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1 ANALYSIS ON THE STATE-ACTION VALUE FUNCTION

Below see the complete proof of Proposition 3.4. from the main body of the paper.

Proposition 1.1. In the MDP M let λ > 0 and suppose that (1 − λ)δ < (1 + λ)η < δ. Let
θ = (θ1, θ2, θ3) be given by θ1 = (1 + λ)θ∗1 , θ2 = (1 + λ)θ∗2 and θ3 = (1 − λ)θ∗3 . Then
R(θ) < R(θ∗).

Proof. By an identical argument to that in Proposition 3.4. we have that a2 is always the action
maximizing maxa ̸=a∗(s) Qθ(s̄, a) −Qθ(s̄, a

∗(s)) whenever (1 − λ)δ < (1 + λ)η. This condition
is satisfied by assumption. Therefore, we conclude that for s = s1, the optimal s̄ ∈ Dϵ(s) for the
scaled parameters θ is given by s̄ = s+ ϵ√

2(1+λ)
(θ2 − θ1). Therefore, the contribution to the sum

defining R(θ) from state s1 is given by

⟨(θ2 − θ1), s̄⟩ = ⟨(θ2 − θ1), s⟩+ ϵ
√
2(1 + λ)

= −(1 + λ) + (1 + λ)η + ϵ
√
2(1 + λ)

where the last step uses the fact that s = θ∗1 + δθ∗3 + ηθ∗2 and that the vectors θ∗i are orthonormal.
Next using the fact that (1 + λ)η < δ by assumption we conclude

⟨(θ2 − θ1), s̄⟩ < −(1 + λ) + (1 + λ)η + ϵ
√
2 + ϵλ

√
2

< −1 + δ + ϵ
√
2. (1)

The final inequality follows from the fact that ϵ < 1√
2

so ϵλ
√
2− λ < 0. Switching from state s1 to

state s2, an identical proof (with θ1 replaced by θ2) yields the same value for the contribution of state
s2 to the sum. By Proposition 3.4., the contribution of each type of state to the sum defining R(θ∗) is

⟨(θ∗3 − θ∗1), s+
ϵ√
2
(θ∗3 − θ∗1)⟩ = −1 + δ + ϵ

√
2. (2)

Clearly the contribution of each state in 1 is strictly less than that in 2. Therefore R(θ) < R(θ∗).

2 WHAT DOES IT ENTAIL TO LEARN INACCURATE, OVERESTIMATED AND
INCONSONANT STATE-ACTION VALUES?

The fact that our paper explicitly theoretically and empirically demonstrates that certified adversarially
trained policies learn inconsonant and inaccurate state-action values further implies significant
concerns on the alignment with human decisions. This has been explained in Section 4. Note that
humans conceptualize the values of the set actions they did not take, unlike the adversarially trained
deep reinforcement learning policies. See more on the human cognitive decision making process and
how humans can conceptualize the set of sub-optimal actions better than random here (Wunderlich
et al., 2009; Hoeck et al., 2015; Phillips et al., 2019). Thus the results reported in our paper confirm
that vanilla training is more aligned with the human cognitive decision making process.

Also further note that, as also initially described in the main body of our paper in Section 2.3, recent
work demonstrated vulnerabilities of certified robust reinforcement learning policies from black-box
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adversarial attacks (Korkmaz, 2022) to natural attacks that revealed the generalization problems
of adversarially trained deep reinforcement learning policies when compared to straightforward
reinforcement learning (Korkmaz, 2023). While these studies highlight the safety and security
problems in certified adversarially trained policies, our paper dives into and explains the particular
reasons why adversarial training experiences these safety problems. We believe it is crucial to
understand the root causes of these problems regarding AI safety, because releasing models with
guaranteed safety certifications with undiscovered non-robustness and vulnerabilities will in fact
have serious consequences in the real world (The New York Times, 2024; The Washington Post,
2023; Guardian, 2022; The New York Times, 2023). These issues should be openly and transparently
analyzed and discussed before these crucial consequences are faced in practice in real life.

3 SOCIETAL IMPACTS

We have described the potential detrimental effects of failing to provide safety while claiming
robustness guarantees in the main body of the paper introduction of our paper, and further dedicated
a section in the appendix (i.e. Section 2). In particular, these sections highlight the impacts of failing
to deliver AI safety (The New York Times, 2024; The Washington Post, 2023; Guardian, 2022; The
New York Times, 2023). Our paper discovers that the promises made in certified-safety in fact do
not hold and furthermore we lay-out the theoretical foundations on why these promises made by
certified-safety cannot hold. We believe it is crucial to study the exact issues arising and causing
failures of machine learning systems both theoretically and empirically. Our paper discovers layers
of detrimental issues with certified robust techniques. Our paper not only identifies these issues but
further provides theoretical insights in to the fundamental trade-off between robustness and accuracy
of the state-action value function.

4 OVERESTIMATION, INACCURACIES AND INCONSISTENCIES IN
ADVERSARIAL TRAINING: RADIAL

The left and center column of Figure 1 demonstrate the performance drop P2(p) with respect to action
modification a2 for the RADIAL adversarially trained deep reinforcement learning policy proposed
by Oikarinen et al. (2021) and the vanilla trained deep reinforcement learning policy in BankHeist and
RoadRunner respectively. The right column of the Figure 1 demonstrates the performance drop Pw(p)
with respect to action modification aw for the RADIAL adversarially trained deep reinforcement
learning policy proposed by Oikarinen et al. (2021) and the vanilla trained deep reinforcement
learning policy in RoadRunner. Again the results in Figure 1 demonstrate that the vanilla training
technique has better estimates for state-action values compared to the adversarial training method
RADIAL, quite recently proposed by Oikarinen et al. (2021).

In particular, the curve for P2(p) for RADIAL in RoadRunner lies well above the corresponding
vanilla training curve. This implies that, while taking the second best action has a relatively mild effect
on the vanilla-trained policy, it causes a dramatic loss in performance for RADIAL. Similarly, the
Pw(p) curve for RADIAL in RoadRunner lies above the corresponding curve for the vanilla-trained
policy. This again implies that the vanilla-trained policy has a better estimate for which action will
lead to lowest rewards than the RADIAL adversarially trained policy. The results reported in Figure
1 again demonstrate the loss of information in the state-action value function due to adversarial
regulation of the temporal difference loss.

Figure 2 demonstrates that the overestimation bias discussed in the main body of our paper is again
an issue for a newer adversarial training technique quite recently published in NeurIPS 2021. Fur-
thermore, exactly as the previous adversarial training methods, RADIAL also learns inaccurate,
inconsistent and overestimated state-action value functions. Hence, these results once more demon-
strate the loss of information in the state-action value function as a novel fundamental trade-off
intrinsic to adversarial training.
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Performance drop P2(p) Performance drop P2(p) Performance drop Pw(p)

Figure 1: Left: Performance drop P2(p) with respect to action modification a2 for RADIAL adver-
sarially trained deep neural policies Oikarinen et al. (2021) and vanilla trained policies for BankHeist.
Center: Performance drop P2(p) with respect to action modification a2 for RADIAL adversarially
trained deep neural policies Oikarinen et al. (2021) and vanilla trained policies for RoadRunner.
Right: Performance drop Pw(p) with respect to action modification aw for the RADIAL adversarially
trained deep neural policy and the vanilla trained deep neural policy.

Figure 2: Q-value of the best action a∗ over the states for the RADIAL adversarially trained deep
neural policy proposed by Oikarinen et al. (2021) and vanilla trained deep neural policy.

Figure 3: State-action values for the best action a∗, second best action a2 and worst action aw for the
adversarially trained and vanilla trained deep neural policy loss function for the example MDP with
linearly parameterized state-action values constructed in Section 3.

5 FURTHER EXPERIMENTS ON THE LINEARLY PARAMETRIZED MDP

To complement the theoretical results, we numerically optimized both the regularized and un-
regularized loss function for the example MDP with linearly parameterized state-action values
constructed in Section 3. Figure 3 demonstrates the state-action value function for each of the states
the best action a∗, second best action a2 and worst action aw for the actions a1, a2, a3. Note that
the numerical optimization of the un-regularized (i.e. vanilla training) loss converges to the true
optimal state-action values computed analytically in Section 3. Thus, the results reported in Figure 3
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further demonstrate that the addition of the certified training regularizer leads to overestimation of
the optimal state-action value function, and re-ordering of the suboptimal actions.

6 SUPPLEMENTARY RESULTS ON INCONSISTENCIES IN ACTION RANKING IN
ADVERSARIALLY TRAINED DEEP NEURAL POLICIES

As we mentioned in Section 6.1 of the main body of the paper the inaccuracies of the state-action
value function reach a high enough level for the state-of-the-art adversarially trained deep neural
policies such that the ranking of the sub-optimal actions is not correct anymore. This can be seen
in Figure 4 in the P2 and Pw results. Note that P2 represents the performance drop (Definition 4.1)
with action modification a2, and Pw (Definition 4.1) represents the action modification with aw.

Thus, it can be observed from Figure 4 that the performance drop P2 with action modification a2
is higher than the performance drop Pw with action modification aw. In more detail P2 0.18257-
dominates Pw in BankHeist (Definition 4.3). This demonstrates that the state-of-the-art adversarially
trained deep neural policies are not ranking the sub-optimal actions correctly. Note that as we
discussed in the main body of the paper in Section 6.1 this poses a problem for learning optimal
state-action value functions Lin & Zhou (2020); Alshiekh et al. (2018).

Figure 4: Consistency results for ranked actions via performance drop P2 and Pw for the state-of-the-
art adversarially trained deep neural policies.

7 OVERESTIMATION OF STATE-ACTION VALUES

In this section we provide supplementary results for the overestimation bias caused by state-of-
the-art adversarially trained deep neural policies. In particular, in Section 6.3 of the main body
of the paper we explained the problem of overestimation of state-action values. Furthermore, in
Section 5.3 we empirically demonstrate that state-of-the-art adversarially trained deep neural policies
overestimate the state-action values. In this section we further provide results on state-action values
of the optimal action for vanilla and adversarially trained deep neural policies when pa2

is equal to
0.1, 0.2 and 0.3 respectively. Note that in the main body of the paper we claim that the reason for
this overestimation lies in the fact that the state-of-the-art deep neural policy adversarial training is
solely an extension of adversarial training in image classification tasks, which is based on penalizing
the wrong “label”. However, this approach does not directly correspond to deep neural policies. The
correct label in image classification can be connected to the optimal action in deep neural policies
in this analogy. However, the wrong label does not correspond to sub-optimal actions. An optimal
Q-function represents the discounted expected cumulative rewards received when taking an action a
in state s. Hence, the sub-optimal actions have much more meaning in collecting rewards than solely
misclassifying an image.

8 IMPLEMENTATION DETAILS

Note that to be able to provide a fair comparison State-Adversarial Double Deep Q-Network and
Double Deep Q-Network are the exact same implementations described in the SA-DDQN paper
described in Section 3 and (Wang et al., 2016) respectively. In more detail for Double Deep Q-
Network the batch size is 32, discount factor γ is 0.99, buffer size 50000, learning rate is 5× 10−5
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Table 1: Average Q-values of the optimal action in state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies.

Environments BankHeist RoadRunner Freeway
Training Method Adversarial Vanilla Adversarial Vanilla Adversarial Vanilla

Q(s, a∗) 5.903±2.052 0.300±0.434 8.806±3.216 0.602±0.781 1.667± 0.406 1.185±0.348

Figure 5: State-action values of the best action Q(s, a∗) for vanilla trained deep neural policies and
adversarially trained deep neural policies when pa2

is 0.1.

Figure 6: State-action values of the best action Q(s, a∗) for vanilla trained deep neural policies and
adversarially trained deep neural policies when pa2

is 0.2.

Figure 7: State-action values of the best action Q(s, a∗) for vanilla trained deep neural policies and
adversarially trained deep neural policies when pa2

is 0.3.

for the Adam optimizer, and random action probability is 0.02. Note that experience replay (Schaul
et al., 2016) is utilized. More details can be found in (Dhariwal et al., 2017) and (Wang et al.,
2016) on Double Deep Q-Networks. The state-of-the-art adversarial deep neural policy is the exact
same implementation as in the SA-DDQN paper. Adversarial deep neural policies are trained via
experience replay as well (Schaul et al., 2016). Note that State-Adversarial Double Deep Q-Network
is trained via the regularizer R(θ) =

∑
s

(
maxs̄∈Dϵ(s) maxa ̸=a∗(s) Qθ(s̄, a)−Qθ(s̄, a

∗(s))
)

where
a∗(s) = argmaxa Q(s, a) inside ϵ-ball Dϵ(s) = {s̄ : ∥s − s̄∥∞ ≤ ϵ}. Hence, this ϵ is set to
1/255. Note that the regularization is added to the temporal difference loss in the Q-update. The
regularization parameter of state-adversarial is κ ∈ {0.005, 0.01, 0.02}. The initial 1.5× 106 frames
are trained without regularization.
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9 FURTHER EXPERIMENTAL RESULTS ON ACTION GAP

In Section 6.4 of the main body of our paper we discuss the action gap phenomenon introduced
by Farahmand (2011). Note that the action gap is defined as κ(Q, s) = maxa′∈A Q(s, a′) −
maxa/∈argmaxa′∈A Q(s,a′) Q(s, a). Further, we argue that both the existence of overestimation of state
action values and the higher action gap in state-of-the-art adversarially trained deep neural policies
demonstrates that the hypothesis of Bellemare et al. (2016) cannot be true.

Figure 8: The action gap Q(s, a∗)−Q(s, a2) for the state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies for pa2

is 0.

In this section we provide supplementary results on the action gap without the normalization
Q(s, a)/

∑
a |Q(s, a)|. In particular, Figure 8, Figure 9 and Figure 10 show the action gap for

the vanilla trained deep neural policies and state-of-the-art adversarial deep neural policies when pa2

is 0, 0.1 and 0.2 respectively. Hence, the action gap for adversarially trained deep neural policies is
higher than for vanilla trained deep neural policies.

Figure 9: The action gap Q(s, a∗)−Q(s, a2) for state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies for pa2 is 0.1.

Figure 10: The action gap Q(s, a∗)−Q(s, a2) for state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies for pa2

is 0.2.

9.1 SUPPLEMENTARY RESULTS ON ACTION GAP WITH NORMALIZED STATE-ACTION VALUES

In the remainder of this section we provide additional results on normalized state-action values for
adversarially trained and vanilla trained deep neural policies.

In more detail, Figure 11 and Figure 12 show the normalized state-action values of the optimal action,
second best action a2 and worst action aw for vanilla trained deep neural policies and adversarially
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Figure 11: Normalized state-action values for the best action a∗, second best action a2 and worst
action aw over states when pa2 is 0.01. Row1: Vanilla trained deep neural policies. Row2: State-of-
the-art adversarially trained deep neural policies.

Figure 12: Normalized state-action values for the best action a∗, second best action a2 and worst
action aw over states when pa2 is 0.1. Row1: Vanilla trained deep neural policies. Row2: State-of-
the-art adversarially trained deep neural policies.

trained deep neural policies when pa2
is 0.01 and 0.1 respectively. Thus, Figure 11 and Figure 12

demonstrate that the action gap is higher for the state-of-the-art adversarially trained deep neural
policies compared to vanilla trained deep neural policies. Note that the state-action values in Figure
11 and Figure 12 are normalized Q-values (i.e. normalized via Q(s, a)/

∑
a |Q(s, a)|).
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