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A Theoretical Proofs

In Appendix A, we first show the derivation of the latent variable models A.1, then provide some
analytical results in the iterative optimization of model learning A.2, planning A.3, and causal
discovery A.4. Finally, we give the proof of the theorem of overall performance guarantee A.5 given
some common assumptions.

To compactly write down our formulas, we slightly abuse the notations by representing st, at as the
joint states and actions at timestep t, while using si, ai to denote the i-th dimension of factorized
states or actions. Without the loss of generality, we implement our reward in a deterministic way,
which only involves r(s, g) in its notation, we will slightly generalize to some state-action reward
function for our analysis as well.

A.1 Formulation of Latent Variable Models

A.1.1 Derivation of Equation (1)

The ELBO of the likelihood of the trajectory is obtained by

log p(⌧ |s⇤) = log

Z
p(⌧ |G, s⇤)p(G|s⇤)dG

= log

Z
q(G|⌧)

p(⌧ |G, s⇤)p(G|s⇤)

q(G|⌧)
dG

�

Z
q(G|⌧) log

p(⌧ |G, s⇤)p(G|s⇤)

q(G|⌧)
dG

=

Z
q(G|⌧)

✓
log p(⌧ |G, s⇤) + log

p(G|s⇤)

q(G|⌧)

◆
dG

=

Z
q(G|⌧) log p(⌧ |G, s⇤)dG +

Z
q(G|⌧) log

p(G|s⇤)

q(G|⌧)
dG

= Eq(G|⌧)[log p(⌧ |G, s
⇤)]� DKL[q(G|⌧)||p(G)]

(9)
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where the third line is obtained by Jensen’s inequality and the last line is because the prior of the
causal graph G is independent of the achieved goal s⇤.

A.1.2 Derivation of Equation (2)

According to the decomposition of state-action trajectory

p(⌧) = p(s0)
T�1X

t=0

p(st+1
|st, at)p(at|st) (10)

we can get the following

log p(⌧ |G, s⇤) = log(s0, a0, s1, a1, · · · , aT�1, sT |G, s⇤)

= log p(s0|G, s⇤) +
T�1X

t=0

log p(st+1
|st, at,G, s⇤) +

T�1X

t=0

log p(at|st,G, s⇤)

= log p(s0) +
T�1X

t=0

log p(st+1
|st, at,G) +

T�1X

t=0

log p(at|st,G, s⇤)

(11)

A.2 Transition Model Learning

The optimization in the model learning step can be described below:

argmax
✓

[
X

t

log p✓(st+1|st, at,G)] (12)

where ⌧ = [s1, a1, · · · , sT ] is the trajectory in data buffer, and G is the given causal graph.

Here below, we show some necessary definitions and propositions to prove the Lemma 1.
Definition 4 (Structural Hamming Distance (SHD)). For any two DAGs G,H with identical vertices
set V , we define the following function SHD: G ⇥H! R,

SHD(G,H) = #{(i, j) 2 V 2
| G and H have different edges eij} (13)

Definition 5 (Respect the graph). For any given transition model with specific causal graph G, the
transition model respects the graph if the distribution p(st+1|at, st,G) can be factorized as:

p(s0|s, a,G) =
Y

i2[M ]

p(s0i|PA(s0i),G) (14)

where M is the total number of factorized states, PA(·) represents the parents in the causal graph.
Proposition 3 (GRU model respects the graph). As the parameterized transition model p✓(s0|s, a,G)
reaches the steady state, it respects the graph.

Proof of Proposition 3. The GRU modules with parameter ✓ = [W,U ] can be rewritten as a message
passing process, where AGG·(·) is the iterative aggregation function.

Node Encoder : h(0)
j = fencoder(xj)

Aggregation : h(`)
j = AGGi2N (j)(f✓(x

(`�1)
j , h(`�1)

i ))

Node Decoder : x(`)
i = fdecoder(h

(`�1)
j )

(15)

As an iterated process of message passing, where the input causal graph controls the information flow
between different entities, this GRU model can be rewritten as a fixed point iteration [92]:

x(`)
i = F✓(PA(xi)

(`�1),x(`�1)
i ) (16)

With proper initialization and some sufficient conditions provided by [92], F has a unique equilibrium
point, where

x1
i = F✓(PA(xi)

1,x1
i ) (17)
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In our bipartite graph, when GRU reaches the equilibrium point, we can get a structural causal model:

s0i = F✓(PA(s0i), si), where s0i 2 S
0,PA(s0i) 2 S [A (18)

Based on the SCM derivation 18, we can then factorize the transition model as:

p✓(s
0
|s, a,G) =

Y

i2[M ]

p✓(s
0
i|PA(s0i),G) (19)

We denote the ground truth causal graph as G⇤ = (V,E⇤), and PA⇤(s0i) as the true parents of s0i in
G⇤. ⌅
Definition 6 (Causal optimality at equlibrium point). For any G0

6= G⇤ with at least one pair of
flawed parental relationship PA0(s0i) 6= PA⇤(s0i), the following inequality holds:

p✓(s
0
i|PA0(s0i),G)  p✓(s

0
i|PA⇤(s0i),G) (20)

Lemma 5 (Local monotonicity). Given one state variable si and its any parental relationship
PA1(si),PA2(si), if #(PA1(si) [ PA⇤(si)) � #(PA2(si) [ PA⇤(si)), then at steady state, the
SCM derived in 18 will miss part of the message provided from the true parents, therefore
p✓(s0i|PA1(s0i),G1) � p✓(s0i|PA2(s0i),G2)

Proof of Lemma 1. Based on the factorization defined in 19, we denote the parental relationship in
G1 as PA1(·),

p✓(s
0
|a, s,G⇤) =

Y

i2[M ]

p✓(s
0
i|PA⇤(s0i),G) �

Y

i2[M ]

p✓(s
0
i|PA1(s0i),G) = p✓(s

0
|a, s,G1) (21)

For G1 and G2, suppose the only different edges e has a target node s0j , with SHD(G1,G⇤) <
SHD(G2,G⇤), based on Lemma 5:

p✓(s
0
|a, s,G1) = p✓(s

0
j |PA1(s0j),G1)

Y

i2[M ]\j

p✓(s
0
i|PA1(s0i),G1)

� p✓(s
0
j |PA2(s0j),G2)

Y

i2[M ]\j

p✓(s
0
i|PA1(s0i),G2)

= p✓(s
0
j |PA2(s0j),G2)

Y

i2[M ]\j

p✓(s
0
i|PA2(s0i),G2)

= p✓(s
0
|a, s,G2).

(22)

Based on the inequality derived in 21 and 22,
log p✓(s

0
|s, a,G⇤) � log p✓(s

0
|s, a,G1) � log p✓(s

0
|s, a,G2). (23)

the monotonicity of likelihood in Lemma 1 is proved. ⌅

A.3 Derivation of Planner Module

The optimization in the planning part is:

max
⇡

T�1X

t=0

log ⇡✓(a
t
|st,G, s⇤) = max

[a0,··· ,aT�1]

T�1X

t=0

log Q̂(st, at) (24)

Ideally, given the access to real dynamics p(s0|s, a) and goal distribution p(g). We first define the
expected goal-conditioned state-action reward r(s, a, g) = Es0⇠p(·|s,a)r(s

0, g), and the expected
state-action reward r(s, a) = Eg⇠pg(·)r(s, a, g). In practice, due to the inaccuracy of transition
model, we can only query the following reward estimation at certain state-action pair: r(s, a, g) =
Es0⇠p✓(·|s,a,G)r(s

0, g), r(s, a) = Eg⇠pg(·)r(s, a, g).

Then we consider the distribution of the goal g ⇠ pg(·), which is supported on the state space S.
Based on Algorithm 1, our interventional data is collected by the MPC that maximizes the expected
discounted cumulative reward from learned dynamics. Thus, we could denote the interventional
distribution of state (depending on the current policy ⇡) in the data buffer as pIs

⇡
, s ⇠ pIs

⇡
(·) which

is also supported on the state space S .
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Proof of Lemma 3. Assume our planning algorithm has an infinite planning horizon, with the optimal
transition dynamics and optimal policy, the action-value function Q⇤ can be expressed as:

Q⇤(st, at)
def
= Es⇠pIs

⇡⇤ (·),a⇠⇡⇤(s)

" 1X

t0=t

�t0�tr(st
0
, at

0
) | st, at

#

(25)

The estimation of action value function Q̂(st, at) = Q⇡̂
✓,G(s

t, at) can be written as:

Q̂(st, at)
def
= Es⇠pIs

⇡̂
(·),a⇠⇡̂(s)

" 1X

t0=t

�t0�tr(st
0
, at

0
) | st, at

#

= Ea⇠⇡̂(s)

" 1X

t0=t

�t0�tEg⇠pg(·),s⇠pIs
⇡̂
(·)(1� 1(s

0 = g)) | st, at
# (26)

The policy by MPC in algorithm 1 can be deducted by: ⇡̂(st) = argmaxat2A Q̂(st, at), let s0 = s,
and we could derive value function under the MPC policy as follows:

V (s) =
1X

t=0

�tEpgEpIs
⇡
1(s = g) =

1X

t=0

�tEpgEpIs
⇡
[1� 1(s 6= g)]

=
1X

t=0

�t
�

1X

t=0

�tEpgEpIs
⇡
1(s 6= g)


1� DTV (pIs

⇡̂
, pg)

1� �

(27)

where DTV(pIs
⇡
, pg) is the total variation distance between the marginal state distribution pIs

⇡
in the

data buffer, as well as the goal distribution pg , both of which share the same support. ⌅

In addition, we could define a more general form of goal-conditioned reward as based on the distance:
r(s, g) = 1� d(s0, g). Where D is a (normalized) distance measure between two vectors in the state
space, s.t. 8s, g 2 S, 0  d(s, g)  1. For instance, if we pick d(s, g) = 1(s 6= g), the derived
reward under this distance measure will go back to the reward function defined in section 2.1. By
defining a (normalized) `p distance between s’ and g, d(s, g) = ks�gkp

maxs1,s22S ks1�s2kp
, we can also

shape a continuous form of goal-conditioned step reward r(s, g) between 0 and 1. Notice that all
the Euclidean-based distances are all valid metrics with symmetry, non-negativity, the identity of
indiscernibles, and the triangle inequality. With such a definition, the estimated value function will fit
in with:

V (s) 
1�W(pIs

⇡
, pg)

1� �
(28)

where W is some Wasserstein distance between marginal state distribution and goal distribution.
Therefore, optimizing the Q value is equivalent to minimizing an upper bound for some types of the
statistical distance between goal distribution and target distribution.

For the term related to policy in (3), we can define the goal-conditioned policy distribution as:
⇡(at|st, g) / exp(Q(st, at)) (29)

As a result, argmax⇡
PT�1

t=0 log ⇡✓(at|st, s⇤,G) = argmax⇡
PT�1

t=0 Q(st, at) However, the real
Q(st, at) is intractable, so we alternatively optimize the Q̂(st, at) at each time step. Next, we’ll start
to derive a bound between Q̂(s, ⇡̂(s)) and Q(s,⇡⇤(s))

Proof of Lemma 2. For simplicity, we denote the learned transition function p̂(s0|s, a) =
p✓(s0|s, a,G), which is ✏m-approximate dynamics, DTV(p̂, p) = kp̂(s0|s, a)� p(s0|s, a)k1  ✏m,

Firstly, we show by value iteration that the estimated value function V̂ (s) will converge to V (s):
Assume exists K > 0, s.t. 8k > K, kp̂(s0|, s, a)� p(s, |s, a)k1  ✏m

V̂ (k+1)(s) = r(s,⇡(s)) + �
X

s0

p(s0|s,⇡(s))V̂ (k)(s). (30)
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Given the result of the Bellman Contraction,

kV̂ (k+1)(s)�V ⇡⇤
(s)k1  �kV̂ (k)(s)�V ⇡⇤

(s)k1, lim
k!1

kV̂ (k+1)(s)�V ⇡⇤
(s)k1 = 0. (31)

Based on the definition of greedy policy in planning: ⇡̂(s) = argmaxa2A Q̂(s, a), we can derive the
inequality:

r(s, ⇡̂(s)) + �
X

s0

p̂(s0|s, ⇡̂(s))V̂ (s0) � r(s,⇡⇤(s)) + �
X

s0

p̂(s0|s,⇡⇤(s))V̂ (s0)

=) r(s,⇡⇤(s))� r(s, ⇡̂(s))  �

"
X

s0

p̂(s0|s, ⇡̂(s))V̂ (s0)�
X

s0

p̂(s0|s,⇡⇤(s))V̂ (s0)

#

kV̂ (s)�V ⇡⇤
(s)k1!0

=) r(s,⇡⇤(s))� r(s, ⇡̂(s))  �

"
X

s0

p̂(s0|s, ⇡̂(s))V ⇡⇤
(s0)�

X

s0

p̂(s0|s,⇡⇤(s))V ⇡⇤
(s0)

#
.

(32)

Then let s be the state with the largest value error.

V ⇡⇤
(s)� V ⇡̂(s) =r(s,⇡⇤(s))� r(s, ⇡̂(s))

+ �
hX

s0

p(s0|s,⇡⇤(s))V ⇡⇤
(s0)�

X

s0

p(s0|s, ⇡̂(s))V ⇡̂(s0)
i

�
X

s0

h
p̂(s0|s, ⇡̂(s))V ⇡⇤

(s0)� p̂(s0|s,⇡⇤(s))V ⇡⇤
(s0)

i

+ �
X

s0

h
p(s0|s,⇡⇤(s))V ⇡⇤

(s0)� p(s0|s, ⇡̂(s))V ⇡̂(s0)
i

=�
X

s0

h
p(s0|s,⇡⇤(s))� p̂(s0|s,⇡⇤(s))

i
V ⇡⇤

(s0)

� �
X

s0

h
p(s0|s, ⇡̂(s))� p̂(s0|s, ⇡̂(s))

i
V ⇡⇤

(s0)

+ �
X

s0

p(s0|s, ⇡̂(s))
h
V ⇡⇤

(s)� V ⇡̂(s)
i

(33)

Since r(s, g) 2 [0, 1], the value function V (s) 2 [0, 1
1�� ], also by kp̂(s0|s, ⇡̂(s))�p(s0|s, ⇡̂(s))k  ✏,

we have

V ⇡⇤
(s)� V ⇡̂(s)  �✏m(Vmax � Vmin) + �

X

s0

p(s0|s, ⇡̂(s))
h
V ⇡⇤

(s)� V ⇡̂(s)
i

=
�✏m
1� �

+ �
X

s0

p(s0|s, ⇡̂(s))
h
V ⇡⇤

(s0)� V ⇡̂(s0)
i
.

(34)

We already analyzed the state s with the largest value error, and it’s sufficient to show:

kV ⇡⇤
(s)� V ⇡̂(s)k1 

�✏m
1� �

+ �
X

s0

p(s0|s, ⇡̂)kV ⇡̂(s)� V ⇡⇤
(s)k1

=
�✏m
1� �

+ �kV ⇡⇤
(s)� V ⇡̂(s)k1

(35)

By combining kV ⇡⇤
(s)� V ⇡̂(s)k1 on both sides, we have

kV ⇡⇤
(s)� V ⇡̂(s)k1 

�

(1� �)2
✏m (36)

⌅
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A.4 Causal Discovery

A.4.1 Assumptions of Causality

Assumption 2 (Markov property). Given a DAG G and a joint distribution PX , this distribution is
said to satisfy

• (i) the global Markov property with respect to the DAG G if

A ?? GB|C ) A ?? B|C (37)

for all disjoint vertex sets A,B,C. The symbol independentG denotes d-separation.

• (ii) the local Markov property with respect to the DAG G if each variable is independent of its
non-descendants (without its parents) given its parents, and

• (iii) the Markov factorization property with respect to the DAG G if

p(x) = p(x1, . . . , xd) =
dY

j=1

p(xj |PAG(xj)) (38)

where we assume that PX has a density p.

Assumption 3 (Faithfulness). Consider a distribution PX and a DAG G, PX is faithful to the DAG
G if we know

A ?? B|C ) A ?? GB|C (39)

for all disjoint vertex sets A,B,C.

A.4.2 KL Divergence as Sparsity Regularization

Similar to the assumption in Factorized MDP, the existence of a causal relationship between two
arbitrary entities among x is can also be treated as independent. Therefore, we construct the prior
distribution p(G) as independent Bernoulli Distribution in the transition causal graph.

p(G) =
Y

i2[M+N ],j2[M ]

p(Gij) =
Y

i2[M+N ],j2[M ]

pij (40)

where Gij represents the edge from i-th node in source node set U = {A [ S} to the j-th node in
target node set V = {S

0
} in the bipartite transition causal graph.

On the other hand, for the variational posterior q(G|⌧), for the discovered transition causal graph, it
needs to satisfy two constraints: (i) q(G|⌧) needs to be a DAG, denoted QDAG, and more specifically,
a bipartite graph. We denote such subset of DAG as QBi, (ii) q(G|⌧) needs to be as sparse as possible.

Common score-based causal discovery works use two regularization terms, DAGNess and `1 reg-
ularization to constrain the discovered causal graph in the constraint set, while in our work, we
explicitly constrain the posterior variational distribution q(G|⌧) 2 QBi ⇢ QDAG. We then show in
the following section that by defining a certain independent Bernoulli prior p(G), the KL divergence
between variational posterior q(G|⌧) and p(G) can be equivalent to a sparsity regularization.

According to our constraint-based causal reasoning modules, QBi consists of M(M+N) independent
binary classifiers (that form a DAG) parameterized by our kernel-based independent testing modules
�, i.e.

q�(G|⌧) =
Y

i2[M+N ],j2[M ]

q�(Gij |⌧) ,
Y

i2[M+N ],j2[M ]

qij (41)
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Proof of Proposition 1. Let the prior pij = ✏G 2 (0, 1
2 ], 8i 2 [M + N ], j 2 [M ], based on the

definition above, the KL divergence term in (3) can be expanded as follows:

DKL(q�(G|⌧)kp(G)) =
X

q2QBi

Y

i,j

qij log

Q
i,j qijQ
i,j pij

=
X

i,j


qij log

qij
pij

+ (1� qij) log
1� qij
1� pij

�

=
X

i,j


qij log

qij
✏G

+ (1� qij) log
1� qij
1� ✏G

�

=
X

i,j

[qij log qij + (1� qij) log(1� qij)� qij log ✏G � (1� qij) log(1� ✏G)]

(42)
Since qij 2 {0, 1}, limqij!0 qij log qij = limqij!1(1� qij) log(1� qij) = 0,

DKL(q�(G|⌧)kp(G)) =
X

i,j

[�qij log(✏G)� (1� qij) log(1� ✏G)]

=
X

i,j

[�I(qij = 1) log ✏G � I(qij = 0) log(1� ✏G)]

=
X

i,j

[�(1� I(qij = 1)) log(1� ✏G)� I(qij = 1) log ✏G ]

= log
1� ✏G
✏G

X

i,j

I(qij = 1))�
X

i,j

log(1� ✏G)

= log

✓
1� ✏G
✏G

◆
|q�(G|⌧)|1 + const

, ⌘|q�(G|⌧)|1 + const

(43)

Therefore, the KL divergence term is equivalent to an `1 sparsity regularizer in score-based causal
discovery [54]. The strength of this regularizer ⌘ = log

⇣
1�✏G
✏G

⌘
2 [0,1). The larger ✏G in

prior Bernoulli distribution indicates the smaller strength of this sparsity regularizer (e.g. when
✏G = 1

2 , ⌘ = 0). In the implementation of data-efficient causal discovery, we adjust the parameter of
the classifier to set the strength of this sparsity constraint. ⌅

A.4.3 Unique Identifiability of Causal Graph

We construct our causal model based on the Factorized MDP in Assumption 1. According to the
definition, the causal graph is a directed bipartite graph, with st, at on the source side, and st+1 on
the target side. For the theoretical analysis part in Section A.4.3 and A.2, we denote st+1 as s0, st as
s, at as a and x = {A [ S [ S

0
}, x 2 R2M+N for simplicity.

Definition 7 (Interventional Family I). For any DAG G, we define the interventional family I =
(I1, I2, · · · , IK). Here I1 := ; corresponds to the pure observational setting. The joint distribution
for the interventional family can be rewritten as:

p(k)(x1, · · · , x[2M+N ]) =
Y

j /2Ik

p(1)j (xj |PAG(xj))
Y

j2Ik

p(k)j (xj |PAG(xj)) (44)

Definition 8. For a specific DAG G, we define M(G) to be the set of strictly positive densities
p : R2|S|+|A|

! R which satisfies:

p(x1, · · · , x[2M+N ]) =
Y

j2[2M+N ]

pj(xj |PAG(xj)) (45)

where
R
Xj

fj(xj |PAG(xj))dxj = 1 for all PAG(xj) 2 Xj and all j 2 [2M +N ].

Definition 9. For a specific DAG G and an interventional family I, we define

MI(G) := {[p(k)]k2[K] | 8k 2 [K], p(k) 2M(G), 8j /2 Ik, p
(k)
j (x|PAG(x)) = p(1)j (x|PAG(x))}

(46)
Such set of functions is conherent with condition of strictly positive densities in (45) as well as
factorization of interventional distribution in (44).
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Definition 10 (I-Markov Equivalence Class, I-MEC). Two DAGs G1 and G2 are I-Markov equiva-
lent iff MI(G1) = MI(G2). We denote by I �MEC(G1) the set of all DAGs which are I-Markov
equivalent to G1, this is the I-Markov equivalence class of G1.
Lemma 6 (Sufficient and Necessary Conditions for I-MEC, Yang el. al. [93]). Suppose the
interventional family I is such that I1 := ;. Two DAGs G1 and G2 are I-Markov equivalent iff their
I-DAGs GI1 and GI2 share the same skeleton and v-structures.

Proof of Proposition 2. In the bipartite graph (U ,V, E), for the discovered graph Ĝ that is in the
I-Markov equivalence class of the ground truth causal graph, Ĝ is unique.

Based on the Lemma 6, all possible Ĝ that are I-Markov equivalent will share an identical skeleton
with G⇤, so we consider only graphs obtained by reversing edges in Ĝ.

Due to the bipartite nature of the transition causal graph defined in Definition 3, for all the v-structured
colliders c 2 C, we know that c 2 S

0, therefore, reversing any edge of Ĝ will harm the immorality of
Ĝ, and the new graph will no longer be an I-MEC to G

⇤ Therefore, Ĝ is the only graph in the I-MEC
of G⇤, i.e. Ĝ = G

⇤. ⌅

A.4.4 Causal Discovery Benefits from Policy Learning

In this section, we would like to show how the learned GCRL model could aid the performance of
causal discovery. Before we put the formal proof, we first list several assumptions which is quite
common in causal discovery literatures [94].
Assumption 4 (Oracle Conditional Independence Test). The conditional independent test could tell
the independence between any two variables in the causal graph.

Proof of Lemma 4. Given the oracle conditional independence test in appendix 4, if the state distri-
bution covers all the support of goal distribution, with abundant actions from action space, we can
cover all the connections between the current state and the next states.

When DTV(pIs
⇡
, pg) < ✏g , it is sufficient to derive that pIs

⇡
(s) > 0, 8s 2 Suppg , where Suppg is the

support set of the goal distribution pg .

We then discuss the three possible circumstances under such condition:

• Case 1: Both source state and target state distribution in the buffer are fully supported on
Suppg. In this case, given our Assumption 4 and abundant samples, our causal discovery
q�(G|⌧) will correctly classify all the edges in the transition causal graph.

• Case 2: Only the target state distribution is supported on Suppg, while the source side
leaves away from the goal node. In this case, the independent tests may not be able to
distinguish the (in)dependence relationship between goal nodes and other state nodes,
SHD(Ĝ,G⇤)  |S|� 1.

• Case 3: Only source state is supported on Suppg , while the target side leaves away from the
goal node. This case corresponds to the case where some initial states hit the goal, while the
learned transition model and policy fail to guide the future states to the goal. The causal
discovery model � may falsely classify the edges from all the source states (except the
source goal state) towards the target goal states. Thus SHD(Ĝ,G⇤)  |S|� 1.

In conclusion, for all the three cases that satisfy DTV(pIs
⇡
, pg)  ✏g , we have

max
Ĝ⇠q�(·|⌧)

h
SHD(Ĝ,G⇤)

i
 |S|� 1 (47)

thus
EĜ⇠q�(·|⌧)

h
SHD(Ĝ,G⇤)

i
 max

Ĝ⇠q�(·|⌧)

h
SHD(Ĝ,G⇤)

i
 |S|� 1 (48)

⌅
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A.5 Overall Performance Guarantee of Iterative Optimization

Based on all the derivation from previous sections, we finally give out the proof of the overall
performance of our proposed iterative optimization in GRADER.

Proof of Theorem 1. Let dmax = maxs1,s22S ks1�s2k2, d✓ = kŝ0(✓)�s0k2, then the log likelihood
term becomes

p✓(s
0
|s, a) / exp(dmax � d✓) (49)

In the model learning part, since we take the log space, we have log p✓(s0|s, a) = (dmax � d✓)� C.
We neglect the constant term C when deriving the bound. Without the loss of generality, we set
p✓(s0|s, a) = exp(dmax � d✓), log p✓(s0|s, a) = dmax � d✓ in (3). As dmax � d✓ � 0, we have the
Lipchitz L  1 of log function,

��� log p̂(s0|s, a)� log p(s0|s, a)
���
1
 L

���p̂(s0|s, a)� p(s0|s, a)
���
1



���p̂(s0|s, a)� p(s0|s, a)
���
1
 ✏m

(50)

Based on Lemma 2 that is derived in Appendix A.3, we have the policy learning term

��� log ⇡̂(a|s, g)� log ⇡⇤(a|s, g)]
���
1

=
���Q̂(s, ⇡̂(s))�Q(s,⇡⇤(s))

���
1

=
���Q(s, ⇡̂(s))�Q(s,⇡⇤(s))

���
1

=
���V ⇡̂(s)� V ⇡⇤

(s)
���
1


�

(1� �)2
✏m

(51)

For the KL divergence term, if the goal distribution satisfies ✏g > �
1�� ✏m, the following conditions

hold:

V ⇡̂(s) > V ⇡⇤
(s)�

�

(1� �)2
✏m (52)

According to Lemma 3 and the condition that V (s) 2 [0, 1
1�� ],

DTV(pIs
⇡
, pg)  1� (1� �)V ⇡̂(s)

< 1� (1� �)V ⇡⇤
(s) +

�

1� �
✏m

= (1� �t⇤�1) + ✏g
t⇤=1
= ✏g

(53)

where t⇤ is the shortest time step to reach the goal. Here we assume t⇤ = 1 for optimal policy in the
theoretical design part, while in practice, the bound may get loosened when larger t⇤ or smaller �.

Since DTV(pIs
⇡
, pg)  ✏g , according to Lemma 4 proved in Appendix A.4, we have

���DKL(q�||p)� DKL(q
⇤
�||p)

���
1

=
��� log

✓
1� ✏G
✏G

◆
kq�(G|⌧)k1 � log

✓
1� ✏G
✏G

◆
kq⇤�(G|⌧)k1

���
1

= log

✓
1� ✏G
✏G

◆���kq�(G|⌧)k1 � kq⇤�(G|⌧)k1
���
1

 log

✓
1� ✏G
✏G

◆���q�(G|⌧)� q⇤�(G|⌧)
���
1

= log

✓
1� ✏G
✏G

◆
max
G

h
SHD(G,G⇤)

i

 log

✓
1� ✏G
✏G

◆⇣
|S|� 1

⌘

(54)
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Finally, we can derive the overall performance guarantee as follows:

kJ
⇤(✓,�)� Ĵ (✓̂, �̂)k1 =

���
T�1X

t=0

nh
log p̂(st+1

|st, at)� log p(st+1
|st, at)

i

+
h
log ⇡̂(at|st, s⇤)� log ⇡⇤(at|st, s⇤)

io
+
h
DKL(q̂�||p)� DKL(q

⇤
�||p)

i���
1



T�1X

t=0

n��� log p̂(st+1
|st, at)� log p(st+1

|st, at)
���
1

+
��� log ⇡̂(at|st, s⇤)� log ⇡⇤(at|st, s⇤)

���
1

o
+
���DKL(q̂�||p)� DKL(q

⇤
�||p)

���
1



T�1X

t=0

⇣
✏m +

�

(1� �)2
✏m

⌘
+ log

✓
1� ✏G
✏G

◆⇣
|S|� 1

⌘

=
h
1 +

�

(1� �)2

i
✏mT + log

✓
1� ✏G
✏G

◆⇣
|S|� 1

⌘

(55)
⌅

B Additional Experiment

B.1 Overall Performance

The overall performance results corresponding to the Table 1 for Stack and Unlock environments are
shown in Figure 7 and Figure 8.

Figure 7: The testing reward and causal discovery results of Stack environment.

Figure 8: The testing reward and causal discovery results of Unlock environment.

In all Stack experiments, we find that the advantage of GRADER over other methods is small.
The reason is that this task is simple and the true causal graph only contains 7 nodes as shown in
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Figure 9: Discovered causal graphs of three environments. Color meaning: Action, State, Next state.

Figure B.2. Due to the simple causal graph, even the Offline random policy can obtain the true causal
graph, thus there is almost no difference between the discovery efficiency between GRADER and
Offline as shown in the right part of Figure 7.

In the Unlock-I experiment, there is no gap between GRADER and Full, which means the causal
graph may not have many contributions to solving this task. However, there are large gaps in
Unlock-S and Unlock-C settings since indicating that the causal graph helps the model obtain better
generalizable performance. As for the Offline method, since the causal graph is wrongly discovered,
the performance is bad in all three settings.

B.2 Causal Graph Analysis

Figure 10: TV distance between
goal and state distributions.

Since the environments we designed have clear and explicit
causality, we can get the true causal graph with human analy-
sis. We plot the true causal graphs corresponding to the three
environments in Figure 9, where the semantic meanings of
all nodes are explained in Appendix C.2.1. We observe that
the causal graphs are sparse with very few edges, indicating
that non-causal methods that use the full graph may import
redundant or even wrong information.

B.3 Distance between Goal and State Distribution

In Figure 10, we empirically show the upper bound proved in
(27), which describes the TV distance between the goal distri-
bution and the state distribution collected from the GRADER
policy. We use 10 trails and plot the mean and standard deriva-
tion of the distance. We observe that the distance becomes smaller as the policy gets better in
GRADER. This supports our statement that the planning module helps to collect better data samples,
which will be used in the causal discovery module. We also plot the distance with a random policy,
which is always large since the goal is not easy to be achieved by random actions.

B.4 Task Performance of Chemistry Experiment

In the main context, we only show the discovery results of the Chemistry experiment. We provide
the results of task performance in this section. The downstream task is to change the color of nodes
to match given colors within maximum steps (T = 10). A reward r = 1 is received if all colors are
matched. Results are reported with 200 episodes. We use planning horizon H = 5. We provide the
RL downstream task results in Table 3 (ID setting) and Table 4 (OOD setting). The testing reward is
shown in Figure 11. The graphs in the ID setting have 10 nodes while those in the OOD setting have
5 nodes. In the ID setting, we randomly sample the target colors in the goal. In the OOD setting, we
set the target colors of all nodes to the same color during the training to create spurious correlations,
then randomly set the target colors during testing.
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Figure 11: Reward of Chemistry environment under ID and OOD setting.

Table 3: Success rate (%) for Chemistry environment (ID). Bold font means the best.

Env SAC ICIN PETS TICSA ICIL GNN GRADER Score Full

Collider 0.0±0.0 29.8±7.2 0.6±0.8 70.1±4.2 1.3±1.3 7.3±4.3 85.5±3.4 53.0±4.1 70.3±5.3
Chain 1.1±1.3 37.5±4.0 29.6±4.9 24.5±4.3 25.3±5.1 24.6±14.5 77.0±3.2 60.2±2.4 72.7±5.3
Jungle 0.6±0.8 20.2±1.5 18.8±5.2 31.8±4.5 20.6±3.9 27.5±9.8 69.6±4.3 63.0±2.3 59.4±9.5
Full 0.5±0.8 4.5±4.0 23.7±4.3 10.4±3.0 22.3±5.1 20.4±7.8 59.1±6.6 39.4±3.5 47.1±6.1

C Additional Information

C.1 Details about Conditional Independence Test

In Algorithm 1, we describe the discovery of causal graph with edge inference eij  q�(·|B, ⌘)
implemented by conditional independent test. We ignore the details about the test process in the main
context and thus provide more details in this section.

For discrete variables, we use Pearson’s chi-square test1, which is a statistical test applied to sets of
categorical data to evaluate how likely it is that any observed difference between the sets arose by
chance. In our experiment, we use the implementation provided by package Scipy 2.

We first define the null hypothesis, which is true when two random variables are statistically indepen-
dent. These two variables have samples stored in a contingency table O, which has c columns and r
rows. Then, the “theoretical frequency” for a cell is:

Eij = Npi·p·j , pi· =
cX

j=1

Oi,j

N
, pi· =

rX

i=1

Oi,j

N
(56)

where N is the total sample size in the table, Oi,j is the sample size of cell (i, j). Then, we can
calculate the value of the test statistic:

�2 =
rX

i=1

cX

j=1

(Oi,j � Ei,j)2

Ei,j
(57)

Now, we can obtain a p-value (falls in [0, 1]) that indicates the significance of this statistic follows the
�2 distribution from chi-square probability3. We compare this p-value with a threshold ⌘ and reject

1https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html
3https://people.richland.edu/james/lecture/m170/tbl-chi.html
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Table 4: Success rate (%) for Chemistry environment (OOD). Bold font means the best.

Env SAC ICIN PETS TICSA ICIL GNN GRADER Score Full

Collider 0.0±0.0 53.3±1.6 87.2±8.5 96.6±1.4 97.0±2.0 72.8±7.5 95.8±2.6 92.4±3.5 87.8±4.4
Chain 0.0±0.0 27.3±5.9 37.1±7.0 54.0±3.8 50.0±5.8 3.9±1.6 82.3±4.5 46.8±5.0 52.9±4.3
Jungle 0.8±2.4 42.6±4.9 53.9±5.5 43.1±7.5 52.9±7.0 11.1±2.4 84.4±5.1 59.5±2.7 60.8±3.5
Full 0.0±0.0 28.9±5.0 43.5±4.1 55.9±4.5 42.2±5.9 3.8±2.5 83.9±4.4 50.7±6.0 54.2±4.1

the null hypothesis if the p-value is smaller than ⌘. Therefore, the larger we set ⌘, the more likely we
find the two variables are dependent. This testing process is summarized in Algorithm 2.

If the two variables are continuous, we cannot use the above statistical test anymore. We turn to a
more advanced test method proposed in [40]. The general idea is that if P (X|Y, Z) = P (X,Y ),
Z is not useful as a feature to predict X . To achieve this, the authors propose to use decision tree
regression to predict Y using both X and Z, and also using Z only.

Algorithm 2: Independence Test for Discrete Variables.
Input: A contingency table O with samples for two variables X and Y .
Define Null hypothesis: X and Y are independent.
Calculate pi· =

Pc
j=1

Oi,j

N and pi· =
Pr

i=1
Oi,j

N
Calculate expected frequencies Eij = Npi·p·j

Calculate the chi-square statistic �2 =
Pr

i=1

Pc
j=1

(Oi,j�Ei,j)
2

Ei,j

Obtain p-value p from chi-square probability
if p < ⌘ then

Reject the Null hypothesis, i.e., X and Y are dependent.

C.2 Experiment Details

C.2.1 Environment Design

More details about the design of the environments are summarized below:

Stack: Manipulation is important for house-holding and factory assembly. Sometimes, the color
of the object is not relevant to the task but may leak information by sharing spuriousness with the
task. Also, the goal could compose several previously seen goals such as repeating similar actions.
Totally, we have 5 different shapes and 5 different colors and the goals are some combinations of the
colors and shapes. At each step, the agent can either stack an object with a chosen color and shape or
stop stacking. The state is the colors and shapes of all current objects. The agent receives a positive
reward when the goal is achieved and a punishment if it stacks a new object.

Unlock: Collecting specific objects to fulfill required conditions is useful for mobile robots. The
causality in this environment exists between the key and the door. The action contains six operations,
including four-direction movements (Move), pick key (Pick Key), and open door (Open Door). The
state is the position of the agent, the position of the key, and the status of the door. In the first
generalization setting, we intentionally create a spurious correlation between the position of the key
and the door. If the agent figures out that key can open the door no matter what its position is, it will
ignore the spurious correlation. In the second generalization setting, we increase the number of door
from one to two. This setting contains two same sub-tasks and can be used to test the compositional
generalization.

Crash: The causality in this environment mainly exists between the pedestrian (Ped), the ego vehicle
(Ego), and another vehicle (Car 1) [95]. The collision between Ped and Ego only happens when the
view of Ego is blocked by Car 1. To make this happen, we design a rule-based AV, which will brake
if it detects any obstacles within a certain distance. Therefore, if the pedestrian directly hits the AV,
the AV will stop and the crash will not happen. To make this task difficult, we also place two other
vehicles (Car 2 and Car 3) on the scene but they will not interrupt the crash scenario. The agent can
control the acceleration and steering of Ped, Car 1, Car 2, and Car 3. The state is the position and
velocity of all objects plus the status of whether a collision happens. To create a spurious correlation,
we fix the initial distance between Ego and Ped to a constant since this creates a shortcut for the
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feature extractor. However, remembering this distance is not enough since we change the initial
distance in the testing stage.

Chemistry: Please refer to [43] for more details.

Table 5: Environment configurations used in experiments

Parameters Stack Unlock Crash Chemistry

Max step size 5 15 30 10
State dimension 50 110 22 100

Action dimension 12 8 8 100
Action type Discrete Discrete Continuous Discrete

C.2.2 Model Structures and Hyper-parameters

Since different nodes have different dimensions, we design a set of encoders Ej and a set of decoders
Dj to convert the dimension of features. Thus, the entire model structure is

st+1
j = Dj(f✓j (Ej([PAG

j ]
t, Nj))), 8j 2 [M ] (58)

We list all important hyper-parameters in the implementation for three environments in Table 6.

C.3 Broader Social Impact and Additional Limitation

C.3.1 Broader Social Impact

We identify several important social impacts of our proposed method, including both positive and
potential negative impacts:

1) Incorporating causality into reinforcement learning methods increases both the interpretability
and generalizability of artificial intelligence, which helps users easily check the working progress
of agents and the source of failures.

2) Insufficient data and training may cause flawed causal graphs, which may lead to a wrong
understanding of the causation of the task. This wrong understanding of the task may cause
risky and irrational actions of agents.

3) The discovered causal graph could be accessed and modified by users to manipulate the
behaviors of agents on purpose. If the task contains private information, the discovered causal
graph may cause privacy issues when the graph is interpreted by other users.

To mitigate the potential negative societal impacts mentioned above, we encourage research to follow
these instructions:

1) People should always check the convergence of the causal discovery step and verify the
discovered causal graph with domain knowledge.

2) The discovered causal graph should be frequently checked and verified with the training data
to ensure its correctness. The causal graphs also need to be encrypted and only accessible to
algorithms and trustworthy users.

C.3.2 Additional Limitation

Causal discovery methods. The gradient-based discovery method are widely investigated recently
for large datasets since they have good scalability. However, these methods also require lots of
training data to converge. In Online RL, we don’t have enough data at the beginning of training.
Thus, constraint-based methods are more suitable for causal RL tasks.

Although our constraint-based causal discovery does not scale as well as the score-based methods,
our proposed independence tests achieve a time complexity of ⌦(|S|(|S|+ |A|)), which is tolerable
for most RL problems with lower dimensional state space. Empirical studies also show that our
independent tests enjoy better data efficiency.
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Table 6: Hyper-parameters of models used in experiments

Models Parameters Environment
Stack Unlock Crash Chemistry

GRADER

Learning rate 0.001 0.001 0.0001 0.001
Size of buffer B 4000 10000 10000 4000

Epoch per iteration 20 5 10 20
Batch size 256 256 256 256

Planning horizon H 5 10 20 5
Planning population 500 100 1000 700
Reward discount � 0.99 0.99 0.99 0.99
✏-greedy ratio 0.4 0.4 0.5 0.5

Causal Discovery ⌘ 0.01 0.01 0.01 0.01
GRU hiddens 32 64 128 32

PETS*
MLP hiddens 32 64 128 32
MLP layers 2 2 2 2

Ensemble number 5 5 5 5

TICSA*

Size of buffer B 20000 400000 40000 20000
Pretrain buffer 200 2000 5000 200

Initialized mask coef. 1.0 1.0 1.0 1.0
MLP hiddens 32 64 128 32

Sparsity regularizer 0.5 1.0 0.2 0.5

ICIL*

Size of buffer B 20000 400000 40000 20000
Learning rate of MINE 0.0001 0.0001 0.0001 0.0001

MLP hiddens 32 64 128 32
MINE hiddens 32 64 128 32
Env. Numbers 5 3 3 5

SAC

Learning rate 0.001 0.001 0.0001 0.001
Size of buffer B 4000 10000 10000 4000
Update step ⌧ 0.005 0.005 0.0001 0.005

Update iteration 3 3 3 3
Entropy ↵ 0.2 0.2 0.2 0.2
Batch size 256 256 256 256

Reward discount � 0.99 0.99 0.99 0.99
MLP hiddens 64 128 256 64

ICIN

Learning rate 0.001 0.001 0.0001 0.001
Size of buffer B 4000 10000 10000 4000

Batch size 256 256 256 256
MLP hiddens 64 128 256 64
MLP layers 3 3 3 3

* Use the same planning parameters as GRADER.

Assumptions in our theoretical analysis. Faithfulness and Markov properties are commonly used in
causal discovery literature such as [54, 39]. It is claimed in [39] that the oracle independent test can
be ensured by the satisfaction of Markov property and faithfulness. Recent work [94] also assumes
the oracle of conditional independent test in its Assumption 2.1. Practically, the oracle test can be
implemented with certain sub-linear sample complexity, as is investigated in [41].

In reinforcement learning tasks, agents interact with the environment by doing interventions, which is
achieved by assigning values to action nodes. Then, the intervention results are reflected by the states.
Under fully observable Markov settings, the value of these states contains all information about the
intervention. Thus, our RL setting usually satisfies the assumptions we use in the theoretical proof.
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