
Revisiting Scalable Hessian Diagonal Approximations
for Applications in Reinforcement Learning

Mohamed Elsayed 1 2 Homayoon Farrahi 1 2 Felix Dangel 3 A. Rupam Mahmood 1 2 4

Abstract
Second-order information is valuable for many
applications but challenging to compute. Sev-
eral works focus on computing or approximating
Hessian diagonals, but even this simplification in-
troduces significant additional costs compared to
computing a gradient. In the absence of efficient
exact computation schemes for Hessian diago-
nals, we revisit an early approximation scheme
proposed by Becker and LeCun (1989, BL89),
which has a cost similar to gradients and appears
to have been overlooked by the community. We
introduce HesScale, an improvement over BL89,
which adds negligible extra computation. On
small networks, we find that this improvement is
of higher quality than all alternatives, even those
with theoretical guarantees, such as unbiasedness,
while being much cheaper to compute. We use
this insight in reinforcement learning problems
where small networks are used and demonstrate
HesScale in second-order optimization and scal-
ing the step-size parameter. In our experiments,
HesScale optimizes faster than existing methods
and improves stability through step-size scaling.
These findings are promising for scaling second-
order methods in larger models in the future.1

1. Introduction
Second-order information—the entries of the Hessian
matrix—is paramount in a wide spectrum of applications,
including preconditioning in optimization (Martens and
Grosse 2015, Yao et al. 2021, Shen et al. 2024), and es-
timating the importance of weights or neurons (Elsayed and

1Department of Computing Science, University of Alberta,
Edmonton, Canada 2Alberta Machine Intelligence Institute 3Vector
Institute, Toronto, Canada 4CIFAR AI Chair. Correspondence to:
Mohamed Elsayed <mohamedelsayed@ualberta.ca>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1Code is available at:
https://github.com/mohmdelsayed/HesScale

Mahmood 2024) in pruning (LeCun et al. 1989, Hassibi and
Stork 1992, Singh and Alistarh 2020). However, computing
the Hessian entries is generally expensive, preventing its us-
age in systems that require small memory and computation.
This is reflected in the minimal adoption of second-order
methods compared to their first-order counterparts.

Many second-order methods rely on some approximation
of the Hessian entries to make computation less prohibitive.
For example, a type of truncated-Newton method called
Hessian-free methods (Martens et al. 2010) exploits the
Hessian-vector product (Pearlmutter 1994, Bekas et al.
2007). However, such methods might require many itera-
tions per update or additional techniques to achieve stability
when used in optimization, adding computational overhead
(Martens and Sutskever 2011). Some variations only approx-
imate the diagonals of the Hessian matrix using stochastic
estimation with matrix-free computations (e.g., Chapelle
et al. 2011, Martens et al. 2012, Yao et al. 2021), but they
may produce low-quality approximations of the Hessian
entries (Jahani et al. 2021). Other methods impose proba-
bilistic modeling assumptions and estimate a block diagonal
Fisher information matrix (Martens and Grosse 2015, Botev
et al. 2017), but they are more expensive to compute.

A long-overlooked approach is deterministic diagonal ap-
proximations to the Hessian. Specifically, the method pro-
posed by Becker and LeCun (1989), which we call BL89,
can be implemented as efficiently as first-order methods. We
call this method, along with other cheap methods (e.g., Yao
et al. 2021) with the same computational and memory com-
plexities as the gradient, scalable second-order methods,
distinguishing them from methods with superlinear compu-
tational or memory complexity (e.g., Mizutani and Dreyfus
2008, Botev et al. 2017, Dangel et al. 2020a). Despite the
promise of scalable second-order optimization, the approx-
imation quality of BL89 is shown to be poor (Hassibi and
Stork 1992, Martens et al. 2012). A scalable second-order
method with a high-quality approximation is still needed.

Scalable second-order methods can benefit reinforcement
learning (RL) in at least three ways: sample efficiency, sta-
bility, and robustness. Second-order optimization can help
with sample efficiency due to faster convergence (Wu et al.
2017). Moreover, step-size scaling schemes (e.g., Martens

1

https://github.com/mohmdelsayed/HesScale

Revisiting Scalable Hessian Diagonal Approximations

and Grosse 2015) use Hessian approximations to improve
the stability of reinforcement learning methods that can
suffer from instability due to large updates (Dohare et al.
2023). Another benefit of step-size scaling is achieving
robustness against step-size sensitivity, allowing for tuning-
free optimization (Mahmood et al. 2012), which is crucial
for learning with real-life robots (Mahmood et al. 2018).

In this paper, we introduce a refinement of BL89, which
we call HesScale. Similarly to BL89, our method is scal-
able, with small computational and memory overhead, but
maintains higher approximation accuracy than BL89 and
many other methods for Hessian diagonal approximation.
We provide two applications of HesScale: second-order op-
timization and step-size scaling. In supervised learning and
RL tasks, we demonstrate that second-order optimization
with HesScale achieves better sample efficiency compared
to existing scalable second-order methods. In RL tasks, we
show that step-size scaling with HesScale improves both
robustness and stability of the base learning method.

2. Background
Here, we describe the Hessian matrix for neural networks
and some existing methods for estimating it. Generally,
Hessian matrices can be computed for any scalar-valued
function that is twice differentiable. If f : Rn → R is
such a function, then for its argument ψ ∈ Rn, the Hessian
matrixH ∈ Rn×n of f with respect toψ is given by Hi,j =
∂2f(ψ)/∂ψi∂ψj . Here, element i of vector v is denoted by
vi, and element (i, j) of matrixM is denoted by Mi,j . For
optimization in deep learning, the function f is typically
the objective function, and the vector ψ is commonly the
weight vector of a neural network. Computing and storing
an n × n matrix, where n is the number of weights in a
neural network, is prohibitively expensive. Therefore, many
methods exist for approximating the Hessian matrix or parts
of it with less memory footprint, computational requirement,
or both. A common technique is to utilize the structure of the
function to reduce the computations needed. For example,
some approximate a layer-wise block diagonal Hessian. The
computation further simplifies when activation functions are
assumed to be piece-wise linear. This assumption results in
the Generalized Gauss-Newton (GGN, Schraudolph 2002)
approximation. However, computing and storing the GGN
matrix or its block diagonals is still too demanding.

Many approximation methods were developed to reduce the
storage and computation requirements of the block-diagonal
GGN matrix. For example, under probabilistic modeling
assumptions, the Kronecker-factored Approximate Curva-
ture (KFAC, Martens and Grosse 2015) method writes each
GGN’s diagonal blockG as a Kronecker product of two ma-
trices of smaller sizes as: G ≈ A⊗B, whereA = E[hh⊤],
B = E[gg⊤], h is the activation vector, and g is the gradi-

ent of the loss with respect to the pre-activation vector. The
A andB matrices can be estimated by Monte Carlo estima-
tion. KFAC is also more efficient when used in optimization
than other methods approximating GGN block diagonals
since it requires inverting only the small matrices using the
Kronecker product property (A ⊗B)−1 = A−1 ⊗B−1.
Despite KFAC’s gains in efficiency, it is still costly since
storing the Kronecker matrices can become prohibitively
expensive for large-scale problems. Additionally, its Kro-
necker structure introduces approximation errors. Alter-
native approaches that achieve high accuracy exploit the
GGN’s outer-product structure (Dangel et al. 2022, Yang
et al. 2022, Dangel et al. 2020b), but they suffer from a su-
perlinear scaling in the network’s output dimension in both
memory and compute, which limits their ability to scale.

Restricting calculations to Hessian diagonals provides some
curvature information with relatively little computation.
However, it has been shown that the exact computation
for diagonals of the Hessian typically has quadratic com-
plexity with the unlikely existence of algorithms that can
compute the exact diagonals with less than quadratic com-
plexity (Martens et al. 2012). Some stochastic methods
provide a way to compute unbiased estimates of the ex-
act Hessian diagonals. For example, the AdaHessian
(Yao et al. 2021) algorithm uses Hutchinson’s estimator
diag(H) = E[z ◦ (Hz)], where z is a multivariate random
variable with a Rademacher distribution and the expectation
can be estimated using Monte Carlo estimation. Similarly,
the GGN-MC method (Dangel et al. 2020b) uses the re-
lationship between the Fisher information matrix and the
Hessian matrix under probabilistic modeling assumptions
to have an MC approximation of the diagonal of the GGN
matrix. Although these stochastic approximation methods
are scalable, that is, with linear computational and memory
complexity in the number of parameters and network out-
puts, they suffer from low approximation quality (see Fig.
2), improving which requires many sampling and factors of
additional computations.

3. The Proposed HesScale Method
We present our method for approximating the diagonal of
the Hessian at each layer in feed-forward networks, where a
backpropagation rule is used to utilize the Hessian of pre-
vious layers. Here, we derive the backpropagation rule for
fully connected networks. A similar derivation for fully con-
nected networks with the mean squared error was presented
for BL89 (Becker and LeCun 1989). However, ours is a
refinement of BL89 in that we use the exact diagonals of the
Hessian matrix at the last layer. We show that the computa-
tional complexity can still be linear in the network’s output
dimension for some common loss functions. We defer the
derivation of Hessian diagonals for the convolutional neural

2

Revisiting Scalable Hessian Diagonal Approximations

networks to Appendix F.

We use the non-convex stochastic optimization setting where
there is an objective we need to minimize. The stochastic ob-
jective given a sample S is denoted by L(S,W), where S is
a random variable that can be the input-output pair in super-
vised learning or a transition tuple in reinforcement learning,
andW is a set of learnable parameters. The learner main-
tains a single or multiple neural network and is required to
optimize the objective by changing these network param-
eters. Specifically, the learner is required to minimize the
objective ES(L(S,W)).

Figure 1. Backpropagating the exact Hessian information in a neu-
ral network. Red arrows represent the direction of influence while
backpropagating the Hessian of the loss w.r.t. pre-activations which
are then used to compute the Hessian of the loss w.r.t. the weights
at each layer, denoted by the blue arrows. Black arrows denote the
direction of influence during the forward pass.

Consider a neural network with L layers parametrized by the
set of weightsW = {W1, ...,WL}, whereWl is the weight
matrix at the l-th layer, and its element at the ith row and
the jth column is denoted by Wl,i,j . During learning, the
parameters of the neural network are changed to reduce the
loss. During a forward pass, we get the activation hl at layer
l by applying the activation function σ to the pre-activation
al: hl = σ(al). We simplify notations by defining h0

.
= x.

The activation hl is then multiplied by the weight matrix
Wl+1 of layer l + 1 to produce the next pre-activation:
al+1,i =

∑|hl|
j=1 Wl+1,i,jhl,j .2 We assume here that the

activation function is element-wise activation for all layers
except for the final layer L, where it becomes the softmax
function. The backpropagation equations for the described
network are given as (Rumelhart et al. 1986):

∂L
∂Wl,i,j

=
∂L
∂al,i

∂al,i
∂Wl,i,j

=
∂L
∂al,i

hl−1,j , (1)

∂L
∂al,i

=

|al+1|∑
k=1

∂L
∂al+1,k

∂al+1,k

∂hl,i

∂hl,i
∂al,i

= σ′(al,i)

|al+1|∑
k=1

∂L
∂al+1,k

Wl+1,k,i. (2)

In the following, we write the equations for the exact Hes-
sian diagonals with respect to weights ∂2L/∂W 2

l,i,j , which

2The bias term can be added by appending an additional column
to a weight matrix and a 1 to each layer’s input vector.

requires the calculation of ∂2L/∂a2l,i. Fig. 1 shows the gen-
eral computational graph used to backpropagate the second-
order information (Mizutani and Dreyfus 2008, Dangel et al.
2020a), but we only focus next on the diagonal part:

∂2L
∂W 2

l,i,j

=
∂

∂Wl,i,j

(
∂L
∂al,i

hl−1,j

)
=

∂

∂al,i

(
∂L
∂al,i

)
∂al,i

∂Wl,i,j
hl−1,j

=
∂2L
∂a2l,i

h2
l−1,j ,

∂2L
∂a2l,i

=
∂

∂al,i

σ′(al,i)

|al+1|∑
k=1

∂L
∂al+1,k

Wl+1,k,i


= σ′(al,i)

|al+1|∑
k,p=1

∂2L
∂al+1,k∂al+1,p

∂al+1,p

∂al,i
Wl+1,k,i

+ σ′′(al,i)

|al+1|∑
k=1

∂L
∂al+1,k

Wl+1,k,i

= σ′(al,i)
2

|al+1|∑
k,p=1

∂2L
∂al+1,k∂al+1,p

Wl+1,p,iWl+1,k,i

+ σ′′(al,i)

|al+1|∑
k=1

∂L
∂al+1,k

Wl+1,k,i.

Since the calculation of ∂2L/∂a2l,i depends on the off-
diagonal terms, the computation complexity becomes
quadratic in the layer’s width. Following BL89, we approx-
imate the Hessian diagonals by ignoring the off-diagonal
terms, leading to a backpropagation rule with linear compu-

tational complexity for our estimates ∂̂2L
∂W 2

l,i,j
and ∂̂2L

∂a2l,i
:

∂̂2L
∂W 2

l,i,j

.
=

∂̂2L
∂a2l,i

h2
l−1,j , (3)

∂̂2L
∂a2l,i

.
= σ′(al,i)

2

|al+1|∑
k=1

∂̂2L
∂a2l+1,k

W 2
l+1,k,i

+ σ′′(al,i)

|al+1|∑
k=1

∂L
∂al+1,k

Wl+1,k,i. (4)

For the last layer, we use the exact Hessian diagonals
∂̂2L
∂a2L,i

.
= ∂2L

∂a2L,i
since it can be computed cheaply for some

common loss functions. For example, the exact Hessian
diagonals for cross-entropy loss with softmax is simply
q − q ◦ q, where q is the predicted probability vector and ◦
denotes element-wise multiplication. We show this property
with derivations for negative log-likelihood function with

3

Revisiting Scalable Hessian Diagonal Approximations

Gaussian and softmax distributions in Appendix B and for
other RL-related loss functions in Appendix C.

We found empirically that this small change makes a large
difference in the approximation quality, as shown in Fig.
2(a). Hence, unlike BL89, which uses a Hessian diagonal
approximation of the last layer by Eq. 4, we use the exact
values directly to achieve more approximation accuracy. We
call this method for Hessian diagonal approximation Hes-
Scale and provide its pseudocode in Algorithm 1. Finally,
we provide in Appendix E additional analysis on the special
cases that make HesScale exact.

Algorithm 1 HesScale
Require: Neural network f and a layer number l

Require: ∂L
∂al+1

and ∂̂2L
∂a2

l+1
, unless l = L

Require: Loss function L
if l = L then

Compute ∂L
∂aL

and ∂2L
∂a2

L

Compute ∂L
∂WL

using Eq. 1
∂̂2L
∂a2

L
← ∂2L

∂a2
L

Compute ∂̂2L
∂W 2

L
using Eq. 3

else if l ̸= L then
Compute ∂L

∂al
and ∂L

∂Wl
using Eq. 2 and Eq. 1

Compute ∂̂2L
∂a2

l
and ∂̂2L

∂W 2
l

using Eq. 4 and Eq. 3
end if
Return ∂L

∂Wl
, ∂̂2L
∂W 2

l
, ∂L
∂al

, and ∂̂2L
∂a2

l

The computation can be reduced further by dropping the last
term in Eq. 4, which corresponds to the Gauss-Newton ap-
proximation and is justified for piece-wise linear activation
functions. We call this variation HesScaleGN.

4. Approximation Quality
We evaluate HesScale’s approximation quality and compare
it with other methods. We start by studying the approxi-
mation quality of Hessian diagonals compared to the true
values. In our experiments, we implemented HesScale us-
ing the BackPACK framework (Dangel et al. 2020b), which
allows easy implementation of backpropagation of statis-
tics other than the gradient. To measure the approximation
quality of the Hessian diagonals for different methods, we
use the L1 distance between the exact Hessian diagonals
and their approximations, where L1(a,b) =

∑
i |ai − bi|.

Our task here is supervised classification, and data examples
are sampled randomly from MNIST. We used a network of
three hidden layers with tanh activations, each containing
32 units. The network weights and biases are initialized
using Kaiming initialization (He et al. 2015). We trained
the network with SGD using a batch size of 1. For each

example pair, we compute the exact Hessian diagonals for
each layer and their approximations from each method. All
layers’ errors are summed and then averaged over 1000 data
examples for each method. In this experiment, we used 40
different initializations for the network weights, shown as
colored dots in Fig. 2(a). In this figure, we show the average
error incurred by each method normalized by the average
error incurred by HesScale. Any approximation that incurs
an averaged error above 1 has a worse approximation than
HesScale, and any approximation with an error less than 1
has a better approximation than HesScale. Moreover, we
show the layer-wise error for each method in Fig. 2(b).

(a) Normalized L1 error with respect to HesScale

(b) Layer-wise L1 error

Figure 2. (a) The average error for each method is normalized
by the average error incurred by HesScale. Each colored point
represents a different initialization. The norm of the vector of
Hessian diagonals | diag(H)| is shown as a reference. (b) The
average layer-wise error for each method is shown. HesScale(GN)
has zero error at the last layer since it uses the exact entries there.

Different Hessian diagonal approximations are considered
for comparison with HesScale. We included several de-
terministic and stochastic approximations for the Hessian
diagonals. We also included the sample estimate of the
Fisher Information Matrix done by squaring the gradients
and denoted by g2, which is adopted by many first-order
methods (e.g., Kingma and Ba 2014). We compare HesScale
with two stochastic approximation methods: AdaHessian

4

Revisiting Scalable Hessian Diagonal Approximations

(Yao et al. 2021), and the Monte-Carlo (MC) estimate of the
GGN matrix (GGN-MC, Dangel et al. 2020b). We also com-
pare HesScale with two deterministic approximation meth-
ods: the diagonals of the exact GGN matrix (Schraudolph
2002) (diag(G)) and the diagonal approximation by Becker
and LeCun (1989) (BL89). Since AdaHessian and GGN-
MC are already diagonal approximations, we use them di-
rectly and show the error with 1 MC sample (GGN-MC1 &
AdaHessian-MC1) and with 50 MC samples (GGN-MC50
& AdaHessian-MC50).

HesScale provides a better approximation than the other
deterministic and stochastic methods. For stochastic meth-
ods, we use many MC samples to improve their approxi-
mation. However, their approximation quality is still poor.
Methods approximating the GGN diagonals do not capture
the complete Hessian information since the GGN and Hes-
sian matrices are different when the activation functions are
not piece-wise linear, as is the case for our tanh-activated
network. Although these methods approximate the GGN
diagonals, their approximation is significantly better than
the AdaHessian approximation. Among the methods for
approximating the GGN diagonals, HesScaleGN approxi-
mates the exact GGN diagonals closely. This experiment
clearly shows that HesScale achieves the best approxima-
tion quality (overall and across layers) compared to other
stochastic and deterministic approximation methods.

4.1. Diagonality of Hessians w.r.t. Pre-activations

To understand why HesScale gives such a high approxi-
mation quality, we investigate the structure of the matrices
propagated in the full Hessian backpropagation. The high
approximation quality suggests that those matrices are diag-
onally dominant; thus, dropping the off-diagonal elements
does not significantly harm the approximation. Similar to
the metric in Balles et al. (2020), we introduce the metric
ρ ∈ [0, 1] that measures the diagonal dominance of a matrix
A given by

ρ(A) =
∥ diag(A)∥F

∥A∥F
,

where ∥.∥F is the Frobenius norm and diag(.) extracts the
diagonal of a matrix. The metric ρ gives a value of 1 when
A is a diagonal matrix and a value of 0 whenA is a hollow
matrix. We use ρ to to measure the diagonal dominance of
{∇2

ai
L}Li=1 (shown in Fig. 3) on an MLP of four hidden

layers each containing 128 units. In Table 1, we show the
diagonal dominance of those matrices before and after train-
ing. As a reference, we compute the diagonal dominance
for a random matrix with standard Gaussian entries of the
same size. We found that ρ of a random matrix is 0.09. The
diagonal dominance metric for each matrix is averaged over
300 independent runs. We trained for 10000 iterations on
EMNIST (Cohen et al. 2017) with a batch size of 32. Table

1 shows that {∇2
ai
L}Li=1 are diagonally dominant before

and after training, which explains the high approximation
quality of HesScale compared to other approximations.

Figure 3. Heat maps of Hessian of the loss w.r.t. pre-activations.
{∇2

ai
L}4i=1 visually appear diagonally dominant. Red represents

a small magnitude, and blue represents a large magnitude.

Table 1. Diagonal dominance before and after training

Layer Number ρ (before training) ρ (after training)

1 0.94 0.75
2 0.91 0.54
3 0.89 0.81
4 0.91 0.98

5. Two applications of HesScale
We utilize HesScale in two applications of second-order
information: optimization and step-size scaling.

5.1. Second-order Optimization

We introduce an efficient optimizer based on HesScale,
which we call AdaHesScale (Algorithm 2). We follow the
same style introduced in Adam (Kingma and Ba 2014) in
using the squared diagonal approximation instead of the
squared gradients to update the moving average. More-
over, we introduce another optimizer based on HesScaleGN,
which we call AdaHesScaleGN. For the convergence proof
of methods with Hessian diagonals, we refer the reader to
Appendix A. In addition, we provide a scalability compar-
ison for AdaHesScale and AdaHesScaleGN against other
optimization methods in Appendix D.

5.2. Step-size Scaling for Robustness and Stability

Scaling the step size has been a well-known approach for
improving the robustness of supervised learning (e.g., Mah-
mood et al. 2012) and reinforcement learning (e.g., Dabney
and Barto 2012). K-FAC (Martens and Grosse 2015) imple-
mented a step-size scaling procedure based on trust region
analysis, which was later studied with Adam (Clarke et al.
2023). Such a method has been combined with some RL

5

Revisiting Scalable Hessian Diagonal Approximations

Algorithm 2 AdaHesScale
Require: Neural network f with weights {W1, ...,WL}
and a dataset D
Require: Small number ϵ← 10−8

Require: Exponential decay rates β1, β2 ∈ [0, 1)
Require: step size α
Require: Initialize {W1, ...,WL}
Initialize time step t← 0.
for l in {L,L− 1, ..., 1} do
Ml ← 0; Vl ← 0

end for
for (x, y) in D do
t← t+ 1
rL+1 ← sL+1 ← ∅
for l in {L,L− 1, ..., 1} do

Compute Loss L(x, y)
Fl,Sl, rl, sl ←HesScale(L, l, rl+1, sl+1)
Ml ← β1Ml + (1− β1)Fl
Vl ← β2Vl + (1− β2)S

2
l

M̂l ←Ml/(1− βt1)

V̂l ← Vl/(1− βt2)

Wl ←Wl − αM̂l ⊘
(√

V̂l + ϵ
)

end for
end for

algorithms, giving algorithms such as ACKTR (Wu et al.
2017). The step-size mechanism scales the step size down
when the update to be applied becomes outside the trust re-
gion radius, making the optimizer less sensitive to the choice
of step size and, therefore, improving robustness. More re-
cently, Dohare et al. (2023) demonstrated the problem of
extreme instability in deep RL methods when trained for
extended periods. Such a problem could be mitigated if the
optimizer becomes aware of the size of the update it makes,
which is the quantity measured by those step-size scaling
methods. Thus, we developed a step-size scaling method
following the mechanism outlined in K-FAC and based on
our HesScale approximation. The K-FAC mechanism scales

down the step size by min
(
αmax,

√
2∆

u⊤Hu

)
, where αmax is

the maximum step size, ∆ is the trust-region radius, and u
is the regular update if no scaling is performed. Algorithm
3 shows our step-size scaling applied to AdaHesScale using
a HesScale approximation ofH .

6. Supervised Learning Experiments
We compare the performance of our optimizers—
AdaHesScale and AdaHesScaleGN—with three second-
order optimizers: BL89, GGNMC, and AdaHessian. We
also include comparisons with two first-order methods:
Adam and SGD. We exclude K-FAC from our comparisons
due to its relatively high cost.

Algorithm 3 AdaHesScale with step-size scaling
Require: Neural network f with weights {W1, ...,WL}
and a dataset D
Require: Small number ϵ← 10−8

Require: Exponential decay rates β1, β2 ∈ [0, 1)
Require: step size α, trust-region radius ∆
Require: Initialize {W1, ...,WL}
Initialize time step t← 0.
for l in {L,L− 1, ..., 1} do
Ml ← 0; Vl ← 0; Ul ← 0

end for
for (x, y) in D do
t← t+ 1
h← 0
rL+1 ← sL+1 ← ∅
for l in {L,L− 1, ..., 1} do

Compute Loss L(x, y)
Fl,Sl, rl, sl ←HesScale(L, l, rl+1, sl+1)
Ml ← β1Ml + (1− β1)Fl
Vl ← β2Vl + (1− β2)S

2
l

M̂l ←Ml/(1− βt1)

V̂l ← Vl/(1− βt2)

Ul ← αM̂l ⊘
(√

V̂l + ϵ
)

S ←
√
V̂l ◦U2

l

h← h+ 1⊤S1
end for
η ← min

(
1,
√

2∆
h

)
for l in {L,L− 1, ..., 1} do
Wl ←Wl − ηUl

end for
end for

Our optimizers are evaluated in the supervised setting with
two experiments using different architectures on the CIFAR-
100 dataset. Instead of attempting to achieve state-of-the-art
performance with specialized techniques and architectures,
we followed the DeepOBS benchmarking work (Schneider
et al. 2019) and compared the optimizers in their generic
form using relatively simple networks to verify the validity
of our method.

In the first experiment, we used the CIFAR-100 3C-3D task
from DeepOBS. The network consists of three convolutional
layers with ReLU activations, each followed by max pooling.
After that, two fully connected layers (512 and 256 units)
with ReLU activations are used. We use ELU instead of
ReLU, which is used in DeepOBS, to differentiate between
the performance of AdaHesScale and AdaHesScaleGN. We
train each method for 200 epochs with a batch size of 128.
In the second experiment, we use the CIFAR-100 ALL-
CNN task from DeepOBS with the ALL-CNN-C network,
which consists of 9 convolutional layers (Springenberg et al.

6

Revisiting Scalable Hessian Diagonal Approximations

2014) with ReLU activations. Again, we use ELU instead of
ReLU, which is used in DeepOBS, to differentiate between
the performance of AdaHesScale and AdaHesScaleGN. We
train each method for 350 epochs with a batch size of 256.

0 2000 4000 6000 8000 10000 12000 14000
Time in seconds

0.35

0.40

0.45

0.50

Te
st

 A
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
Epochs

0.35

0.40

0.45

0.50

Te
st

 A
cc

ur
ac

y

(a) CIFAR-100 3C3D

0 5000 10000 15000 20000 25000
Time in seconds

0.45

0.50

0.55

Te
st

 A
cc

ur
ac

y

0 200 400 600 800 1000
Epochs

0.45

0.50

0.55

Te
st

 A
cc

ur
ac

y

(b) CIFAR-100 All-CNN-C

Figure 4. CIFAR-100 3C3D and CIFAR-100 ALL-CNN classifi-
cation tasks. (top) We show the time taken by each algorithm in
seconds, and (bottom) we show the learning curves in the number
of epochs. The shaded area represents the standard error. BL89
achieves lower than 0.35 and is not visible.

Fig. 4(a) and Fig. 4(b) show the results on CIFAR-100 ALL-
CNN and CIFAR-100 3C3D tasks against the number of
epochs and against time in seconds. In both experiments, we
used β1 = 0.9 and β2 = 0.999 for all adaptive methods. We
run SGD for the time that matches the maximum time taken
by any optimizer to have a fair comparison since it requires
a small cost relative to other methods (Fig. 4(b)) unless the
performance starts to go down within the predetermined
number of epochs in the experiment (Fig. 4(a)).

The performance of each method is averaged over 30 inde-
pendent runs. Each independent run has the same initializa-
tion across all algorithms. We performed a hyperparameter
search for each method to find the best step size. Using
each method’s best step size on the validation set, we show
the performance of the method against the time in seconds
needed to complete the required number of epochs, which

better depicts the computational efficiency of the methods.

In both CIFAR-100 3C3D and CIFAR-100 ALL-CNN, we
notice that AdaHessian performed worse than all methods
except BL89. This result is aligned with AdaHessian’s in-
ability to accurately approximate the Hessian diagonals,
as shown in Fig. 2. Moreover, AdaHessian required more
time than all other methods. While being time-efficient,
AdaHesScaleGN consistently outperformed all methods in
CIFAR-100 3C3D, and it outperformed most methods ex-
cept AdaHesScale in CIFAR-100 ALL-CNN. Our experi-
ments indicate that incorporating HesScale and HesScaleGN
approximations in optimization methods can be of signif-
icant performance advantage in both computation and ac-
curacy. AdaHesScale and AdaHesScaleGN outperformed
other optimizers, likely due to their accurate approximation
of the diagonals of the Hessian and GGN, respectively. We
provide the sensitivity analysis in Appendix G.

7. Reinforcement Learning Experiments
We investigate the performance of AdaHesScale against
other optimizers when used with two reinforcement learn-
ing algorithms, A2C (Mnih et al. 2016) and PPO (Schulman
et al. 2017), on the MuJoCo environments (Todorov et al.
2012). We exclude optimizers based on GGN and GGNMC
since their BackPACK implementation is limited to classi-
fication and regression. Then, we investigate the effect of
step-size scaling on robustness and stability with AdaHesS-
cale and Adam. In this section’s experiments, we use MLPs
of two hidden layers each containing 64 units with tanh
activations, similar to the architectures used in CleanRL
(Huang et al. 2022).

7.1. Performance

We start by focusing on a performance-based comparison.
Fig. 5 shows the performance of A2C/PPO with AdaHesS-
cale against A2C/PPO with Adam and AdaHessian on five
environments. We add results for five other MuJoCo envi-
ronments to Appendix H. In A2C, we observe that AdaHesS-
cale significantly boosts performance on Ant, Walker2d,
HalfCheetah, and Hopper compared to Adam and AdaHes-
sian. In PPO, AdaHesScale performs similarly to Adam and
outperforms AdaHessian in most environments.

7.2. Robustness and Stability

Next, we study the effect of step-size scaling using the Hes-
Scale approximation on robustness and stability with Ada-
HesScale, which we call Scaled AdaHesScale, and Adam,
which we call Scaled Adam. We used a trust-region radius
∆ = 10−8 and applied the step-size scaling mechanism on
both the actor and the critic networks. Fig. 6 shows the
robustness of the methods for the step-size choice. For each

7

Revisiting Scalable Hessian Diagonal Approximations

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

0

1

2

Av
er

ag
e

Re
tu

rn 1e3
Ant-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

0.5

1.0

1.5
1e3

Walker2d-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

0

1

2
1e3

HalfCheetah-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

0.5

1.0

1e3
Hopper-v2

0.00 0.25 0.50 0.75 1.00

Time Step 1e7

1

2

3

4
1e3

Humanoid-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

0

1

2

3

Av
er

ag
e

Re
tu

rn 1e3
Ant-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

0

1

2

3

1e3
Walker2d-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

0

1

1e3
HalfCheetah-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

1

2

1e3
Hopper-v2

0.00 0.25 0.50 0.75 1.00

Time Step 1e7

0.5

1.0

1.5
1e3

Humanoid-v2

Figure 5. Performance of A2C (first row) and PPO (second row) with AdaHesScale, Adam, and AdaHessian on 5 MuJoCo environments.
We show the undiscounted return averaged over 10 independent runs. The shaded area represents the standard error.

10−4 10−2 100

Step Size

0.0

0.5

1.0

No
rm

al
ize

d
Re

tu
rn

Adam

10−4 10−2 100

Step Size

Scaled Adam

10−4 10−2 100

Step Size

Scaled AdaHesScale

Ant-v2 Walker2d-v2 HalfCheetah-v2 Hopper-v2 Humanoid-v2

Figure 6. Robustness of HesScale-based step-size scaling with
AdaHesScale and Adam on 5 MuJoCo environments. We show
the undiscounted return averaged over 10 independent runs. The
shaded area represents the standard error.

environment, we normalized the average return between
the minimum and maximum values across both optimizers
to have the same range [0, 1]. We observe that our step-
size scaling makes both scaled optimizers insensitive to the
step-size choice (compared to Adam) with PPO in all Mu-
JoCo environments except for Humanoid, which does not
benefit from the step-size scaling. We also redo the same
experiment with the A2C algorithm in Appendix H.

Finally, we examine the effectiveness of step-size scaling in
stability using the UR-Reacher real-robot task (Mahmood
et al. 2018), where the goal is to move the end effector of the
UR5 robotic arm in the 2d space and reach some specified
point. In challenging environments, the default step size
can lead to large updates, causing the policy to deteriorate
with time (Dohare et al. 2023). However, the step-size
scaling mechanism could mitigate this issue, which lowers
the step size when the update is too big. Fig. 7 shows five
runs for Adam and Scaled Adam each, where the learned
policy by Adam deteriorates for many runs after reaching a
maximum performance at around 80K steps, supporting the
observation by Dohare et al. (2023). On the other hand, step-

size scaling maintains consistent performance for Scaled
Adam for all five runs, demonstrating its effectiveness in
addressing the instability issue.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Step 1e5

−100

0

100

200

300

Av
er

ag
e

Re
tu

rn

Real-Robot UR-Reacher

Adam
Scaled Adam

Figure 7. Performance of HesScale-based step-size scaling with
Adam against standard Adam on UR-Reacher robotics task. We
show the undiscounted return of five different independent runs.

8. Conclusion
HesScale is a scalable and efficient second-order method for
approximating the diagonals of the Hessian at every network
layer. Our results showed that our methods provide a more
accurate approximation for the Hessian diagonals while
requiring small additional computations. We demonstrated
how HesScale can be used to build efficient second-order
optimization methods for both supervised reinforcement
learning. We also showed how HesScale can be used to
build step-size scaling mechanisms to help improve the
stability and robustness of reinforcement learning methods.

Acknowlegement
We gratefully acknowledge funding from the Canada CIFAR
AI Chairs program, the Reinforcement Learning and Arti-

8

Revisiting Scalable Hessian Diagonal Approximations

ficial Intelligence (RLAI) laboratory, the Alberta Machine
Intelligence Institute (Amii), and the Natural Sciences and
Engineering Research Council (NSERC) of Canada. We
would also like to thank the Digital Research Alliance of
Canada for providing the computational resources needed.
Resources used in preparing this research were provided, in
part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring Vector Institute.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Balles, L., Pedregosa, F., and Roux, N. L. (2020). The

geometry of sign gradient descent. arXiv preprint
arXiv:2002.08056.

Becker, S. and LeCun, Y. (1989). Improving the conver-
gence of back-propagation learning with second order
methods. In Proceedings of the 1988 connectionist mod-
els summer school, Published–1989, pages 29–37.

Bekas, C., Kokiopoulou, E., and Saad, Y. (2007). An esti-
mator for the diagonal of a matrix. Applied numerical
mathematics, 57(11-12):1214–1229.

Botev, A., Ritter, H., and Barber, D. (2017). Practical
gauss-newton optimisation for deep learning. In Interna-
tional Conference on Machine Learning, pages 557–565.
PMLR.

Chan, A., Silva, H., Lim, S., Kozuno, T., Mahmood, A. R.,
and White, M. (2022). Greedification operators for pol-
icy optimization: Investigating forward and reverse kl
divergences. The Journal of Machine Learning Research,
23(1):11474–11552.

Chapelle, O., Erhan, D., et al. (2011). Improved precondi-
tioner for hessian free optimization. In NIPS Workshop
on Deep Learning and Unsupervised Feature Learning,
volume 201. Citeseer.

Clarke, R. M., Su, B., and Hernández-Lobato, J. M. (2023).
Adam through a second-order lens. arXiv preprint
arXiv:2310.14963.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A.
(2017). Emnist: Extending mnist to handwritten letters.
In 2017 international joint conference on neural networks
(IJCNN), pages 2921–2926. IEEE.

Dabney, W. and Barto, A. (2012). Adaptive step-size for
online temporal difference learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 26,
pages 872–878.

Dangel, F., Harmeling, S., and Hennig, P. (2020a). Modular
block-diagonal curvature approximations for feedforward
architectures. In International Conference on Artificial
Intelligence and Statistics (AISTATS).

Dangel, F., Kunstner, F., and Hennig, P. (2020b). Back-
PACK: Packing more into backprop. In International
Conference on Learning Representations (ICLR).

Dangel, F., Tatzel, L., and Hennig, P. (2022). ViViT: Cur-
vature access through the generalized gauss-newton’s
low-rank structure. Transactions on Machine Learning
Research (TMLR).

Dohare, S., Lan, Q., and Mahmood, A. R. (2023). Overcom-
ing policy collapse in deep reinforcement learning. In
Sixteenth European Workshop on Reinforcement Learn-
ing.

Elsayed, M. and Mahmood, A. R. (2024). Addressing catas-
trophic forgetting and loss of plasticity in neural networks.
In The Twelfth International Conference on Learning Rep-
resentations.

Hassibi, B. and Stork, D. (1992). Second order derivatives
for network pruning: Optimal brain surgeon. Advances
in neural information processing systems, 5.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving
deep into rectifiers: Surpassing human-level performance
on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–
1034.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty,
D., Mehta, K., and AraÃšjo, J. G. (2022). Cleanrl: High-
quality single-file implementations of deep reinforcement
learning algorithms. Journal of Machine Learning Re-
search, 23(274):1–18.

Jahani, M., Rusakov, S., Shi, Z., Richtárik, P., Mahoney,
M. W., and Takáč, M. (2021). Doubly adaptive scaled
algorithm for machine learning using second-order infor-
mation.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

LeCun, Y., Denker, J., and Solla, S. (1989). Optimal brain
damage. Advances in neural information processing sys-
tems, 2.

9

Revisiting Scalable Hessian Diagonal Approximations

Mahmood, A. R., Korenkevych, D., Vasan, G., Ma, W.,
and Bergstra, J. (2018). Benchmarking reinforcement
learning algorithms on real-world robots. In Conference
on robot learning, pages 561–591. PMLR.

Mahmood, A. R., Sutton, R. S., Degris, T., and Pilarski,
P. M. (2012). Tuning-free step-size adaptation. In 2012
IEEE international conference on acoustics, speech and
signal processing (ICASSP), pages 2121–2124. IEEE.

Martens, J. et al. (2010). Deep learning via hessian-free
optimization. In ICML, volume 27, pages 735–742.

Martens, J. and Grosse, R. (2015). Optimizing neural net-
works with kronecker-factored approximate curvature.
In International conference on machine learning, pages
2408–2417. PMLR.

Martens, J. and Sutskever, I. (2011). Learning recurrent
neural networks with hessian-free optimization. In Pro-
ceedings of the 28th international conference on machine
learning (ICML-11), pages 1033–1040.

Martens, J., Sutskever, I., and Swersky, K. (2012). Esti-
mating the hessian by back-propagating curvature. arXiv
preprint arXiv:1206.6464.

Mizutani, E. and Dreyfus, S. E. (2008). Second-order stage-
wise backpropagation for hessian-matrix analyses and
investigation of negative curvature. Neural Networks,
21(2-3):193–203.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages
1928–1937. PMLR.

Pearlmutter, B. A. (1994). Fast exact multiplication by the
hessian. Neural Computation.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors. na-
ture, 323(6088):533–536.

Schneider, F., Balles, L., and Hennig, P. (2019). Deepobs: A
deep learning optimizer benchmark suite. arXiv preprint
arXiv:1903.05499.

Schraudolph, N. N. (2002). Fast curvature matrix-vector
products for second-order gradient descent. Neural com-
putation, 14(7):1723–1738.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347.

Shen, Y., Daheim, N., Cong, B., Nickl, P., Marconi, G. M.,
Bazan, C., Yokota, R., Gurevych, I., Cremers, D., Khan,
M. E., et al. (2024). Variational learning is effective for
large deep networks. arXiv preprint arXiv:2402.17641.

Singh, S. P. and Alistarh, D. (2020). Woodfisher: Efficient
second-order approximation for neural network compres-
sion. In Advances in Neural Information Processing
Systems (NeurIPS).

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. (2014). Striving for simplicity: The all convo-
lutional net. arXiv preprint arXiv:1412.6806.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco:
A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots
and systems, pages 5026–5033. IEEE.

Wu, Y., Mansimov, E., Grosse, R. B., Liao, S., and Ba, J.
(2017). Scalable trust-region method for deep reinforce-
ment learning using kronecker-factored approximation.
Advances in neural information processing systems, 30.

Yang, M., Xu, D., Wen, Z., Chen, M., and Xu, P. (2022).
Sketch-based empirical natural gradient methods for deep
learning. Journal of Scientific Computing.

Yao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K.,
and Mahoney, M. (2021). Adahessian: An adaptive sec-
ond order optimizer for machine learning. In proceedings
of the AAAI conference on artificial intelligence, vol-
ume 35, pages 10665–10673.

Zaheer, M., Reddi, S., Sachan, D., Kale, S., and Kumar, S.
(2018). Adaptive methods for nonconvex optimization.
Advances in neural information processing systems, 31.

10

Revisiting Scalable Hessian Diagonal Approximations

A. Convergence proof of AdaHesScale and AdaHesScaleGN
In this section, we provide a convergence proof for AdaHesScale and AdaHesScaleGN that resembles the proof given
by Zaheer et al. (2018) for the convergence of adaptive optimization methods (e.g., Adam) in nonconvex problems. The
following proof shows the convergence to a stationary point up to the statistical limit of the variance of the gradients,
where ∥∇f(θ)∥2 ≤ δ represent a δ-accurate solution and is used to measure the stationarity of θ. Nonconvex optimization
problems can be written as:

min
θ∈Rd

f(θ)
.
= ES∼P [L(θ, S)]

where f is the expected loss, L is the sample loss, S is a random variable for samples and θ is a vector of weights
parametrizing L. We assume that L is L-smooth, meaning that there exist a constant L that satisfy

∥∇L(θ1, s)−∇L(θ2, s)∥ ≤ L∥θ2 − θ1∥, ∀θ1,θ2 ∈ Rd, s ∈ S. (5)

Similar to the proof by Zaheer et al. (2018), we further assume that L has bounded gradients |∇[L(θ, s)]i| ≤ G,∀i ∈
Rd, s ∈ S and bounded variance in the gradients E∥∇L(θ, S) −∇f(θ)∥2 ≤ σ2,∀θ ∈ Rd. Note that the assumption of
L-smoothness on the sample loss result in L-smooth expected loss too, which is given by ∥∇f(θ1)−∇f(θ2)∥ ≤ L∥θ1−θ2∥.

Remember that the update rule of AdaHesScale and AdaHesScale-GN can be written as follows when the parameters are
stacked in a single vector θ:

θt+1,i = θt,i − α
mt,i√
vt,i + ϵ

,

where mt and vt are exponential moving averages of the first derivatives gt and second derivatives ht, respectively. Similar
to Zaheer et al. (2018), we write the proof for β1 = 0 making mt,i = gt,i for the sake of simplicity. However, this proof
should extend to the general case.

Since the expected loss f is L-smooth, we can write the following:

f(θt+1) ≤ f(θt) + (∇f(θt))⊤(θt+1 − θt) +
L

2
∥θt+1 − θt∥22 (6)

= f(θt)− α

d∑
i=1

(
∇[f(θt)]i

gt,i√
vt,i + ϵ

)
+

Lα2

2

d∑
i=1

g2t,i
(
√
vt,i + ϵ)2

. (7)

Next, we take the conditional expectation of f(θt+1) as follows:

Et[f(θt+1)|θt] ≤ f(θt)− α

d∑
i=1

(
[∇f(θt)]iEt

[
gt,i√
vt,i + ϵ

])
+

Lα2

2

d∑
i=1

Et

[
g2t,i

(
√
vt,i + ϵ)2

]

= f(θt)− α

d∑
i=1

(
[∇f(θt)]iEt

[
gt,i√
vt,i + ϵ

− gt,i
ϵ

+
gt,i
ϵ

])
+

Lα2

2

d∑
i=1

Et

[
g2t,i

(
√
vt,i + ϵ)2

]

= f(θt)− α

d∑
i=1

(
[∇f(θt)]iEt

[
gt,i√
vt,i + ϵ

− gt,i
ϵ

])
− α

d∑
i=1

[∇f(θt)]2i
ϵ

+
Lα2

2

d∑
i=1

Et

[
g2t,i

(
√
vt,i + ϵ)2

]

≤ f(θt) + α

∣∣∣∣∣
d∑
i=1

[∇f(θt)]iEt
[

gt,i√
vt,i + ϵ

− gt,i
ϵ

]∣∣∣∣∣− α

d∑
i=1

[∇f(θt)]2i
ϵ

+
Lα2

2ϵ2

d∑
i=1

Et
[
g2t,i
]

≤ f(θt) + α

d∑
i=1

|∇[f(θt)]i|Et

[∣∣∣∣ gt,i√
vt,i + ϵ

− gt,i
ϵ

∣∣∣∣︸ ︷︷ ︸
T

]
− α

d∑
i=1

[∇f(θt)]2i
ϵ

+
Lα2

2ϵ2

d∑
i=1

Et
[
g2t,i
]

Note that we used Et[gt,i] = [∇f(θt)]i in the third line, and E[X] ≤ E[|X|] and |
∑d
i xi| ≤

∑d
i=1 |xi| in the fifth line. We

also used 1
(a+b)2 ≤

1
b2 ,∀a, b > 0 for the last term in the fourth line.

11

Revisiting Scalable Hessian Diagonal Approximations

Now, we can further bound the term T as follows:

T =

∣∣∣∣ gt,i√
vt,i + ϵ

− gt,i
ϵ

∣∣∣∣
≤
∣∣∣∣ gt,i√

vt,i + ϵ

∣∣∣∣+ ∣∣∣gt,iϵ ∣∣∣
≤ 2|gt,i|

ϵ
.

Note that we used 1
a+b ≤

1
b ,∀a, b > 0. Next, let us go back to the main inequality and further bound it as follows:

Et[f(θt+1)|θt] ≤ f(θt) +
2α

ϵ

d∑
i=1

|∇[f(θt)]i|Et [|gt,i|]−
α

ϵ

d∑
i=1

[∇f(θt)]2i +
Lα2

2ϵ2

d∑
i=1

Et
[
g2t,i
]

≤ f(θt) +
2αG2

ϵ
− α

ϵ

d∑
i=1

[∇f(θt)]2i +
Lα2

2ϵ2

d∑
i=1

Et
[
g2t,i
]
.

We used in the second inequality the bounded sample-gradient assumption, |gti | ≤ G. Moreover, we can have the same
bound for the expected gradient as follows:

∥∇f(θ)∥ = ∥ES [∇L(θ, S)]∥ ≤ ES [∥∇L(θ, S)∥] ≤ G,

which leads to bounded expected gradients in each dimension, |∇[f(θ)]i| ≤ G.

From the bounded variance assumption, we know that the E[∥gt∥2] is bounded as follows:

E[∥gt∥2] ≤
σ2

bt
+ ∥∇f(θt)∥2.

We can further bound Et[f(θt+1)|θt] as follows:

Et[f(θt+1)|θt] ≤ f(θt) +
2αG2

ϵ
− α

ϵ

d∑
i=1

[∇f(θt)]2i +
Lα2

2ϵ2

(
σ2

bt
+ ∥∇f(θt)∥2

)
= f(θt) +

2αG2

ϵ
− α

ϵ
∥∇f(θt)∥2 +

Lα2

2ϵ2

(
σ2

bt
+ ∥∇f(θt)∥2

)
= f(θt)− ∥∇f(θt)∥2

(
α

ϵ
− Lα2

2ϵ2

)
+

Lα2σ2 + 4αϵbtG
2

2bϵ2
.

Rearranging the inequality, taking expectations on both sides, and using the telescopic sum, we can write the following:(
2ϵα− Lα2

2ϵ2

) T∑
t=1

E∥∇f(θt)∥2 ≤ f(θ1)− E[f(θT+1)] +
T (Lα2σ2 + 4αϵbtG

2)

2bϵ2
.

Multiplying both sides by 2ϵ2

T (2ϵα−Lα2) and using the fact that f is the lowest at the global minimum θ∗: f(θT+1) ≥ f(θ∗)

as follows:

1

T

T∑
t=1

E∥∇f(θt)∥2 ≤ 2ϵ2
f(θ1)− f(θ∗)

T (2ϵα− Lα2)
+

2ϵ2(Lασ2 + 4btG
2)

bt(2ϵ− Lα)
,

which shows the algorithm converges to a stationary point. However, in the limit T → ∞, the algorithm has to have an
increasing batch size similarly to Zaheer et al. (2018).

12

Revisiting Scalable Hessian Diagonal Approximations

B. Hessian diagonals of the log-likelihood function for two common distributions
Here, we provide the diagonals of the Hessian matrix of functions involving the log-likelihood of two common distributions:
a normal distribution and a categorical distribution with probabilities represented by a softmax function, which we refer to
as a softmax distribution. We show that the exact computations of the diagonals can be computed with linear complexity
since computing the diagonal elements does not depend on off-diagonals in these cases. In the following, we consider the
softmax and normal distributions, and we write the exact Hessian diagonals in both cases.

B.1. Softmax distribution

Consider a cross-entropy function for a discrete probability distribution as f .
= −

∑|q|
i=1 pi log qi(θ), where q is a probability

vector that depends on a parameter vector θ, and p is a one-hot vector for the target class. For softmax distributions, q is
parametrized by a softmax function q .

= eθ/
∑|q|
i=1 e

θi . In this case, we can write the gradient of the cross-entropy function
with respect to θ as

∇θf(θ) = q − p.
Next, we write the exact diagonal elements of the Hessian matrix as follows:

diag(Hθ) = diag(∇θ(q − p)) = q − q2,

where q2 denotes element-wise squaring of q, and ∇ operator applied to a vector denotes Jacobian. Computing the exact
diagonals of the Hessian matrix depends only on vector operations, which means that we can compute with linear complexity
in the network’s output dimension. The cross-entropy loss is used with softmax distribution in many important tasks, such
as supervised classification and discrete reinforcement learning control with parameterized policies (Chan et al. 2022).

B.2. Multivariate normal distribution with diagonal covariance

For a multivariate normal distribution with diagonal covariance, the parameter vector θ is determined by the mean-variance
vector pair: θ .

= (µ,σ2). The log-likelihood of a random vector x drawn from this distribution can be written as

log q(x;µ,σ2) = −1

2
(x− µ)⊤D(σ2)−1(x− µ)− 1

2
log(|D(σ2)|) + c

= −1

2
(x− µ)⊤D(σ2)−1(x− µ)− 1

2
log(

|σ|∑
i=1

σ2
i) + c,

whereD(σ2) gives a diagonal matrix with σ2 in its diagonal, |M | is the determinant of a matrixM and c is some constant.
We can write the gradients of the log-likelihood function with respect to µ and σ2 as follows:

∇µ log q(x;µ,σ2) =D(σ2)−1(x− µ) = (x− µ)⊘ σ2,

∇σ2 log q(x;µ,σ2) =
1

2

[
(x− µ)2 ⊘ σ2 − 1

]
⊘ σ2,

where 1 is an all-ones vector, and ⊘ denotes element-wise division. Finally, we write the exact diagonals of the Hessian
matrix as

diag(Hµ) = diag(∇µ(x− µ)⊘ σ2) = −1⊘ σ2,

diag(Hσ2) = diag
(
∇σ2

[
1

2

[
(x− µ)2 ⊘ σ2 − 1

]
⊘ σ2

])
=
[
0.51− (x− µ)2 ⊘ σ2

]
⊘ σ4.

Clearly, the gradient and the exact Hessian diagonals can be computed with linear complexity in the network’s output
dimension. Log-likelihood functions for normal distributions are used in many important problems, such as variational
inference and continuous reinforcement learning control.

C. HesScale for reinforcement learning loss functions
C.1. Policy gradient loss

The policy gradient loss is computed as the multiplication between the negative log-likelihood and some scalar value that
determines how good or bad the action or trajectory selected is. The policy gradient loss is given by

LPG(s, a) = − log q(a|s;µ,σ2)A

13

Revisiting Scalable Hessian Diagonal Approximations

where A is the return, advantage, or TD error, depending on the algorithm used. The Hessian diagonals of such loss would
differ by the multiplicative factor A from the Hessian diagonals w.r.t. the log-likelihood defined in Appendix B for both
continuous or categorical distributions. The A2C (Mnih et al. 2016) algorithm uses the advantage function for A.

C.2. Value loss

The value loss used in policy gradient methods can be implemented as a regular regression error between the value and its
bootstrapped target. Thus, the Hessian diagonals of such loss function would be ones since the Hessian matrix is the identity.

C.3. PPO policy loss

The proximal policy optimization (PPO, Schulman et al. 2017) methods depend on a surrogate loss different from the one
presented in the previous section, unlike A2C (Mnih et al. 2016). The surrogate loss depends on the ratio between the
current action probability and the old action probability. Thus, we focus in this section on deriving the gradient and Hessian
diagonals of a multivariate normal distribution with diagonal covariance. The Hessian diagonals of such loss would differ by
the multiplicative factor A from the Hessian diagonals w.r.t. the action probability. The action probability of a multivariate
normal distribution with diagonal covariance is given by

p(a;µ,σ2) =
1√

2π|D(σ2)|
exp

1
2 (a−µ)

⊤D(σ2)−1(a−µ) .

We can write the gradients of the Gaussian probability function with respect to µ and σ2 as follows:

∇µp(a;µ,σ2) = p(a;µ,σ2)(a− µ)⊘ σ2,

∇σ2p(a;µ,σ2) = p(a;µ,σ2)
(
(a− µ)2 ⊘ σ2 − 1

)
⊘ (2σ2).

Finally, we write the exact diagonals of the Hessian matrix as

diag(Hµ) =
(
(a− µ) ◦ ∇µp(a;µ,σ2)− p(a;µ,σ2)

)
⊘ σ2,

diag(Hσ2) = (σ2 ◦ ∇σ2p(a;µ,σ2)− p(a;µ,σ2))
(
(a− µ)2 ⊘ σ2 − 1

)
⊘ (2σ4)− 0.5p(a;µ,σ2)(a− µ)2 ⊘ σ6.

D. Scalability
We perform another experiment to evaluate the computational cost of our optimizers. Our Hessian approximation methods
and corresponding optimizers have linear computational complexity, which can be seen from Eq. 4 and Eq. 3. However,
computing second-order information in optimizers still incurs extra computations compared to first-order optimizers, which
may impact how the total computations scale with the number of parameters. Hence, we compare the computational cost
of our optimizers with others for various numbers of parameters. More specifically, we measure the update time of each
optimizer, which is the time needed to backpropagate first-order and second-order information and update the parameters.

We designed two experiments to study the computational cost of first-order and second-order optimizers. In the first
experiment, we used a neural network with a single hidden layer. The network has 64 inputs and 512 hidden units with
tanh activations. We study the increase in computational time when increasing the number of outputs exponentially, which
roughly doubles the number of parameters. The set of values we use for the number of outputs is {24, 25, 26, 27, 28, 29}.
The results of this experiment are shown in Fig. 8(a). In the second experiment, we used a neural network with multi-layers,
each containing 512 hidden units with tanh activations. The network has 64 inputs and 100 outputs. We study the increase
in computational time when increasing the number of layers exponentially, which also roughly doubles the number of
parameters. The set of values we use for the number of layers is {1, 2, 4, 8, 16, 32, 64, 128}. The results are shown in Fig.
8(b). The points in Fig. 8(a) and Fig. 8(b) are averaged over 30 updates. The standard errors of the means of these points are
smaller than the width of each line. On average, we notice that the cost of AdaHessian, AdaHesScale, and AdaHesScaleGN
are three, two, and 1.25 times the cost of Adam, respectively. It is clear that our methods are among the most computationally
efficient approximation method for Hessian diagonals.

14

Revisiting Scalable Hessian Diagonal Approximations

(a) Increasing number of outputs in a neural network (b) Increasing number of layers in a neural network

Figure 8. The average computation time for each step of an update is shown for different optimizers. The computed update time is the
time needed by each optimizer to backpropagate gradients or second-order information and to update the parameters of the network. GGN
overlaps with H in (a).

E. Conditions of Weight Structure for Hessian Diagonality
This section aims to provide a theoretical analysis of the weight structure that makes the Hessian blocks with respect to
the pre-activations diagonal or dominantly diagonal. Assuming that the matrixHl ∈ Rn×n containing second derivatives
at the l-layer is diagonal, we look for the conditions onWl ∈ Rn×k andHl that guaranteeHl−1 ∈ Rk×k to be diagonal.
Formally, we want to analyze: minWl

∥(W⊤
l HlWl) ◦ I −W⊤

l HlWl∥2F , where ◦ denotes the Hadamard product.

Let us start by writing the quantity J we want to minimize and simplify the expression. We letA =W⊤
l HlWl and write

the expression as follows:

J = ∥(W⊤
l HlWl) ◦ I −W⊤

l HlWl∥2F
= ∥Al ◦ I −Al∥2F (substitute W⊤

l HlWl by Al)

= Tr
((
Al ◦ I −Al)

⊤(Al ◦ I −Al

))
(remember that ∥Al∥2F = Tr(A⊤

l Al))

= Tr
((
A⊤
l ◦ I −A⊤

l)(Al ◦ I −Al

))
= Tr

((
A2
l ◦ I −A2

l ◦ I −A2
l ◦ I +A⊤

l Al

))
(A2

l denotes element-wise squaring)

= Tr
((
A⊤
l Al −A2

l ◦ I
))

. (expectation on the sum of squared off-diagonal elements)

Now we can write ∇Wl
J as follows:

∇Wl
J = Tr

(
A⊤
l Al −A2

l ◦ I
)

= ∇Wl
Tr
(
A⊤
l Al −A2

l ◦ I
)

= ∇Wl
Tr
(
A⊤
l Al

)
−∇Wl

Tr
(
A2
l ◦ I

)
. (Tr(A+B) = Tr(A) + Tr(B))

Taking the derivative with respect toWl involves the 4-tensor of derivatives of elements ofAl with respect toWl, so using
the index notation for the following calculations is more convenient. We drop the subscript l for clarity but emphasize that
all matrices have a subscript l. We first write the trace of the first and second term in the index notation as follows:

Ai,j =

k∑
l=1

Wl,iWl,jHl,l, Γ = Tr(A⊤A) =

k∑
i=1

k∑
j=1

A2
i,j , Λ = Tr(A2 ◦ I) =

k∑
i=1

A2
i,i.

We would like to compute∇WΓ and ∇WΛ. One can use the chain rule as follows:

∂□
∂Wi,j

=

k∑
m=1

k∑
n=1

∂□
∂Am,n

∂Am,n
∂Wi,j

15

Revisiting Scalable Hessian Diagonal Approximations

where □ ∈ {Γ,Λ}. Let us now calculate∇AΓ and ∇AΛ as follows:

∂Γ

∂Am,n
=

∂

∂Am,n

k∑
i=1

k∑
j=1

A2
i,j = 2Am,n,

∂Λ

∂Am,n
=

∂

∂Am,n

k∑
i=1

A2
i,i = 2Am,nδm,n,

where δm,n = 1 when m = n and 0 otherwise. Let us now calculate the elements of the second term in the chain rule,
which is a 4-tensor, as follows:

∂Am,n
∂Wi,j

=
∂

∂Wi,j

(
k∑
l=1

Wl,mWl,nHl,l

)

=

k∑
l=1

∂Wl,m

∂Wi,j
Wl,nHl,l +

k∑
l=1

∂Wl,n

∂Wi,j
Wl,mHl,l +

k∑
l=1

∂Hl,l

∂Wi,j
Wl,mWl,n

=
k∑
l=1

Wl,nHl,lδj,mδi,l +

k∑
l=1

Wl,mHl,lδi,lδj,n +Rm,ni,j

= Wi,nHi,iδj,m +Wi,mHi,iδj,n +Rm,ni,j ,

where Rm,ni,j =
∑k
l=1

∂Hl,l

∂Wi,j
Wm,lWn,l denotes the 4-tensor containing the derivative of the Hessian diagonals of the

pre-activations with respect to the weights.

Now, we are able to compute ∇WΓ and∇WΛ as follows:

∂Γ

∂Wi,j
=

k∑
m=1

k∑
n=1

∂Γ

∂Am,n

∂Am,n
∂Wi,j

=

k∑
m=1

k∑
n=1

2Am,n
(
Wi,nHi,iδj,m +Wi,mHi,iδj,n +Rm,ni,j

)
= 2

k∑
n=1

Aj,nWi,nHi,i + 2

k∑
m=1

Am,jWi,mHi,i + 2

k∑
m=1

k∑
n=1

Am,nR
m,n
i,j

= 4

k∑
n=1

Aj,nWi,nHi,i + 2

k∑
m=1

k∑
n=1

Am,nR
m,n
i,j (note that Am,i = Ai,m since A is symmetric)

∂Λ

∂Wi,j
=

k∑
m=1

k∑
n=1

∂Λ

∂Am,n

∂Am,n
∂Wi,j

=

k∑
m=1

k∑
n=1

2Am,nδm,n
(
Wi,nHi,iδj,m +Wi,mHi,iδj,n +Rm,ni,j

)
= 2

k∑
m=1

Am,m
(
Wi,mHi,iδj,m +Wi,mHi,iδj,m +Rm,mi,j

)
= 2

k∑
m=1

Am,m
(
2Wi,mHi,iδj,m +Rm,mi,j

)
= 4Aj,jWi,jHi,i + 2

k∑
m=1

Am,mRm,mi,j ,

16

Revisiting Scalable Hessian Diagonal Approximations

∂(Γ− Λ)

∂Wi,j
= 4

k∑
n=1

Aj,nWi,nHi,i + 2

k∑
m=1

k∑
n=1

Am,nR
m,n
i,j − 4Aj,jWi,jHi,i − 2

k∑
m=1

Am,mRm,mi,j

= 4

k∑
n=1

Aj,nWi,nHi,i − 4Aj,jWi,jHi,i + 2

k∑
m=1

k∑
n=1

Am,nR
m,n
i,j − 2

k∑
m=1

Am,mRm,mi,j

= 4

k∑
n=1

Aj,nWi,nHi,i − 4

k∑
n=1

Aj,jWi,jHi,iδj,n + 2

k∑
m=1

k∑
n=1

Am,nR
m,n
i,j − 2

k∑
m=1

k∑
n=1

Am,nR
m,n
i,j δm,n

= 4

k∑
n=1

Aj,nWi,nHi,i(1− δj,n) + 2

k∑
m=1

k∑
n=1

Am,nR
m,n
i,j (1− δm,n).

We can finally write the element of the gradient∇W J as follows:

[∇W J]i,j = ∇W (Γ− Λ)

= 4

k∑
n=1

Aj,nWi,nHi,i(1− δj,n) + 2

k∑
m=1

k∑
n=1

Am,nR
m,n
i,j (1− δm,n).

We find the conditions on W and H that minimizes J by setting ∇W J to zero. There are two notable cases where the
gradient equals zero.

E.1. WhenW is diagonal

IfW is diagonal, we can write it as Wi,j = δi,j . Therefore, the gradient elements are reduced to:

[∇W J]i,j = 4

k∑
n=1

(Aj,nWi,nHi,i) (1− δj,n) + 2

k∑
m=1

k∑
n=1

Am,nR
m,n
i,j (1− δm,n)

= 4

k∑
n=1

Aj,nHi,iδi,n(1− δn,j) + 2

k∑
m=1

k∑
n=1

Am,nR
m,n
i,j (1− δm,n)

= 4

k∑
n=1

(
k∑
l=1

Wl,jWl,nHl,l

)
Hi,iδi,n(1− δn,j) + 2

k∑
m=1

k∑
n=1

(
k∑
l=1

Wl,mWl,nHl,l

)
Rm,ni,j (1− δm,n)

= 4

k∑
n=1

(
k∑
l=1

δl,jδl,nHl,l

)
Hi,iδi,n(1− δn,j) + 2

k∑
m=1

k∑
n=1

(
k∑
l=1

δl,mδl,nHl,l

)
Rm,ni,j (1− δm,n)

= 4

k∑
n=1

(δj,nHj,j)Hi,iδi,n(1− δn,j) + 2

k∑
m=1

k∑
n=1

(δm,nHm,m)Rm,ni,j (1− δm,n)

= 4Hj,jHi,iδi,j(1− δi,j) + 2

k∑
m=1

k∑
n=1

Hm,mRm,ni,j δm,n (1− δm,n)

= 0 (note that δi,j(1− δi,j) = 0, ∀i, j).

E.2. WhenH = αI and Wi,j ∼ N (0, σ),∀σ, the gradient becomes zero on expectation

We can writeH = αI as Hi,j = αδi,j . Therefore, the gradient elements are reduced to:

EWl
[∇W J]i,j = EWl

[
4

k∑
n=1

Aj,nWi,nHi,i(1− δj,n) + 2

k∑
m=1

k∑
n=1

Am,nR
m,n
i,j (1− δm,n)

]

= EWl

[
4α

k∑
n=1

Aj,nWi,nδi,i(1− δj,n) + 2

k∑
m=1

k∑
n=1

Am,nR
m,n
i,j (1− δm,n)

]

17

Revisiting Scalable Hessian Diagonal Approximations

= EWl

[
4α2

k∑
n=1

(
k∑
l=1

Wl,jWl,nδl,l

)
Wi,nδi,i(1− δj,n)

+ 2α

k∑
m=1

k∑
n=1

(
k∑
l=1

Wl,mWl,nδl,l

)
Rm,ni,j (1− δm,n)

]

= EWl

[
4α2

k∑
n=1

(
k∑
l=1

Wl,jWl,n

)
Wi,n(1− δj,n) + 2α

k∑
m=1

k∑
n=1

(
k∑
l=1

Wl,mWl,n

)
Rm,ni,j (1− δm,n)

]

= EWl

[
4α2W 3

i,j − 4α2W 3
i,j + 2α

k∑
m=1

(
k∑
l=1

Wl,mWl,m

)
Rm,mi,j − 2α

k∑
n=1

(
k∑
l=1

Wl,mWl,m

)
Rm,mi,j

]
= 0.

Note that E[W 2
i,jWi,l] = 0,∀l ̸= j.

F. HesScale with Convolutional Neural Networks
Here, we derive the Hessian propagation for convolutional neural networks (CNNs). Consider a CNN with L− 1 layers
followed by a fully connected layer that outputs the predicted output q. The CNN filters are parameterized by {W1, ...,WL},
where Wl is the filter matrix at the l-th layer with the dimensions kl,1 × kl,2, and its element at the ith row and the jth
column is denoted by Wl,i,j . For the simplicity of this proof, we assume that the number of filters at each layer is one; the
proof can be extended easily to the general case. At the layer l, we get the activation matrixHl by applying the activation
function σ to the pre-activationAl: Hl = σ(Al). We assume here that the activation function is element-wise activation for
all layers except for the final layer L, where it becomes the softmax function. We simplify notations by definingH0

.
=X ,

whereX is the input sample. The activationHl is then convoluted by the weight matrixWl+1 of layer l + 1 to produce the
next pre-activation: Al+1,i,j =

∑kl,1−1
m=0

∑kl,2−1
n=0 Wl+1,m,nHl,(i+m),(j+n). We denote the size of the activation at the l-th

layer by hl × wl. The recursive formulation used for Hessian diagonals backpropagation is given in Theorem F.1.

Theorem F.1. HesScale Computation with CNNs. Under the zero second-order off-diagonals assumption in all layers of a
neural network except for the last one, the second derivatives can be propagated with linear complexity in the number of
network parameters and in the network’s output dimension using the following equations:

∂̂2L
∂A2

l,i,j

.
= σ′(Al,i,j)

2

kl+1,2−1∑
m=0

kl+1,2−1∑
n=0

∂̂2L
∂A2

l+1,(i−m),(j−n)
W 2
l+1,m,n

+ σ′′(Al,i,j)

kl+1,2−1∑
m=0

kl+1,2−1∑
n=0

∂L
∂Al+1,(i−m),(j−n)

Wl+1,m,n,

∂̂2L
∂W 2

l,i,j

.
=

hl−kl,1∑
m=0

wl−kl,2∑
n=0

∂̂2L
∂A2

l,m,n

H2
l−1,(i+m),(j+n).

Proof. The backpropagation equations for the described network are given following Rumelhart et al. (1986):

∂L
∂Al,i,j

=

kl+1,1−1∑
m=0

kl+1,2−1∑
n=0

∂L
∂Al+1,(i−m),(j−n)

∂Al+1,(i−m),(j−n)

∂Al,i,j

=

kl+1,1−1∑
m=0

kl+1,2−1∑
n=0

∂L
∂Al+1,(i−m),(j−n)

kl+1,1−1∑
m′=0

kl+1,2−1∑
n′=0

Wl+1,m′,n′
∂Hl,(i−m+m′),(j−n+n′)

∂Al,i,j

=

kl+1,1−1∑
m=0

kl+1,2−1∑
n=0

∂L
∂Al+1,(i−m),(j−n)

Wl+1,m,nσ
′(Al,i,j)

18

Revisiting Scalable Hessian Diagonal Approximations

= σ′(Al,i,j)

kl+1,1−1∑
m=0

kl+1,2−1∑
n=0

∂L
∂Al+1,(i−m),(j−n)

Wl+1,m,n, (8)

∂L
∂Wl,i,j

=

hl−kl,1∑
m=0

wl−kl,2∑
n=0

∂L
∂Al,m,n

∂Al,m,n
∂Wl,i,j

=

hl−kl,1∑
m=0

wl−kl,2∑
n=0

∂L
∂Al,m,n

Hl−1,(i+m),(j+n). (9)

In the following, we write the equations for the exact Hessian diagonals with respect to weights ∂2L/∂W 2
l,i,j , which requires

the calculation of ∂2L/∂A2
l,i,j first:

∂2L
∂A2

l,i,j

=
∂

∂Al,i,j

[
σ′(Al,i,j)

kl+1,1−1∑
m=0

kl+1,2−1∑
n=0

∂L
∂Al+1,(i−m),(j−n)

Wl+1,m,n

]

= σ′(Al,i,j)

kl+1,2−1∑
m,p=0

kl+1,2−1∑
n,q=0

∂2L
∂Al+1,(i−m),(j−n)∂Al+1,(i−p),(j−q)

∂Al+1,(i−p),(j−q)

∂Al,i,j
Wl+1,m,n

+ σ′′(Al,i,j)

kl+1,2−1∑
m=0

kl+1,2−1∑
n=0

∂L
∂Al+1,(i−m),(j−n)

Wl+1,m,n

∂2L
∂W 2

l,i,j

=
∂

∂Wl,i,j

[hl−kl,1∑
m=0

wl−kl,2∑
n=0

∂L
∂Al,m,n

Hl−1,(i+m),(j+n)

]

=

hl−kl,1∑
m,p=0

wl−kl,2∑
n,q=0

∂2L
∂Al,m,n∂Al,p,q

∂Al,p,q
∂Wl,i,j

Hl−1,(i+m),(j+n)

Since the calculation of ∂2L/∂A2
l,i,j and ∂2L/∂W 2

l,i,j depend on the off-diagonal terms, the computation complexity becomes
quadratic. Following Becker and LeCun (1989), we approximate the Hessian diagonals by ignoring the off-diagonal terms,

which leads to a backpropagation rule with linear computational complexity for our estimates ∂̂2L
∂W 2

l,i,j
and ∂̂2L

∂A2
l,i,j

:

∂̂2L
∂A2

l,i,j

.
= σ′(Al,i,j)

2

kl+1,2−1∑
m=0

kl+1,2−1∑
n=0

∂̂2L
∂A2

l+1,(i−m),(j−n)
W 2
l+1,m,n

+ σ′′(Al,i,j)

kl+1,2−1∑
m=0

kl+1,2−1∑
n=0

∂L
∂Al+1,(i−m),(j−n)

Wl+1,m,n, (10)

∂̂2L
∂W 2

l,i,j

.
=

hl−kl,1∑
m=0

wl−kl,2∑
n=0

∂̂2L
∂A2

l,m,n

H2
l−1,(i+m),(j+n). (11)

19

Revisiting Scalable Hessian Diagonal Approximations

G. Additional Supervised Classification Results
Here, we provide the sensitivity of the step size for each method in Fig. 9.

(a) CIFAR-100 All-CNN (b) CIFAR-100 3C3D

Figure 9. Parameter Sensitivity study for each algorithm on CIFAR-100 with All-CNN and 3C3D architectures. The range of step size
is {10−5, 10−4, 10−3, 10−2, 10−1, 100}. We choose β1 to be equal to 0.9 and β2 to be equal to 0.999. Each point for each algorithm
represents the average test loss given a set of parameters.

H. Additional RL experiments
Here, we provide additional results on the performance of the A2C and PPO algorithms in Fig. 10. In addition, we provide a
robustness analysis of the step size with the A2C and PPO algorithms using Scaled AdaHesScale against Scaled Adam in
Fig. 11, 12, and 13.

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

0

2

4

6

Av
er

ag
e

Re
tu

rn 1e3
InvertedDoublePendulum-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

0.5

1.0
1e3
InvertedPendulum-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

3

4

1e1
Swimmer-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

−6

−4

−2

1e1
Reacher-v2

0.0 0.2 0.4 0.6 0.8 1.0

Time Step 1e7

0.5

1.0

1.5

1e5
HumanoidStandup-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

0.0

2.5

5.0

7.5

Av
er

ag
e

Re
tu

rn 1e3
InvertedDoublePendulum-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

0.5

1.0
1e3
InvertedPendulum-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

0.25

0.50

0.75

1.00

1e2
Swimmer-v2

0.0 0.5 1.0 1.5 2.0

Time Step 1e6

−4

−2

1e1
Reacher-v2

0.0 0.2 0.4 0.6 0.8 1.0

Time Step 1e7

0.5

1.0

1.5

1e5
HumanoidStandup-v2

Figure 10. Performance of A2C (first row) and PPO (second row) with AdaHesScale, Adam, and with AdaHessian on 5 MuJoCo
environments. We show the undiscounted return averaged over 10 independent runs. The shaded area represents the standard error.

20

Revisiting Scalable Hessian Diagonal Approximations

10−4 10−2 100

Step Size

0.0

0.5

1.0

No
rm

al
ize

d
Re

tu
rn

Adam

10−4 10−2 100

Step Size

Scaled Adam

10−4 10−2 100

Step Size

Scaled AdaHesScale

Ant-v2 Walker2d-v2 HalfCheetah-v2 Hopper-v2 Humanoid-v2

Figure 11. Robustness of HesScale-based step-size scaling with AdaHesScale and Adam on 5 MuJoCo environments using A2C. We
show the undiscounted return averaged over 10 independent runs. The shaded area represents the standard error.

10−4 10−2 100

Step Size

0.0

0.5

1.0

No
rm

al
ize

d
Re

tu
rn

Adam

10−4 10−2 100

Step Size

Scaled Adam

10−4 10−2 100

Step Size

Scaled AdaHesScale

InvertedPendulum-v2 InvertedDoublePendulum-v2 Swimmer-v2 Reacher-v2 HumanoidStandup-v2

Figure 12. Robustness of HesScale-based step-size scaling with AdaHesScale and Adam on 5 additional MuJoCo environments using
PPO. We show the undiscounted return averaged over 10 independent runs. The shaded area represents the standard error.

10−4 10−2 100

Step Size

0.0

0.5

1.0

No
rm

al
ize

d
Re

tu
rn

Adam

10−4 10−2 100

Step Size

Scaled Adam

10−4 10−2 100

Step Size

Scaled AdaHesScale

InvertedPendulum-v2 InvertedDoublePendulum-v2 Swimmer-v2 Reacher-v2 HumanoidStandup-v2

Figure 13. Robustness of HesScale-based step-size scaling with AdaHesScale and Adam on 5 additional MuJoCo environments using
A2C. We show the undiscounted return averaged over 10 independent runs. The shaded area represents the standard error.

21

