
Instance-Dependent Bounds for Zeroth-order
Lipschitz Optimization with Error Certificates

Supplementary Material

François Bachoc
Institut de Mathématiques de Toulouse & University Paul Sabatier

francois.bachoc@math.univ-toulouse.fr

Tommaso Cesari
Toulouse School of Economics

tommaso-renato.cesari@univ-toulouse.fr

Sébastien Gerchinovitz
IRT Saint Exupéry & Institut de Mathématiques de Toulouse

sebastien.gerchinovitz@irt-saintexupery.com

A Useful Results on Packing and Covering

For the sake of completeness, we recall the definitions of packing and covering numbers, as well as
some known useful results.
Definition 1. Fix any norm ‖·‖. For any non-empty and bounded subset E of Rd and all r > 0,

• the r-packing number of E is the largest cardinality of an r-packing of E, i.e.,

N (E, r) := sup
{
k ∈ N∗ : ∃x1, . . . ,xk ∈ E,mini 6=j ‖xi − xj‖ > r

}
;

• the r-covering number of E is the smallest cardinality of an r-covering of E, i.e.,

M(E, r) := min
{
k ∈ N∗ : ∃x1, . . . ,xk ∈ Rd,∀x ∈ E,∃i ∈ [k], ‖x− xi‖ ≤ r

}
.

We also define N (∅, r) =M(∅, r) = 0 for all r > 0.

Covering numbers and packing numbers are closely related. In particular, the following well-known
inequalities hold—see, e.g., (Wainwright, 2019, Lemmas 5.5 and 5.7, with permuted notation ofM
and N).5

Lemma 1. Fix any norm ‖·‖. For any bounded set E ⊂ Rd and all r > 0,

N (E, 2r) ≤M(E, r) ≤ N (E, r) . (8)

Furthermore, for any δ > 0 and all r > 0,

M (Bδ, r) ≤
(

1 + 2
δ

r
Ir<δ

)d
. (9)

We now state a known lemma about packing numbers at different scales. This is the go-to result for
rescaling packing numbers.

5The definition of r-covering number of a subset E of Rd implied by (Wainwright, 2019, Definition 5.1) is
slightly stronger than the one used in our paper, because elements x1, . . . , xN of r-covers belong to E rather
than just Rd. Even if we do not need it for our analysis, Inequality (9) holds also in this stronger sense.

14

Lemma 2. Fix any norm ‖·‖. For any bounded E ⊂ Rd and all 0 < r1 < r2 <∞, we have

N (E, r1) ≤
(

4
r2

r1

)d
N (E, r2) .

Proof. Fix any bounded E ⊂ Rd and 0 < r1 < r2 < ∞. Consider an r1-packing F =
{x1, . . . ,xN1

} of E with cardinality N1 = N (E, r1). Consider then the following iterative pro-
cedure. Let F0 = F and initialize k = 1. While Fk−1 is non-empty, let yk be any point in Fk−1,
let Fk be obtained from Fk−1 by removing the points at ‖·‖-distance less or equal to r2 from yk
(including yk itself), and increase k by one. Then this procedure yields an r2-packing of E with
cardinality equal to the number of steps (the final value kfin of k). At each step k, the balls with
radius r1/2 centered at points that are removed at this step are included in the ball with radius 2r2

centered at yk. By a volume argument, then, the number of removed points at each step is smaller
than or equal to v2r2/vr1/2 = (4r2/r1)d. Hence the total number of steps kfin is greater than or equal
toN (E, r1) (r1/4r2)d. This concludes the proof sinceN (E, r2) is greater than or equal to the total
number of steps kfin.

B Missing Proofs of Section 2

In Section 2, we introduced a certified version of the DOO algorithm. To prove Proposition 1, we
adapt and slightly improve (see Remark 2) some of the arguments in Munos (2011), showing that the
sample complexity of c.DOO is upper bounded (up to constants) by SC(f, ε), defined in Eq. (5).

Proof of Proposition 1. Recall that f is an L-Lipschitz function with a global maximizer x?.

Let us first show that Algorithm 1 is indeed a certified algorithm, that is, f(x?) − f(xn) ≤ ξn
for all n ≥ 1. Note that f(x?) − f(x1) ≤ LR = ξ1, since f is L-Lipschitz and R bounds the
diameter of X0,0 ⊃ X . So, take any n ≥ 2. Consider the state of the algorithm after exactly n
evaluations of f . Let (h?, i?) correspond to the last time that Line 5 was reached and let m be
the total number of evaluations of f made up to that time (m ≤ n). Then the error certificate is
ξn = f(xh?,i?) + LRδh

? − f(x?n). By induction, it is straightforward to show that the union of the
cells in Lj contains X at all steps j ∈ N?. Therefore, the global maximizer x? belongs to a cell Xh̄,̄i

with (h̄, ī) ∈ Lm. We have, using first Line 5 and then Assumption 2 and that f is L-Lipschitz,

f(xh?,i?) + LRδh
?

≥ f(xh̄,̄i) + LRδh̄

≥ f(x?)− LRδh̄ + LRδh̄

= f(x?) . (10)

This shows ξn ≥ f(x?)− f(x?n). Hence Algorithm 1 is a certified algorithm.

We now show the upper bound on σ(c.DOO, f, ε). Consider the infinite sequence ((h?` , i
?
`))`∈N∗ of

the leaves that are successively selected at Line 5 of Algorithm 1. For any leaf (h, i) ∈ ((h?` , i
?
`))`∈N∗ ,

let Nh,i be the number of evaluations of f made by Algorithm 1 until the leaf (h, i) is selected at
Line 5. Define then the stopping time

Iε = inf

{
` ∈ N∗; f(xh?` ,i?`) + LRδh

?
` ≤ max

i∈[Nh?
`
,i?
`

]
f(xi) + ε

}
which corresponds to the first iteration when the event

f(xh?,i?) + LRδh
?

≤ max
i∈[Nh?,i?]

f(xi) + ε (11)

holds at Line 5. Consider the N -th evaluation of f with N = Nh?Iε ,i
?
Iε

+ 1, that is, the first evaluation
of f after the event (11) holds for the first time. Then we have, from (11) with (h?, i?) = (h?Iε , i

?
Iε

),

f(xh?,i?) + LRδh
?

≤ max
i∈[Nh?,i?]

f(xi) + ε ≤ max
i∈[N]

f(xi) + ε,

and thus ξN ≤ ε. Since by definition σ(c.DOO, f, ε) = min{n ∈ N∗ : ξn ≤ ε}, we have

σ(c.DOO, f, ε) ≤ N = Nh?Iε ,i
?
Iε

+ 1 ≤ 2 +K(Iε − 1) . (12)

15

We now bound Iε − 1 from above. Assume without loss of generality that Iε − 1 ≥ 1 and consider
the sequence (h?1, i

?
1), . . . , (h?Iε−1, i

?
Iε−1) corresponding to the first Iε − 1 times the DOO algorithm

went through Line 5. Let Eε be the corresponding finite set {xh?1 ,i?1 , . . . ,xh?Iε−1,i
?
Iε−1
}. Recall that

εmε := ε and εi := ε02−i for i < mε, with ε0 := Lmaxx,y∈X ‖x− y‖. Recall also that Xε :=
{x ∈ X : max(f)− f(x) ≤ ε} and for all 0 ≤ a < b, X(a,b] :=

{
x ∈ X : a < f(x?)− f(x) ≤ b

}
.

Since any x ∈ X is ε0-optimal, then it either belongs to Xε or one of the layers X(εi,εi−1]. Thus we
have Eε ⊂ Xε

⋃(⋃mε
i=1 X(εi, εi−1]

)
, so that

Iε − 1 = card(Eε) ≤ card (Eε ∩ Xε) +

mε∑
i=1

card
(
Eε ∩ X(εi, εi−1]

)
. (13)

Let Nε,mε+1 be the cardinality of Eε ∩ Xε. For i = 1, . . . ,mε, let Nε,i be the cardinality of
Eε ∩ X(εi, εi−1].

Note that the arguments leading to (10) imply that for xh,j ∈ Eε,
xh,j ∈ XLRδh . (14)

Consider two distinct xh,j ,xh′,j′ ∈ Eε ∩ X(εi, εi−1]. Then, from Assumption 3 and (14), we obtain

||xh,j − xh′,j′ || ≥ νδmax(h,h′) >
νεi
LR

.

Hence, by definition of packing numbers, we have

Nε,i ≤ N
(
X(εi, εi−1],

νεi
LR

)
.

Using now Lemma 2 (Section A), we obtain

Nε,i ≤

(
1ν/R≥1 + 1ν/R<1

(
4R

ν

)d)
N
(
X(εi, εi−1],

εi
L

)
. (15)

Let now xh?` ,i?` ∈ Eε ∩ Xε, with ` ∈ {1, . . . , Iε − 1}. The leaf (h?` , i
?
`) was selected when the

algorithm went through Line 5 for the `-th time. By definition of Iε, the event (11) does not hold
when (h?, i?) = (h?` , i

?
`) and thus

f(xh?` ,i?`) + LRδh
?
` > max

i∈[Nh?
`
,i?
`

]
f(xi) + ε ≥ f(xh?` ,i?`) + ε .

This implies that LRδh
?
` > ε and thus

δh
?
` >

ε

LR
.

Now consider two distinct xh,j ,xh′,j′ ∈ Eε ∩ Xε. Then, from Assumption 3, we obtain

||xh,j − xh′,j′ || ≥ νδmax(h,h′) >
νε

LR
.

Hence, we have
Nε,mε+1 ≤ N

(
Xε,

νε

LR

)
.

Using now Lemma 2 (Section A), we obtain

Nε,mε+1 ≤

(
1ν/R≥1 + 1ν/R<1

(
4R

ν

)d)
N
(
Xε,

ε

L

)
.

Combining (12) and (13) with (15) and the last inequality concludes the proof.
Remark 2. The analysis of the DOO algorithm in Munos (2011, Theorem 1) does not address the
certified setting. The previous proof adapts this analysis to the certified setting and, in passing,
slightly improves some of the arguments. Indeed, when counting the cell representatives that are
selected, Munos (2011, Theorem 1) partitions the domain X at any depth h of the tree, yielding
bounds involving packing numbers of the form N

(
Xεk−1

, εkL
)
, k = 1, . . . ,mε. In contrast we

partition the values of f , yielding bounds involving the smaller packing numbers N
(
X(εk,εk−1],

εk
L

)
,

k = 1, . . . ,mε (and N
(
Xε, εL

)
that is specific to the certified setting). This improvement also

enables us to slightly refine the bound of Munos (2011, Theorem 1) in the non-certified setting,
see Remark 4 in Section E. We also refer to this remark for more details on the two partitions just
discussed.

16

Remark 3. The bound of Proposition 1, based on Eq. (5), is built by partitioning [0, ε0] into the
mε + 1 sets [0, ε], (ε, εmε−1], (εmε−1, εmε−2], . . . , (ε1, ε0] whose lengths are sequentially doubled
(except from [0, ε] to (ε, εmε−1] and from (ε, εmε−1] to (εmε−1, εmε−2]). As can be seen from the
proof of Proposition 1, more general bounds could be obtained, based on more general partitions of
[0, ε0]. The benefits of the present partition are the following. First, except for [0, ε], it considers sets
whose upper values are no more than twice the lower values, which controls the magnitude of their
corresponding packing numbers in Eq. (5), at scale the lower values. Second, the number of sets in
the partition is logarithmic in 1/ε which controls the sum in Eq. (5). Finally, the upper bound is then
tight up to a logarithmic factor for functions f ∈ FL, as proved in Section 4. Note also that the same
generalization could be applied in the non-certified setting, see Section E.

C Missing Proofs of Section 3

We now prove a result on the sum of volumes of overlapping layers that is used in the proof of
Theorem 1.

Lemma 3. If f is L-Lipschitz, fix ε ∈ (0, ε0] and recall that mε :=
⌈
log2(ε0/ε)

⌉
, εmε := ε, and for

all k ≤ mε − 1, εk =: ε02−k. Then

vol
(
X2ε

)
εd

+

m∑
k=1

vol
(
X(1

2 εk, 2εk−1]

)
εdk−1

≤ 8d

(
vol(Xε)
εd

+

m∑
i=1

vol
(
X(εk, εk−1]

)
εdk−1

)
.

Proof. To avoid clutter, we denote mε simply by m. Assume first that m ≥ 3. Then, the left hand
side can be upper bounded by

vol
(
Xε
)

+ vol
(
X(εm, εm−1]

)
+ vol

(
X(εm−1, εm−2]

)
εd

+

m−2∑
k=1

vol
(
X(εk+1, εk]

)
+ vol

(
X(εk, εk−1]

)
vol
(
X(εk−1, εk−2]

)
εdk−1

+
vol (Xε) + vol

(
X(εm, εm−1]

)
+ vol

(
X(εm−1, εm−2]

)
+ vol

(
X(εm−2, εm−3]

)
εdm−2

+
vol (Xε) + vol

(
X(εm, εm−1]

)
+ vol

(
X(εm−1, εm−2]

)
εdm−1

≤ 3
vol
(
Xε
)

εd
+ (2d + 2)

vol
(
X(εm, εm−1]

)
εdm−1

+ (4d + 2d + 1)
vol
(
X(εm−1, εm−2]

)
εdm−2

+
1

2d

m−1∑
k=2

vol
(
X(εk, εk−1]

)
εdk−1

+

m−2∑
k=1

vol
(
X(εk, εk−1]

)
εdk−1

+ 2d
m−3∑
k=1

vol
(
X(εk, εk−1]

)
εdk−1

= 3
vol
(
Xε
)

εd
+

vol
(
X(εm, εm−1]

)
εdm−1

+ 4d
vol
(
X(εm−1, εm−2]

)
εdm−2

+
1

2d

m−1∑
k=2

vol
(
X(εk, εk−1]

)
εdk−1

+

m∑
k=1

vol
(
X(εk, εk−1]

)
εdk−1

+ 2d
m∑
k=1

vol
(
X(εk, εk−1]

)
εdk−1

where we applied several times the definition of the εk’s, the inequality follows by 1/εd + 1/εdm−1 +
1/εdm−2 ≤ min

{
3(1/εd), (2d + 2)(1/εdm−1), (4d + 2d + 1)(1/εdm−2)

}
, and the bound follows after

observing that max(3, 1, 4d) = 4d and 4d + 1/2d + 1 + 2d ≤ 8d. The simple cases m = 1 and m = 2
can be treated similarly.

We denote by A+B the Minkowski sum of two sets A,B and for any set A and all λ ∈ R, we let
λA := {λa : a ∈ A}.

17

Proposition 4. If f is L-Lipschitz and X satisfies Assumption 4 with r0 > 0, γ ∈ (0, 1], then, for all
0 < w < u < 2Lr0,

N
(
Xu,

u

L

)
≤ 1

γ

vol
(
X(3/2)u

)
vol
(
u

2LB1

) and N
(
X(w,u],

w

L

)
≤ 1

γ

vol
(
X(w/2,3u/2]

)
vol
(
w
2LB1

) .

Proof. Fix any u > w > 0. Let η1 := u
L , η2 := w

L , E1 := X , E2 := X cw, and i ∈ [2]. Note that
for any η > 0 and A ⊂ X , the balls of radius η/2 centered at the elements of an η-packing of A
intersected with X are all disjoint and included in

(
A+Bη/2(0)

)
∩ X . Thus, letting Pi be a set of

ηi-separated points included in Ai := Xu ∩ Ei with cardinality |Pi| = N (Ai, ηi), we have

vol
((
Ai +Bηi/2(0)

)
∩ X

)
≥
∑
x∈Pi

vol
(
Bηi/2(x) ∩ X

)
≥ γvol

(
Bηi/2(0)

)
N (Ai, ηi) ,

where the second inequality follows by Assumption 4. We now further upper bound the left-hand side.
Take an arbitrary point xi ∈ (Xu ∩Ei +Bηi/2) ∩ X . By definition of Minkowski sum, there exists
x′i ∈ Xu ∩ Ei such that ‖xi − x′i‖ ≤ ηi/2. Hence f(x?) − f(xi) ≤ f(x?) − f(x′i) +

∣∣f(x′i) −
f(xi)

∣∣ ≤ u + L(ηi/2) ≤ (3/2)u. This implies that xi ∈ X(3/2)u, which proves the first inequality.
For the second one, note that x2 satisfies f(x?)− f(x2) ≥ f(x?)− f(x′2)−

∣∣f(x′2)− f(x2)
∣∣ ≥

w − L(η2/2) = (1/2)w.

D Missing Proofs of Section 4

In this section we provide all missing details and proofs from Section 4.

D.1 Missing details in the Proof of Theorem 2

We claimed that the quantity τ introduced in Eq. (7) lower bounds the sample complexity σ(A, f, ε)
of any certified algorithm A. To prove this formally, fix an arbitrary certified algorithm A, let N =
σ(A, f, ε), and assume by contradiction thatN < τ . Then we have errN (A) ≥ infA′

(
errN (A′)

)
> ε

by definition of τ . This means that there exists an L-Lipschitz function g, coinciding with f on
x1, . . . ,xN and such that max(g)−x?N > ε. Now, since xi, x?i , and ξi are deterministic functions of
the previous observations f(x1) = g(x1), . . . , f(xi−1) = g(xi−1) (for all i = 1, . . . , N), running
A on either f or g returns the same xi, x?i , and ξi (for all i = 1, . . . , N). Thus we have that
σ(A, g, ε) = σ(A, f, ε) = N . This, together with the fact that A is a certified algorithm, implies that
ε < max(g)− x?N ≤ ξN ≤ ε, which yields a contradiction.

D.2 Proof of Proposition 2

Let f be an arbitrary L-Lipschitz function. Let Q = 8. As for the proof of Theorem 2, it is sufficient
to show that τ > cSC(f, ε)/(1 + mε), with τ defined in (7). If cSC(f, ε)/(1 + mε) < 1, then the
result follows by τ ≥ 1. Consider then from now on that cSC(f, ε)/(1 +mε) ≥ 1.

Defining ε̃ as in the proof of Theorem 2, one can prove similarly that cSC(f, ε)/(1 + mε) ≤
cN (Xε̃, ε̃/2L). From Lemma 2,

N
(
Xε̃,

Qε̃

L

)
≥ 1

8Q
N
(
Xε̃,

ε̃

2L

)
≥ 1

8Q

SC(f, ε)

mε + 1
≥ 12 ,

because c = 1/96Q and cSC(f, ε)/(1 + mε) ≥ 1. Let now n ≤ cSC(f, ε)/(1 + mε). Then
we have n ≤ c(8Q)N (Xε̃, Qε̃/L). Thus, by c(8Q) = 1/12, n ≤ N (Xε̃, Qε̃/L) /12, and
N (Xε̃, Qε̃/L) ≥ 12, we have

n ≤

N
(
Xε̃, Qε̃L

)
2

− 4 . (16)

Consider a certified algorithm A for L-Lipschitz functions. Let us consider a Qε̃/L pack-
ing x̃1 < x̃2 < · · · < x̃N of Xε̃ with N = N

(
Xε̃, Qε̃/L

)
. Consider the bN/2c − 1 dis-

joint open segments (x̃1, x̃3), (x̃3, x̃5), . . ., (x̃2bN/2c−3, x̃2bN/2c−1). Then from (16) there ex-
ists i ∈

{
1, 3, . . . , 2 bN/2c − 3

}
such that the segment (x̃i, x̃i+2) does not contain any of

18

the points x1 = x1(A, f), . . . , xn = xn(A, f) that A queries when run on f . Assume that
x̃i+1 − x̃i ≤ x̃i+2 − x̃i+1 (the case x̃i+1 − x̃i > x̃i+2 − x̃i+1 can be treated analogously; we
omit these straightforward details for the sake of conciseness). Consider the function h+,ε̃ : X → R
defined by

h+,ε̃(x) =


f(x) if x ∈ X\[x̃i, x̃i+2]

f(x̃i) + L(x− x̃i) if x ∈ X ∩ [x̃i, x̃i+1]

f(x̃i) + L(x̃i+1 − x̃i) + (x− x̃i+1)
f(x̃i+2)−f(x̃i)−L(x̃i+1−x̃i)

x̃i+2−x̃i+1
if x ∈ X ∩ (x̃i+1, x̃i+2] .

We see that h+,ε̃ is L-Lipschitz (since x̃i+1 − x̃i ≤ x̃i+2 − x̃i+1). Furthermore, h+,ε̃ coincides with
f at all query points x1, . . . , xn. Similarly, consider the function h−,ε̃ : X → R defined by

h−,ε̃(x) =


f(x) if x ∈ X\[x̃i, x̃i+2]

f(x̃i)− L(x− x̃i) if x ∈ X ∩ [x̃i, x̃i+1]

f(x̃i)− L(x̃i+1 − x̃i) + (x− x̃i+1)
f(x̃i+2)−f(x̃i)+L(x̃i+1−x̃i)

x̃i+2−x̃i+1
if x ∈ X ∩ (x̃i+1, x̃i+2] .

As before, h−,ε̃ is L-Lipschitz and coincides with f on x1, . . . , xn.

Let x?n = x?n(A, f) be the recommendation of A at round n when run on f .

Case 1: x?n ∈ X\[x̃i, x̃i+2]. Then, since x̃i ∈ Xε̃ and x̃i+1 − x̃i ≥ Qε̃/L, we have

h+,ε̃(x̃i+1)− h+,ε̃(x
?
n) = f(x̃i) + L(x̃i+1 − x̃i)− f(x?n) ≥ −ε̃+ L

Qε̃

L
= 7ε̃ .

Case 2: x?n ∈ X ∩
[
x̃i, (x̃i + x̃i+1)/2

]
. Then, since x̃i+1 − x̃i ≥ Qε̃/L, we have

h+,ε̃(x̃i+1)− h+,ε̃(x
?
n) = f(x̃i) + L(x̃i+1 − x̃i)− f(x̃i)− L(x?n − x̃i) ≥ L

x̃i+1 − x̃i
2

≥ 4ε̃ .

Case 3: x?n ∈ X ∩
[
(x̃i + x̃i+1)/2, x̃i+1

]
. Then, since x̃i+1 − x̃i ≥ Qε̃/L, we have

h−,ε̃(x̃i)− h−,ε̃(x?n) = f(x̃i)− f(x̃i) + L(x?n − x̃i) ≥ L
x̃i+1 − x̃i

2
≥ 4ε̃ .

Case 4: x?n ∈ X ∩
[
x̃i+1, (x̃i+1 + x̃i+2)/2

]
. Then, since x̃i+1 − x̃i ≥ Qε̃/L, since x̃i, x̃i+2 ∈ Xε̃,

and since h−,ε̃ is linear increasing on [x̃i+1, x̃i+2] with left value f(x̃i) − L(x̃i+1 − x̃i) and right
value f(x̃i+2), we have

h−,ε̃(x̃i)− h−,ε̃(x?n) ≥ f(x̃i)−
f(x̃i)− L(x̃i+1 − x̃i) + f(x̃i+2)

2

=
f(x̃i)− f(x̃i+2)

2
+ L

x̃i+1 − x̃i
2

≥ − ε̃
2

+
Q

2
ε̃ ≥ 3ε̃ .

Case 5: x?n ∈ X ∩
[
(x̃i+1 + x̃i+2)/2, x̃i+2

]
. Then, since x̃i+1 − x̃i ≥ Qε̃/L, since x̃i, x̃i+2 ∈ Xε̃

and since h+,ε̃ is linear decreasing on [x̃i+1, x̃i+2] with left value f(x̃i) + L(x̃i+1 − x̃i) and right
value f(x̃i+2), we have

h+,ε̃(x̃i+1)− h+,ε̃(x
?
n) ≥ f(x̃i) + L(x̃i+1 − x̃i)−

f(x̃i) + L(x̃i+1 − x̃i) + f(x̃i+2)

2

=
f(x̃i)− f(x̃i+2)

2
+ L

x̃i+1 − x̃i
2

≥ − ε̃
2

+
Q

2
ε̃ ≥ 3ε̃ .

Putting all cases together and recalling the definition of errn(A) in the proof of Theorem 2, we then
obtain errn(A) ≥ 3ε̃ > ε. Being A arbitrary, this implies infA′ errn(A′) > ε. Since this has been
shown for any n ≤ cSC(f, ε)/(1 +mε) we thus have τ > cSC(f, ε)/(1 +mε).

D.3 The Piyavskii-Shubert Algorithm and Proof of Proposition 3

The Piyavskii-Shubert Algorithm. In this section, we recall the definition of the certified
Piyavskii-Shubert algorithm (Algorithm 2, Piyavskii 1972; Shubert 1972) and we show that if
Lip(f) = L (i.e., if the best Lipschitz constant of f is known exactly by the algorithm) the sample
complexity can be constant in dimension d ≥ 2 (Proposition 3).

19

Algorithm 2: Certified Piyavskii-Shubert algorithm (PS)
input: Lipschitz constant L > 0, norm ‖·‖, initial guess x1 ∈ X
for i = 1, 2, . . . do

pick the next query point xi
observe the value f(xi)
output the recommendation x?i ← argmaxx∈{x1,...,xi} f(x)

output the error certificate ξi = f̂?i − f?i , where f̂i(·)← minj∈[i]

{
f(xj) + L ‖xj − (·)‖

}
,

f̂?i ← maxx∈X f̂i(x), f?i ← maxj∈[i] f(xj), and let xi+1 ∈ argmaxx∈X f̂i(x)

Proof of Proposition 3. Fix any ε ∈ (0, ε0) and any L-Lipschitz function f . Since f is L-
Lipschitz, then maxx∈X f̂i(x) ≥ maxx∈X f(x) for all i ∈ N∗. Hence maxx∈X f(x) − f(x?i) ≤
maxx∈X f̂i(x) − f?i = ξi. This shows that the certified Piyavskii-Shubert algorithm is indeed a
certified algorithm. Then, if f := L ‖·‖ and x1 := 0, we have that f̂1 = f , ξ1 = L, and x2

belongs to the the unit sphere, i.e., x2 is a maximizer of f . Since f̂2 = f , we have that ξ2 = 0,
hence σ(PS, f, ε) = 2. Finally, by definition (5), we have SC(f, ε) ≥ N (argmaxX f, ε/L). Since
argmaxX f is the unit sphere, there exists a constant cd, only depending on d, ‖·‖ and L, such that
SC(f, ε) ≥ cd/εd−1.

We give some intuition on Proposition 3. Consider a function f that has Lipschitz constant exactly L,
and a pair of points in X whose respective values of f are maximally distant, that is the difference of
values of f is exactly L times the norm of the input difference. This configuration provides strong
information on the value of the global maximum of f , as is illustrated in the proof of Proposition 3.
Another interpretation is that when f has Lipschitz constant exactly L, there is less flexibility for
the L-Lipschitz function g that yields the maximal optimization error in errn(A) (introduced in the
proof of Theorem 2).

E Comparison with the classical non-certified setting

For the interested reader who is not familiar with DOO, in this section, we recall and analyze the
classical non-certified version of this algorithm. As mentioned in Remark 2, our analysis is slightly
tighter than that of Munos (2011), and serves as a better comparison for highlighting the differences
between the certified and the non-certified settings (see Remark 5 below).

The difference between our certified version c.DOO and the classical non-certified DOO algorithm
(denoted by nc.DOO below) is that the latter does not output any certificates ξ1, ξ2, In other
words, nc.DOO coincides with Algorithm 1 except for Lines 3 and 13. In particular, it outputs the
same query points x1,x2, . . . and recommendations x?1,x

?
2, . . . as c.DOO. The performance of this

non-certified algorithm is classically measured by the non-certified sample complexity (6), i.e., the
smallest number of queries needed before outputting an ε-optimal recommendation.
Proposition 5. If Assumptions 2 and 3 hold, the non-certified sample complexity of the non-certified
DOO algorithm nc.DOO satisfies, for all Lipschitz functions f ∈ FL6 and any accuracy ε ∈ (0, ε0],

ζ(nc.DOO, f, ε) ≤ 1 + Cd

mε∑
k=1

N
(
X(εk,εk−1],

εk
L

)
,

where Cd = K
(
1ν/R≥1 + 1ν/R<1(4R/ν)d

)
.

Proof. The proof of Proposition 1 (Section B), from the beginning to (10), implies that, for any
(h?, i?) in Line 5 of Algorithm 1,

f(xh?,i?) ∈ XLRδh? . (17)
The guarantee (17) is classical (e.g., Munos 2011).

We now proceed in a direction that is slightly different from the proof of Munos (2011, Theorem 1).
Consider the first time at which the DOO algorithm reaches Line 5 with f(xh?,i?) ≥ f(x?) − ε.

6Our proof can be easily adapted to the weaker assumption that f is only L-Lipschitz around a maximizer.

20

Then let Iε be the number of times the DOO algorithm went through Line 5 strictly before that time,
and denote by nε the total number of evaluations of f strictly before that same time. We have

nε ≤ 1 +KIε .

Furthermore, after nε evaluations of f , we have, by definitions of the recommendation x?nε and nε,

f(x?nε) = max
x∈{x1,...,xnε}

f(x) ≥ f(xh?,i?) ≥ f(x?)− ε .

This inequality entails that the non-certified sample complexity of nc.DOO is bounded by nε and
thus

ζ(nc.DOO, f, ε) ≤ 1 +KIε. (18)

We now bound Iε from above, and assume without loss of generality that Iε ≥ 1. Consider now
the sequence (h?1, i

?
1), . . . , (h?Iε , i

?
Iε

) corresponding to the first Iε times the DOO algorithm nc.DOO
went through Line 5. Let Eε be the corresponding finite set {xh?1 ,i?1 , . . . ,xh?Iε ,i?Iε} (a leaf can never
be selected twice). By definition of Iε, we have Eε ⊆ X(ε,ε0]. Since ε = εmε ≤ εmε−1 ≤ . . . ≤ ε0,
we have Eε ⊆

⋃mε
i=1 X(εi, εi−1], so that the cardinality Iε of Eε satisfies

Iε = card(Eε) ≤
mε∑
i=1

card
(
Eε ∩ X(εi, εi−1]

)
. (19)

Let Nε,i be the cardinality of Eε ∩ X(εi, εi−1]. The same arguments as from (13) to (15) in the proof
of Proposition 1 yield

Nε,i ≤

(
1ν/R≥1 + 1ν/R<1

(
4R

ν

)d)
N
(
X(εi, εi−1],

εi
L

)
. (20)

Combining the last inequality with (18) and (19) concludes the proof.

Remark 4. The analysis of the DOO algorithm in Munos (2011, Theorem 1) (non-certified version)
yields a bound on the non-certified sample complexity (6) than can be expressed in the form 1 +
C
∑mε
k=1N

(
Xεk−1

, εkL
)
, with a constant C. The corresponding proof relies on two main arguments.

First, when a cell of the form (h?, i?), i? ∈ {0, . . . ,Kh? − 1}, is selected in Line 5 of Algorithm 1,
then the corresponding cell representative xi?,h? is LRδh

?

-optimal (we also use this argument).
Second, as a consequence, for a given fixed value of h?, for the sequence of values of i? that are
selected in Line 5 of Algorithm 1, the corresponding cell representatives xh?,i? form a packing of
XLRδh? .

Our slight refinement in the proof of Proposition 5 stems from the observation that using a pack-
ing of XLRδh? yields a suboptimal analysis, since the cell representatives xh?,i? can be much
better than LRδh

?

-optimal. Hence, we proceed differently from Munos (2011), by first parti-
tioning all the selected cell representatives (in Line 5 of Algorithm 1) according to their level
of optimality as in (19) and then by exhibiting packings of the different layers of input points
X(ε,εmε−1],X(εmε−1,εmε−2], . . . ,X(ε1,ε0]. In a word, we partition the values of f instead of partition-
ing the input space when counting the representatives selected at all levels.
Remark 5. In the Introduction, below Eq. (6), we mentioned the inherent difference between the
sample complexity σ(A, f, ε) in the certified setting and the more classical sample complexity
ζ(A, f, ε) in the non-certified setting. We can now make our statements more formal.

Our paper shows that in the certified setting, the sample complexity σ(A, f, ε) of an optimal algo-
rithm A (e.g., A = c.DOO) is characterized by the quantity

SC(f, ε) := N
(
Xε,

ε

L

)
+

mε∑
k=1

N
(
X(εk,εk−1],

εk
L

)
.

In contrast, the previous proposition shows that in the non-certified setting the sample complexity
ζ(nc.DOO, f, ε) of the nc.DOO algorithm is upper bounded (up to constants) by

SNC(f, ε) :=

mε∑
k=1

N
(
X(εk,εk−1],

εk
L

)
.

21

The two expressions look remarkably alike but are subtly very different. In fact, the latter depends
only on the “size” (i.e., the packing numbers) of suboptimal points. The former has an additional
term measuring the size of near-optimal points. Now, note that the flatter a function is, the fewer
suboptimal points there are. This implies that the sum

∑mε
k=1N

(
X(εk,εk−1],

εk
L

)
becomes very small

(hence, so does SNC(f, ε)), but in turn, the set of near-optimal points Xε becomes large (hence, so
does SC(f, ε)). For instance, in the extreme case of constant functions f , we have SNC(f, ε) = 0 but
SC(f, ε) ≈ (L/ε)d. This fleshes out the fundamental difference between certified and non-certified
optimization, giving formal evidence to the intuition that the more “constant” a function is, the easier
it is to recommend an ε-optimal point, but the harder it is to certify that such recommendation is
actually a good recommendation.

22

