
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ishita Mediratta, Minqi Jiang, Jack Parker-Holder, Michael Dennis, Eugene Vinitsky, and Tim
Rocktäschel. Stabilizing unsupervised environment design with a learned adversary. In Con-
ference on Lifelong Learning Agents, pages 270–291. PMLR, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design. In
International Conference on Machine Learning, pages 17473–17498. PMLR, 2022.

Sebastian Risi and Julian Togelius. Increasing generality in machine learning through procedural
content generation. Nature Machine Intelligence, 2(8):428–436, 2020.

Christopher D Rosin and Richard K Belew. New methods for competitive coevolution. Evolutionary
computation, 5(1):1–29, 1997.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noor Shaker, Julian Togelius, and Mark J Nelson. Procedural content generation in games. 2016.

Matthew Siper, Ahmed Khalifa, and Julian Togelius. Path of destruction: Learning an iterative level
generator using a small dataset. In 2022 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 337–343. IEEE, 2022.

Joseph Suarez, David Bloomin, Kyoung Whan Choe, Hao Xiang Li, Ryan Sullivan, Nishaanth
Kanna, Daniel Scott, Rose Shuman, Herbie Bradley, Louis Castricato, et al. Neural mmo 2.0: A
massively multi-task addition to massively multi-agent learning. Advances in Neural Information
Processing Systems, 36, 2024.

Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob
Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-ended
learning leads to generally capable agents. arXiv preprint arXiv:2107.12808, 2021.

Julian Togelius and Jurgen Schmidhuber. An experiment in automatic game design. In 2008 IEEE
Symposium On Computational Intelligence and Games, pages 111–118. IEEE, 2008.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via models of
human notions of interestingness. arXiv preprint arXiv:2306.01711, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 HUMAN-CONSTRAINED OPEN-ENDED LEARNING

In this section, we discuss in detail several potential approaches for constraining such open-ended
learning processes as those afforded by Autoverse to remain in or near the space of human-
interpretable or human-relevant games and behaviors.

Standard OEL algorithms—including the one applied here—are based on mathematical approxima-
tions of learning potential. However, there is no guarantee that the types of environments that are
scored as challenging for an artificial player agent would be of interest to a human. As an example,
OEL algorithms can be vulnerable to generating password-guessing games, in which environments
are generated wherein solutions consist of some lengthy and precise series of actions that must be
reproduced exactly in sequence to receive a reward (essentially, the level consists of a password that
the agent must guess). These levels are inherently difficult to solve but contain no structure that can
be learned.

Previous approaches manage to produce interesting and human-interpretable artifacts by heavily
relying on strict constraints built into their simplistic environments. For example, the terrain in
the bipedal walker environment Parker-Holder et al. (2022) must always be connected and non-
overhanging and the agent morphology fixed; and maze environments always involve some arrange-
ment of wall or empty tiles Parker-Holder et al. (2022); Dennis et al. (2020). However, a more
general OEL process, in which new types of entities can be introduced, and new mechanics emerge
between them, removes some of these constraints. The larger the number of evolvable components,
the more time spent generating password guessing games.

In Autoverse, some structure is necessarily present in the rewrite rules themselves: tiles cannot
change arbitrarily, as long as the number of rewrite rules is limited. Whether this underlying struc-
ture is “meaningful” in some way is another matter. Insofar as we care about training game-playing
agents, then this structure is meaningful if it implements a human-interpretable game, such as the
ones we implement here. But as the types of games we want to represent increase in complexity,
and we (likely) need more rules to implement them, the space of possibly meaningless games grows
along with them.

A.1.1 JUMP-STARTING LEARNING FROM HUMAN DEMONSTRATIONS

One possibility is to jump-start the OEL process with human demonstrations of trajectories of level
construction or examples of completed human-authored environments. We can then use imitation
learning or other distribution-matching methods such as GANs or diffusion models to initialize
controllers and environment generators whose behavior is aligned with these human demonstrations.
This allows us to skip an early and long phase of level generation where levels are highly random
and uninteresting. Due to the sparse reward that level generators frequently receive, this phase
can dominate training time. Prior work has explored imitation learning on reverse trajectories of
random destruction to produce human-like environment generators Siper et al. (2022) or aligned
with human heuristics for level quality Khalifa et al. (2020); Earle et al. (2021; 2022); Jiang et al.
(2022). However, it is not yet clear whether these approaches can accelerate the quality of agents
trained in an open-ended learning loop. Future work should investigate whether the incorporation
of these imitated levels, possibly as a constraint on statistical distances between the level generator
and the imitation policy, will lead to agents that are more robust to hold-out test games authored by
human designers.

A.1.2 USING FOUNDATIONS MODELS TO JUDGE HUMAN-RELEVANCE OF LEVELS

Another option to use large multi-modal models trained on massive amounts of human data to inject
useful priors of human-relevance into the learning process. We can assess environments and agents
not only for their learnability and capability, respectively, but also for the degree of relevant novelty
according to the pre-trained foundation model. Due to their training on a massive corpora of text
and video data, these models may have partially internalized notions of what types of levels are
realistic or interesting. Such an approach has already seen some success in generating a curriculum
of interesting player behaviors in the open-world sandbox game Minecraft, with a Large Language

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Model (LLM) being used to generate a curriculum of increasingly novel tasks Wang et al. (2023);
Zhang et al. (2023).

? show that foundation models have sufficient internal knowledge of level structure to generate in-
game structures and environments—again in Minecraft—from text descriptions. This is achieved by
extending an existing text-to-3D method, which uses a text-image model to guide the optimization
of a NeRF given a text prompt. In particular, the NeRF is quantized so as to produce a discrete
representation, which is then mapped to a voxel representation of in-game assets. One can imagine
extending this approach of using foundation models as a translator between modalities to perform
text-to-rewrite-rule and text-to-agent behavior. This is especially true in Autoverse: since the appli-
cation of rewrite rules is differentiable, gradients can be backpropagated through episode rollouts
to optimize discrete rule representations using the quantization method described above, with gra-
dients corresponding to contrastive loss from a vision-language model that is attempting to match
generated environment/agent mechanics/behavior, rendered as a sequence of frames from gameplay,
to a text description

An alternative approach, not relying on the differentiablity of the environment, would be to create a
small dataset of game mechanics and their corresponding natural language descriptors and provide
these as in-context prompts to a foundation model. While past work has demonstrated that this is
effective in simple text-domains Kwon et al. (2023) to create particular agent characteristics, whether
the in-context-learning capabilities of foundation models extend to more complex domains has not
been studied.

A.1.3 OEL WITH HUMAN FEEDBACK

Several forays have been made into the space of human-in-the-loop environment generation, and
these could be extended to incorporate learned player agents. Charity and Togelius (2022) published
a website in which users were invited to design environments given one of a collection of simple
2D tile-sets. A bot would then publish polls on Twitter, with images of two random environments,
asking users to vote for that which was more aesthetically pleasing. This human preference data was
used to continually train a discriminator to predict the quality of environments, which in turn was
used to guide the training of an environment generator, whose output was then included in the set of
environments to be judged by human users on Twitter. In Charity et al. (2020; 2022), a Quality Di-
versity algorithm is used to search for playable levels in the popular indie box-pushing puzzle game
Baba is You, with an emphasis on environments that require engagement with a diversity of game
mechanics (in the game, solving a level usually involves altering one or several of its mechanics, e.g.
temporarily giving the player control over a rock instead of the “Baba” avatar, by pushing into place
a row of tiles reading “rock is you”). These prior works demonstrate that this seemingly laborious
process of having a human-in-the-loop is actually scalable given crowdsourcing.

However, these works only focus on the interesting components of the level that are immediately
available from a static depiction of the level and do not account for the behavior of an agent in
the level e.g. is this level interesting to play, does the agent’s behavior correspond to being stuck,
would this have been a level where they (the human) would have learned a new skill or idea, etc.
We propose to generate sets of paired level play-throughs and ask users to rate which playthrough
they prefer (optionally neither) which can then be used to train a reward model to score levels. After
enough manual human feedback, a surrogate model of human-relevant novelty could be trained,
helping the OEL process to continue generating relevant novelty without the need for constant,
time- and labor-intensive human feedback. (We can think of this as Open-Ended Learning through
Human Feedback, by analogy with the RLHF technique used to guide pre-trained LLMs toward
helpful outputs Ouyang et al. (2022).)

A.2 IN-DEPTH EXAMPLES

In this section, we formally express implementations of a few canonical games in terms of Auto-
verse’s rewrite rules.

Here, we express an environment in terms of a set of rewrite rules, with the ith rewrite rule being
given in terms of its input and output patterns Ii,Oi. Each of these tensors is a c×n×m-size array
(where c is the number of tile types in the environment, and n ×m is the size of a 2D patch on the
board) with values in {−1, 0,+1}. In particular, we define these tensors by populating them with

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

size-c onehot vectors used to identify the presence of particular tile types (denoted TILE to, e.g.,
indicate the onehot vector that would correspond to the presence of a tile of type “Tile” on the map).
The reward resulting from the application of the ith rule is denoted Ri.

A.2.1 MAZE

To express a simple maze environment, where the player can traverse empty (but not wall) tiles, and
is rewarded when it consumes a goal/food tile, we restrict player action to place a FORCE tile at any
tile adjacent to the player’s position, and restrict map generation/mutation such WALL and EMPTY
tiles cannot overlap in the initial map layout. Then, player movement is given by

I0 =

[[
PLAYER, FORCE+

EMPTY

]]
O0 =

[[
0 ,

PLAYER+
EMPTY

]]
and food-consumption is given by

I1 =

[[
PLAYER, FORCE+

FOOD

]]
O1 =

[[
0 ,

PLAYER+
EMPTY

]]
R1 = 1

Note that I0,O0, I1,O1 all have dimensions c × 1 × 2. Since, by default, rules are broken down
into all possible rotations, these rotated patches will capture all 4 possible adjacent arrangements of
PLAYER and FORCE+EMPTY, and PLAYER and FORCE+FOOD activations, respectively. Also
recall that the projection kernel KO, which serves to project the output pattern into the board state
at the following timestep (via transposed convolution) is populated with O − I. So, the PLAYER
activation at cell (0, 0) in I0 will be removed when the rule is applied, even though O0[:, 0, 0] = 0.

If we wanted to additionally penalize the player for attempting to traverse a wall tile, we could add
the rule:

I2 =

[[
PLAYER, FORCE+

WALL

]]
O2 = [[PLAYER, WALL]] R2 = −1

Or, if in such an event we wanted to penalize the player and also kill them, ending the episode,
essentially treating the wall like lava, we could instead write:

I2 =

[[
PLAYER, FORCE+

WALL

]]
O2 = [[0 , WALL]] R2 = −1

A.2.2 SOKOBAN

To implement Sokoban, we once again restrict player actions to involve the placement of FORCE at
adjacent tiles, and restrict WALL activations from overlapping with EMPTY, CRATE, and TARGET
activations in the initial map layout. Rule 0 involving player movement onto empty tiles is identical
to that from the maze environment above. To allow the player to push crates onto empty tiles, we
write:

I1 =

[[
PLAYER, FORCE+

CRATE , EMPTY
]]

O1 =

[[
0 ,

PLAYER+
EMPTY , CRATE

]]
To provide reward at each step for all crates that are positioned on targets, we write:

I2 =

[[
CRATE+
TARGET

]]
O2 =

[[
CRATE+
TARGET

]]
R2 = +1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2.3 BOULDER DASH

Taking Boulder Dash as an example, we can sketch how to implement the game mechanics using
rewrite rules. The player controller has access to 4 actions, each of which will activate the “force”
channel at one of the 4 tiles adjacent to the player avatar. A force tile that overlaps with one of the
tiles constituting the hard border of the game map will disappear (corresponding to an invalid move
action). A force tile that overlaps with a dirt tile will cause a rewrite that moves the player into the
dirt tile, while removing the dirt and force activations. A force tile applied to a boulder, where the
next tile over is empty, results in the boulder moving into this empty tile, and the player into this
formerly boulder-occupied tile. Wherever a boulder is above an empty tile, the boulder will descend
into the empty tile, and when a boulder is above a wall or solid tile that has an empty tile to its left
or right, the boulder will descend diagonally into this empty tile. When the player overlaps with the
goal tile, they will be granted a reward of 1.

Formally, digging is given by the rule,

I0 =

[[
PLAYER, FORCE+

DIRT

]]
O0 =

[[
0 ,

PLAYER+
EMPTY

]]
boulder-pushing by

I1 =

[[
PLAYER, FORCE+

BOULDER , EMPTY
]]

O1 =

[[
0,

PLAYER+
EMPTY , BOULDER

]]
and boulder falling by

I2 =

[
[BOULDER] ,
[EMPTY]

]
O2 =

[
[EMPTY] ,
[BOULDER]

]
(without rotations), and boulder rolling-and-falling by

I3 =

[
[BOULDER, EMPTY] ,
[-EMPTY, EMPTY]

]
O3 =

[
[EMPTY, EMPTY] ,

[-EMPTY, BOULDER]

]
(with flipping along the vertical axis; also note that −EMPTY in the bottom-left of the output pattern
means only to leave this cell unchanged, given that the corresponding position in the decoder kernel
K1 will be −EMPTY + EMPTY = 0).

16

