (STAC). We propose to detect task progression52

failures (undetectable by STAC) zero-shot with a VLM, which can distinguish off-nominal behavior53

when prompted to reason about the robot’s progress in a video question answering setup.54

To summarize, our contributions are three-fold: 1) A formulation of failure detection for generative55

policies that splits failures into two complementary categories, thus admitting the use of specialized56

detectors toward system-level performance increases; 2) We propose STAC, a novel temporal57

consistency detector that measures the statistical consistency of a generative policy’s action58

distributions to detect erratic failures; 3) We propose the use of VLMs to monitor the task progress of a59

policy over the duration of its rollout, and we provide practical insights for their use as failure detectors.60

The combined system, which integrates STAC and the VLM runtime monitor, detects 90% of failures61

exhibited by diffusion policies across two simulated bi-manual robotic manipulation domains.62

2 Related Work63

Recent advances in robotic imitation learning include new policy architectures [9, 10, 11], hardware in-64

novations for data collection [12, 13, 14], community-wide efforts to scale robotic learning datasets [15,65

16, 17], and training high-capacity policies on these datasets [18, 19, 20]. Of recent interest is the use66

of generative models [21, 22, 23] to represent policies due to the inherent multi-modality contained in67

imitation learning datasets collected by humans; a setting in which generative models thrive. Diffusion68

policies [1], for example, formulate action sequence prediction as an iterative denoising process starting69

from sampled noise. In this work, we focus on characterizing the behavior of generative robot policies.70

Despite these advances, it is well known that learned policies may fail beyond their training71

distribution [3, 5, 4], in part due to compounding prediction errors on states induced by the72

policy [24, 25]. Thus, a line of works propose to retrain or adapt the policy on out-of-distribution states73

using corrective supervision from humans [26, 27, 28, 29, 30]. However, cases in which failure leads74

to unrecoverable states or yields unacceptable behavior may prohibit their use in deployment settings.75

Instead, we aim to detect the failing behavior of generative policies at test time, noting that our methods76

may be applied to the benefit of continual policy learning and online adaptation in the future.77

The existing literature on out-of-distribution detectors and runtime monitoring for learned models78

is highly diverse, spanning multiple categories of methods. Model-based methods (e.g., [31, 32])79

are not not directly applicable to the model-free policies we consider. Some methods only pursue80

failure modes that are known a priori [33, 34, 35]. Many OOD detection works detect dissimilarity81

from training data via e.g., reconstruction [36, 37] or embedding similarity [6, 7], however, visual82

differences may not always result in policy failure. Other methods directly quantify epistemic83

uncertainty [38, 39, 40], but come with considerable computational expense or cannot be applied to84

diffusion models due to the iterative denoising process. Most related to our approach are algorithms85

that use consistency checks across sensing modalities and time [41, 42]. Different from these, we86

directly monitor the consistency of a learned policy’s action distributions to detect closed-failure.87

There is growing interest in the use of Foundation Models [43] toward increasing robustness in robotic88

systems. Large Language Models are used to detect anomalies [44, 45] and to replan under execution89
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failures [46, 47, 48, 45]. Reward models in the form of visual representations [49, 50] or VLMs [51]90

could be repurposed for failure detection by thresholding predicted rewards. However, [51] shows91

additional fine-tuning is required to obtain reliable reward estimates. Most closely related to our use of92

VLMs is that of Du et al. [52]. We highlight three key differences w.r.t. this work. First, we focus on zero-93

shot assessment with VLMs, whereas they fine-tune VLMs on human annotated datasets on the order94

of 105 trajectories. Second, while we seek to detect policy failure amidst task execution, they classify95

success at the end of an episode. Third, we consider the system-level role of VLMs operating alongside96

policy-level failure detectors, and as such, assign each detector to a specified category of failure.97

3 Problem Setup98

Failure Detection The goal of this work is to detect when a generative robot policy fails to complete99

its task. Consider a policyπ(a|s) that operates within a finite-horizon Markov Decision Process (MDP):100

a 5-tuple ⟨S,A,T,R,H⟩, where S and A are the state and action spaces, T (s′|s,a) is the transition101

model, R(s,a,s′) is the reward model, and H is the MDP horizon. Given an initial state s0 representa-102

tive of a new test scenario, executing the policy for t timesteps produces a trajectory τt=(s0,a0,...,st).103

The trajectory’s return is defined as the cumulative sum of rewards: R(τt)=
∑t−1

t′=0R(st′ ,at′ ,st′+1).104

We define policy failure simply in terms of task completion. More formally, given a defined success105

threshold Rτ , the policy fails if the return on its trajectory τt does not exceed the success threshold106

within the MDP horizon: R(τt)<Rτ where t≥H . In the simplest case, the success threshold Rτ107

equals 1, and the reward model R(s,a,s′) equals 1 iff the task is complete at state s′. For example, if108

the robot is tasked with picking up a cup and receives a reward of 1 only once the cup is firmly grasped.109

In this work, we define failure detection as the task of detecting in which trajectory τt the pol-110

icy will fail at the earliest possible timestep t1. To do so, we aim to construct a failure detector111

fϕ(τt)→{ok,failure} that, at each timestep t, can provide a classification as to whether the policy112

will fail if it continues executing for the remaining H−t timesteps of the MPD. Here, ϕ denotes the pa-113

rameters of the failure detector. For example, ϕ could represent a threshold on some quantity extracted114

from the trajectory (e.g., the maximum acceleration). Note that the failure detector makes its assessment115

solely based on the history of observed states and executed actions up to the current timestep t.116

Furthermore, we assume a scenario in which a policyπ is first trained, then validated on test cases where117

it is expected to perform reliably. This validation process yields a small dataset of M successful trajec-118

tories Dτ ={τ i}Mi=1 that can be used to calibrate the parameters ϕ of the failure detector fϕ. Intuitively,119

the dataset Dτ characterizes the nominal behavior of the policy within or near the distribution of states120

it has been trained on, which helps to ground the assessment of potentially OOD trajectories at test time.121

We measure performance in terms of true positive rate (TPR), true negative rate (TNR), and detection122

time (DT). We count a true positive if the failure detector raises a warning at any timestep in a trajectory123

where the policy fails, the earliest of which counts as the detection time. We count a true negative124

if the failure detector never raises a warning in a trajectory where the policy succeeds.125
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Figure 1: Action sequence pre-
diction overlap during rollout.

Policy Formulation We consider the setting where the policy126

π is stochastic and predicts a sequence of actions for the next h127

timesteps. That is, the action sequence sampled at the t-th timestep,128

at ∼π(·|st), consists of h actions at := (at|t,at+1|t,...,at+h−1|t),129

where the notation at+i|t denotes the action prediction for time t+i130

generated at timestep t (as in [53]). The actions a·|t∈A may corre-131

spond to e.g., end-effector poses or velocities. To control the robot,132

we sample an action sequence and execute the first k<h actions,133

at:t+k|t, after which we re-evaluate the policy at timestep t+k. We134

visualize this receding horizon rollout in Fig. 1. Notably, at and135

at+k contain actions that temporally overlap for h−k timesteps (i.e., at at+k:t+h|t and at+k:t+h|t+k).136

1Note that this is different from the detecting the timestep in which the policy “fails” by some criteria of failure.
Defining the failure detection task in terms of task completion removes the need to specify explicit failure criteria
for each task; the most general and intuitive failure criterion is whether or not the policy completes its task.
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Figure 2: Proposed failure detection framework. The images depict a policy rollout on the Close
Box domain for timesteps t=1,...,T . Temporal Consistency Detector: At each timestep t, the state st
is passed to the generative policy to obtain action distributions πt between which statistical distances
D̂t are computed to measure temporal consistency. The statistical distances are summed up to the
current timestep T (as in Eq. 2) and thresholded by γ to detect policy failure. Vision-Language-Model
(VLM) Detector: The VLM classifies whether the policy is failing to make progress on its task given a
video up to timestep T and a description of the task. Execution stops if either detector raises a warning.

Several recently proposed policy architectures achieve state-of-the-art performance by sampling action137

sequences using generative models, to which our approach is generically applicable (§4). However,138

in this paper, we specify to the problem of failure detection for diffusion policies (DP) [1], which139

represent the policy distribution with a denoising diffusion probabilistic model (DDPM) [22]. In a DP,140

actions are generated by iteratively denoising an initially random action aNt ∼N (0,1) over N steps as141

aNt ,...,a0t , where ait with a superscript i denotes the generated action sequence at the i-th denoising142

iteration. In an imitation learning setting, the DP’s noise prediction network ϵθ is trained to predict the143

noise added to actions drawn from a dataset of expert demonstrations Dtrain by minimizing144

Lddpm :=E(s,a0)∼Dtrain,ϵi,i

[
||ϵi−ϵθ(

√
ᾱia

0+
√
1−ᾱiϵ

i,s,i)||2
]
, (1)

where the constants ᾱi depend on the chosen noising schedule of the diffusion process.145

4 Proposed Approach146

The failure behavior of a generative policy by OOD conditions can be highly diverse, and we therefore147

argue that the desiderata for a failure detector may vary between qualitative types of failures. In this148

work, we propose to split the failure detection task into two categories of failures.149

The first is the detection of failures resulting from erratic policy behavior, which may cause a robot to150

end up in states that are difficult or costly to reset from, knock over objects, or lead to safety hazards.151

Therefore, it is important to detect erratic behavior as quickly as possible (§4.1). The second category152

is the detection of failures in which the policy struggles to make progress on its task (hereafter referred153

to as task progression failures) but does so in a temporally consistent manner. For example, the policy154

may confidently place an object in the wrong location. Here, we must observe the robot over a longer155

period of time to identify that the policy is not making progress towards task completion (§4.2).156

The key insight of our approach is that it is trivial to combine failure detectors specified to these157

two complementary categories, thereby yielding an accurate overall failure detection pipeline while158

satisfying the detection requirements of each failure category. The full pipeline is visualized in Fig. 2.159

4.1 STAC: Detecting Erratic Failures with Temporal Consistency160

When a policy operates in nominal, in-distribution settings, it should complete its task in a temporally161

consistent manner. For example, a policy may plan to avoid an obstacle on the right or on the left, but not162

jitter between the two options. Moreover, as noted in [1], training a diffusion policy that predicts action163

sequences rather than individual actions encourages temporal consistency between action predictions.164

Therefore, we propose to construct a quantifiable measure of temporal action consistency to detect165

whether the policy is behaving erratically, and hence, is likely to fail at the task. However, the166
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multi-modal distributional nature of DPs makes it difficult to directly compare two sampled actions167

at ∼ π(at|st) and at+k ∼ π(at+k|st+k), e.g., throughout execution. This is because the actions168

may differ substantially along their prediction horizon when the policy commits or switches between169

different action modes, or simply due to randomness in sampling. Instead, we quantify erratic policy170

behavior with statistical measures of temporal action consistency (STAC, which we term our approach).171

Let π̄t :=π(at+k:t+h|t|st) and π̃t+k :=π(at+k:t+h|t+k|st+k) be the marginal action distributions of172

the temporally overlapping actions between timesteps t and t+k. We compute the temporal consistency173

between two contiguous timesteps t and t+k asD(π̄t,π̃t+k)≥0, whereD denotes the chosen statistical174

distance function (e.g., KL-divergence, maximum mean discrepancy). Due to the iterative denoising175

procedure of the DP, analytically computing a distance D is challenging, as evaluating the densities176

of π̄ and π̃ requires marginalizing out the intermediate diffusion steps as well as the non-overlapping177

actions. Instead, we approximate D with its empirical counterpart D̂ by sampling a batch of action178

sequences (parallelized on a GPU) at each timestep t and t+k rather than a single action sequence.179

In addition to the use of a statistical distance between action distributions, we propose to take the cumu-180

lative sum of statistical distances along a trajectory as a measure of the overall temporal consistency in181

a policy rollout. At each time t=jk with j∈{0,1,...}, we compute the temporal consistency score as182

ηt :=

j−1∑
i=0

D̂(π̄ik,π̃(i+1)k). (2)

Computing the consistency score in a cumulative manner has two advantages over thresholding the183

distance at each timestep individually. Firstly, it allows us to detect instances where the temporal184

consistency is marginally larger than usual throughout the episode (e.g., jitter). Secondly, it allows us185

to detect instances where the policy is temporally inconsistent more often than in nominal scenarios.186
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Figure 3: Temporal consistency
scores grow faster when the pol-
icy fails. Error bars indicate the
5-th and 95-th score quantiles.

At runtime, we raise a failure warning at the moment that ηt exceeds187

a failure detection threshold γ, which we calibrate offline using188

the validation dataset of successful trajectories Dτ . Here, we first189

compute the cumulative temporal consistency scores throughout the190

entirety of the lengths Hi of trajectories in Dτ , yielding {ηiHi
}Mi=1.191

Then, we set the threshold γ to the 1−δ quantile of {ηiHi
}Mi=1, where192

δ ∈ (0,1) is a hyperparameter. This ensures that the false positive193

rate (FPR), the probability that we raise a false alarm and terminate194

any trajectory that is i.i.d. with respect to Dτ , is at most δ. We note195

that STAC can be extended to provide a formal guarantees on FPRs196

using recent results from conformal prediction theory [54, 55], and197

as such, we derive a comformal guarantee for STAC in §D.198

4.2 Detecting Task Progression Failures with VLMs199

A policy operating out-of-distribution may not always fail by exhibiting erratic behavior that we can200

detect with STAC (§4.1). For example, suppose the policy confidently commits to the wrong plan or201

produces approximately constant outputs. In that case, the robot will fail to complete the task despite202

being temporally consistent in its actions. Detecting such failures requires an understanding as to203

whether or not the policy is progressing on its task, which necessitates a more comprehensive analysis204

of the robot’s behavior within the context of its task specification. Therefore, we propose to use VLMs205

to monitor the task progress of the policy by providing all of the robot’s image observations up to the206

current timestep as a video. We do so because recent work has shown that high-capacity VLMs possess207

robotics relevant knowledge and contextual reasoning abilities [56, 57, 52, 58, 51].208

We formulate the detection of task progression failures as a chain-of-thought (CoT) [59] visual question209

answering (VQA) task [60, 61], reflecting current best practices in prompting. To capture a notion of210

task progress, the VLM must reason both across time and in the context of the policy’s task. Thus, we211

construct a prompt that contains a brief description of the robot’s task and the VLMs role as the runtime212

monitor, that is, to interfere when the robot is clearly failing to complete the task. We query the VLM213

online using the text prompt and the history of observed images (i.e., a video) I0:t :=(I0,Iνk,I2νk,...,It)214

5



Temporal
Consistency

Empirical
Loss

Diffusion
Recon.

Diffusion
Variance

Embedding
Similarity

0.5

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d 
Ac

cu
ra

cy

PushT: Failure Detection Methods
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Figure 4: Failure detection results on PushT averaged over 3 random seeds (300 episodes total).
Left: Our failure detector which measures the temporal consistency of a diffusion policy across time
outperforms several families of out-of-distribution detectors. Middle: The best performance comes
from measuring temporal consistency with statistical distance functions (denoted by STAC); simply
augmenting baselines with temporal consistency does not meaningfully increase their performance.
Right: Comparable performance is achieved across multiple choices of statistical distance functions.

up to the current timestep t. Here, the hyperparameter ν specifies the frequency of the images relative215

to the execution horizon k of the DP (§3). For additional details on the prompt, please see §A.2.216

In brief, we elicit a three-step CoT response from the VLM that 1) describes the observed motion of the217

robot and task-relevant objects, 2) analyzes the video to identify if the robot is behaving incorrectly or218

whether it is making progress towards task completion within the episode time limit, and 3) concludes219

with a classification in {ok, failure}. At the time of writing, cloud-querying a state-of-the-art VLM220

with the robot’s observation video incurs significant latency (we used gpt-4o, with a mean response221

time of 14.0s). However, we emphasize that VLM inference latency is a lesser concern for detecting222

task progression failures because they are likely to occur at longer timescales and do not require urgent223

intervention. In contrast, we assign the rapid detection of erratic failures to STAC (§4.1).224

5 Experiments225

We conduct a series of experiments to test our failure detection framework. These experiments take226

place over multiple environments and host an extensive list of baselines that span five methodological227

categories for detecting distribution shift. The environments considered vary in terms of their data228

distribution (e.g., multi-modal, high-dimensional actions) and support different types of distribution229

shift (e.g., object scale, position), under which the behavior of the diffusion policies can be methodically230

studied. We refer to the Appendix for more a detailed description of our environments and baselines.231

Environments. The PushT domain tasks a robot with pushing a planar “T”-shaped object into a goal232

configuration. This domain has been used to demonstrate the multi-modal properties of diffusion233

policies [1], and thus, we include it to evaluate the detection of failures under action multi-modality.234

The Close Box domain tasks two mobile manipulator robots with closing three lids of a box (see Fig. 2).235

Failures in this domain primarily result from erratic policy behavior when the robot e.g., collides with236

the box, fails to get under a lid, or drifts to OOD states. The Cover Object domain tasks two mobile237

robots to cover a rigid object with a deformable cloth. Failures in this domain result from the smooth238

but inadequate covering of the rigid object. Both Close Box and Cover Box present the challenge of a239

high-dimensional 14 degree-of-freedom action space. At test time, we generate OOD scenarios by240

randomizing a) the scale and dimensions of objects in PushT and Close Box and b) the position of the241

object in Cover Object beyond the randomizations contained in the policy’s demonstration data.242

Baselines. We evaluate our approach (both STAC and the VLM runtime monitor) against baselines243

representative of multiple methodological categories in the OOD detection literature [4]. Intuitively,244

these categories represent different formulations of the failure detector’s score function, responsible245

for computing the per-timestep scores that are then summed to compute the trajectory score as in246

Eq. (2). We consider score functions based on the embedding similarity of observed states w.r.t. Dτ247

[6], the reconstruction error of actions sampled from the DP [62], and the output variance of the DP.248

To strengthen the comparison, we introduce a new baseline that uses the DDPM loss (Eq. (1)) on a249
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Close Box: In-Distribution Close Box: Out-of-Distribution Close Box: Combined
Failure Detector TPR ↑ TNR ↑ Det. Time (s) ↓ TPR ↑ TNR ↑ Det. Time (s) ↓ TPR ↑ TNR ↑ Accuracy ↑

ST
A

C STAC MMD (Ours) 1.00 0.94 7.20 0.99 0.93 14.72 0.99 0.94 0.96
STAC Rev. KL (Ours) 1.00 0.95 7.60 0.93 0.97 15.12 0.93 0.96 0.95
STAC For. KL (Ours) 1.00 0.90 6.60 0.99 0.85 14.04 0.99 0.89 0.92

E
m

be
d. Policy Encoder 0.25 0.98 16.27 1.00 0.00 1.59 0.94 0.70 0.78

CLIP Pretrained 1.00 0.95 15.73 1.00 0.00 8.20 1.00 0.68 0.79
ResNet Pretrained 1.00 0.95 17.87 1.00 0.00 15.51 1.00 0.68 0.79

D
iff

us
io

n

Temporal Min. 1.00 0.97 5.00 1.00 0.27 12.35 1.00 0.77 0.85
Diffusion Recon. [62] 0.33 0.95 13.60 0.40 1.00 17.08 0.37 0.96 0.76
Temporal Diffusion Recon. 1.00 0.96 8.47 0.92 1.00 15.75 0.92 0.97 0.95
DDPM Loss (Eq. (1)) 1.00 0.90 8.27 1.00 0.94 14.54 1.00 0.91 0.94
Temporal DDPM Loss 1.00 0.95 7.53 1.00 0.37 13.66 1.00 0.79 0.86
Diffusion Output Variance 0.33 0.94 14.00 0.28 1.00 17.27 0.26 0.96 0.72

V
L

M GPT-4o Image 1.00 0.00 24.00 1.00 0.00 24.00 1.00 0.00 0.32
GPT-4o Video (Ours) 0.60 1.00 22.40 0.52 0.75 21.42 0.53 0.94 0.81

Table 1: Detecting erratic policy failures in the Close Box domain. Results are averaged over
3 random seeds. Our temporal consistency detector, STAC, accounts for when a policy fails (high
true positive rate) and when it generalizes to out-of-distribution test cases (high true negative rate),
in contrast to embedding-based methods that directly associate state atypicality with policy failure
(low true negative rate). Select baselines that accurately detect erratic policy failure in this domain
experience a decrease in performance under multi-modal conditions (i.e., PushT, as shown in Fig. 4),
whereas STAC continues to exhibit strong performance across multiple domains. VLMs must reason
over video to attain high true negative rates, as is necessary to combine them with STAC (see Fig. 5).

re-noised action sampled from the DP as the failure detector’s score function. Where applicable, we250

implement temporal consistency variants of baselines to ablate this design decision of our approach.251

Evaluation Protocol. We train a DP for each environment and use standard settings for the DP’s252

prediction and execution horizon [1]. To increase the salience of distribution shift w.r.t. the position and253

scale of objects, we use point clouds as inputs the policy instead of RGB images (i.e., a 5% increase254

in object scale may not be salient in an image). We use the same calibration and evaluation protocol255

across all failure detection methods. That is, we calibrate detection thresholds to the 95-th quantile of256

scores in a dataset of 50 in-distribution rollouts Dτ ={τ i}50i=1 for each task. Finally, we report standard257

detection metrics including TPR, TNR, Mean Detection Time, Accuracy, and Balanced Accuracy258

(defined in §3). Further details on the DP architecture, training, and evaluation are provided in §B.3.259

6 Results260

We present the key findings of our experiments, with a particular focus on the design decisions of the261

proposed temporal consistency detector and the complementary nature of VLMs for failure detection.262

Temporal consistency detects diffusion policy failures in multi-modal domains. Fig. 4 (Left)263

compares our temporal consistency detector, STAC, against the best performing method of each264

baseline category in the PushT domain. Here, STAC is the only method to achieve a balanced accuracy265

of over 90%, indicating that temporal consistency (or lack thereof) is strongly correlated with success266

(or failure). Alternative output metrics, such as the DP’s output variance (Diffusion Variance), do not267

perform well because both successes and failures can exhibit high variance outputs in multi-modal268

domains. Interestingly, the embedding similarity approach performs strongly in this domain, which269

indicates that state dissimilarity w.r.t. the calibration dataset happens to be correlated with failure.270

However, as we later show, this approach fails when the policy generalizes to out-of-distribution states.271

Statistical measures of action similarity enables temporal consistency detection. Fig. 4 (Middle)272

ablates the design decisions of STAC. First, we observe that augmenting baselines with temporal273

consistency will at most marginally increase their performance. Second, using a non-statistical distance274

function (e.g., min. distance) to measure temporal action consistency performs worse than the baselines275

because it omits action multi-modality. Instead, we find that it is the combination of statistical distance276

functions with temporal consistency that yields the best result. This is corroborated in Fig. 4 (Right),277

where STAC performs comparably across common statistical distance functions like maximum mean278

discrepancy (MMD) with RBF kernels and KL-divergence via kernel density estimation.279
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STAC accounts for out-of-distribution failure and generalization. Results on the Close Box280

domains are shown in Table 1. STAC attains the highest accuracy in aggregate. However, two of our281

newly proposed baselines—using the DDPM loss (Eq. (1)) and a temporal reconstruction variant of282

[62]—also perform well, perhaps due to a decrease in action multi-modality relative to PushT (where283

performance gaps are more notable). Importantly, we observe that embedding similarity methods284

conflate OOD states with policy failure, resulting in false positives when the policy succeeds OOD. By285

monitoring the policy’s behavior, STAC effectively differentiates between OOD success and failure.286

VLMs must reason across time. In Table 1, we find that a state-of-the-art VLM (gpt-4o) struggles to287

identify task success when given only a single image. Instead, it must observe the robot over the extent288

of a policy rollout to more accurately reason about task progression and changes in state (resulting in a289

94% overall TNR). We note that while the erratic failures are time sensitive (e.g., the robot can damage290

the box if it collides with it), they are visually more subtle and therefore more complex for the VLM291

to interpret, whereas the robot takes more obviously wrong actions (e.g., stalling, clearly misplacing292

the cover) in the task progression failures (see Fig. 5). As expected, we observe that the VLM has a293

significantly slower detection times relative to STAC, further highlighting STAC’s value at quickly294

detecting erratic behavior. We refer to §C.2 for further discussion of Table 1’s VLM results.295

0.0 0.2 0.4 0.6 0.8 1.0

+30%
True Positive Rate

0.00 0.05 0.10 0.15 0.20

+5%
False Positive Rate

0 5 10 15

Detection Time (s)

STAC STAC + VLM VLM

Figure 5: VLMs complement STAC
to increase accuracy under distribution
shifts causing task progression failures
on Close Box and Cover Object.

VLMs complement STAC for system-level performance296

increases. We evaluate our full failure detection approach297

on distribution shifts that primarily lead to task progression298

failures for both the Cover Object and Close Box domains.299

The result is shown in Fig. 5. As expected, STAC achieves a300

low TPR (50%) when the policy fails in a temporally consis-301

tent manner, whereas the VLM (video) accurately detects302

task progression failures. As a result, combining STAC303

with the VLM achieves a >80% TPR whilst incurring only304

a 5% increase in FPR. The rise in detection time indicates305

that both STAC (fast) and the VLM (slow) are contributing306

to the detection of failures.307

Discussion. Holistic analysis of Table 1 and Fig. 5 high-308

lights that we can easily combine STAC and the VLM to yield a performant detector for both erratic and309

task progression failures, particularly because both detectors achieve a high overall TNR. Importantly,310

the VLM outperforms the majority of baselines at accurately detecting task progression failures (results311

in §C.3), implying that the combination of STAC and the VLM is the best detector overall: Because all312

the baselines may 1) show low accuracy on one or both the erratic failure domains (i.e., the multi-modal313

PushT task or the Close Box task) or 2) yield a low TNR, it is unclear how to combine them with other314

detectors in a way that outperforms STAC+VLM.315

7 Conclusion316

In this work, we investigate the problem of failure detection for generative robot policies. We split317

the failure detection task into two complementary categories: 1) Erratic failures, which we detect by318

measuring the statistical change of a policy’s action distributions over time; 2) Task progression failures,319

where we use Vision-Language Models to assess whether the policy is consistently taking actions that320

do not solve the task. Our experiments highlight the importance of targeting complementary failure321

categories with specialized detectors. Future work includes the use of our framework to accelerate322

human-in-the-loop policy learning and facilitate online adaptation by summarizing failures.323

Limitations. While categorizing erratic and task progression failures leads to accurate detection of324

the diverse failures modes of generative policies, the VLM still limits our framework’s efficiency. In325

the future, introducing additional categories or further partitioning existing ones might allow for more326

efficient failure detection and inform mitigation strategies. Furthermore, our approach does not provide327

formal guarantees of failure detection. However, providing such guarantees would require data of both328

successful and unsuccessful policy rollouts to calibrate the detector [55]. Finally, our approach is not329

targeted at predicting failures before they occur but instead focuses on detecting failures as they occur.330
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Appendix Overview: Unpacking Failure Modes of Generative Policies597

The appendix offers additional details with respect to the implementation of our failure detection598

framework (§A), the experiments conducted (§B), along with extended results and analysis (§C),599

and finally, supporting derivations (§D) for our proposed detectors. Qualitative results and a video600

abstract are made available at sites.google.com/view/detecting-policy-failure.601
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A Method Details614

As shown in Fig. 2, our proposed failure detection framework consists of the parallel operation of615

two complementary failure detectors, each assigned to the detection of a particular failure category of616

generative policies. The first is a temporal consistency detector that monitors for erratic policy behavior617

via statistical temporal action consistency (STAC) measures. The second is a Vision-Language Model618

(VLM) that monitors for failure of the policy to make progress on its task. In this section, we provide619

additional details w.r.t. the implementation of STAC (§A.1) and the VLM runtime monitor (§A.2).620

A.1 Temporal Consistency Detection with STAC621

Background To summarize §3, STAC assumes the use of a stochastic policy π that, at each policy622

inference timestep t, predicts an action sequence for the next h timesteps as at:t+h|t∼π(·|st), executes623

the first k actions at:t+k|t, before re-evaluating the policy at timestep t+k. Here, range subscripts624

denote a sequence of actions. Between two contiguous inference timesteps t and t+k, sampled action625

sequences at+k:t+h|t and at+k:t+h|t+k (both in R(h−k)×|A|) overlap for h−k timesteps. At a high-626

level, STAC seeks to quantify how much a generative policy’s action distributions are changing over627

time. It does this by computing statistical distances between the distributions of overlapping actions,628

i.e., given π̄t :=π(at+k:t+h|t|st) and π̃t+k :=π(at+k:t+h|t+k|st+k), we compute D(π̄t,π̃t+k).629

Hypothesis Our central hypothesis is that large statistical distances correlate with downstream policy630

failure. Intuitively, a predictive policy can be likened to possessing an internal world model that631

simulates how robot actions affect environment states. When the policy is in-distribution, we expect632

this world model to be accurate, thus resulting in smaller statistical distances. More concretely, if633

the policy’s internal model of state st+k at timestep t coincides with the actual observed state st+k at634

timestep t+k, the distribution of actions π̃t+k should be well-represented by the distribution π̄t. As a635

result, the distance D(π̄t,π̃t+k) will be small (for the right choice of statistical distance function D).636

Conversely, when the policy is out-of-distribution (OOD), its internal model of state st+k at timestep t637

may be inaccurate, yielding a divergence between π̄t and π̃t+k and a larger statistical distance.638

Implementation Details As mentioned in §4.1, we propose to approximate D(π̄t,π̃t+k) with an639

empirical distance function D̂ instead of computing it analytically, as doing so presents the challenge of640

marginalizing out both the non-overlapping actions (between timesteps t and t+k) and the intermediate641

steps of the diffusion process [63]. We found the following approximations to work well in practice:642

• Maximum Mean Discrepancy (MMD) with radial basis function (RBF) kernels. We compute643

D̂(π̄t,π̃t+k)=Eat,a′
t∼π̄t

[k(at,a
′
t)]+Eat+k,a′

t+k∼π̃t+k

[
k(at+k,a

′
t+k)

]
−2Eat∼π̄t,at+k∼π̃t+k

[k(at,at+k)], where k(x,y;β1)=exp

(
−||x−y||2

β1

)
.

That is, k :R(h−k)×|A|×R(h−k)×|A|→R computes the similarity between two overlapping644

action sequences, and β1 denotes the bandwidth of the RBF kernel. The expectations are645

taken over a batch of B action sequences sampled from the generative policy.646

• Forward KL-divergence via Kernel Density Estimation (KDE) of the policy distributions:647

D̂(π̄t,π̃t+k)=Eat+k∼π̃t+k

[
log

p(at+k)

q(at+k)

]
,

where p and q are KDEs of π̃t+k and π̄t fit on a batch ofB action sequences sampled from each648

distribution, respectively. As before, we use Gaussian RBF kernels of the form k(x,y;β2),649

where β2 denotes the bandwidth of the RBF kernels used for KDE.650

16



• Reverse KL-divergence via KDE of the policy distributions:651

D̂(π̄t,π̃t+k)=Eat∼π̄t

[
log

p(at)

q(at)

]
,

where p and q are KDEs of π̄t and π̃t+k fit on a batch of B action sequences sampled from652

each distribution, respectively, and all other parameters follow the forward KL definitions.653

The batch size B, MMD bandwidth β1, and KDE bandwidth β2 are hyperparameters that we select for654

a given environment. As expected, we found that larger batch sizes are necessary for accurate mean655

embeddings and density estimates in domains with higher degrees of multi-modality (i.e., PushT). We656

also found that using either default settings or dynamic calibration techniques are sufficient to obtain657

suitable MMD and KDE bandwidth parameters β1 and β2, respectively. For example, setting β2 in658

proportion to the maximum eigenvalue of the covariance of overlapping actions at+k:t+h|· sampled659

from π̄t and π̃t+k. Further details on selecting hyperparameters are provided in Table 2.660

Hyperparameters PushT Domain (↑ Multi-Modal) Mobile Manip. Domains (↓ Multi-Modal)
MMD + KDE batch size (B) 256 32
MMD bandwidth (β1) Median Heuristic [64, 65] 1.0/|A|
KDE bandwidth (β2)

√
λmax(Cov(at+k:t+h|·)) 1.0

Policy action space (A) Linear Velocity Linear + Angular Velocity
Policy prediction horizon (h) 16 16
Policy execution horizon (k) 8 4

Table 2: Hyperparameters settings for temporal consistency detection with STAC.

Additional Design Choices There are several additional settings that one could adjust to increase661

STAC’s detection performance on their task. First, filtering components of the policy’s action space that662

are either noisy or discrete can increase the quality of the statistical distance estimates. For example,663

the policy’s action space in our bi-manual mobile robotic manipulator domains (i.e., Close Box and664

Cover Object) include end-effector linear and angular velocities, as well as a binary gripper command.665

However, when computing statistical distances, we omit all binary gripper commands. Next, reducing666

the execution horizon k of the generative policy to compare action distributions that are closer in667

time can mitigate excessively large statistical distances in highly dynamic or stochastic environments.668

Likewise, comparing action distributions over a shorter prediction horizon h may be suitable if the tails669

of predicted action sequences e.g., exhibit high variance. Table 2 summarizes our design choices.670

A.2 Runtime Monitoring with Vision-Language Models671

In this section, we provide details surrounding the implementation of our VLM runtime monitor, after672

which we provide the prompt templates used in our experiments.673

Implementation Details We use OpenAI’s gpt-4o multi-modal model to reason about the behavior674

of the policy and detect failures. To do so, we provide the VLM with both a parsed text prompt675

describing the monitoring task and the video recorded by the robot’s camera system up to the current676

timestep. Specifically, as described in §4.2, we query the VLM online at each timestep aligned with677

the robot’s execution horizon (i.e., for each t= jk for j ∈ {0,1,...}) using the history of observed678

images I0:t :=(I0,Iνk,I2νk,...,It) up to the current timestep t. Here, the hyperparameter ν specifies679

the frequency of the images relative to the execution horizon k of the DP (§3) for generality, as the680

video may be captured at a much higher frame rate than the diffusion policy’s execution rate. In our681

implementation, we simply set ν=1 and found that this provided sufficient granularity for the model to682

identify the robot’s motion. To format the video so that it can be passed to the model, we follow the683

OpenAI API template by converting each individual image frame in the video to a jpg file, encoding684

the jpg with a base64 encoding, and then converting them to utf-8 strings. We then prompt the model685

by providing an input tuple consisting of the text prompt and each of the individually encoded images.686

17

https://cookbook.openai.com/examples/gpt_with_vision_for_video_understanding


We do so because this is the recommended method of providing gpt-4o with video; at the time of687

writing, the OpenAI Python API does not support direct video (mp4) inputs.688

The prompt template consists of three parts. First is a brief description of the model’s role as the runtime689

monitor of a manipulator robot, which the VLM must execute by analyzing the attached video of the690

robot’s current progress. Second is a description of the task that the robot has to complete, as well691

as the total amount of time that has elapsed relative to the episode time limit (corresponding to the692

MDP horizon in §3). We make sure that the task description is sufficiently detailed, so that there is no693

ambiguity over what the expected behavior of the robot is and what constitutes task completion. For694

example, we specify that the object must be fully covered by the blanket in the Cover Object domain,695

and that the robot must close all three of the box’s lids in the Close Box domain. We also found that it696

is necessary to specify the elapsed time, since we query the VLM at each timestep within an episode697

rather than making a success/failure classification after the episode completes. Online monitoring698

requires the VLM to differentiate whether the robot is still in-progress of completing the task correctly699

(in which case the current video represents partial progress), or whether the robot will fail to complete700

the task (by e.g., stalling in a partially completed state). Differentiating between partial progress and701

task failure can be ambiguous for a slow moving robot, and thus, providing the model with the current702

elapsed time serves as a reference to gauge whether or not the rate at which the robot is executing the703

task will result in a timely task completion. The third component of the prompt contains instructions704

to elicit a chain-of-thought response [59], ensuring that the VLM describes and analyzes the robot’s705

motion and outputs a classification that can be easily parsed.706

The chain-of-thought instructions prompt the model to analyze the video in three steps. The first is to707

ensure the VLM describes the observed motion of the robot and task-relevant objects in detail. The708

second is to analyze the observed motion and reason about whether the robot is behaving incorrectly709

or not. The final step is to conclude with a classification in {ok, failure}. Our objective with the710

runtime monitor is to interfere if the robot is likely to enter a state that is difficult to reset from (e.g.,711

because it potentially unsafe) or cannot complete the task. We therefore note that the role of the runtime712

monitor is only to interfere with the operation of the robot if it is clearly failing to complete the task,713

for example if the robot is behaving in a manner that is potentially unsafe, or if the robot is unlikely to714

complete the task in the remaining time budget.715

Prompt template We include our prompt template below.716

"I am the runtime monitor for an autonomous mobile manipulator capable of717
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solving common household tasks. These are frames of the video recorded by
the manipulator’s camera system at approximately 1Hz as it is executing its
current task. My job is to analyze the observations of the manipulator and
identify whether it is acting incorrectly or unsafely. The robot may take up
to {TIME_LIMIT} seconds to complete the task.\n

The manipulator’s current task is to {TASK}.\n
The current elapsed time is {TIME} seconds.\n

I will format my output in the following form:\n
[start of output]\n
Analysis: On this line, I will precisely describe the full motion of the

manipulator and all task-relevant objects from the beginning to the end of
the accompanying video. I will also carefully describe the final state of
each of the task-relevant objects and the manipulator. Then, I will
characterize whether the robot is clearly failing the task or not, for
example by behaving erratically.

Since the video only represents the progress up to the current timestep and the
robot moves slowly, I will refrain from making a failure classification
unless the robot takes an unsafe action or the robot clearly can not
complete the task in the allotted time. After explicitly noting the amount
of time that has passed in seconds and explicitly comparing it with the time
limit (e.g., x out of {TIME_LIMIT} seconds), I will decide whether the
robot is in-progress, or whether the robot will fail the task or is behaving
erratically.\n

Overall assessment: {CHOICE: [ok, failure]}\n
[end of output]\n

Rules:\n
1. If you see phrases like {CHOICE: [choice1, choice2]}, it means you should

replace the entire
phrase with one of the choices listed. For example, replace the entire phrase ’

{CHOICE: [A, B]}’ with ’B’ when choosing option B. Do NOT enclose your
choice in ’{’ ’}’ brackets. If you are not sure about the value, just use
your best judgement.\n

3. Do NOT forget to conclude your analysis with an overall assessment. As
indicated above with ‘{CHOICE: [ok, failure]}‘, your only options for the
overall assessment are ’ok’, or ’failure’.\n

4. Always start the output with [start of output] and end the output with [end of
output].\n

Output:"
718

The task descriptions we use are as follows:719

task_descriptions:
cover: "pick up the white blanket and use it to fully cover the white box, then

let go of the blanket"
close: "close the white box by folding in the two smaller white side lids and

the bigger white back lid. First, the robot should concurrently push both
side lids up, followed by folding up the back lid with both arms, without
grasping the lids with the grippers. Then, the robot’s arms should back
away from the box"
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B Experiment Details720

B.1 Environments721

We provide additional details on the simulated environments used to test our failure detection approach.722

These environments vary in terms of the properties of their training distributions and the distribution723

shifts under which their policies are evaluated. This results in different qualitative modes of policy724

failure. Specifically, we consider the PushT domain from [1] and two high-dimensional bi-manual725

mobile manipulation domains. A visualization is provided in Fig. 6.726

• PushT Domain: The policy is tasked with pushing a planar “T”-shaped object into a goal727

configuration. A trajectory is considered successful if the overlap between the “T”-shaped728

object and its goal exceeds 90% within 300 environment steps. The action space is the729

2-DoF linear velocity of the end-effector. We generate OOD test scenarios by non-uniformly730

randomizing the scale and dimensions of the “T”-shaped object beyond the randomizations731

contained in the policy’s demonstration data. The policy tends to fail by converging to a732

locally optimal configuration, where the “T” overlaps with its goal but in the wrong orientation.733

Since the task can be solved in a number of ways, we include this domain to evaluate the734

performance of various score functions in the presence of action multi-modality. We refer to735

[1] for the process of generating demonstration data in this domain.736

• Close Box Domain: The policy is tasked with closing a box with three lids. A trajectory is737

considered successful if all three lids are closed within 120 environment steps (24 seconds).738

The action space is the 14-DoF linear + angular velocities and gripper command for the739

end-effectors of two mobile manipulators. Demonstration data is generated by an oracle740

policy that sets a series of waypoints for the end-effectors based on the initial state. We741

generate OOD test scenarios by non-uniformly randomizing the scale of the box beyond742

the randomizations contained in the policy’s demonstration data. The policy tends to fail743

erratically when the robots e.g., collide with the box or its lids, however, task progression744

failures may also occur. This domain is primarily used to evaluate the detection of erratic745

policy failures in a bi-manual robot system with a high-dimensional action space.746

• Cover Object Domain: The policy is tasked with covering a rigid object with a cloth. A747

trajectory is considered successful if over 75% of the object is covered by the cloth within 80748

environment steps (16 seconds). The action space and process of generating demonstration749

data is identical to that of Close Box. We generate OOD test scenarios by non-uniformly750

randomizing the position of the object beyond the randomizations contained in the policy’s751

demonstration data. The policy tends to fail by releasing the cover before reaching the object,752

i.e., placing it on the ground. This domain is used to evaluate the detection of task progression753

failures, where contextual reasoning over longer durations is required to assess task progress.754

B.2 Baselines755

We outline the implementation details of our baselines as introduced in §5. First, with the exception756

of the VLM runtime monitors, all evaluated failure detection methods consist of computing a score757

S(·) at each policy inference timestep, taking the cumulative sum of scores up to the current timestep t,758

and then checking if the cumulative sum exceeds a calibrated threshold to detect policy failure. As759

such, the baselines differ in their score function, i.e., how they compute the per-timestep scores that are760

then summed and thresholded. Intuitively, a good score function should be well-correlated with policy761

failure, that is, it should output small scores when the policy is succeeding and large ones when it is762

failing. For example, Fig. 3 demonstrates this property for our proposed temporal consistency detector.763

We baseline against an extensive suite of score functions, some of which we newly introduce for the764

case of generative policies, and others that are common in the OOD detection literature [4].765
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Figure 6: Task suite. We evaluate our failure detection approach across three simulated domains. These
domains provide coverage over different data distributions (e.g., multi-modality, high-dimensional
action spaces) and modes of generative policy failure. For example, generative policies tend to fail
erratically in the Close Box domain, but smoothly in the Cover Object domain. An effective failure
detector should be performant across multiple domains rather than just one.

B.2.1 STAC Baselines (Policy Level)766

• Policy Encoder Embedding quantifies the dissimilarity of the current point cloud observation767

ot w.r.t. to the point clouds in the calibration dataset of M successful policy rollouts Dτ =768

{τ i}Mi=1 (§3) within the embedding space of the policy’s encoder (here, ot denotes the point769

cloud input to the policy, including the point cloud at the current and previous timestep). More770

concretely, let E be the policy’s encoder, zt=E(ot) be the current point cloud embedding,771

and Dz=E(Dτ ) be the embeddings of all point clouds contained in the calibration dataset.772

We compute the per-timestep score as the Mahalanobis distance773

S(zt;Dz)=

√
(zt−µz)T Σ−1

zz (zt−µz), (3)

where µz is the mean and Σzz is the covariance of the embeddings in Dz . At test time, we774

raise a failure warning if the cumulative score ηt exceeds a calibrated detection threshold γ775

ηt>γ, where ηt=

t∑
i=0

S(zi;Dz).

Here, γ is set to the 1 − δ quantile of cumulative scores computed over the calibration776

trajectories {ηi|τ i|}
M
i=1, where τ i∈Dτ . Importantly, when computing the calibration scores777

ηi, we do so in a leave-trajectory-out fashion: i.e., for a point cloud ot∈τ i where τ i∈Dτ , we778

compute the per-timestep score as S(E(ot); E(Dτ \τ i)). This ensures that the dissimilarity779

of observation ot is computed w.r.t. trajectories other than its own, which a) aligns with how780

scores are computed at test time and b) ensures that calibration scores are not trivially low.781

We experimented with alternatives to the Mahalanobis distance in Eq. (3), substituting it with782

top-k scoring for k∈{1,5,10} based on cosine similarity or L2 distance metrics. However,783

we found the Mahalanobis distance to be most stable. We also evaluated variants of this784

baseline that compute the dissimilarity of the full policy state st (including both the point785

cloud embedding and the robots’ end-effector poses) but found equivalent performance.786

• CLIP Pretrained Embedding quantifies the dissimilarity of the current image observation787

It w.r.t. to the images in the calibration dataset Dτ = {τ i}Mi=1 within the embedding space788

of a pretrained CLIP encoder [66]. The score function (Eq. 3) and calibration process are789

identical to Policy Encoder Embedding. Importantly, the encoder used here is trained790

with a representation learning objective, which results in a structured embedding space and791

more interpretable embedding similarity scores. In our experiments, we use the open-source792

clip-vit-base-patch32 version of CLIP without any fine tuning.793
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• ResNet Pretrained Embedding is identical to CLIP Pretrained Embedding, except quanti-794

fies image-space dissimilarity using embeddings from a ResNet18 pretrained model [67].795

• Temporal Minimum is similar to STAC (§A.1) in that it seeks to compute a consistency score796

between overlapping actions at+k:t+h|t and at+k:t+h|t+k sampled from the generative policy797

at contiguous policy-inference timesteps t and t+k, respectively. However, it does so by798

using a non-statistical distance function. In particular, this baseline computes the per-timestep799

temporal consistency score at timestep t+k as800

S(st+k)= min
b∈{1..B}

∥∥∥at+k:t+h|t−abt+k:t+h|t+k

∥∥∥, where abt+k:t+h|t+k∼ π̃t+k(·|st+k).

That is, we sample a batch ofB actions sequences at timestep t+k, compute their L2 distances801

w.r.t. the overlapping actions of the previously executed action sequence at+k:t+h|t, and802

return the L2 distance associated with the most similar action sequence. Intuitively, this803

baseline attempts to find the closest action sequence at timestep t+k to previously executed804

action sequence, in contrast to STAC, which quantifies how well the action distribution π̃t+k805

at timestep t+k is represented in the distribution π̄t at timestep t. The values of B are in806

Table 2. The calibration and runtime procedures of this baseline are identical to STAC (§4.1).807

• Diffusion Reconstruction adapts the diffusion-based OOD detection approach of Graham808

et al. [62] for the case of diffusion policy. Specifically, this baseline computes the reconstruc-809

tion error on re-noised action sequences sampled from the diffusion policy as810

S(st)=Ea0∼π(·|st),ϵi,i

[∥∥a0−ϵi:0θ (
√
ᾱia

0+
√
1−ᾱiϵ

i,st)
∥∥2], (4)

where ϵi:0θ denotes the reverse diffusion process from the i-th denoising iteration to the 0-th811

iteration, resulting in the reconstructed action. We approximate the expectation in Eq. 4 over812

a batch of B=256 action sequences sampled from the diffusion policy, each re-noised for813

i ∈ {5,10,25,50} forward diffusion steps (also referred to as reconstruction depths). We814

experimented with several sets of reconstruction depths and found comparable performance.815

We note that this baseline comes with significant computational expense as it needs to perform816

the denoising process multiple times: i.e., if we would like to compute R reconstructions, this817

baseline is approximately R times more expensive than simply sampling the diffusion policy.818

The calibration and runtime procedures of this baseline are identical to that of STAC (§4.1).819

• Temporal Diffusion Reconstruction is a temporal variant of Diffusion Reconstruction820

that also computes the reconstruction error on re-noised action sequences sampled from the821

diffusion policy, but reconstructs the action sequences conditioned on the previous state st as822

S(st,st+k)=Ea0
t+k:t+h|t+k

∼π̃t+k,ϵi,i

[∥∥â0−ϵi:0θ (
√
ᾱiâ

0+
√
1−ᾱiϵ

i,st)
∥∥2].

Here, â0 denotes the action sequence on which reconstructions are computed, concatenating823

the first k (executed) actions sampled at timestep t with following k−h (predicted) actions824

sampled at timestep t+k: that is, â0 = at:t+k|t⊕a0t+k:t+h|t+k. This step is necessary to825

ensure that the denoising process conditioned on st only considers actions within the policy’s826

prediction horizon. This baseline represents an alternative form of temporal consistency.827

Intuitively, it asks whether action sequences sampled at timestep t+k would also be sampled828

at timestep t, to which the answer is likely yes if the policy is in-distribution, and likely no if829

the policy is OOD—because the marginal distributions conditioned on st versus st+k may be830

different. The hyperparameters of this baseline follow Diffusion Reconstruction.831

• DDPM Loss computes the empirical DDPM loss on re-noised action sequences sampled832

from the diffusion policy as833

S(st)=Ea0∼π(·|st),ϵi,i

[∥∥ϵi−ϵθ(
√
ᾱia

0+
√
1−ᾱiϵ

i,st,i)
∥∥2].

Here, the expectation is taken over a batch of B = 256 sampled action sequences and 10834

sampled denoising iterations i∼U [0,N), where N is the total number of denoising iterations835
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(§B.3.1). We can think of this baseline as a more efficient version of Diffusion Reconstruction,836

since it directly quantifies the diffusion policy’s performance on its training task without the837

need to reconstruct actions over numerous denoising iterations. The calibration and runtime838

procedures of this baseline are identical to that of STAC (§4.1).839

• Temporal DDPM Loss is a temporal variant of DDPM Loss that also computes the empirical840

DDPM loss on re-noised action sequences sampled from the diffusion policy, but does so841

conditioned on the previous state st as842

S(st,st+k)=Ea0
t+k:t+h|t+k

∼π̃t+k,ϵi,i

[∥∥ϵi−ϵθ(
√
ᾱiâ

0+
√
1−ᾱiϵ

i,st,i)
∥∥2],

where â0 = at:t+k|t ⊕ a0t+k:t+h|t+k (as defined in Temporal Diffusion Reconstruction).843

The hyperparameters of this baseline follow DDPM Loss, over which it is expected to offer844

advantages via temporal consistency.845

• Diffusion Output Variance computes the variance B action sequences sampled from the846

diffusion policy and thresholds it w.r.t. the 1−δ quantile of sample variances computed over847

the calibration dataset Dτ . This baseline reflects an alternative output metric to temporal848

consistency that can be monitored to detect policy failure. While computing output variances849

might bear resemblance to ensemble methods [68], we note that this approach does not850

quantify epistemic model uncertainty. Doing so would require training multiple diffusion851

policies and performing inference with each at test time, which we avoid due to computational852

expense. The hyperparameters of this baseline are identical to STAC (see Table 2).853

Key Characteristics of Baselines First, we highlight that the embedding-based approaches predict854

failure solely based on the dissimilarity or atypicality of the current state. Hence, these baselines are not855

policy aware: they may raise failure warnings for states that are dissimilar from those contained in the856

calibration dataset Dτ without understanding how the policy behaves in those states. In some cases, the857

policy may still succeed or generalize to minor distribution shifts in state, for which the performance of858

these baselines will significantly diminish. The reconstruction-based approaches may account for the859

generalization characteristics of the policy but come with computational expense, which may prohibit860

their use in real-time settings. The DDPM loss approaches present the next best alternative to our861

proposed temporal consistency detector, as its score function coincides with the diffusion policy’s862

training task and do so at negligible computational cost. Importantly, we note that the DDPM loss863

baseline is specific to diffusion policies, whereas STAC is agnostic to the generative policy formulation.864

B.2.2 VLM Baselines (Task Level)865

As described in §4.2 and §A.2, our primary method for monitoring the robot using the VLM is to866

prompt the model to analyze a video of the robot’s current task progress in a zero-shot fashion. We867

contrast the VLMs performance with two baseline variations of this approach.868

• GPT-4o Image: We introduce a VLM baseline that performs the monitoring task based on a869

single image rather than the full video of the current progress. The goal of this baseline is to870

identify the value of video-based VLM reasoning compared to single images. We implement871

this baseline by querying the VLM using only It, the image recorded at the current timestep t,872

rather than the full video I0:t. We also minimally modified the prompt given in §A.2 to refer873

to the given observation as the “image recorded at the current timestep” instead of a video.874

• GPT-4o Video Success In-Context: Our primary VLM methodology queries the model in a875

zero-shot fashion, using only the video of the current task execution and a text description876

of the task as a reference. Since we provide STAC and the other baselines with a calibration877

dataset of in-distribution nominal trajectories wherein the policy succeeded at the task, we also878

investigate whether providing additional videos of successful task execution as a reference879

can improve the accuracy of the VLM monitor. To do so, we select a single video of an880

in-distribution successful rollout and provide it to the VLM in-context together with the video881
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of the current task execution. Since the OpenAI API currently only supports video reasoning882

by querying the model with a list of images, we cannot directly upload two separate videos883

and reference their filenames in the prompt. Instead, we combine both videos into a long884

sequence of images with an all-black frame in the middle to mark the end of the reference885

video and the start of the test video. We then modify the prompt in §A.2 to the below prompt,886

which explicitly asks the model to compare the two videos. We also tried a version wherein887

an example generation describing the successful reference video is included as an in-context888

example, but did not notice meaningful differences in performance, so we only include the889

prompt that explicitly compares the videos in this appendix.890

"I am the runtime monitor for a bimanual autonomous mobile manipulator891
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capable of solving common household tasks. These are the frames of
two videos recorded by the manipulator’s camera system at
approximately 1Hz. The two videos are seperated by a single fully
black frame. The first video is a reference video that shows the
robot correctly executing the task within {TIME_LIMIT} seconds. The
second video shows the robot executing its current task and the
frames contain the image observations up to the current timestep. My
job is to compare the first reference video with the video of the
current task in progress and determine if the robot is still
executing the task, or whether it is acting incorrectly or unsafely
and should be stopped. In my analysis, I will keep in mind that the
reference video shows a completed successfull trial, whereas the
current video may be shorter: It only shows the current progress and
the robot may take up to {TIME_LIMIT} seconds to complete the task.
Therefore, I will only interfere when the robot is clearly failing
to complete the task or behaving unsafely.\n

The manipulator’s current task is to {TASK}.\n
The current elapsed time is {TIME} seconds.\n

I will format my output in the following form:\n
[start of output]\n
Analysis:\n
1. On this line, I will note the differences between the reference video

and the current task video. \n
2. On this line, I will explicitly note the amount of time that has

passed in seconds and compare it with the time limit (e.g., x out of
{TIME_LIMIT} seconds).

Then, I will decide whether the robot is in-progress, or whether the
robot has failed the task or is behaving erratically. Since the
video only represents the progress up to the current timestep and
the robot moves slowly and takes time to pre-plan its movements, I
will refrain from making a failure classification unless the robot
takes an unsafe action or the robot has not completed the task in
the allotted time.\n

Overall assessment: {CHOICE: [ok, failure]}\n
[end of output]\n

Rules:\n
1. If you see phrases like {CHOICE: [choice1, choice2]}, it means you

should replace the entire phrase with one of the choices listed. For
example, replace the entire phrase ’{CHOICE: [A, B]}’ with ’B’ when
choosing option B. Do NOT enclose your choice in ’{’ ’}’ brackets.
If you are not sure about the value, just use your best judgement.\n

3. Do NOT forget to conclude your analysis with an overall assessment. As
indicated above with ‘{CHOICE: [ok, failure]}‘, your only options
for the overall assessment are ’ok’ or ’failure’.\n

4. Always start the output with [start of output] and end the output with
[end of output].\n

Output:"
892

B.3 Evaluation Protocol893

B.3.1 Diffusion Policies894

We train a diffusion policy for each environment, using 200 demonstrations for the PushT domain895

and 50 demonstrations for each of the Close Box and Cover Object domains. We use a diffusion896

policy architecture identical to the original paper [1] except for the visual encoder. That is, because897

we use point cloud inputs for our tasks, we substitute the ResNet-based encoder for a PointNet-based898
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one: a 4-layer PointNet++ encoder [69] with hidden dimension 128. The output of this encoder is899

concatenated with the proprioceptive inputs and then fed to the noise prediction network. All diffusion900

policies are specified to perform N =100 denoising iterations. Unless otherwise specified, we use901

standard settings for the prediction h and execution horizon k of the diffusion policy (details in Table 2).902

B.3.2 Constructing the Calibration Dataset903

Calibrating STAC (§A.1) and its baselines (§B.2.1) requires a small dataset of successful policy rollouts904

Dτ ={τ i}Mi=1. These rollouts provide grounding on the nominal behavior of the policy as it operates905

on in-distribution test cases. This allows us to evaluate the test-time behavior of a potentially failing906

policy w.r.t. its known nominal behavior.907

Calibration Data Quality We found it important to ensure the quality of trajectories τ i ∈ Dτ .908

Specifically, trajectories in which the policy succeeds but in an undesired or unacceptable manner909

should not be used for calibration. For example, the policy may solve the Close Box task (Fig. 6), but910

damage the lids of the box in the process. Including such a trajectory in the calibration dataset would911

define this behavior as nominal and degrade the sensitivity of the detectors at test time. Returning to our912

example, the detectors may not raise a failure warning if the policy damages the box while closing it.913

Collecting the Calibration Dataset In practice, such a calibration dataset could be collected during a914

policy validation phase prior to deployment. For instance, we collect M=50 successful policy rollouts915

for each simulated domain, manually filtering episodes where the policy succeeded with unacceptable916

behavior (e.g., with jitter). We hypothesize that the performance of the detectors w.r.t. the number of917

rollouts M is task specific. For example, a smaller calibration dataset may be sufficient for tasks with918

low varability (i.e., in a single, structured environment), while a larger dataset may be necessary if the919

policy is to be deployed at scale. We note, however, that increasing the calibration dataset size may be920

desirable to achieve stronger conformal guarantees on the detector’s FPR (as derived in §D).921

Calibrating on Demonstration Data Finally, we experimented with variants of STAC that calibrated922

on trajectories contained in the policy’s demonstration dataset, in attempt to eliminate the need to923

collect an additional calibration dataset of policy rollouts. However, doing so led to a significant924

increase in the detector’s FPR. We attribute this to the well-known covariate shift problem for imitation925

learned policies [24, 25]. That is, their prediction error increases quadratically on states induced under926

the policy, causing the detectors’ to mistake successful test-time rollouts for failures.927

B.3.3 Testing & Evaluation928

Instead of evaluating the failure detectors online during policy rollouts, we collect several test datasets929

of policy rollouts, which may consists of both successes and failures. Each trajectory is labeled either930

success or failure by thresholding the return at the final state of the episode (as per the definition in §3).931

We then perform offline evaluation of the failure detectors by invoking them at each timestep of the932

trajectory, which allows us to identify the first timestep at which the detectors issue a warning.933

B.3.4 Definitions & Reported Metrics934

We expand on the definitions and metrics described in §3 and §5. We first define a positive as a trajectory935

where the policy fails and a negative as trajectory where the policy succeeds. A true positive is counted if936

the failure detector raises a warning at any timestep in a trajectory where the policy fails. A true negative937

is counted if the failure detector never raises a warning in a trajectory where the policy succeeds. A938

false positive is counted if the failure detector raises a warning at any timestep in a trajectory where the939

policy succeeds. A false negative is counted if the failure detector never raises a warning in a trajectory940
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where the policy fails. Detection time is defined as the earliest timestep in which the failure detector941

raises a warning in a trajectory where the policy fails.942

In our experiments, we report true positive rate (TPR), true negative rate (TNR), false positive rate943

(FPR), detection time (DT), accuracy, and balanced accuracy. TPR, also referred to as sensitivity,944

measures the number of true positives (detected failures) over total number of positives (failures). TNR,945

also referred to as specificity, measures the number of true negatives (detected successes) over total946

number of negatives (successes). FPR measures the number of false positives (incorrectly detected947

failures) over the total number of negatives (successes). Accuracy and balanced accuracy account for948

both the TPR and TNR of the detector. However, we report balanced accuracy when test set contains a949

non-negligible imbalance of positives and negative trajectories.950

C Additional Results951

C.1 PushT Ablation952
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Figure 7: PushT ablation on the
performance of STAC subject to
varying policy prediction and exe-
cution horizon settings (Table 2).

We conduct an ablation study on the PushT domain to test how953

the performance of STAC varies with respect to the prediction954

horizon h and execution horizon k of the diffusion policy. To-955

gether, the prediction and execution horizons determine the num-956

ber of temporally overlapping action components (i.e,. between957

at+k:t+h|t and at+k:t+h|t+k) that are statistically compared by958

STAC, while the execution horizon governs how far apart in time959

the action distributions π̄t and π̃t+k are generated.960

The result is shown in Fig. 7. We find that STAC (MMD) per-961

forms comparatively across execution horizons of k = 4 and962

k=8, but performs best with the standard diffusion policy set-963

tings of k=8 and h=16 (used for the main result in Fig. 4). The964

detector’s performance drops when using the smallest execution965

horizon of k=2. We attribute this to the relatively small amount966

of environment change that occurs within two execution steps,967

which causes π̄t and π̃t+k be similarly distributed and leads to overly conservative statistical distances.968

This is corroborated by our findings, where the detectors attain >95% TNRs across various execution969

horizons, but using k=2 leads to a significant drop in TPR to 61%. In comparison, k=4 and k=8970

attain TPRs of 78% and 95%, respectively. Overall, STAC’s performance may vary with the selection of971

the policy’s execution horizon, but is relatively stable across choices of the policy’s prediction horizon.972

C.2 Vision-Language Model Ablation973

In this section, we include an additional ablation of our VLM method, as well as an extended discussion974

on the performance of the VLM methods in §5.975

First, we present an additional ablation, augmenting the VLM methods presented in Table 1 with976

the GPT-4o Video Success In-Context baseline presented in §B.2.2. Table 3 shows that providing977

the VLM with an in-context video of a successful task execution does not significantly change the978

performance of the VLM reasoner as compared to the zero-shot video approach. While it is intuitive979

to expect that providing a reference video would facilitate describing the motion of the robot, it is980

difficult to identify why providing a reference video resulted in negligible changes in performance.981

Qualitatively, we found the in-context video approach seems to describe the motion of the robot in the982

video more clearly than zero-shot. However, the successes on the Close Box task under distribution983

shift look different from the nominal successes: Even if the robot succeeds under distribution shift, the984

robot moves slower than normally. This visual difference in speed leads to some false positives, so985

27



that the overall performance is roughly the same as the zero-shot method. Another possibility is that986

analyzing the difference between videos is a more challenging task for a VLM compared to describing987

a single video, or that the manner in which we provide the reference video to the VLM (see §B.2.2)988

complicates the task.989

Second, we discuss the poor performance of the GPT-4o Single Image baseline. As shown in Table 1990

and Table 3, the single image baseline suffers a 100% false positive rate on the Close Box domain. It991

performs poorly on this task for a simple reason: Without observing the initial state of the box with its992

lids in an opened position, and without observing the motion of the robot closing the lids, the VLM is993

unable to clearly identify the lids of the box and whether the box is closed. Therefore, once the time994

limit to complete the task is exceeded, the monitor declares a failure. We iterated on several prompts995

that asked more detailed questions about the location of the box and lids in an attempt to coerce this996

baseline to identify the lids, but to no avail. As a result, all the outputs of the single image baseline997

resemble the following example of a false positive:998

"[start of output]
Analysis: The current observation shows the manipulator’s arms positioned near

the white box, with the grippers open and not grasping the lids. The two
smaller white side lids and the bigger white back lid of the box are not
visible, suggesting they are not yet folded. The elapsed time is 30 out of
30 seconds, which means the robot has reached the time limit for completing
the task. Given that the lids are not folded and the task is not completed,
the robot is clearly failing the task.

Overall assessment: failure
[end of output]"

Overall, we consider these results clear evidence that video-based reasoning offers strict improvements999

over single image-based reasoning for the assessment of task progression failures.1000

Close Box: In-Distribution Close Box: Out-of-Distribution Close Box: Combined
Failure Detector TPR ↑ TNR ↑ Det. Time (s) ↓ TPR ↑ TNR ↑ Det. Time (s) ↓ TPR ↑ TNR ↑ Accuracy ↑

V
L

M GPT-4o Image 1.00 0.00 24.00 1.00 0.00 24.00 1.00 0.00 0.32
GPT-4o Video (Ours) 0.60 1.00 22.40 0.52 0.75 21.42 0.53 0.94 0.81
GPT-4o Video + IC success 0.60 1.00 24.00 0.48 0.75 24.00 0.48 0.94 0.80

Table 3: Comparison of VLM runtime monitors on the Close Box domain. Note that the GPT-4o Video
+ IC Success is the only additional baseline that is not already included in Table 1.

C.3 Extended Discussion1001

Vision-Language Model Analysis While Fig. 5 shows that the VLM provides accurate failure1002

assessments on distribution shifts that result in smooth task-progression failures, it still does not1003

achieve 100% accuracy. Table 1 shows that the VLM struggles to identify erratic policy failures, but1004

well-equipped to detect policy successes, as evidenced by its 94% overall TNR. That is, while the TNR1005

is only 75% on the Close Box out-of-distribution split, this only corresponds to 4 problematic false1006

positive episodes (because the robot almost always fails in the out-of-distribution split). Therefore, in1007

this section, we seek to develop an intuition for the reasons why the VLM may miss a detection.1008

Firstly, a key difference between the erratic failures and the task progression failures is that the erratic1009

failures are often more visually subtle, and hence more challenging to interpret. For example, erratic1010

failures include cases where the robot collides with the box, or moves the lids but does not fully close1011

them. In contrast, the robot takes more obviously wrong actions (e.g., stalling, clearly misplacing the1012

cover) in the task progression failures (see Fig. 5).1013
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Cover Object: Out-of-Distribution Close Box: Out-of-Distribution Combined: Cover + Close
Failure Detector TPR ↑ TNR ↑ Det. Time (s) ↓ TPR ↑ TNR ↑ Det. Time (s) ↓ TPR ↑ TNR ↑ Accuracy ↑

O
ur

s

STAC + GPT-4o Video (Full) 0.45 0.92 6.22 0.98 0.60 12.99 0.81 0.83 0.81
GPT-4o Video 0.35 1.00 7.10 0.91 0.80 20.68 0.73 0.94 0.78
STAC MMD 0.35 0.92 6.29 0.58 0.80 9.02 0.51 0.89 0.59
STAC Rev. KL 0.35 0.77 6.51 0.58 0.80 9.89 0.51 0.78 0.57
STAC For. KL 0.35 0.92 6.40 0.58 0.80 8.00 0.51 0.89 0.59

E
m

be
d. Policy Encoder 1.00 0.69 3.28 0.98 0.20 2.27 0.98 0.56 0.89

CLIP Pretrained 0.20 0.92 8.80 1.00 0.40 10.53 0.75 0.78 0.75
ResNet Pretrained 0.05 1.00 8.80 1.00 0.40 16.22 0.70 0.83 0.73

D
iff

us
io

n

Temporal Min. 0.20 0.77 5.60 0.63 0.80 6.84 0.49 0.78 0.56
Diffusion Recon. [62] 0.00 0.92 - 0.35 1.00 9.81 0.24 0.94 0.40
Temporal Diffusion Recon. 0.30 0.92 5.73 0.56 0.80 10.27 0.48 0.89 0.57
DDPM Loss (Eq. (1)) 0.50 0.85 6.32 0.95 1.00 10.60 0.81 0.89 0.83
Temporal DDPM Loss 0.30 0.92 5.73 0.63 0.80 8.15 0.52 0.89 0.60
Diffusion Output Variance 0.00 0.92 - 0.23 1.00 10.64 0.16 0.94 0.33

Table 4: Detecting task progression failures in the Cover Object and Close Box domains. Our full
approach, which combines STAC with the VLM runtime monitor, achieves performance on-par with
the top performing baselines for the detection of task progression failures. Importantly, baselines that
perform well on this domain, such as Policy Encoder and DDPM Loss, do not maintain consistent
perform across the multi-modal (Fig. 4) or erratic failure (Table 1) domains, in contrast to STAC, which
achieves both high TPRs and TNRs on these domains. Thereby, the VLM runtime monitor is essential
to complementing STAC beyond the detection of erratic failures, resulting in the best overall detector.

Secondly, we can examine the chain-of-thought generation of the VLM to develop an intuition for the1014

VLMs failure modes: We prompt the VLM to first describe the motion of the robot, after which we ask1015

the VLM to assess whether the described motion constitutes nominal execution or a failure. Therefore,1016

we manually examine the VLM outputs for all episodes in which it incorrectly classified an episodes as1017

nominal or as a failure, and then attribute the failure to either errors in a) the VLMs description of the1018

video or b) its reasoning as to whether the video constituted nominal behavior or failure.1019

The result shown in Table 5 indicate that the vast majority of mistakes made by the VLM are caused by1020

the model failing to correctly describe the video. In part, we can attribute this to a visual domain gap1021

between our simulation-based evaluations and the models’ real-world training data: Deficiencies in the1022

simulator’s fidelity may make it difficult for the VLM to correctly identify the cover and the lids of1023

the box. This is mirrored by a similar result in [44], where the authors found open-source VLMs to1024

perform poorly at interpreting images from a self-driving simulator.1025

Domain FPR FNR
Close Box 100% 75%
Cover Object - 85%

Table 5: Error attribution of VLM errors. For each domain, we tabulate what percentage of
erroneous VLM classifications result from the VLM describing the video in a way that fundamentally
mischaractarizes the motion of the robot. FPR denotes the percentage of false positives: cases in
which the VLM incorrectly raises an alarm, caused by visual understanding errors. FNR denotes the
percentage of false negatives: cases in which the VLM deems a failure episode as a success. Note
that the VLM achieved a 100% FPR on the Close Box domain, indicating the all false positives in this
domain resulted from the VLM misunderstanding the robot’s motion.

Finally, we remark that our evaluations primarily use GPT-4o. In early experimentation, we compared1026

the use of both GPT-4o and GPT-4-turbo and found they performed similarly. Therefore, we ran the1027

full evaluations with GPT-4o only, as GPT-4o is significantly faster and cheaper than GPT-4-turbo.1028

Task Progression Failure Analysis We evaluate our proposed approach and the baselines on domains1029

where the policies exhibit task progression failures. The result is shown in Table 4.1030

First, we observe that the combination of STAC and GPT-4o results in a better overall accuracy than1031

using STAC alone (coinciding with Fig. 5). Upon further analysis, we find that two baselines perform1032
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comparatively. The first is Policy Encoder, which tends to raise a failure warning when the point cloud1033

state deviates from those in the calibration dataset. This strategy performs well because almost all1034

distribution shifts result in policy failure in this domain. However, it incurs a 100% FPR on the erratic1035

failure domain (Table 1), where the policy may succeed under distribution shifts. The DDPM Loss1036

baseline also achieves appreciable performance here, however, it experiences notable performance1037

drops relative to STAC on the multi-modal domain (Fig. 4). These findings highlight the value of1038

our proposed failure categorization. Specifically, because STAC is best able to detect erratic failures1039

among all baselines and the VLM monitor can amicably capture task progression failures (whilst both1040

maintain high TNRs), their combination yields the best overall detector. Moreover, we expect our1041

failure detector’s performance to further improve with the development of more capable VLMs that,1042

for example, may contend with the current shortcomings revealed by our VLM analysis above.1043

D Derivations1044

To validate our design choices, we show in this section that the STAC score function and the calibration1045

procedure in §4.1 provably result in a low false positive rate. To do so, we apply recently popularized1046

tools from conformal prediction because they are sample efficient and distribution-free, meaning that1047

they do not require distributional assumptions on the trajectory rollouts. Our guarantee is a direct1048

application of the standard results in split conformal prediction [54], but to ensure the self-containedness1049

of this manuscript, we first briefly reintroduce the core concepts in conformal prediction (taken from1050

[54]) using the notation in our paper.1051

Background on Conformal Inference In its most basic form, the goal of conformal prediction is to1052

construct a prediction set C that will contain the true value of a new test point Xtest with a user defined1053

probability of at least 1−δ [54]. To do so, a conformal algorithm requires a sequence of calibration1054

samples {Xi}Mi=1 with all samples X1,...,XM ,Xtest i.i.d., as well as a conformity score function1055

η(X)∈R. Intuitively, conformal methods use {η(Xi)}Mi=1 to identify how likely η(Xtest) is to lie1056

within the range of a 1−δ fraction of the calibration samples (i.e., how well Xtest conforms to the1057

calibration data). We emphasize that this approach ensures that we construct a valid prediction set C,1058

regardless of the choice of conformity score and without knowing any properties of the data generating1059

distribution:1060

Theorem 1 (Adapted from Thm. D.1 in [54]). Let Dcalib={X1,...,XM} be a calibration dataset and1061

letXtest be a test sample. Suppose that the samples inDcalib andXtest are independent and identically1062

distributed (i.i.d.). Then, defining1063

γ :=inf

{
ξ∈R :

|{i :η(Xi)≤ξ}|
M

≥ ⌈(M+1)(1−δ)⌉
M

}
as the ⌈(M+1)(1−δ)⌉

M empirical quantile of the calibration data ensures that1064

P
(
η(Xtest)≤γ

)
≥1−δ.

Here, ⌈·⌉ denotes the ceiling function.1065

Conformal guarantee of STAC The base split conformal procedure outlined by Theorem 1 requires1066

that the samples used for calibration and test are i.i.d. This is not the case for states and actions observed1067

sequentially within a trajectory, complicating the analysis of applying the STAC detector at each1068

timestep within a trajectory. To solve this issue and provide a guarantee when we sequentially apply1069

our detector on the correlated state action pairs within a trajectory, we calibrate the detector using the1070

consistency scores generated across trajectories in §4.1. This allows us to rigorously bound the false1071

positive rate using Theorem 1.1072

Corollary 1 (STAC has low FPR). Let Dτ = {τ i}Mi=1
iid∼Pτ be the validation dataset of successful1073

trajectories, each consisting of Hi timesteps and drawn i.i.d. from the closed-loop nominal distribution1074
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Pτ . Moreover, let ηt be defined as the STAC temporal consistency score at some timestep t≥ 0 in1075

equation Eq. (2) and set γ equal to the empirical ⌈(M+1)(1−δ)⌉
M quantile of the terminal STAC scores1076

{ηiHi
}Mi=1 of the trajectories in Dτ . Then, the false positive rate, that is, the probability that we raise a1077

false alarm at any point during a new successful test trajectory τ∼Pτ , is at most δ. I.e.,1078

FPR:=PPτ

(
∃ t≥0 s.t. ηt>γ

)
≤δ. (5)

Proof. Let H be the length of the test trajectory τ . If there is no distribution shift, i.e., when the test1079

trajectory τ is i.i.d. with respect to Dτ
iid∼Pτ , it holds that ηH and {ηiHi

}Mi=1 are i.i.d. Therefore, by1080

Theorem 1, we have that1081

PPτ

(
ηH >γ

)
≤δ.

Moreover, since we define ηt=
∑j−1

i=0 D̂(π̄ik,π̃(i+1)k) for t=jk in Eq. (2) and since D̂(·,·)≥0 because1082

it is a statistical distance, it follows that ηt is increasing. That is, η0≤ηk≤η2k≤···≤ηH . Therefore, if1083

ηt crosses the threshold γ at any time, it also holds that ηH >γ. This immediately implies the corollary,1084

as we then have that1085

PPτ

(
∃ t≥0 s.t. ηt>γ

)
=PPτ

(
ηH >γ

)
≤δ.

1086

We conclude this section with three remarks:1087

1. We only bound the false positive rate, which ensures that our algorithm does not raise a false1088

alarm with high probability, so that any warnings likely correspond to an OOD scenario. We1089

do so because a system that raises too many false alarms is impractical to use. Our calibration1090

approach does not guarantee the detection of failure modes, nor does it guarantee that we1091

do not issue warnings on OOD successes, as this is not possible without any distributional1092

assumptions on the OOD scenarios or without using failure data for calibration [70]. Instead,1093

we empirically find that our temporal consistency score performs amicably at detecting1094

failures in our experiments (§5).1095

2. Corollary 1 only certifies that the false positive rate of the STAC detector is low. We make1096

no claims on the overall performance of the combination of the VLM and STAC, as we use1097

the VLM as a zero-shot black-box classifier. Future work could investigate methodologies to1098

jointly calibrate an ensemble of failure detectors.1099

3. We emphasize that conformal guarantees, like those in Theorem 1 and Corollary 1, are1100

marginal with respect to the calibration data: They may not hold exactly when given a1101

particular calibration dataset, but if we were to sample thousands of calibration datasets, we1102

would find our guarantees hold on average. Therefore, as expected, STAC does not exactly1103

satisfy Eq. (5) in our experiments (§5), as compute budgets limited our experimentation to1104

repetitions on a limited number of random seeds.1105
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