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ABSTRACT

Large language models (LLMs) are known to ”hallucinate” by generating false or
misleading outputs. Hallucinations pose various harms, from erosion of trust to
widespread misinformation. Existing hallucination evaluation, however, focuses
only on ”correctness” and often overlooks ”consistency”, necessary to distinguish
and address these harms. To bridge this gap, we introduce prompt multiplicity,
a framework for quantifying consistency through prompt sensitivity. Our anal-
ysis reveals significant multiplicity (over 50% inconsistency in benchmarks like
Med-HALT), suggesting that hallucination-related harms have been severely un-
derestimated. Furthermore, we study the role of consistency in hallucination de-
tection and mitigation. We find that: (a) detection techniques capture consistency,
not correctness, and (b) mitigation techniques like RAG can introduce additional
inconsistencies. By integrating prompt multiplicity into hallucination evaluation,
we provide an improved framework of potential harms and uncover critical limi-
tations in current detection and mitigation strategies.

1 INTRODUCTION

Large language models (LLMs) have been widely adopted, excelling in numerous tasks across di-
verse domains (Guo et al., 2023; Kasneci et al., 2023; Etsenake & Nagappan, 2024). Despite their
growing use, LLMs suffer from a critical limitation: generation of false, nonsensical or misleading
outputs, studied under the umbrella of hallucinations. The term ”hallucinations” has evolved over
the years, shifting from positive use in computer vision (Baker & Kanade, 2000; Hsu et al., 2010) to
a predominantly negative association in natural language processing (NLP) (Karpathy, 2015; Huang
et al., 2023; Ji et al., 2023; Zhang et al., 2023). It is commonly defined as ‘generated content that
is nonsensical or unfaithful to the provided source content’ (Filippova, 2020; Maynez et al., 2020;
Zhou et al., 2021).

With growing interest in this field, several benchmarks have been developed to assess hallucination
risks in LLMs (Lin et al., 2022; Pal et al., 2023; Muhlgay et al., 2024; Lattimer et al., 2023; Dong
et al., 2024; Li et al., 2023; Hong et al., 2024). Unfortunately, a critical aspect of evaluation still
remains largely overlooked—consistency across prompt variations. While prompt sensitivity has
been extensively studied in LLM benchmarking (Sclar et al., 2023; Shi et al., 2023; Pezeshkpour &
Hruschka, 2024; Alzahrani et al., 2024; Mizrahi et al., 2024), it has not received the same attention
in hallucination. We argue that this oversight exists because prompt sensitivity literature focuses
solely on accuracy variance, and previous works have found that overall accuracies on hallucination
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What is the next best step for 
this patient?
A. Ibuprofen B. Tetracycline 
C. Amoxicilin D. Gentamicin

Answer: Tetracycline

Randomness can create 
confusion, erode trust, and 
allow cherry-picking.

Consistent errors can 
contribute to a wide spread 
of misinformation.

Llama3-8B

Llama3-8B-
Instruct

What is the next best step for 
this patient?
A. Ibuprofen B. Tetracycline 
C. Amoxicilin D. Gentamicin

Answer: Tetracycline

What is the next best step for 
this patient?
A. Tetracycline B. Amoxicilin 
C. Gentamicin D. Ibuprofen

Answer: Ibuprofen

What is the next best step for 
this patient?
A. Tetracycline B. Amoxicilin 
C. Gentamicin D. Ibuprofen

Answer: Tetracycline

What is the next best step for 
this patient?
A. Ibuprofen B. Tetracycline 
C. Gentamicin D. Amoxicilin

Answer: Amoxicilin

What is the next best step for 
this patient?
A. Ibuprofen B. Tetracycline 
C. Gentamicin D. Amoxicilin

Answer: Tetracycline

A 24-year-old pregnant woman at 28 weeks gestation presents to the emergency department with complaints of fever with chills and pain in 
her knee and ankle joints for the past 2 days. [… further details omitted for brevity …] A specimen is collected to test for Lyme disease.

Figure 1: Different harms that are treated the same in existing evaluation. Prompt sensitivity under
MCQ options shuffling. Example from the Med-HALT dataset (Pal et al., 2023).

benchmarks remain stable even under paraphrasing (Lin et al., 2022; Hong et al., 2024; Pal et al.,
2023).

However, overall accuracy stability can hide the lack of consistency in individual generations. In our
work, we formalize consistency in hallucination evaluation through the lens of multiplicity (Marx
et al., 2020; Black et al., 2022a), and show that these benchmarks exhibit high multiplicity, i.e.,
the model’s response to individual questions changes frequently based on the prompt structure. For
instance, while the Med-HALT dataset (Pal et al., 2023) has an accuracy variance of less than 0.5%
under changing prompt structure, it showed more than 50% multiplicity (Table 1), i.e., for more
than 50% questions the model generates different facts based on the prompt structure, despite stable
average accuracy of correct generations.

Leveraging this axis of consistency quantified using multiplicity, we provide a more nuanced de-
composition of hallucination errors. We find that existing evaluations solely based on correctness
can hide differences and underestimate the real risks of hallucinations. Consider two well-known
datasets, TruthfulQA (Lin et al., 2022) and Med-HALT (Pal et al., 2023), with similar accuracies
(25− 30%). However, we show that models make very distinct errors on these datasets, with Truth-
fulQA dominated by consistent yet factually incorrect generations, and Med-HALT dominated by
randomness and inconsistency (Figure 3). Moreover, we find consistently correct generations on
these datasets are far lower than their accuracies (15 − 20%), highlighting the overestimation of
model capabilities.

The distinction between various errors helps us classify the real harms and plays a pivotal role in
shaping discussions on addressing hallucinations. We position existing detection and mitigation
techniques within our framework, identifying limitations and improving our understanding of their
effectiveness. We connect detection techniques with multiplicity, demonstrating that they detect con-
sistency, not correctness (Figure 4). Thus, there is a misalignment between detection, which aims to
detect consistency, and the benchmarks, which are instead designed to evaluate correctness. Finally,
we move to mitigation, showing that while the introduction of components like retrieval-augmented
generation (RAG) (Ram et al., 2023) reduce overall hallucination rates, these improvements can
hide a new inconsistency due to prompt sensitivity of the retrieval itself (Figure 5).

Our key contributions are:

• Prompt multiplicity in LLM hallucination evaluation: We formalize consistency in halluci-
nation evaluation by defining prompt multiplicity, leveraging existing tools from the multiplicity
literature (§3.2). We highlight severe prompt multiplicity across six different benchmarks and
16 different models (from six model families), undermining the reliability of existing evaluation
frameworks in quantifying the true harms of hallucinations (§4.2).

• An improved taxonomy for benchmarking: We propose a refined taxonomy for hallucination
benchmarking by quantifying ‘prompt-agnostic vs prompt-sensitive’ (Yin et al., 2024) and ‘ran-
domness’ (Venkit et al., 2024), through the lens of prompt multiplicity (§3.3). We also highlight
the advantages of our framework in assessing real-world risks and illustrate several dataset-specific
trends to map future progress in various domains (§4.3).

• Hallucination detection and mitigation under prompt multiplicity: We establish that existing
detection techniques do not detect correctness, but instead detect a different axis of hallucination
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evaluation, i.e., consistency (§5.1), highlighting the disconnect between methods and benchmarks.
Finally, we show that mitigation techniques like RAG are also affected by prompt sensitivity, and
thus introduce additional inconsistencies (§5.2).

2 RELATED WORK

In our work, we propose a new framework to improve existing LLM hallucination benchmarks by
examining how prompt sensitivity influences hallucination evaluation, studied through the lens of
multiplicity. This section explores related work across these key areas.

LLM Hallucination Benchmarks. Hallucinations in LLMs have garnered significant interest, with
extensive work on categorization, evaluation, detection, and mitigation (Huang et al., 2023; Ji et al.,
2023; Wang et al., 2023; Zhang et al., 2023; Tonmoy et al., 2024). Various hallucination benchmarks
have been developed, with a variety of task settings like multiple-choice questions (MCQs) (Petroni
et al., 2019; Lin et al., 2022; Pal et al., 2023; Muhlgay et al., 2024), summarization (Lattimer et al.,
2023; Dong et al., 2024), generation (Li et al., 2023), etc. More recently, Hong et al. (2024) com-
bined multiple benchmarks into a single leaderboard for a holistic evaluation of hallucinations. We
propose a new evaluation framework that incorporates consistency, and can be extended to any ex-
isting benchmark.

Prompt Sensitivity in LLMs. Prompt sensitivity studies in LLMs have revealed that even minor
changes to the input or the prompt structure can impact model behaviour (Lu et al., 2022; Shi et al.,
2023; Sclar et al., 2023; Voronov et al., 2024). Recent research has also heavily focused on the
MCQ format, widely used in LLM evaluations, finding that changes to the order or representation
of choices can also affect model accuracy (Zheng et al., 2023; Pezeshkpour & Hruschka, 2024;
Alzahrani et al., 2024; Polo et al., 2024; Mizrahi et al., 2024). However, literature on prompt sensi-
tivity in hallucinations remains limited. While Lin et al. (2022); Pal et al. (2023); Hong et al. (2024)
have performed small-scale ablation studies in their work to study the impact of prompt paraphras-
ing on hallucination benchmarks, they found stable overall accuracy trends and thus did not explore
question-level behaviour of hallucinations. We aim to address this critical gap in the literature.

Multiplicity. Research on multiplicity in machine learning has grown rapidly in recent years (Marx
et al., 2020; Black et al., 2022a; Ganesh et al., 2025). A key subtopic, predictive multiplicity (Marx
et al., 2020), refers to the existence of multiple models with similar overall accuracy but different
individual-level predictions. We extend the notion of multiplicity to what we call prompt multiplicity
in LLMs. Specifically, we study how competing prompt structures can yield similar benchmark
accuracy while generating different individual-level answers. We use the multiplicity framing to
take advantage of the existing literature.

3 HALLUCINATIONS: INCORRECT KNOWLEDGE OR RANDOMNESS?

In the existing literature, any plausible-sounding but factually incorrect or nonsensical text generated
by a model is termed a ”hallucination” (Venkit et al., 2024; Ji et al., 2023). This covers a wide range
of model behaviour, from ”incorrect knowledge” to ”randomness” (Venkit et al., 2024). However,
hallucinations as factually incorrect knowledge embedded in the model1 due to outdated informa-
tion, flawed data sources, biases, or myths present in the training data scraped from the web (Huang
et al., 2023; Lin et al., 2022) form a distinct category from hallucinations as random but plausible-
sounding generations, sometimes referred to as ’confabulations’ (Millidge, 2023; Farquhar et al.,
2024).

In this section, we begin by discussing the two broad categories of harm from hallucinations, em-
phasizing the key distinction between them, i.e., ”consistency”. As existing benchmarks do not
measure consistency, to address this gap, we draw from the multiplicity literature and formalize

1We use knowledge embedded in the model to refer to prompt-agnostic knowledge (Yin et al., 2024). Despite
the tension between ’knowledge in LLMs can be difficult to extract’ (Gekhman et al., 2025; Yin et al., 2024) and
’LLMs can be forced to generate any correct or incorrect fact’ (Yao et al., 2023), for the sake of understanding
the potential harms of LLM hallucinations, we argue that any information consistently repeated by the model
can be considered knowledge embedded in the model.
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prompt multiplicity. Finally, we use this new axis of consistency to provide a more refined tax-
onomy for hallucination evaluation, directly mapping to several aspects of hallucinations that have
been previously discussed but never explicitly quantified.

3.1 HARMS FROM LLM HALLUCINATIONS AND THE ROLE OF CONSISTENCY

The harm caused by hallucinations in language models depends on several factors, including the
model’s use case, the user’s level of trust in the model, and their expertise, among others (Venkit
et al., 2024; Elsayed, 2024; Bender et al., 2021). One way to broadly categorize these harms is by
evaluating the consistency of hallucinations. To understand this distinction, consider the example
in Figure 1. Two models, Llama3-8B and Llama3-8B-Instruct (Dubey et al., 2024), make the same
error on the Med-HALT dataset (Pal et al., 2023). Without accounting for consistency, both errors
appear identical and are labelled as ”hallucinations” in existing benchmarks. However, by testing the
models multiple times with various equivalent prompts (here, shuffling the order of MCQ options),
we uncover a key difference.

Llama3-8B exhibits inconsistency, i.e., it selects different answers depending on the prompt varia-
tion. This unpredictability can erode user trust, confuse even an expert working alongside the model,
and introduce the risk of cherry-picking certain responses. In contrast, Llama3-8B-Instruct consis-
tently provides the same incorrect answer. It repeatedly identifies Tetracycline as its choice, which
is unfortunately the wrong antibiotic in this situation, as unlike Amoxicilin, it has known risks for
pregnant women. This consistency in hallucination creates a different harm: rather than hiding un-
certainty with confident generations, the model is propagating misinformation. The two categories
of harm can be defined as follows.

Harms due to randomness. Hallucinations can arise when the model is uncertain about the cor-
rect answer or is confidently guessing. Such hallucinations would be likely prompt-sensitive (Yin
et al., 2024), i.e., the response can vary based on the prompt. This can create harm by generating
conflicting answers, causing confusion, eroding trust in LLMs, or even enabling cherry-picking to
push certain agendas. Detecting these errors requires quantifying the uncertainty of LLM genera-
tions (Vashurin et al., 2024; Savage et al., 2024).

Harms due to incorrect knowledge embedded in the model. Hallucinations can also occur when
LLMs encode incorrect or partial knowledge, misconceptions, or myths, from the training data.
These can mislead users in critical contexts or contribute to a wider spread of misinformation (Venkit
et al., 2024). Such hallucinations are likely prompt-agnostic (Yin et al., 2024), i.e., the model consis-
tently generates the same incorrect response. These errors cannot be addressed by simply measuring
uncertainty, and might require filtering unreliable training data or fact-checking the generated sen-
tences using external knowledge.

Consistency thus plays an important role in understanding the causes, impact, and effective strategies
to address hallucinations. An inconsistent hallucination stems from randomness, while a consistent
one may reveal flawed data sources. Thus, by incorporating consistency into hallucination evalua-
tion, we can develop a more nuanced understanding of these risks.

3.2 DEFINING PROMPT MULTIPLICITY

Literature on prompt sensitivity focuses primarily on accuracy stability (Sclar et al., 2023; Voronov
et al., 2024; Mizrahi et al., 2024), which unfortunately does not capture the question-level con-
sistency concerns discussed above. Interestingly, this exact problem lies at the heart of the field
of predictive multiplicity (Marx et al., 2020; Black et al., 2022a). Predictive multiplicity refers to
the existence of multiple models achieving similar accuracy, yet exhibiting distinct behaviour in
individual predictions. Drawing from this, we propose prompt multiplicity, the idea that different
prompt structures can achieve similar average hallucination accuracy, yet produce distinct behaviour
for individual questions. This framework allows us to capture ”consistency” in LLM hallucination
evaluation.

In our paper, we use MCQ-style benchmarks, where the goal is to select the factually correct con-
tinuation from a set of options (more details in §4.1). Each question in the benchmark xk ∈ X is
first formatted using a prompt structure pi, which may involve modifications like prefixing demon-
strations to the question, adding instructions, etc., before it is fed to a model G. We use the notation
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Figure 2: The mapping from existing terms like “hallucinations” and “factuality” to a more nu-
anced taxonomy of “prompt-agnostic factuality”, “prompt-agnostic errors”, and “randomness”.

G(pi(xk)) to indicate the final MCQ choice of the model G for a question xk with prompt struc-
ture pi. Building on Marx et al. (2020), we define prompt multiplicity and ambiguity under a set of
prompt structures P = [p1,p2, ...,pr] as follows:
Definition 1 (Prompt Multiplicity). Given a model G, a benchmark X, and a set of prompt struc-
tures, P = [p1,p2, ...,pr], the benchmark is said to exhibit prompt multiplicity if ∃ pi,pj ∈ P such
that G(pi(xk)) ̸= G(pj(xk)) for some question xk ∈ X.
Definition 2 (Ambiguity). Given a model G, a benchmark X, and a set of prompt structures, P =
[p1,p2, ...,pr], ambiguity is the proportion of questions in the benchmark that can output different
choices depending on the prompt structure,

Ambiguity =
1

n

n∑
k=1

max
pi,pj∈P

1[G(pi(xk)) ̸= G(pj(xk))] (1)

While we can use ambiguity to quantify the severity of multiplicity in a benchmark, we also need a
metric to define ”consistency” for each question separately. For this, we turn to Cooper et al. (2024),
and define self-consistency as,
Definition 3 (Self-consistency). Given a model G, a question xk ∈ X, and a set of prompt struc-
tures, P = [p1,p2, ...,pr], self-consistency is the probability of getting the same output choice from
two randomly chosen prompt structures pi,pj ∼ P,

SCxk
= 1− Probpi,pj∼P[G(pi(xk)) ̸= G(pj(xk))] (2)

3.3 MAPPING PROMPT MULTIPLICITY TO HALLUCINATION EVALUATION

Building on the definitions above, we now introduce a new axis of evaluation in our framework,
”consistency”. While existing benchmarks only divide the evaluations along the axis of correctness,
we argue that incorporating consistency can provide more nuance to the discussion and quantify
various forms of harm. We use the self-consistency metric (Definition 3) to categorize questions
along the consistency axis into prompt-sensitive and prompt-agnostic, adopted from Yin et al. (2024)
and defined as follows:
Definition 4 (Prompt-sensitive). A question xk ∈ X is considered prompt-sensitive if its self-
consistency score SCxk

is below a given threshold τ ,

Prompt-sensitive ⇐ 1[SCxk
< τ ] (3)

Definition 5 (Prompt-agnostic). A question xk ∈ X is considered prompt-agnostic if its self-
consistency score SCxk

is equal to or above a given threshold τ ,

Prompt-agnostic ⇐ 1[SCxk
≥ τ ] (4)

We use τ = 0.8 throughout the paper, unless otherwise specified.

A refined evaluation terminology: We argue that factually correct generations that are prompt-
sensitive, despite being accurate for the default benchmark prompt structure, should be treated with
the same level of caution as factually incorrect prompt-sensitive generations. In other words, if the
generation of factually incorrect information is highly dependent on the prompt structure, it should
be categorized as randomness, irrespective of whether this randomness happens to produce the
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correct output for the default prompt structure of the benchmark, as it possesses the same risk of
generating a factually incorrect sentence for a different prompt structure. Moreover, we propose to
use the term prompt-agnostic factuality and prompt-agnostic errors to describe prompt-agnostic
generations.

Thus, we map the evaluation from the terms ”hallucination” and ”factuality”, to more nuanced terms:
”prompt-agnostic factuality”, ”prompt-agnostic errors”, and ”randomness”. Based on the context,
one might then define hallucinations as prompt-agnostic errors, randomness, or both, depending on
the specific harms and risks under consideration. A visual representation of this framework and the
mapping is shown in Figure 2.

4 PROMPT MULTIPLICITY IN LLM HALLUCINATION BENCHMARKS

We now turn to the empirical results. We first highlight severe multiplicity in hallucination bench-
marks, despite stable accuracy. Next, we map the evaluation to our framework, revealing how ex-
isting benchmarks underestimate potential real-world harm caused by hallucinations. We conclude
with dataset-specific trends and takeaways.

4.1 EXPERIMENT SETUP

Datasets. We use the following factuality hallucination benchmarks: Wiki-FACTOR (Muhlgay
et al., 2024), Med-HALT (Pal et al., 2023), TruthfulQA (Lin et al., 2022), TrueFalse (Azaria &
Mitchell, 2023), CommonsenseQA (Talmor et al., 2019), and FEVER (Thorne et al., 2018). Details
on each dataset are provided in the appendix (§A.1). We primarily focus on TruthfulQA, Wiki-
FACTOR, and Med-HALT in the main paper, while other results are delegated to the appendix (§C).
We use the perplexity-based evaluation by Muhlgay et al. (2024), where the LLM chooses the best
MCQ option based on the length-normalized perplexity.

We decided to stick with only MCQ-style benchmarks for our study, since freeform generation
requires additional automated methods to evaluate generated outputs, such as an LLM judge (Lin
et al., 2022; Li et al., 2023; Dong et al., 2024)–which can introduce its own errors, biases, and
multiplicity (Li et al., 2024; Ye et al.; Panickssery et al., 2024).

Models. We evaluate a diverse set of models, across both different model families and varying
model sizes within the same family. Specifically, we use the following models: GPT-J-6B (Wang &
Komatsuzaki, 2021), GPT-NeoX-20B (Black et al., 2022b), Pythia-2.8B/6.9B/12B (Biderman et al.,
2023), Bloom-3B/7.1B (Workshop et al., 2022), Llama2-7B/7B-Chat/13B/13B-Chat (Touvron et al.,
2023), Llama3-8B/8B-Instruct (Dubey et al., 2024), and OPT-6.7B/13B/30B (Zhang et al., 2022).

Prompt Variations. We simulate prompt variations in a structured manner, wherever possible,
as they can be applied uniformly across the dataset. This includes shuffling the order of demon-
strations (Lu et al., 2022) (TruthfulQA, FEVER, TrueFalse) or shuffling the order of MCQ op-
tions (Zheng et al., 2023; Pezeshkpour & Hruschka, 2024) (Med-HALT, CommonsenseQA). How-
ever, the Wiki-FACTOR benchmark does not provide any opportunity for structured variations. In-
stead, we turn to automated paraphrasing and use a fine-tuned T5 model (Raffel et al., 2020) trained
on a paraphrase dataset from ChatGPT (Vorobev & Kuznetsov, 2023a;b). More details on prompt
variations are in the appendix (§A.1).

4.2 HALLUCINATION BENCHMARKS SHOW HIGH MULTIPLICITY AND UNDERESTIMATE
RISKS

Despite low accuracy variance, LLM hallucination benchmarks exhibit severe prompt multiplicity.
To illustrate this, we collect the average accuracy, standard deviation, and ambiguity, across different
variations, in Table 1 (only the biggest models from each family are shown, the rest are in Table
2). The accuracy and standard deviation trends align with existing literature, i.e., low variance in
accuracy. This explains why previous research has largely overlooked prompt sensitivity. However,
the ambiguity scores tell a more compelling story, revealing significant prompt multiplicity within
these benchmarks. For instance, LLama2-13B-Chat on Med-HALT achieves ∼ 35% accuracy with a
standard deviation of only 0.23%, potentially signalling stability. Yet, its ambiguity score is ∼ 60%,
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TruthfulQA Wiki-FACTOR Med-HALT
Accuracy Ambiguity Accuracy Ambiguity Accuracy Ambiguity

(%) (%) (%) (%) (%) (%)

GPTNeoX-20B 20.09±1.26 22.89 45.74±1.38 41.95 28.98±0.43 52.26
Pythia-12B 20.31±0.89 19.58 42.90±0.96 38.61 28.18±0.39 50.07
Bloom-7.1B 23.18±1.32 18.36 35.14±0.78 37.27 28.51±0.62 56.40
Llama2-13B-C 32.97±1.03 21.79 50.32±1.06 47.09 34.84±0.42 60.54
Llama3-8B-I 39.34±0.75 17.14 48.39±1.19 42.32 34.55±0.23 31.03
OPT-30B 22.55±0.90 23.38 43.58±0.91 41.35 28.32±0.42 50.00

Table 1: High ambiguity across a wide range of model families and benchmarks.

TruthfulQA

0% 50% 100%

OPT-30B

OPT-13B

OPT-6.7B

Llama3-8B-I

Llama3-8B

Llama2-13B-C

Llama2-13B

Llama2-7B-C

Llama2-7B

Bloom-7.1B

Bloom-3B

Pythia-12B

Pythia-6.9B

Pythia-2.8B

GPTNeoX-20B

GPTJ-6B

TruthfulQA Wiki-FACTOR

0% 50% 100%

Wiki-FACTOR Med-HALT

0% 50% 100%

Med-HALT

Factuality Hallucination Prompt-agnostic Factuality Randomness Prompt-agnostic Errors

Figure 3: Existing LLM hallucination evaluation terminology vs our framework.

i.e., the model changes the generated fact for ∼ 60% of the dataset simply based on the prompt
structure.

Another intriguing result in Table 1 is the comparison between Llama2-13B-Chat and Llama3-8B-
Instruct on the Med-HALT dataset. Even though both models have similar accuracies, the ambi-
guities signal vast differences in the types of errors and underlying behaviour, i.e., significantly
high ”randomness” for the former. To understand this difference, we map the evaluations to our
framework and provide more nuanced results in Figure 3. Notably, we see that answers that were
originally considered ”factual” overstate the actual proportion of correct facts that a model can gen-
erate consistently, i.e., prompt-agnostic factuality. Thus, the true extent of potential harms—both
prompt-agnostic errors and randomness together—is greater than what is captured by ”hallucina-
tion” in existing benchmarks.

4.3 DATASET-SPECIFIC TRENDS

We next turn to some dataset-specific trends to highlight insights for future research.

TruthfulQA. The TruthfulQA dataset was designed to capture various misconceptions and myths,
with carefully crafted adversarial prompts (Lin et al., 2022). Given this construction, it is no sur-
prise that most errors in TruthfulQA are prompt-agnostic, while only a small fraction are attributed
to randomness. This makes TruthfulQA an excellent example of a benchmark that can highlight
flawed data sources used to train a model. One particularly noteworthy result is the randomness
rate of ∼ 10–12% across all models, despite their varying accuracy levels. We believe this could be

7



Published at Building Trust Workshop at ICLR 2025

.89993 .06291 .78195 .06540

.03864 .00003 .23120 .00058

.00003 .40375 .00269 .00288D
at

as
et

s

Detecting Correctness (p-values)

Perplexity Entropy Surprisal SelfCheck

TruthfulQA

Wiki-FACTOR

Med-HALT

Detecting Consistency (p-values)

Perplexity Entropy Surprisal SelfCheck

.00003 .00015 .02496 .00031

.00003 .00003 .00336 .05768

.00003 .00006 .00833 .00003

Figure 4: Ease of differentiating based on correctness vs consistency, using detection scores.

due to ambiguous questions which require the model to generate ’I have no comment’, leading to
consistency issues for TruthfulQA.

Wiki-FACTOR. The Wiki-FACTOR dataset is constructed using Wikipedia articles, with automat-
ically generated semantically close but adversarial multiple-choice options, thereby increasing the
percentage of data points showing randomness (Muhlgay et al., 2024). Wiki-FACTOR is an inter-
esting midway between TruthfulQA and Med-HALT, highlighting errors of both kinds, making it a
useful benchmark to study different forms of potential harm.

Med-HALT. The Med-HALT dataset combines questions from various medical entrance exams
around the world (Pal et al., 2023). We see that it exhibits a significantly higher percentage of
randomness compared to other benchmarks. While TruthfulQA demonstrates concerns of unreliable
data in training and would require leveraging an external knowledge source to help mitigate errors,
Med-HALT represents the other extreme where analyzing the model’s uncertainty can be an effective
way to detect potential hallucinations.

5 HALLUCINATION DETECTION AND MITIGATION

We extend our discussion to existing hallucination detection and mitigation techniques. We provide
two key observations: (a) detection techniques primarily differentiate between prompt-agnostic and
prompt-sensitive generations rather than identifying factual or hallucinated outputs, and (b) miti-
gation techniques that rely on knowledge retrieval are themselves influenced by prompt sensitivity,
thus introducing additional inconsistencies.

5.1 DETECTING CONSISTENCY NOT CORRECTNESS

We start by studying several hallucination detection techniques under our framework. Specifically,
we test: (a) Perplexity, a simple baseline for hallucination detection (Ren et al., 2022; Chen et al.);
(b) Entropy, which addresses some of Perplexity’s shortcomings (Vashurin et al., 2024); (c) Sur-
prisal, based on claims of surprisal using embedding similarity by Duan et al. (2024); and (d) Self-
Check, which adapts the intuition behind SelfCheckGPT (Manakul et al., 2023). Each technique
produces a final score that can be used to classify the output as a hallucination or not. All detec-
tion scores are calculated for the default prompt structure. More details on detection techniques are
provided in the appendix (§A.2).

Once we compute the detection scores, we average them separately over all answers labelled as
‘correct’ and ‘incorrect’ (for the default prompt structure). This aims to capture the distinction
along the axis of correctness. We repeat this across all 16 models in our setup, thus creating a
set of 16 average scores for correct answers and the same for incorrect answers. We then test
the following hypothesis using the Wilcoxon test: Assuming the differences in average detection
scores for correct and incorrect answers are symmetric around a central value, this central value is
zero. The test aims to determine whether these techniques can easily separate the benchmark into
correct and incorrect answers. Finally, we repeat the analysis along the axis of consistency instead
of correctness, i.e., averaging detection scores separately for answers labelled as ‘prompt-agnostic’
and ‘prompt-sensitive’.

Note that the detection scores could have more predictive power than measured here, as we’re sim-
plifying the distribution into an average. The objective of this test is only to highlight the inherent
alignment of detection with consistency, instead of correctness.
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Figure 5: (Left) Change in category for questions in the benchmark after the addition of RAG.
(Right) Randomness under RAG is dominated by the inconsistency of retrieval.

The p-values for the hypothesis tests, corresponding to each combination of benchmark and detec-
tion technique, are presented in Figure 4. The results reveal a striking pattern: the p-values are
higher when distinguishing based on correctness, compared to consistency, where the p-values are
notably low. This shows that the detection techniques are primarily capturing consistency and not
correctness, i.e., they are not detecting hallucinations, but instead randomness. This isn’t entirely
surprising, as many of them are fundamentally designed to detect uncertainty. However, it empha-
sizes the disconnect between the benchmarks, based on correctness, and the detection techniques,
based instead on consistency.

5.2 PROMPT SENSITIVITY AND KNOWLEDGE-RETRIEVAL

Most existing hallucination mitigation techniques rely on incorporating external knowledge, typi-
cally guided by a retrieval mechanism to find relevant information (Ji et al., 2023). Beyond overall
improvements, we find several intriguing shifts in model behaviour during mitigation. Many ques-
tions that originally exhibited prompt-agnostic errors instead show randomness, while a smaller
portion also shows the opposite trend. Upon deeper investigation, we find that the new component
in the pipeline, retrieval, is itself sensitive to prompt variations, introducing an additional layer of
inconsistency into the system.

Retrieval-Augmented Generation (RAG) Setup. Before jumping into the results, we clarify key
details of our RAG setup. We use the in-context retrieval augmentation technique proposed by Ram
et al. (2023), using BM25 (Robertson et al., 2009), a sparse word-based retriever. We also lever-
age the same Wikipedia corpus (Ram et al., 2023) and focus on two datasets: Wiki-FACTOR and
FEVER, both originally constructed using facts extracted from Wikipedia. To study the sensitiv-
ity of RAG, we introduce paraphrasing variations in the FEVER dataset similar to Wiki-FACTOR,
unlike the rest of the paper where we only shuffled demonstrations. Further details about the RAG
setup can be found in the appendix (§A.3).

Results. We first study the impact of RAG on our evaluations. Figure 5 (Left) captures the move-
ment of all questions in the dataset, as they shift from their original category without RAG to a
new category with RAG. The self-loops, thus, indicate questions that remain in the same category.
Unsurprisingly, we observe a significant shift towards prompt-agnostic factuality (PAF), i.e., fewer
hallucinations. However, a more intriguing result is the redistribution of errors: questions transition-
ing between prompt-agnostic errors (PAE) and randomness, with an overall flow toward random-
ness. We argue that this stems from the RAG itself being highly sensitive to prompt changes, thus
introducing randomness.

To validate this, we conduct the following test. We extend the idea of ‘ambiguity’ (Definition 2) to
retrieved documents, defining ambiguity over retrieved documents as the proportion of questions in
the benchmark that can retrieve a different document depending on the prompt structure. Figure 5
(Right) presents these scores across different categories with RAG. The results show that questions
exhibiting randomness have significantly higher ambiguity over retrieved documents than others,
i.e., the retrieval of different documents for different paraphrasing of the same prompts creates in-
consistency. Thus, while RAG can help mitigate factually incorrect generations, it also introduces
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its own instability into the pipeline. These results further emphasize the value of evaluating halluci-
nations within our framework.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed an improved framework for evaluating hallucinations, emphasizing the
role of consistency in distinguishing different hallucination harms and informing appropriate detec-
tion and mitigation strategies. While our work establishes a strong foundation, several open ques-
tions remain. A key challenge is extending to benchmarks that allow freeform generation. Although
our fundamental arguments will generalize, the freedom of unconstrained generation introduces new
complexities—such as inconsistencies in evaluation setups that rely on LLM judges and redefining
self-consistency in the context of language rather than discrete MCQ options. Additionally, future
work on different types of prompt variations is also needed. In conclusion, our framework provides
a more nuanced approach to hallucination evaluation, allowing the exploration of more effective
solutions.
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good? on opportunities and challenges of large language models for education. Learning and
individual differences, 103:102274, 2023.

Barrett Lattimer, Patrick CHen, Xinyuan Zhang, and Yi Yang. Fast and accurate factual incon-
sistency detection over long documents. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 1691–1703, 2023.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, et al. From generation to judgment:
Opportunities and challenges of llm-as-a-judge. arXiv preprint arXiv:2411.16594, 2024.

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Halueval: A large-
scale hallucination evaluation benchmark for large language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 6449–6464, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3214–3252, 2022.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 8086–8098, 2022.

Potsawee Manakul, Adian Liusie, and Mark Gales. Selfcheckgpt: Zero-resource black-box halluci-
nation detection for generative large language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 9004–9017, 2023.

Charles Marx, Flavio Calmon, and Berk Ustun. Predictive multiplicity in classification. In Interna-
tional Conference on Machine Learning, pp. 6765–6774. PMLR, 2020.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
in abstractive summarization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 1906–1919, 2020.

Beren Millidge. Llms confabulate not hallucinate. Online verfügbar unter https://www. beren.
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A ADDITIONAL DETAILS ON EXPERIMENT SETUP

A.1 DATASETS AND PROMPT VARIATIONS

TruthfulQA. We use the MCQ task from TruthfulQA, and adopt the same evaluation setup as used
by the original authors (Lin et al., 2022). The evaluation setup contains a ‘QA prompt’ appended as
a prefix, which contains six questions and answers. The original ‘QA prompt’ can be found in Lin
et al. (2022)’s paper. For prompt variations, we simply shuffle the order of these six question-and-
answer pairs. We measure all metrics across 50 different prompt variations, i.e., 50 unique shufflings
of these pairs.

Wiki-FACTOR. Instead of using the complete prefix from the Wiki-FACTOR dataset, we instead
use only the shorter ‘context’ (Muhlgay et al., 2024). Since the Wiki-FACTOR dataset has no prompt
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template, we have to rely on paraphrasing to introduce prompt variations. We use the fine-tuned T5-
based paraphraser as mentioned in the main text (Vorobev & Kuznetsov, 2023a;b). We measure all
metrics across 10 different prompt variations, i.e., 10 different paraphrases of the prompt.

Med-HALT. We use the Reasoning Hallucination Test (RHT) of the Med-HALT dataset, and the
original instruction prompt used by the authors (Pal et al., 2023). However, we do not form the
problem as a reasoning test. Instead, we provide all five options for every question in MCQ style
format to the model. Med-HALT is one of the only two datasets (the other one being Common-
senseQA) where the multiple choice options are part of the input prompt, and then we check only
for the correct answer label in the output. For prompt variations, we shuffle the ordering of options
for MCQ. We measure all metrics across 20 different prompt variations, i.e., 20 different shufflings
of the MCQ options.

CommonsenseQA. We use the development set of the dataset and perform a 16-shot evaluation of
the CommonsenseQA benchmark. The formatting of each question is the same as the Med-HALT
dataset, i.e., the MCQ options are given as part of the input prompt. However, instead of shuffling
the options, the prompt variations here are created by randomly choosing the 16 demonstrations
in the prompt from the train set of CommonsenseQA. We measure all metrics across 50 different
prompt variations, i.e., 50 different random choices of the 16-shot demonstrations.

FEVER. We use the shared task development set of the dataset and perform a 16-shot evaluation of
the FEVER benchmark. FEVER is one of the two binary classification benchmarks in our paper (the
other one being TrueFalse). We use the query format as suggested by the original authors (Thorne
et al., 2018). Similar to CommonsenseQA, the prompt variations here are again created by randomly
choosing 16 demonstrations in the prompt from the train set of FEVER. We measure all metrics
across 50 different prompt variations, i.e., 50 different random choices of the 16-shot demonstra-
tions.

TrueFalse. We use all topics combined from the TrueFalse dataset and perform a 16-shot evaluation
of the benchmark. We use the same query format as FEVER (Thorne et al., 2018). Again, the
prompt variations here are created by randomly choosing 16 demonstrations in the prompt from the
TrueFalse dataset. There is no separate train set to sample from and hence the demonstrations are
sampled from the evaluation dataset itself. Thus, the sampled demonstration in certain cases might
even contain the final question. We measure all metrics across 50 different prompt variations, i.e.,
50 different random choices of the 16-shot demonstrations.

A.2 DETECTION TECHNIQUES

We provide details on the scores calculated for all four detection techniques in our paper.

Perplexity. We simply use the length-normalized perplexity score of the best option.

Entropy. We treat the length-normalized perplexity scores of all options as scores of a classification
problem, and measure the entropy of the prediction. In other words, we first normalize the per-
plexity scores across all options to turn them into probabilities, and then measure the entropy of the
probabilities across all options.

Surprisal. We measure the cosine similarity between the representation of the question and the
representation of the chosen option appended to the question, as suggested by Duan et al. (2024).
Here, the representation of a sentence is the output of the final transformer layer of the model, i.e.,
the final hidden state, for the last token.

SelfCheck. Adopting from Manakul et al. (2023), we simply append the chosen option to the
question, followed by a follow-up question ’Is the above statement correct?’, and check for the
probability of the next token being ’Yes’.

A.3 MITIGATION SETUP DETAILS

RAG Setup. We use the open-source code provided by Ram et al. (2023)2.

2https://github.com/AI21Labs/in-context-ralm
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TruthfulQA Wiki-FACTOR Med-HALT
Accuracy Ambiguity Accuracy Ambiguity Accuracy Ambiguity

(%) (%) (%) (%) (%) (%)

GPTJ-6B 22.86±0.71 13.83 41.98±0.90 39.65 28.99±0.77 50.17
GPTNeoX-20B 20.09±1.26 22.89 45.74±1.38 41.95 28.98±0.43 52.26

Pythia-2.8B 23.37±1.20 16.65 37.93±0.84 40.21 28.21±0.70 49.78
Pythia-6.9B 21.99±1.19 13.95 40.87±0.89 39.08 28.39±0.42 37.63
Pythia-12B 20.31±0.89 19.58 42.90±0.96 38.61 28.18±0.39 50.07

Bloom-3B 25.56±1.18 16.16 30.27±0.83 38.58 27.95±1.42 70.07
Bloom-7.1B 23.18±1.32 18.36 35.14±0.78 37.27 28.51±0.62 56.40

Llama2-7B 25.65±0.73 16.16 47.87±1.32 38.81 34.00±0.65 61.79
Llama2-7B-C 31.11±0.79 19.34 45.25±1.05 47.70 33.56±1.15 70.14
Llama2-13B 27.76±0.66 17.26 52.41±1.52 41.08 37.57±0.21 58.00
Llama2-13B-C 32.97±1.03 21.79 50.32±1.06 47.09 34.84±0.42 60.54

Llama3-8B 28.85±1.16 18.48 52.69±1.54 40.25 40.06±0.61 48.28
Llama3-8B-I 39.34±0.75 17.14 48.39±1.19 42.32 34.55±0.23 31.03

OPT-6.7B 22.26±0.92 15.42 39.58±1.04 38.81 28.20±0.78 51.22
OPT-13B 21.81±1.11 19.71 41.34±1.04 42.59 28.30±0.53 43.86
OPT-30B 22.55±0.90 23.38 43.58±0.91 41.35 28.32±0.42 50.00

Table 2: Extended results across all models of Table 1.

FEVER Dataset. The FEVER dataset contains several demonstrations that are shuffled to create
prompt variations, as mentioned above. However, for the mitigation portion of the paper, we wanted
to highlight the impact of prompt paraphrasing on the retrieval component, and hence, we changed
the way prompt variations were created for FEVER. While we still provide the demonstrations,
we do not shuffle them and instead paraphrase the question the same way as we did for the Wiki-
FACTOR dataset, using the same T5-based paraphrase. Similar to Wiki-FACTOR, we create 10
variations, i.e., 10 different paraphrases of each prompt.

B EXTENDED RESULTS FOR TABLES IN THE MAIN PAPER

Several results in the main text were reported only for a few models, and we extend the rest of the
results here. Extended results for Table 1 are present in Table 2 and extended results for Figure 5
(Right) are present in Table 3. The trends in these models are still similar to the trends in the main
paper.

C RESULTS ON COMMONSENSEQA, FEVER, AND TRUEFALSE

Additional results on CommonsenseQA, FEVER, and TrueFalse datasets are in Table 4 and Figure
6. The trends on these datasets are far more volatile, with the ambiguity scores extremely high and
the division of errors between randomness and prompt-agnostic errors highly sensitive to the choice
of the model. Further exploration of these trends to understand the cause of such volatility is left for
future work.
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Ambiguity over Retrieved Docs
Wiki-FACTOR FEVER

PAF PAE Rand. PAF PAE Rand.

GPT-J-6B .26 .43 .74 .86 .87 .95
GPTNeoX-20B .27 .45 .70 .87 .91 .94

Pythia-2.8B .25 .45 .75 .87 .88 .95
Pythia-6.9B .26 .45 .74 .87 .89 .95
Pythia-12B .26 .42 .75 .81 .89 .93

Bloom-3B .24 .45 .72 .92 .91 .88
Bloom-7.1B .25 .44 .73 .87 .90 .95

Llama-2-7B .28 .44 .74 .90 .89 .92
Llama-2-7B-Chat .27 .44 .70 .90 .89 .92
Llama-2-13B .29 .44 .73 .90 .90 .91
Llama-2-13B-C .28 .45 .69 .80 .85 .91

Llama-3-8B .29 .46 .70 .89 .91 .94
Llama-3-8B-I .27 .45 .73 .88 .90 .93

OPT-6.7B .26 .44 .74 .89 .89 .93
OPT-13B .27 .42 .72 .92 .90 .89
OPT-30B .26 .43 .74 .87 .87 .95

Table 3: Extended results across all models of Figure 5 (Right).

CommonsenseQA FEVER TrueFalse
Accuracy Ambiguity Accuracy Ambiguity Accuracy Ambiguity

(%) (%) (%) (%) (%) (%)

GPT-J-6B 36.55±0.70 81.16 57.47±3.62 71.31 51.05±3.11 100.00

Pythia-2.8B 26.19±0.84 75.59 52.48±3.35 58.39 51.34±3.13 100.00
Pythia-6.9B 25.27±0.63 79.93 57.73±3.69 82.57 49.28±2.82 100.00
Pythia-12B 31.88±0.94 81.82 51.85±2.01 20.60 53.90±5.38 99.89

Bloom-3B 28.41±1.22 87.14 57.34±4.00 89.54 48.95±2.32 100.00
Bloom-7.1B 30.32±0.90 82.31 50.03±0.06 0.61 50.22±2.85 100.00

Llama2-7B 68.18±0.73 48.40 53.37±4.22 54.06 77.40±9.42 65.75
Llama2-7B-C 69.28±0.67 48.48 62.73±6.17 52.93 79.87±6.72 40.87
Llama2-13B 73.78±0.49 35.30 51.34±2.54 11.51 82.45±9.03 45.43
Llama2-13B-C 73.95±0.63 38.49 64.44±8.09 44.66 87.26±2.57 27.28

Llama3-8B 74.03±0.53 34.89 57.23±11.91 44.11 92.01±2.64 18.72
Llama3-8B-I 78.26±0.49 31.70 81.53±2.29 34.04 92.79±0.84 12.79

OPT-6.7B 27.41±0.86 95.33 55.47±3.50 99.03 51.85±3.66 100.00
OPT-13B 30.97±0.88 88.70 53.09±1.85 98.23 51.27±4.23 98.29

Table 4: Additional results for ambiguity scores.
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Figure 6: Additional LLM hallucination benchmark results under our new framework.
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