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A Appendix

We include in this appendix additional information about the proposed method, including implemen-
tation details, experimental results, visualizations and proofs.

A.1 Additional implementation details

PHM algorithm. We use the probabilistic Hough matching (PHM) algorithm (1) to compute region
similarity scores in our implementation due to its effectiveness in object discovery (1; 10; 11). Given
two images i and j, the PHM algorithm (1) computes the match between region k of image i and
region l of image j a score defined as:

Skl
ij = aklij

∑
k′,l′

Kkl,k′l′

ij ak
′l′

ij , (PHM)

where aklij is the appearance similarity between the two regions andKkl,k′l′

ij measures how compatible
two potential matches (k, l) and (k′, l′) are geometrically. The “Hough” part of the algorithm’s name
comes from the associated geometric voting procedure. In our implementation, aklij is the dot product

of the unnormalized CNN features associated with the two regions, and Kkl,k′l′

ij is computed by
comparing the matches (k, l) and (k′, l′) against a set of discretized geometric transformations.
See (1; 10) for more details.

Parallel power iterations. We solve Q, P, and LOD with the power iteration method (12) (Algo-
rithm 1 below). Since the adjacency matrix (in Q) and the PageRank matrix (in P) are very large,
we divide them into chunks of consecutive rows of approximately equal size. At iteration t in the
optimization, these chunks are loaded in parallel into multiple processors’ memories for multiplication
with the current iterate xt. The results of these operations are chunks of the new vector xt+1 which is
then assembled from them. We run up to T = 50 iterations of the power method in each experiment.

A.2 Influence of hyper-parameters

The proposed method has two important hyper-parameters, the damping factor β in PageRank and the
scalar α used to select reliable object candidates in LOD. In practice, β should be small so as not to
change much the weight matrix A and α should also be small since we only want to select a few top-
scoring proposals. We have evaluated PageRank for object discovery on C20K and Op50K datasets1

with increasing values of β, ranging from 10−5 to 10−1, and present the results in Table 1 (left).
1We remind that C20K is a subset of COCO (7) (C120K) and that Op50K is a subset of OpenImages (6)

(Op1.7M).
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Algorithm 1: Parallel power iterations for finding the first eigenvector of a matrix A.
Result: The first eigenvector of A.
Input: Number M of matrix chunks, chunks of matrix rows A1,. . . ,AM of A, number of region
proposals N , norm Lp (p = 1 for P and p = 2 for Q), number of iterations T .

Initialization: x0 =
1

‖eN‖p
eN .

for t = 0 to T − 1 do
In parallel in multiple processors:
for i = 1 to M do

Load matrix chunk Ai into memory.
Compute the i-th chunk xt+1,i = Aixt.

end
In the main processor, assemble xt+1 from its chunks: xt+1 = [xt+1,1;xt+1,2; . . . ;xt+1,M ].

Normalize: xt+1 =
1

‖xt+1‖p
xt+1.

end
Return xT .

Table 1: Influence of the damping factor β on PageRank’s performance (left) and of the selection factor α on
LOD’s performance (right) on the C20K and Op50K datasets.

β
Single-object Multi-object

CorLoc AP50 AP@[50:95]
C20K Op50K C20K Op50K C20K Op50K

10−5 48.0 47.8 6.3 6.13 1.89 1.8
10−4 48.0 47.8 6.29 6.19 1.89 1.81
10−3 47.9 47.7 6.22 6.08 1.87 1.78
10−2 47.0 47.0 5.82 5.69 1.76 1.68
10−1 40.0 38.8 4.45 4.14 1.34 1.22

α
Single-object Multi-object

CorLoc AP50 AP@[50:95]
C20K Op50K C20K Op50K C20K Op50K

0.05 48.4 48.2 6.63 6.5 1.99 1.89
0.10 48.5 48.1 6.63 6.46 1.98 1.88
0.15 48.5 48.2 6.64 6.49 1.99 1.89
0.20 48.5 48.2 6.64 6.48 1.99 1.89

This experiment shows that the performance of PageRank begins to drop when β becomes larger
than 10−3 and deteriorates significantly when it exceeds 10−2. It does not depend much on β when
this parameter is small enough (less than 10−3). We choose β = 10−4 in our implementation. We
have also evaluated LOD with different values of α, taken in {0.05, 0.1, 0.15, 0.2}, which amounts to
selecting 5%, 10%, 15% and 20% of candidates respectively, and show the results in Table 1 (right).
As long as α is reasonably small, its value does not significantly affect the performance of LOD. We
choose α = 0.1 in our implementation.

We have also assessed on the C20K and Op50K datasets the sensitivity of LOD to N , the number
of initial image neighbors, and to γ, the parameter controlling the strength of the small perturbation
added to the score matrix W . ForN , we have tried different values from 100 to 500 and found that the
performance improves only slightly when more neighbors are considered. However, the computational
cost increases linearly with N and we find that using 100 neighbors is a good compromise for our
datasets. As discussed later, the number of neighbors might need to be changed in case of (undetected)
near duplicates or in the case of videos (with successive, highly similar frames). For γ, we have
varied its value in {10−6, 10−5, 10−4, 10−3, 10−2} and found that the performance does not vary
much (≤ 0.5%) when γ ≤ 10−4 and slightly degrades when γ ≥ 10−3. This shows that LOD is
insensitive to γ as long as it is small enough.

A.3 Influence of the number of object proposals on object discovery performance

Unlike (11), we are able to use almost all the regions produced by the proposal algorithm (2000
regions per image at most) thanks to the good scalability of our formulation. On average, we have
814 and 850 regions per image on C20K and Op50K, respectively. We have evaluated LOD on C20K
and Op50K using different numbers of proposals (see Table 2) and observed that its performance
improves with additional region proposals, notably in the multi-object setting. This observation partly
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explains our better performance compared to (11) (which places a limit on the number of regions for
computational reasons) and the benefit of using all region proposals.

Table 2: Influence of the number of object proposals on performance of LOD.

# of regions C20K Op50K

CorLoc AP50 AP@[50:95] CorLoc AP50 AP@[50:95]

50 40.9 4.5 1.22 42.0 4.55 1.31
100 44.0 5.38 1.47 43.4 5.1 1.4
200 46.5 6.13 1.71 45.6 5.83 1.61
400 48.0 6.6 1.91 47.1 6.32 1.77
All 48.5 6.63 1.98 48.1 6.46 1.88

A.4 Influence of underlying features

We use features from a VGG16 (9) model trained for image classification on ImageNet (2) in our
main experiments. We have also tested LOD with features from VGG19 (9) and ResNet50 (4) and
present the results on C20K and Op50K in Table 3. Although VGG19 and ResNet50 give better
results in image classification (4; 9), they perform worse than VGG16 in object discovery with LOD.
This may be due to the fact that they are more discriminative, focusing mostly on the most prominent
object parts thus less helpful in localizing entire objects, although we do not have a definitive answer
(yet) for this.

Table 3: LOD performance with VGG19 (9), ResNet50 (4) and VGG16 (9) features on C20K and Op50K
datasets. Although the latter are more powerful in image classification, VGG16 features yield the best results in
object discovery with LOD.

Features
Single-object Multi-object

CorLoc AP50 AP@[50-95

C20K Op50K C20K Op50K C20K Op50K

VGG19 (9) 47.4 45.1 6.27 5.57 1.84 1.58
ResNet50 (4) 35.4 45.9 4.08 5.59 1.05 1.46
VGG16 (9) 48.5 48.1 6.63 6.46 1.98 1.88

A.5 Multi-object discovery performance according to a detection rate metric

Contrary to (11), we have evaluated multi-object discovery performance using average precision
(AP) instead of detection rate (11) (DetRate), which can also be thought of recall over ground-truth
objects. We argue (in the main body of our submission) that plain DetRate is not a good metric for
multi-object discovery since it depends on the number m of regions returned per image, which is
pre-defined. Beside the fact that there is a priori no optimal choice for m, evaluating the performance
at a single value of m does not capture the range of possible performances. AP, on the other hand,
summarizes the performance at different values of m.

Despite these remarks, we present here for completeness the multi-object discovery performance
in DetRate for LOD and the baselines in Table 4. In addition to computing DetRate at m = 5 as
in (11), we also consider m = m̄ where m̄ is the average number of ground-truth objects per image
in the dataset, which is 7 for C20K and C120K, and 8 for Op50K and Op1.7M. The results show
that LOD significantly outperforms the baselines in all datasets when detection rate is computed at
m = 5. It also performs better than the others when detection rate is computed at m = m̄, except for
Edgeboxes (EB) (14) on Op1.7M dataset. However, we stress again that we think detection rate is
not a natural metric for multi-object discovery. We show in the main paper that LOD is significantly
better than all baselines in all datasets according to AP, which we think is a more appropriate metric
for object discovery.

A.6 More qualitative results

We show additional examples on COCO (7) in Fig. 1 and on OpenImages (6) in Fig. 2 for which
LOD successfully discovers objects. We also present some failure cases in Fig. 3. LOD typically
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Table 4: Large-scale multi-object discovery performance and comparison to the state of the art on COCO (7),
OpenImages (6) and their respective subsets C20K and Op50K, as measured by detection rate

Method
Multi-object

DetRate (m = 5) DetRate (m = m̄)

C20K C120K Op50K Op1.7M C20K C120K Op50K Op1.7M

EB (14) 12.0 12.1 12.5 12.5 14.5 14.5 16.0 16.0
Wei (13) 6.8 6.9 5.7 5.7 6.8 6.9 5.7 5.7
Kim (5) 10.5 10.6 10.8 - 12.1 12.2 12.9 -
Vo (11) 12.3 11.8 11.8 - 13.3 12.7 13.1 -

Ours (LOD) 14.2 14.2 14.0 13.7 15.7 15.7 16.2 15.8

fails to discover objects that are too small (images 1 to 5) or only discovers the most discriminative
object parts instead of entire objects (images 6 to 8). In some cases, LOD discovers objects that are
not annotated: entrance in image 1, tower in image 2 and flower branch in image 4.

Figure 1: Examples in the COCO (7) dataset where LOD successfully discovers ground-truth objects. Ground-
truth boxes are in yellow and our predictions are in red.

Figure 2: Examples in the OpenImages (6) dataset where LOD successfully discovers ground-truth objects.
Ground-truth boxes are in yellow and our predictions are in red.

A.7 Proof of Lemma 1.

Proof. Since W is symmetric, all its eigenvalues are real and it can be diagonalized by an orthonor-
mal basis of its eigenvectors. The maximizer of tTWt in the unit ball is the unit eigenvector of
W associated with its largest eigenvalue λ∗. Given that W is irreducible, it has a unique, unit,
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Figure 3: Examples in the COCO (7) and OpenImages (6) datasets where LOD fails to discover ground-truth
objects. Ground-truth boxes are in yellow and our predictions are in red.

non-negative eigenvector associated with its largest eigenvalue, according to the Perron-Frobenius
theorem (3; 8). �

Note: This is a classic result, only included here for completeness.
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