
Observation
In ALISTA [1], it was proved that the thresholds of the l1-proximal 
operator must be larger than the l1-error of the current 
reconstruction. In previous literature, the thresholds are learned 
over the entire dataset, and must thus be larger than the 
supremum of all l1-errors. However, too-large thresholds also 
incur larger errors via the error bound in [1].
Idea
We can make thresholds adaptive to the current target using a 
good approximation of the l1 error. We find that:

Are good approximations and cheap to compute, as they are 
needed (besides norm computation) for the algorithm anyways.
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Problem
We consider the compressed sensing problem, i.e. reconstruction 
of a sparse vector from far fewer observations.
Given:

Solve:
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Left: Correlation between          and u for random 
Gaussian vectors                   is strong for sparse       
and weak for non-sparse vectors                   in (a) 
and             in   in (b)). Also, the correlation 
between        and the true error                  is even 
preserved over multiple layers for an instance of 
NA-ALISTA (c,d).

Top: Neurally Augmented ALISTA in mathematical form. 
          and            are estimated by a neural network and 
adapt to     .       is computed to have optimal coherence 
with     , following the procedure in [1].
Bottom: Neurally Augmented ALISTA in algorithmic form.

Experiments on Gaussian Synthetic Data
We compare NA-ALISTA with competitors (ISTA [2], FISTA[3], ALISTA-AT[4], 
AGLISTA[5]) in sparse reconstruction for M=250, S=50.
Top left: The reconstruction error over the number of iterations K for N=2000, 
SNR=40dB. Top right Reconstruction error over different compression ratios. Bottom 
left: Reconstruction error for LSTM size hidden layer size H for NA-ALISTA. Bottom 
right: Comparison of the ratio       with the true L1-error at each iteration for 
NA-ALISTA.

[1] Liu, Jialin, and Xiaohan Chen. "ALISTA: Analytic weights are as good as learned weights in LISTA." International Conference on Learning Representations (ICLR). 2019.
[2] Daubechies, Ingrid, Michel Defrise, and Christine De Mol. "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint." Communications on Pure and Applied Mathematics. 2004.
[3] Beck, Amir, and Marc Teboulle. "A fast iterative shrinkage-thresholding algorithm for linear inverse problems." SIAM journal on imaging sciences 2.1 (2009): 183-202.
[4] Kim, Dohyun, and Daeyoung Park. "Element-Wise Adaptive Thresholds for Learned Iterative Shrinkage Thresholding Algorithms." IEEE Access 8 (2020): 45874-45886.
[5] Wu, Kailun, et al. "Sparse Coding with Gated Learned ISTA." International Conference on Learning Representations. 2019.R

ef
er

en
ce

s

Neurally Augmented ALISTA


