
Supplementary Material for:
ActCooLR – High-Level Learning Rate Schedules

using Activation Pattern Temperature

Anonymous Author(s)
Affiliation
Address
email

ResNet-32, Step Decay

0 50 100 150 200
1

10

20

30

st
ep

de
ca

y
Re

LU
-L

ay
er

10 3

10 1

101

ResNet-32, CyclicLR

0 20 40 60 80 100
1

10

20

30

cy
cl

ic
Re

LU
-L

ay
er

10 3

10 1

101

ResNet-32, 1-cycle

0 10 20 30 40 50
1

10

20

30

1
cy

cl
e

Re
LU

-L
ay

er

10 3

10 1

101

ResNet-32 (FixUp-Variant), Step Decay

0 50 100 150 200
1

10

20

30

Fi
xU

p
Re

LU
-L

ay
er

10 3

10 1

101

Epochs

ResNet-32 (without shortcuts), Step Decay

0 50 100 150 200
1

10

20

30

st
ep

de
ca

y
Re

LU
-L

ay
er

10 3

10 1

101

ResNet-32 (without shortcuts), CyclicLR

0 20 40 60 80 100
1

10

20

30

cy
cl

ic
Re

LU
-L

ay
er

10 3

10 1

101

ResNet-32 (without shortcuts), 1-cycle

0 10 20 30 40 50
1

10

20

30

1
cy

cl
e

Re
LU

-L
ay

er

10 3

10 1

101

PyramidNet-32 (without shortcuts), Step Decay

0 50 100 150 200 250 300
1
5

10

15

Py
ra

m
id

Re
LU

-L
ay

er

10 3

10 1

101

Epochs

Figure 1: Per-layer temperatures of the whole training process for ResNet-32 on CIFAR-10, using
different learning rate schedules (step decay, cyclic and 1-cycle) and architectural modifications to
the ResNet-architecture (FixUp, Pyramid, and ResNet in the absence of shortcut connections).

A Per-Layer Temperature Curves1

The activation pattern temperature (APT) is a layer-wise measure. Thus, in the following section,2

we analyze the APT of each non-linear block in a network. Figure 1 shows the APT for the full3

training process (x-Axis) on each layer (y-Axis). In line with Figure 1 of the main paper, we show4

the temperature profiles of ResNet-32 (and its configurations) trained on CIFAR-10.5

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

10−4
10−3
10−2
10−1
100
101

L
ea

rn
in

g
R

at
e

10−3

10−2

10−1

0
1
2
3
4

A
ct

iv
at

io
n

Pa
tte

rn
Te

m
pe

ra
tu

re
(fi

rs
tl

ay
er

)

1-cycle 1-cycle (No-Shortcuts)
CyclicLR ActCooLR (Ours)

10−4

10−3

10−2

10−1

100

Step Decay Step Decay (No-Shortcuts)
FixUp Pyramid

0 10 20 30 40 50

10−1

10−0.7

10−0.4

10−0.1

Training Epoch
(a) Cyclic Learning Rates

V
al

id
at

io
n

E
rr

or
(T

op
-1

)

0 25 50 75 100 125 150 175 200

10−1

10−0.7

10−0.4

10−0.1

Training Epoch
(b) ResNet Variants

Figure 2: Learning Rates, Validation Accuracy & Mean Temperatures of ResNet-32 on CIFAR-10.

Temperature cools down bottom-to-top: In each network of this experimental setup, we observe6

that the activation pattern temperatures decreases (or “cools down”) from bottom to top, in accordance7

to recent work [4]. Also, architectural choices such as the number of filters affect the temperatures.8

For instance, the number of filters used are clearly distinguishable by three ResNet-32 blocks: The9

ResNet-Architecture typically increases the number of filters in each block, which can be seen as10

increasing base temperatures in each of the plots, as increasing filters also increases the probability of11

a pattern change. In our experience, we did not found striding to increase the temperature, but only12

increase the variance of the measurements, probably due to fewer applications of convolutional filters13

per layer.14

On the Relation of Generalization and AT: We observe in this experiment that deeper layers15

generally have a higher temperature in comparison to the first layers in a network. As explained in the16

main paper, a higher temperature of the first layer seems to relate to generalization, however, we did17

not found any relation to generalization in the other layers or the mean temperature. See, for instance,18

the temperature of ResNet-32 with and without shortcut connections in Figure 1; the temperature19

of the latter are higher despite having a worse generalization performance (compare to Fig. 1 in the20

main paper).21

B Robustness of the Choice of Initial Learning Rate22

In the main paper we set the initial learning rate to a fixed value of 0.1 (and 0.5 in the case of23

ImageNet to match the settings used by 1-cycle). The initial learning rate is (most importantly) used24

for the first few steps to estimate the current temperature of the model. After that, we interpolate to25

the calculated learning rate according to Section 4.3.26

Now, we investigate weather the initial learning rate affects our temperature based optimization. In27

Figure 5, we test six learning rates that differ each by an order of magnitude (1.0, 0.1, 1e-2, 1e-3,28

1e-4 and 1e-5). All other hyperparameters, as well as seeds and the linear target temperature curve29

starting at 3.03 and decreasing linearly to 0, are kept the same. We observe, that for all learning rates30

except 1.0 the calculated learning rate profiles as well as validation errors are very similar. For the31

highest initial learning rate, our method yields a different course of training yielding a better overall32

network performance in the end of training. As the high initial learning rate increases the temperature33

in the beginning of training significantly, this result is in comply with our hypothesis that states that34

training longer on higher temperatures yields better results.35

2

10 4

10 2

100

102

Pr
ob

ab
ili

ty
of

Ch
an

ge
Le

ar
ni

ng
 R

at
e

FashionMNIST CNN (constantLR) CIFAR 10 VGG 16 (step decay) TinyImageNet PyramidNet 41 (step decay)

10 4

10 2

100

102
M

od
el

Le
ar

ni
ng

 R
at

e

10 4

10 2

100

102

M
od

el
Er

ro
r

Le
ar

ni
ng

 R
at

e

0 10 20 30 40 50
Epochs

0

5

Be
st

Fi
t

Va
lu

e

0 50 100 150 200 250 300 350
Epochs

0 10 20 30 40 50 60 70 80
Epochs

0.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

0.0

0.1

0.2

0.3

Figure 3: Learning Rate Range Analysis for other data sets and networks.

Table 1: Learning rates used to perform all learning rate range analyses in this work.

0.000630957344480193 0.001039122303835169 0.001711328304161781 0.002818382931264452
0.004641588833612777 0.007644222742526002 0.012589254117941668 0.02073321573485954
0.034145488738336005 0.05623413251903491 0.09261187281287937 0.15252229565390182
0.25118864315095796 0.4136820402388507 0.6812920690579608 1.122018454301963
1.8478497974222907 3.043219887107722 5.011872336272725 8.25404185268019
13.593563908785269 22.38721138568338 36.869450645195734 60.72021956909884
100.0

It is possible to remove the dependency of the initial learning rate completely by using the estimate36

of σ and µ to directly calculate the initial learning rate based on a target temperature curve before37

optimization.38

C Additional Experiments involving Learning Rate Range Analyses39

For the learning rate range analysis shown in Section 3.3, respective Figure 2 of the main paper,40

we additionally measure the activation pattern temperature for a predefined range of learning rates41

during the training process, while a fixed, predefined learning rate schedule is applied. To reduce42

approximation errors of the APT itself, we measured the average activation pattern temperature over43

4096 examples in the case of ImageNet and TinyImageNet, and the full training data set in the case44

of CIFAR-10 and FashionMNIST. The 25 learning rates (see Table 1) used for the range analysis are45

in all experiments uniformly sampled in log space between 10−4 and 102. The experiment shown in46

the main paper shows the measured average pattern temperature over all layers. We show in Figure 3,47

that our proposed model fits in practice as well as when measured against other setups, i.e we evaluate48

the fit also with VGG-16 trained on CIFAR-10 and PyramidNet-41 trained on TinyImagenet. In the49

case of 4-Layer ConvNet trained on FashionMNIST (as described in [7]), we note that the model50

parameter σ changes more significantly (starting at about 3, decreasing to about 0.3). From our51

experience, another case where the model does not fit in particular well, is whenever a network52

diverges.53

We repeat the experiment measuring the activation pattern temperature of the last ReLU-layer.54

Figure 4 shows that deeper layers have a higher temperature in general, as the last layer starts with55

smaller learning rates to have high probabilities of all activation patterns changed (of over 90%).56

Nevertheless, upon inspection of the last ReLU-layer, we observe that training takes place mostly in57

the non-extreme probability range of [ε, 1− ε] except for step decay learning rate schedule trained58

used on CIFAR-10. Note, that when viewed per-layer, the estimate of σ remains rather constant.59

3

10 4

10 2

100

102

Pr
ob

ab
ili

ty
of

Ch
an

ge
Le

ar
ni

ng
 R

at
e

ImageNet (step decay) ImageNet (1 cycle) CIFAR 10 (step decay) CIFAR 10 (1 cycle)

10 4

10 2

100

102

M
od

el
Le

ar
ni

ng
 R

at
e

10 4

10 2

100

102

M
od

el
Er

ro
r

Le
ar

ni
ng

 R
at

e

0 20 40 60 80
Epochs

0

5

10

Be
st

Fi
t

Va
lu

e

0 5 10 15 20
Epochs

0 50 100 150 200
Epochs

0 10 20 30 40 50
Epochs

0.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

0.00

0.05

0.10

Figure 4: APT analysis (of the last ReLU-layer) over a range of learning rates: In contrast to Fig. 2
of the main paper, we show the temperature courses of the last layer, given a theoretical learning rate
for ResNet-50/ResNet-56 trained on ImageNet/CIFAR-10 using step decay and 1-cycle learning rate
schedules.

D Optimization using Dynamic ActCooLR60

The activation pattern temperature measures the actual non-linear change of a network that represents61

the convergence of a network’s activation patterns directly, i.e. taking the value 0 if and only if no62

activation patterns have changed. We have seen that the temperature depends (for a fixed network63

state) monotonically on the learning rate of a single optimization step (see Section 3.4 of the main64

paper). We approximated the behavior of the temperature w.r.t. the learning rate by a closed form65

formula (Equation 5) and showed that its parameter σ remains approximately constant in many66

experiments. In the main paper we derived a formula to estimate the learning rate from a predefined67

temperature, based on the assumption that σ remains perfectly constant. Now, at the cost of additional68

hyperparameters, we discuss an algorithm that removes the requirement to approximate σ beforehand.69

We found that this algorithm works best with the probability of a pattern change, instead of the70

(logarithmic scaled) temperature.71

Assuming we already have a target probability curve C(i), mapping the current training process to a72

value between 0 and 1 we optimize the learning rates, by specifying first the discrepancy of actual73

probability to the target probability. We define the temperature error LTemp at time step i as the L274

norm of the difference between the measured probability T̂ and the target probability,75

LTemp(i) := ||T̂ (i)− C(i)||22. (1)

Similar to the version using our proposed model and the assumption of a static σ, we either need to76

specify probability curves and a loss on a per-layer basis, or transform the vector of temperatures for77

every measurement to a scalar, when we measure a probability for every layer in the network. To78

simplify the algorithm and the choice of target curve, we optimize the average probability over all79

layers, instead of all layer-wise temperatures independently.80

Knowing that the probability depends monotonically on the learning rate λ, we can simplify the opti-81

mization of Equation (1) by changing the learning rate only slightly into the direction of more/fewer82

changes. We define ∂T
∂λ := 1 and minimize the loss using a separate optimizer, which introduces83

additional hyperparameters, e.g. a learning rate λT . This compensates for the log-scale given in84

Equation (5) as well, however, we found that optimizing the learning rate on a linear scale works85

best. For simplicity, we use SGD for the weight updates, and SGD for the learning rate updates. To86

reduce computation time, we compute the measured probability once every 10 steps and reapply87

the calculated gradients on the learning rate in every update step. A fixed learning rate λT of 0.0588

has proven to be a good universal parameter for the probability optimizer. To retain feasibility, we89

recalculate the probability every 10 steps, reapplying the gradient in the remaining steps without90

4

an estimate of the actual probability of a pattern change. In most experiments we conducted, this91

method lead to a quick convergence to the target probability at the cost of additional hyperparameters92

introduced by the SGD loop applied solely to the learning rate of training.93

E Experimental Setups94

We implemented the method outlined in the main paper in PyTorch [3], NumPy [1] and SciPy [6].95

Our experiments were run on a DGX-1 (40 Intel Xeon E5-2698v4 CPUs, 512 GB of RAM, 8 NVIDIA96

Tesla V100-SXM2 16GB GPUs) and DGX-1 (40 Intel Xeon E5-2698v4 CPUs, 512 GB of RAM, 897

NVIDIA Tesla V100-SXM2 32GB GPUs). We used the following image data sets in this work:98

• FashionMNIST consists of 60’000 grayscale images with 28 × 28 pixels each having99

ten classes of fashion related articles. Each class consists of 5’000 examples each and100

1’000 examples reserved for testing only.[7] For all experiments we apply global color101

normalization. During training we also apply random horizontal flips. Batch size used is102

64. We choose hyperparameters based on a predefined validation set of 1% of the images103

extracted from the train data set.104

• CIFAR-10 consists of 60’000 color images with 32× 32 pixels each having ten classes of105

natural motives. Each class consists of 5’000 examples each and 1’000 examples reserved106

for testing only.[2] For all experiments we apply global color normalization. During training107

we also apply random horizontal flips. Batch size used is 256. We choose hyperparameters108

based on a predefined validation set of 1% of the images extracted from the train data set.109

• ImageNet (ILSVRC 2012, [5]) consists of 1.2 million images belonging to one of 1′000110

classes each. Test accuracies are calculated on the given separate data set consisting of111

150′000 images. We choose hyperparameters based on the performance of a random subset112

of about 5% (≈ 64′143) images extracted from the train data set. For all experiments113

we perform global color normalization. During training we perform image augmentation,114

namely random horizontal flips and random resized crops to images of size 224× 224. We115

perform testing using centered cropping to images of size 224× 224. We use mini-batch116

sizes of 128 images for training. Additionally, we use label smoothing with weight 0.1117

during training. Due to limited resources we restricted the number of epochs to 20, resulting118

in a single training run time of about 30 hours.119

• Tiny ImageNet is a smaller version of ImageNet [5], consisting of 100′000 images belonging120

to one of 200 classes. We perform global color normalization to all images, and the same121

augmentation as for ImageNet, with a crop size of 64× 64. We use batch sizes of 128 for122

training.123

F Logarithmic Property of the Activation Temperature124

The probability of a pattern change scales logarithmic with the learning rate. It can be shown, that the125

probability saturates exponentially if we assume that stochastic gradient descent noise affects random126

pattern changes for large learning rates. Thus, the temperature lives naturally on a logarithmic scale.127

Proposition 1. Let Step(W, b) denote the application of computed gradients, scaled with a learning128

rate λ. Let further Pn be the measured proportion of signed activation pattern changes on a single129

layer f : Rc → Rd, fW,b(x) := ReLU(x ·W + b) on a given data stream x1, . . . , xn, given by130

Pn :=
1

n

n∑
i=1

d∏
j=1

1(sign ◦fWt,bt)(xi)(j)(sign ◦fStep(W,b))(xi)
(j). (2)

In case of background, data or neuron noise, i.e. multiplicative µi+j , µi, or µj ∼ Ber1−ε inside the131

product and increasing132

(i) number of sampled data points n, or,133

(ii) output dimensions d,134

measuring P̂n = 0 becomes exponentially unlikely.135

5

Table 2: Test-Accuracies for ResNet-18 and PyramidNet-110 trained on CIFAR-10 using 1-cycle
scheduling and ActCooLR. The Hyperparameters are as follows: Momentum α = 0.9, Weight decay
5e − 5, Start Temperature T0, Speed of temperature convergence γ. For 1-cycle we choose the
maximal learning rate λmax and the position of the highest point during training in epochs, tmax. We
fix the momentum scheduling parameters for 1-cycle as follows: αbase = 0.765, αmax = 0.9. For
ActCooLR we choose a fixed momentum throughout training.

Data set Epochs Network Method Hyperparameters Top-1 Error

CIFAR-10 25 ResNet-18 1-cycle λmax = 1.7, tmax = 0.7 7.53%
CIFAR-10 25 ResNet-18 ActCooLR T0 = 4.32, γ = 2.0 8.11%
CIFAR-10 25 PyramidNet-110 1-cycle λmax = 3.5, tmax = 0.1 6.3%
CIFAR-10 25 PyramidNet-110 ActCooLR T0 = 2.885, γ = 1.0 6.19%
CIFAR-10 50 ResNet-18 1-cycle λmax = 1.9, tmax = 0.15 6.7%
CIFAR-10 50 ResNet-18 ActCooLR T0 = 3.678, γ = 5.5 6.94%
CIFAR-10 50 PyramidNet-110 1-cycle λmax = 3.5, tmax = 0.3 5.04%
CIFAR-10 50 PyramidNet-110 ActCooLR T0 = 4.34, γ = 10.0 6.17%

Table 3: Test-Accuracies for ResNet-18 and PyramidNet-110 trained on CIFAR-10 using 1-cycle
scheduling and ActCooLR. The Hyperparameters are as follows: Momentum α, Weight decay η,
Start Temperature T0, Speed of temperature convergence γ. For 1-cycle we choose the maximal
learning rate λmax and the position of the highest point during training in epochs, tmax.

Data set Epochs Network Method Hyperparameters

FashionMNIST 200 4-layer ConvNet constant LR λ = 0.1, α = 0.9, η = 0
FashionMNIST 200 4-layer ConvNet ActCooLR T0 = 1.25, γ = 1.86, α = 0.0, η = 0

CIFAR-10 300 VGG-16 ActCooLR T0 = 2.423, γ = 10.0
ImageNet 20 ResNet-50 1-cycle λinit = 0.5, λmax = 1.0, tmax = 0.1,

αbase = 0.765, αmax = 0.9, η = 10−5

ImageNet 20 ResNet-50 ActCooLR T0 = 4.905, γ = 7, λinit = 0.5, α = 0.5, η = 0.00001

Proof. Suppose we found a learning rate that would change all activations, i.e. yield Tn = 0 without136

the noise term. (Otherwise we would not measure Tn = 0 without the noise term). The probability of137

the noise not changing any sign back is P (T̂n) = (1 − ε)nd for a small ε > 0 that depends on the138

magnitude of SGD noise.139

G Additional Results & Hyperparameter List140

Additionally to Table 1 in the main paper, we list more results using our method ActCooLR with other141

data sets, or other models in Table 2. For both methods, 1-cycle and ActCooLR, we performed random142

search of parameters for a fixed number of training time (24 hours each). We chose hyperparameters143

yielding the smallest validation error and show the test error in Table 2.144

The additional experiments support the findings from the main paper – the accuracy obtained from145

ActCooLR is in a similar range as 1-cycle, on a larger set of different architectures. Please note146

that neither results reach the best-possible published accuracy values, as non-learning rate related147

hyperparameters have not been tuned extensively (for both our method and 1-cycle, to obtain a fair148

comparison).149

We provide a list of all hyperparameters used in Table 1 (of the main paper) in Table 3.150

H PyTorch Implementation151

We will release our complete code repository under a free license upon acceptance. In the following,152

we show the implementation of the key algorithms.153

We implemented the method outlined in the main paper in PyTorch [3], NumPy [1] and SciPy [6].154

Measure Statistics: The activation pattern temperature (APT) is measured right within a ReLU-155

activation. Thus, the following drop-in-replacement of a ReLU-layer enables measuring the APT in156

6

0

2

4

Te
m

pe
ra

tu
re

M
ea

n

1e0 1e-1 1e-2 1e-3 1e-4 1e-5
(Initial LR)

10−4

10−2

100

L
ea

rn
in

g
R

at
e

0 10 20 30 40 50

10−1

10−0.5

Epochs

Va
lid

at
io

n
E

rr
or

Figure 5: We train ResNet-32 using ActCooLR and vary only the initial learning rate. Parameters used
are as follows. Number of Epochs: 50, Start Temperature T0 = 3.03, and Temperature Decreasing
Factor γ = 1.0, SGD Momentum α = 0.9.

any model with ReLU-activations. To measure the statistics, the layer requires to be activated using157

relu.measure = True, and the exact same batch needs to be passed twice: once before and once158

after the optimization step.159

1 import torch
2 import numpy as np
3

4

5 class APTReLU(torch.nn.ReLU):
6 def __init__(self, inplace=False):
7 super().__init__(inplace=inplace)
8 self.measure, self.counts, self.total = False, 0, 0
9

10 # activate for statistics collection, deactivate else
11 def set_active(self, isactive):
12 if isactive:
13 self.counts, self.total = 0, 0
14 self.measure = isactive
15

16 # measure statistics while forward pass
17 # note: this asserts channel dimension to be as position 1
18 def forward(self, in_tensor):
19 out = super().forward(in_tensor)
20 if self.measure: # the same batch needs to be passed twice
21 input_sign = out.sign()
22 if hasattr(self, "act_before_opt"): # is after optimization step
23 pattern_same = (self.act_before_opt == input_sign).all(1)
24 self.counts += pattern_same.sum()
25 self.total += (out.shape[0] * np.prod(out.shape[2:]))
26 del self.act_before_opt
27 else: # is before optimization step
28 self.act_before_opt = input_sign.detach()
29 return out
30

31 # ... continued on next page
32 @property

7

33 def temperature(self):
34 assert self.total > 0
35 if self.counts == 0:
36 self.counts = 0.5 # caps such measurements as log(0) is undefined
37 return - torch.log2(1.0 * self.counts / self.total)

The estimation error can be reduced by simply increasing the batch size (which probably affects160

networks dynamics e.g. batch norm), or alternatively, use the complete (training) data set (with161

constant mini-batch size). The latter enables a better estimate as it does not distort training dynamics,162

especially when using layers such as batch norm that includes the statistics of the whole batch, but163

adds additional memory complexity, because the activation patterns of every mini-batch needs to be164

saved. Alternatively, copies of both network models, before and after the optimization step, can be165

saved. This way, the activation patterns of every batch can be computed just-in-time.166

Helper methods: To convert values between probability and temperature, we use the following167

methods.168

1 def prob2temp(t):
2 return -t.log2()
3

4

5 def temp2prob(t):
6 return 1 - (-t).exp()

Fit model in the initialization point: Before we can start using ActCooLR in training, we need to169

fit the model, given in the main paper, to get an estimate for σ.170

1 import numpy as np
2 from scipy.special import erf
3 from scipy.optimize import curve_fit
4

5

6 def model_fit(lrs, temps):
7 """Estimate sigma with given learning rates and temperatures.
8

9 Args:
10 lrs (numpy array) : List of learning rates used to estimate
11 temperatures in the first optimization step
12 temps (numpy array): List of temperatures measured in the first
13 step of optimization with the given learning rates
14

15 Returns:
16 float: estimated sigma
17 """
18 assert len(lrs) == len(temps)
19 def fit_p(lr, sigma, mu):
20 return ((1 + erf((np.log(lr) - mu)/(sigma * np.sqrt(2)))) / 2)
21 return curve_fit(fit_p, lrs, temp2prob(temps))[0][0]

8

Adapt Learning Rate to Target Temperature: Once APT has been measured, we can use the171

formula provided in the main paper to estimate µ and recalculate the learning rate according to a172

predefined target temperature.173

1 import torch
2 import numpy as np
3 from scipy.special import erfinv
4

5

6 def adapt_lr_with_stats(relus, target_temp, lr_now, sigma, every_step):
7 """Adapts the learning rate based on a given target temperature.
8 Args:
9 relus (list) : ReLU-layers of type APTReLU

10 target_temp (float) : target temperature
11 lr_now (torch.tensor) : current learning rate
12 sigma (float) : precalculated sigma
13 every_step (int) : the number of steps until next measurement
14

15 Returns:
16 torch.tensor : adapted learning rate
17 """
18 P_now = temp2prob(torch.tensor(
19 [prob2temp(r.counts / r.total) for r in relus]
20).mean())
21 P_target = temp2prob(target_temp)
22

23 # calculate new learning rate based on target temperature
24 b = torch.log(lr_now) - sigma * np.sqrt(2) * erfinv(2 * P_now - 1)
25 lr_target = torch.exp(sigma * np.sqrt(2) * erfinv(2 * P_target - 1) + b)
26 if torch.isinf(lr_target):
27 raise ValueError("Target Temperature too high")
28 lr_now.grad = 1 / every_step * (lr_target.float() - lr_now.data)
29 lr_now.data = lr_now.data * (1 - 1 / every_step) \
30 + 1 / every_step * lr_target.float()
31 return lr_now
32

33

34 def adapt_lr_without_stats(lr_now, every_step):
35 """Reapply gradient to learning rate in the remaining steps
36 without a up-to-date temperature estimate."""
37 if lr_now.grad:
38 lr_now.data += lr_now.grad / every_step

References174

[1] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,175

J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane,176

J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,177

C. Gohlke, and T. E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, Sept. 2020.178

doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.179

[2] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.180

[3] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,181

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-182

amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-183

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-184

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,185

pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/186

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.187

9

https://doi.org/10.1038/s41586-020-2649-2
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[4] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein. SVCCA: singular vector canonical correlation188

analysis for deep learning dynamics and interpretability. In I. Guyon, U. von Luxburg, S. Bengio, H. M.189

Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Advances in Neural Information190

Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December191

4-9, 2017, Long Beach, CA, USA, pages 6076–6085, 2017. URL https://proceedings.neurips.cc/192

paper/2017/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html.193

[5] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,194

M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International195

Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.196

[6] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,197

W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.198

Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde,199

J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,200

F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for201

Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.202

[7] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine203

learning algorithms. CoRR, abs/1708.07747, 2017. URL http://arxiv.org/abs/1708.07747.204

10

https://proceedings.neurips.cc/paper/2017/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
http://arxiv.org/abs/1708.07747

	Per-Layer Temperature Curves
	Robustness of the Choice of Initial Learning Rate
	Additional Experiments involving Learning Rate Range Analyses
	Optimization using Dynamic ActCooLR
	Experimental Setups
	Logarithmic Property of the Activation Temperature
	Additional Results & Hyperparameter List
	PyTorch Implementation

