
Published as a conference paper at ICLR 2025

LICO: LARGE LANGUAGE MODELS FOR IN-CONTEXT
MOLECULAR OPTIMIZATION

Tung Nguyen & Aditya Grover
Department of Computer Science
University of California, Los Angeles
{tungnd,adityag}@cs.ucla.edu

ABSTRACT

Optimizing black-box functions is a fundamental problem in science and engineer-
ing. To solve this problem, many approaches learn a surrogate function that esti-
mates the underlying objective from limited historical evaluations. Large Language
Models (LLMs), with their strong pattern-matching capabilities via pretraining on
vast amounts of data, stand out as a potential candidate for surrogate modeling.
However, directly prompting a pretrained language model to produce predictions
is not feasible in many scientific domains due to the scarcity of domain-specific
data in the pretraining corpora and the challenges of articulating complex problems
in natural language. In this work, we introduce LICO, a general-purpose model
that extends arbitrary base LLMs for black-box optimization, with a particular
application to the molecular domain. To achieve this, we equip the language
model with a separate embedding layer and prediction layer, and train the model
to perform in-context predictions on a diverse set of functions defined over the
domain. Once trained, LICO can generalize to unseen molecule properties simply
via in-context prompting. LICO performs competitively on PMO, a challenging
molecular optimization benchmark comprising 23 objective functions, and achieves
state-of-the-art performance on its low-budget version PMO-1K.

1 INTRODUCTION

Black-box optimization (BBO) is the problem of optimizing an unknown, often complex objective
function without direct access to its structure or derivatives. This problem is ubiquitous in many
science and engineering fields, including material discovery (Hamidieh, 2018), protein engineer-
ing (Brookes et al., 2019; Sarkisyan et al., 2016; Angermueller et al., 2020), molecular design (Gaulton
et al., 2012), mechanical design (Berkenkamp et al., 2016; Liao et al., 2019), and neural architecture
search (Zoph & Le, 2016). Typically, BBO involves an iterative process where each step constructs
a surrogate model to approximate the objective function. This model then guides the selection of
promising candidates for subsequent evaluation. The main challenge of this approach lies in learning
an effective surrogate function that can accurately estimate the objective from limited historical data.

In stark contrast, we have seen impressive generalization abilities of Large Language Models
(LLMs) (Brown et al., 2020; Achiam et al., 2023; Bubeck et al., 2023; Team et al., 2023; Touvron
et al., 2023a;b; Jiang et al., 2023; 2024) for language-driven reasoning over many kinds of domains.
By pretraining on Internet-scale data, LLMs have demonstrated exceptional pattern-matching abilities
and generalization from limited observations in both natural language (Brown et al., 2020; Kojima
et al., 2022; Wei et al., 2022) and other domains (Lu et al., 2022; Mirchandani et al., 2023; Gruver
et al., 2023). This positions LLMs as a promising solution for enhancing surrogate modeling for
BBO. Some recent works have indeed shown great potential for using LLMs for solving optimization
problems (Yang et al., 2023; Chen et al., 2023; Zhang et al., 2023; Liu et al.). The main idea behind
these methods is to frame the optimization problem in natural language, and prompt the language
model using previously collected observations to make predictions for new data points (Liu et al.) or
to propose better candidates (Yang et al., 2023; Chen et al., 2023; Zhang et al., 2023; Ma et al., 2023;
Nie et al., 2023; Meyerson et al., 2023; Lehman et al., 2023; Bradley et al., 2024; Liu et al., 2023a).
However, this approach has several limitations. First, performing optimization in the text space
requires the problem and solution to be expressed in natural language, thus limiting this approach

1

Published as a conference paper at ICLR 2025

to selected domains. Second, the scarcity of domain-relevant data in the text corpora used to train
language models poses generalization challenges when using these models for general scientific
domains such as molecular optimization. Therefore, existing works have only demonstrated the
success of LLMs in neural architecture search (Liu et al.; Chen et al., 2023; Zhang et al., 2023),
prompt optimization (Yang et al., 2023), and code generation (Ma et al., 2023; Lehman et al., 2023),
corresponding to domains that are well-represented in the training dataset for common language
models (Brown et al., 2020; Touvron et al., 2023a; Jiang et al., 2023). Third, relying on verbose
textual descriptions for the problem and its solution imposes practical constraints by inflating the
context length and reducing the number of historical observations the model can effectively utilize.

In this work, we propose Large Language Models for In-Context Optimization (LICO), a general-
purpose model that leverages LLMs for black-box optimization, with a particular application to
the molecular domain. To generalize a language model to a new scientific domain unseen during
pretraining, we equip the model with two embedding layers for embedding the previously collected
molecules and their scores, and a prediction head to predict the score of unseen candidates. Intuitively,
the embedding layers map the molecules and their scores to the same feature space already learned
by the language model, allowing the model to perform in-context learning in this space instead of
the raw text space. Unlike previous methods, this approach is applicable to domains that may not be
easily described in natural language such as molecular optimization. Moreover, avoiding verbose
textual descriptions enables the model to condition on more historical observations, thus scaling
better to harder problems that cannot be solved within a few steps.

We train the new layers together with the (frozen) LLM to perform in-context predictions on a family
of functions. Specifically, for each function sampled from this family, we condition the model on a
set of inputs and their corresponding evaluations, and task the model to predict the function value
of the remaining data points. This task mimics surrogate modeling in BBO, where the surrogate
model has to iteratively update its estimation of the underlying objective by conditioning on historical
data. An ideal function family to train the model should be close to the target objective functions we
want to optimize, but also be diverse enough to encourage generalization. Therefore, we propose
to combine intrinsic functions and synthetically generated functions for training LICO. Intrinsic
functions are inherent properties of the input that are easy to evaluate. In molecular optimization, for
example, intrinsic functions include molecular weight, the number of rings, or heavy atom count,
which are obtained via simple computation on the molecule. These intrinsic functions are closely
related to the actual objective functions we want to optimize such as bioactivities against a target
disease. To facilitate generalization outside of the intrinsic functions, we additionally train LICO on
synthetic functions defined over the same target domain that are generated by Gaussian Processes.
Our empirical evidence shows the importance of learning from both intrinsic and synthetic functions
to the performance of the model on downstream tasks. Figure 1 illustrates our approach.

After training, LICO is capable of optimizing a wide range of molecular properties purely via in-
context prompting. While the methodology of LICO applies to general scientific domains, in this
paper we focus on molecular optimization. This problem plays a pivotal role in advancing drug
and material discovery. The complexity of molecular structures and the vastness of the chemical
space present unique challenges to black-box optimization algorithms. Moreover, since molecule-
relevant data is likely under-represented in the pretraining corpora of existing language models,
molecular optimization is a good problem to test the performance and applicability of LICO. We
demonstrate the competitive performance of LICO against the leading methods on Practical Molecular
Optimization (PMO) (Gao et al., 2022), a challenging molecular optimization benchmark with 23
objective functions. On PMO’s low-budget setting, which we term PMO-1M, LICO achieves the best
performance and is the highest-ranked method in the benchmark.

2 PROBLEM STATEMENT

Let f : X → R be a real-valued function that operates on a d-dimensional space X ⊆ Rd. In
black-box optimization (BBO), the goal is to find the input x⋆ that maximizes f :

x⋆ ∈ argmax
x∈X

f(x), (1)

where we do not have direct access to the structure or gradient information of f . In molecular
optimization, X is the space of all possible molecules, and f is a certain property of the molecule we

2

Published as a conference paper at ICLR 2025

Text embedding

x embedding

y embedding

Prediction layer

F̃ prompt<x> x1 <y> y1
Training

Semi-synthetic
<x> xn <y> yn

Pretrained LLM

ŷ1 ŷn

Figure 1: Our proposed approach. We equip a pretrained LLM with an embedding layer for x, an
embedding layer for y, and a prediction layer. We train the model on semi-synthetic data to predict y
given x and previous (x, y) pairs. We prepend each x with a special token <x> and each y with a
special token <y> to guide in-context reasoning.

want to optimize over, such as bioactivities against a disease. While f is unknown, we often have
access to an unlabeled dataset Du that consists of molecules x′s without the corresponding function
values y′s. ZINC (Sterling & Irwin, 2015) is such a dataset with thousands of unlabeled molecules.

To solve the optimization in equation 1, we can query f with a limited budget, since evaluation often
involves expensive physical experiments. To overcome this challenge, a common BBO approach
learns a surrogate model fθ that approximates the objective f from past observations Dobs =
{(xi, yi)}ni=1, which starts empty and incrementally expands with new data points (x, f(x)) we query
at each iteration. Formally, a surrogate model represents a predictive distribution pθ(y | x,Dobs)
of the function value y conditioned on the input x and the evolving observed dataset Dobs. The
prediction of this surrogate guides the selection of candidates to balance exploration and exploitation.
The newly selected points are added to Dobs, and the process continues.

The success of this approach highly depends on the efficiency of the surrogate model fθ in estimating
f from limited data in Dobs at each iteration. This resembles few-shot prediction, a setting that
Large Language Models (LLMs) have proven to excel in. By pretraining on vast Internet-scale data,
LLMs can learn generalizable patterns from limited data, and are capable of adapting to multiple
functions at test time simply via in-context prompting (Brown et al., 2020; Mirchandani et al., 2023;
Krishnamoorthy et al., 2023a;b). A recent line of works (Yang et al., 2023; Zhang et al., 2023; Chen
et al., 2023; Liu et al.) has exploited this ability of LLMs for optimization, but they relied on natural
language as the interface, thus lacking generality to scientific domains. In this work, we propose a
more general and efficient approach to leveraging LLMs for black-box optimization.

3 RELATED WORK

LLMs for Optimization Recent works have explored the use of LLMs for optimization. The general
idea behind these works is to prompt the model with the textual description of the optimization
problem and historical evaluations for few-shot reasoning. Yang et al. (2023); Liu et al. (2023a);
Zhang et al. (2023); Ma et al. (2023) propose to prompt the language model to directly suggest better
candidates to evaluate given the past inputs and their corresponding scores. Meyerson et al. (2023);
Lehman et al. (2023); Bradley et al. (2024) integrate LLMs with evolutionary algorithms, and prompt
the model to perform crossover and mutation operations based on the population at each optimization
step. Liu et al. study the use of LLMs to enhance several components in Bayesian optimization,
including warmstarting, surrogate modeling, and candidate generation. Optformer (Chen et al., 2022)
proposed to train an LLM specialized for in-context function prediction and optimization.

LLMs for Molecular Optimization Recent works have proposed to leverage LLMs for molecular
optimization via prompting (Wang et al., 2024; Liu et al., 2023b; Ramos et al., 2023; Völker et al.,
2024), leveraging LLM embeddings (Ranković & Schwaller, 2023), or finetuning on molecular cor-
pora (Guevorguian et al., 2024; Ye et al., 2023; Fang et al., 2023; Kristiadi et al.). MOLLEO (Wang
et al., 2024) and ChatDrug (Liu et al., 2023b) are two prominent works in the first direction. MOLLEO

3

Published as a conference paper at ICLR 2025

proposed to prompt a pretrained LLM to perform crossover and mutation operations in a standard
graph genetic algorithm, but its performance largely depends on the prompt format. Similarly,
ChatDrug prompts a pretrained LLM for drug editing and requires a retrieval database of molecules
to inject domain feedback into the LLM. BoChemian (Ranković & Schwaller, 2023) and Kristiadi
et al. studied the use of LLM embeddings for Bayesian molecular optimization, and Kristiadi
et al. additionally explored finetuning an LLM to serve as a surrogate for optimization. Chemlac-
tica/Chemma (Guevorguian et al., 2024) and MOLGEN (Fang et al., 2023) proposed to pretrain and/or
finetune LLMs on molecule-related corpora to generate valid molecules, which can serve as a genetic
algorithm in molecular optimization. DrugAssist (Ye et al., 2023) creates the MolOpt-Instructions
dataset that contains pairs of molecules and their property values to finetune a pretrained LLM that
can iteratively propose better molecules after training.

The common approach in existing works has several inherent limitations. First, for general scien-
tific domains, the input x may not be easily described by natural language. Second, even when
there is a textual description of the input, for instance, molecules can be represented by SMILES
strings (Weininger, 1988), existing prompt-based works require significant prompt optimization to
achieve good performance, and the optimal prompt often varies between tasks. Furthermore, from an
engineering perspective, naively prompting a language model with verbose textual descriptions of the
input x results in an excessively long context, thus reducing the number of examples the model can
condition on. For example, an LLM with a maximum context length of 4000 can only utilize up to
100 past observations, assuming the average length of each data point is 40. This practically limits
the scalability of this approach to harder problems that require more steps to solve.

LLMs for Non-language Tasks In addition to optimization, several works have studied the extension
of pretrained LLMs to non-language domains with two main directions. The first direction considers
problems that can be described in natural language, and prompts a pretrained LLM to solve the
problem directly in the text space (Mirchandani et al., 2023; Dinh et al., 2022; Gruver et al., 2023; Liu
et al., 2024; Sprueill et al., 2024). The second direction tackles more general problems by learning
separate encoders for the new domain and aligning it with the embedding space of the pretrained
LLM (Lu et al., 2022; Shen et al., 2023; Tsimpoukelli et al., 2021; Li et al., 2022). Our work is
closely related to the latter direction. However, as discussed in the following sections, while many of
these works completely leave the word space, we find it beneficial to include language instruction
while training the new modules.

4 METHOD

We introduce LICO, a methodology for extending arbitrary base LLMs for surrogate modeling in
black-box optimization. While the method applies to broad scientific domains, we choose molecular
optimization to demonstrate LICO in this paper. We aim to develop a model capable of efficiently
adapting to various objective functions after training. To achieve this, we propose a simple extension
to existing LLMs and an unsupervised objective using semi-synthetic data to facilitate generalization.

4.1 MODEL ARCHITECTURE

In black-box optimization, a surrogate model fθ estimates the distribution of the function value
y given the input x and past observations Dobs = {(xi, yi)}ni=1 the model has collected until the
optimization iteration t:

pθ(y | x, x1, y1, x2, y2, . . . , xn, yn), (2)

where xi and yi = f(xi) are drawn from an objective function f . Our goal is to explore LLMs to
model pθ. As discussed earlier, we make no assumptions on the domain X to be expressed with
natural language. To extend a pretrained language model to an arbitrary new domain, we equip the
model with 3 new layers – an embedding layer for the inputs x′s, an embedding layer for the function
values y′s, and a prediction layer for predicting the unknown function value y. Learning separate
embedding layers offers several benefits. First, the new embedding layers encode x and y to a shared
hidden space obtained by the language model via pretraining, which enables the model to escape the
raw text space and perform in-context reasoning in the hidden space instead. Moreover, by embedding
each input x to a single hidden vector instead of spanning it over several tokens, we effectively reduce
the sequence length and thus allow the model to scale to more conditioning examples.

4

Published as a conference paper at ICLR 2025

However, it is challenging for the model to perform this prediction task without any context informa-
tion about the task. This is because, from the model point of view, embeddings of x and y do not
mean anything more than some high-dimensional vectors. In other words, the model does not know
what task it should perform and what each token in the embedding sequence represents. To address
this issue, we prepend each sequence with a task prompt and prepend each input x with a special
token <x> and each function value y with a special token <y>. The task prompt instructs the
model to perform the task, while the special tokens <x> and <y> inform the model of the position of
each input x and the corresponding function value y. In other words, we use a language the model
has mastered (natural language) to guide the learning of a new “foreign language” (e.g., molecule). In
practice, the task prompt is “Each x is a molecule and each y is the property of the corresponding
molecule. Predict y given x.”, whereas <x> and <y> are two single characters “x” and “y”. Finally,
we apply the prediction layer on top of each token <y> to predict the function value given the tokens
preceding it. Each prediction consists of a mean and a standard deviation value which will be used
for the selection of candidates during optimization. Figure 1 illustrates the architecture of LICO.

It is worth noting that the combination of natural language and domain-specific embeddings is the
main distinction between LICO and previous works such as FPT (Lu et al., 2022) which applies
pretrained LLMs to sequence classification tasks in non-language modalities. FPT also learns new
embedding layers for the new domain, but relies entirely on the pretrained self-attention layers
to model these embeddings without any language instructions. This distinction stems from the
different nature of the tasks we aim to tackle. In sequence classification, the model produces a single
prediction for the entire sequence, thus having a good representation of the sequence via self-attention
is sufficient. For in-context learning, however, the model must associate each input x with its value
y to infer the underlying function f and make predictions for unknown y. A language instruction
that specifies where x is and where y is helps the model identify this association and improve its
in-context reasoning. Our ablation study in 5.2.1 confirms this utility of retaining language tokens.

4.2 SEMI-SYNTHETIC TRAINING

Our goal is to train LICO on the unlabeled data Du with an unsupervised objective to facilitate
efficient generalization to an arbitrary objective function f in the same domain X after training. Our
key insight is that if we train the model to perform the estimation in equation 2 for a wide range of
functions, it should adapt to any objective function post-training. While the true function values are
unknown before optimization, we can use the unlabeled data x′s to generate training data from other
functions. Assume we have access to a family of functions F̃ that operate on the same input domain
X . For each function f̃ drawn from F̃ , we sample a set of function evaluations {(xi, yi)}ni=1 and
train the model to autoregressively predict y given the input x and preceding (x, y) pairs:

L(θ) = E

[
n∑

i=1

log pθ(yi | xi, x<i, y<i)

]
, (3)

in which the expectation is with respect to f̃ ∼ F̃ , x1:n ∼ Du, and y1:n = f̃(x1:n). After training,
the estimation in equation 2 can be done purely via in-context prompting, where we condition the
model on past observations to make predictions for new data points.

Ideally, the function family F̃ should be close to the downstream objective f , but also be diverse
enough to encourage broad generalization across functions. To achieve this, we propose to train
LICO on a mix of intrinsic and synthetic functions, which we term semi-synthetic training. Intrinsic
functions are functions that map each input molecule x to an inherent property of x. For example,
molecular weight, the number of rings, or heavy atom count are intrinsic properties of the molecule
that are known from domain knowledge or can be easily computed using standard tools. These
intrinsic properties are closely related to many downstream objective functions. For example, the
biological activity of a drug molecule, such as its ability to inhibit a particular enzyme, is often closely
related to the molecule’s shape or conformation. Therefore, training LICO from these functions
encourages the model to learn useful representations of the input x and obtain good prior knowledge
about the optimization domain.

However, it is important to note that we are ultimately interested in optimizing other functions outside
of the intrinsic function set. Training the model only on a limited set of intrinsic functions may
result in overfitting and poor generalization to unseen functions. To diversify the training data, we

5

Published as a conference paper at ICLR 2025

additionally train the model on synthetically generated functions. A synthetic function family should
be easy to sample from and be capable of producing diverse functions. Many such families exist,
including Gaussian Processes (GPs), randomly constructed Gaussian Mixture Models, or randomly
initialized neural networks. We choose to generate synthetic functions from Gaussian Processes
with a Tanimoto kernel due to its simplicity and efficiency. Tanimoto kernel, also known as the
Jaccard coefficient, measures the similarity between two vectors of binary values, a representation
that is widely used for many scientific domains such as chemistry, drug discovery, or bioinformatics.
Specifically, each synthetic function f̃ is sampled as follows,

f̃ ∼ GP(0,K), K(x, x′) =
x · x′

||x||2 + ||x′||2 − x · x′ , (4)

where K(x, x′) is the Tanimoto kernel that measures the similarity between x and x′.

The final family of functions F̃ used to train LICO is a mixture of intrinsic and synthetic functions
with a certain ratio. This design choice is critical to the model’s performance. Intuitively, training on
both types of functions ensures proximity to the downstream objectives and good coverage of the
function space for efficient generalization. The use of intrinsic functions is also the main difference
between our work and ExPT (Nguyen et al., 2023), a recent method that studies pure synthetic
pretraining for optimization. We hypothesize that while synthetic data is sufficient for ExPT on a few
simple tasks, for a more complex domain such as molecular optimization, synthetic training provides
too little relevant signal for the model to generalize to downstream objectives. We empirically show
the importance of both intrinsic and synthetic functions in the ablation study in section 5.2.2.

4.3 LICO FOR BLACK-BOX OPTIMIZATION

After training, a single LICO model can be used for optimizing various objective functions within
the domain X . Optimization involves an iterative process. At each iteration t, we generate a set of
candidates {xi}Ci=1 using standard crossover and mutation operations for which the model predicts
the mean µi and standard deviation σi conditioned on prior observations Dobs, a dataset of (x, y)
pairs collected until t. An acquisition function α then calculates a utility score based on µi and σi for
each candidate, balancing between exploration (favoring high σ) and exploitation (favoring high µ).
The top k candidates determined by their utility scores are evaluated using the objective function f .
These k candidates and their corresponding evaluations are incorporated into the dataset Dobs, and
the cycle repeats. This process terminates once we exhaust the evaluation budget of B. Algorithm 1
summarizes the optimization process and Appendix A.3 outlines the optimization hyperparameters.

5 EXPERIMENTS

We evaluate LICO on molecular optimization, where the goal is to design new molecules with desired
properties such as high chemical stability, low toxicity, or selective inhibition against a target disease.
This problem plays a pivotal role in advancing drug and material discovery.

5.1 PMO BENCHMARK

Benchmark We evaluate LICO on Practical Molecular Optimization (PMO) (Gao et al., 2022),
a standard benchmark for molecular optimization with a focus on sample efficiency. We exper-
iment on 23 optimization objectives provided by PMO, including QED Bickerton et al. (2012),
DRD2 (Olivecrona et al., 2017), GSK3β, JNK3 (Li et al., 2018), and 19 objective functions from
Guacamol (Brown et al., 2019). QED assesses a molecule’s drug-likeness by identifying certain "red
flags". DRD2 is a machine learning model trained on experimental data to predict bioactivities for
specific target diseases. Guacamol objectives emulate drug discovery goals through a multi-property
objective (MPO) approach, considering factors like target molecule similarity, molecular weights,
and CLogP. All objective values range from 0 to 1, with 1 indicating the best outcome. We consider
two evaluation settings – the original PMO with a budget of 10000 oracle calls, and a budget-efficient
setting with 1000 oracle calls, which we refer to as PMO-1K. We believe 1000 is a more reasonable
budget while still allowing optimization methods to achieve meaningful performances. To ensure a
fair comparison in PMO-1K, we performed extensive hyperparameter tuning for each baseline on the

6

Published as a conference paper at ICLR 2025

Table 1: The performance of LICO and the baselines on 23 optimization tasks in PMO-1K. A higher
score is better. We report the mean and stddev of scores averaged over 5 random seeds. We use blue
and violet to denote the best and second-best method for each task.

Task GP BO Graph GA REINVENT LICO Genetic GFN Augmented Memory MOLLEO

albuterol_similarity 0.636± 0.106 0.583± 0.065 0.496± 0.020 0.656± 0.125 0.664± 0.054 0.557± 0.048 0.886± 0.023
amlodipine_mpo 0.519± 0.014 0.501± 0.016 0.472± 0.008 0.541± 0.026 0.534± 0.019 0.489± 0.009 0.637± 0.023

celecoxib_rediscovery 0.411± 0.046 0.424± 0.049 0.370± 0.029 0.447± 0.073 0.447± 0.028 0.385± 0.027 0.402± 0.003
deco_hop 0.593± 0.013 0.581± 0.006 0.572± 0.006 0.596± 0.010 0.604± 0.017 0.579± 0.010 0.588± 0.007
drd2 0.857± 0.080 0.833± 0.065 0.775± 0.086 0.859± 0.066 0.809± 0.045 0.795± 0.024 0.910± 0.017

fexofenadine_mpo 0.707± 0.021 0.666± 0.009 0.650± 0.007 0.700± 0.023 0.682± 0.021 0.679± 0.021 0.674± 0.002
gsk3b 0.611± 0.059 0.523± 0.047 0.589± 0.063 0.617± 0.063 0.637± 0.018 0.539± 0.097 0.397± 0.013

isomers_c7h8n2o2 0.545± 0.158 0.735± 0.112 0.725± 0.064 0.779± 0.099 0.738± 0.039 0.661± 0.039 0.737± 0.043
isomers_c9h10n2o2pf2cl 0.599± 0.059 0.630± 0.086 0.630± 0.032 0.672± 0.075 0.656± 0.075 0.596± 0.066 0.635± 0.017

jnk3 0.346± 0.067 0.301± 0.071 0.315± 0.042 0.336± 0.051 0.409± 0.165 0.294± 0.110 0.186± 0.076
median1 0.213± 0.020 0.208± 0.015 0.205± 0.012 0.217± 0.019 0.219± 0.008 0.219± 0.014 0.236± 0.021
median2 0.203± 0.009 0.181± 0.009 0.188± 0.010 0.193± 0.009 0.204± 0.011 0.184± 0.010 0.191± 0.009

mestranol_similarity 0.427± 0.025 0.362± 0.017 0.379± 0.026 0.423± 0.016 0.414± 0.022 0.393± 0.021 0.399± 0.020
osimertinib_mpo 0.766± 0.006 0.751± 0.005 0.737± 0.007 0.759± 0.008 0.763± 0.008 0.761± 0.006 0.779± 0.006
perindopril_mpo 0.458± 0.019 0.435± 0.016 0.404± 0.009 0.473± 0.009 0.462± 0.033 0.422± 0.013 0.655± 0.054

qed 0.912± 0.010 0.914± 0.007 0.921± 0.002 0.925± 0.005 0.928± 0.002 0.923± 0.002 0.919± 0.006
ranolazine_mpo 0.701± 0.023 0.620± 0.014 0.574± 0.044 0.687± 0.029 0.623± 0.022 0.614± 0.033 0.640± 0.000
scaffold_hop 0.478± 0.009 0.461± 0.008 0.447± 0.010 0.480± 0.008 0.485± 0.015 0.460± 0.010 0.473± 0.000

sitagliptin_mpo 0.232± 0.083 0.229± 0.053 0.261± 0.026 0.315± 0.097 0.227± 0.041 0.245± 0.030 0.193± 0.073
thiothixene_rediscovery 0.351± 0.039 0.322± 0.023 0.311± 0.021 0.343± 0.035 0.377± 0.015 0.336± 0.033 0.416± 0.075
troglitazone_rediscovery 0.313± 0.018 0.267± 0.015 0.246± 0.009 0.292± 0.028 0.277± 0.015 0.262± 0.012 0.302± 0.022

valsartan_smarts 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000
zaleplon_mpo 0.392± 0.034 0.374± 0.024 0.406± 0.017 0.404± 0.022 0.400± 0.014 0.415± 0.013 0.392± 0.003

Sum of scores (↑) 11.27 10.90 10.68 11.71 11.56 10.81 11.65

first 5 tasks, and used the optimal hyperparameters for the remaining tasks. Appendix B.1 details
hyperparameter search for the baselines.

Baselines We compare LICO against 6 leading methods in PMO, namely Genetic GFN (Kim et al.,
2024), REINVENT (Olivecrona et al., 2017), Augmented Memory (Guo & Schwaller, 2023), Graph
GA (Jensen, 2019), GP BO (Tripp et al., 2021), and MOLLEO (Wang et al., 2024). Genetic GFN
employs a GFlowNets (Bengio et al., 2023) model trained to sample molecules proportional to
their rewards. REINVENT is a reinforcement learning method that finetunes a pretrained RNN for
generating SMILES strings, and Augmented Memory combines REINVENT with data augmentation
and experience replay. Graph GA, inspired by evolutionary processes, utilizes crossover and mutation
operations to explore the molecule space. GP BO is a Bayesian optimization method that augments
Graph GA with a Gaussian Processes surrogate model and UCB acquisition function to guide
candidate selection. MOLLEO is an LLM-based method that prompts a chemistry-aware LLM such
as BioT5 (Pei et al.) to perform mutation and crossover operations in an evolutionary algorithm.
Among the baselines, GP BO is the most similar to LICO, where the only difference is we use an
LLM for surrogate modeling instead of a GP.

LICO training We use ZINC 250K as the unlabeled dataset Du. ZINC 250K contains around
250000 molecules sampled from the full ZINC database (Sterling & Irwin, 2015) with moderate size
and high pharmaceutical relevance and popularity. We adopt 2-radius 2048 bit Morgan molecular
fingerprints as the input feature of the molecule. To generate training data, we use 47 intrinsic
properties of the molecule as the intrinsic functions, which we present in detail in Appendix A.1.
We train LICO for 20000 iterations with a batch size of 4, where each data point is a sequence
of (x, y) pairs sampled from an intrinsic or synthetic function. The ratio of synthetic data is 0.1.
We use Llama-2-7b (Touvron et al., 2023b) as the base LLM, and use LoRA (Hu et al., 2021) for
parameter-efficient finetuning. We use the Llama-2-7b-chat checkpoint for the 1000-budget
setting, and the Llama-2-7B-32K-Instruct checkpoint with the Liger Kernel (Hsu et al.,
2024) for training and inference with long context for the 10000-budget setting.

Evaluation details We report the area under the curve (AUC) of the top-10 average objective
value against the number of function calls as the performance metric. AUC metric favors methods
that obtain high values with a smaller number of function calls, thus evaluating both optimization
capability and sample efficiency. We min-max scale the AUC values to [0, 1]. We aggregate the
performance for each method across 5 seeds for better reproducibility as suggested by PMO.

Results Table 1 summarizes the performance of the 7 considered methods across 23 optimization
tasks in PMO-1K. Overall, LICO is the leading method in this benchmark, achieving the highest
aggregated score. Specifically, LICO achieves the best or second-best performance in 14/23 tasks.
MOLLEO performs competitively with LICO on this benchmark, with a sum score of 11.65. However,
we note that MOLLEO has significant advantages over LICO and other methods. MOLLEO used

7

Published as a conference paper at ICLR 2025

Table 2: The performance of LICO and the baselines on 23 optimization tasks in PMO. A higher
score is better. We report the mean and stddev of scores averaged over 5 random seeds. We use blue
and violet to denote the best and second-best method for each task.

Task GP BO Graph GA REINVENT LICO Genetic GFN Augmented Memory MOLLEO

albuterol_similarity 0.898± 0.014 0.838± 0.016 0.882± 0.006 0.885± 0.019 0.941± 0.021 0.913± 0.009 0.936± 0.016
amlodipine_mpo 0.583± 0.044 0.661± 0.020 0.635± 0.035 0.679± 0.027 0.709± 0.027 0.691± 0.047 0.801± 0.028

celecoxib_rediscovery 0.723± 0.053 0.630± 0.097 0.713± 0.067 0.664± 0.122 0.784± 0.032 0.796± 0.008 0.459± 0.080
deco_hop 0.629± 0.018 0.619± 0.004 0.666± 0.044 0.619± 0.015 0.653± 0.028 0.658± 0.024 0.648± 0.099

drd2 0.923± 0.017 0.964± 0.012 0.945± 0.007 0.928± 0.018 0.963± 0.006 0.963± 0.006 0.962± 0.013
fexofenadine_mpo 0.722± 0.005 0.760± 0.011 0.784± 0.006 0.772± 0.023 0.793± 0.009 0.859± 0.009 0.776± 0.019

gsk3b 0.851± 0.041 0.788± 0.070 0.865± 0.043 0.876± 0.045 0.861± 0.022 0.881± 0.021 0.865± 0.037
isomers_c7h8n2o2 0.680± 0.117 0.862± 0.065 0.852± 0.036 0.939± 0.022 0.955± 0.007 0.853± 0.087 0.915± 0.036

isomers_c9h10n2o2pf2cl 0.469± 0.180 0.719± 0.047 0.642± 0.054 0.819± 0.039 0.876± 0.018 0.736± 0.051 0.708± 0.093
jnk3 0.564± 0.155 0.553± 0.136 0.783± 0.023 0.731± 0.037 0.759± 0.063 0.739± 0.110 0.715± 0.026

median1 0.301± 0.014 0.294± 0.021 0.356± 0.009 0.291± 0.016 0.355± 0.009 0.326± 0.013 0.302± 0.031
median2 0.297± 0.009 0.273± 0.009 0.276± 0.008 0.280± 0.019 0.289± 0.007 0.291± 0.008 0.206± 0.015

mestranol_similarity 0.627± 0.089 0.579± 0.022 0.618± 0.048 0.614± 0.064 0.697± 0.035 0.750± 0.049 0.759± 0.102
osimertinib_mpo 0.787± 0.006 0.831± 0.005 0.837± 0.009 0.820± 0.012 0.846± 0.008 0.855± 0.004 0.819± 0.020
perindopril_mpo 0.493± 0.011 0.538± 0.009 0.537± 0.016 0.557± 0.028 0.595± 0.011 0.613± 0.015 0.723± 0.018

qed 0.937± 0.000 0.940± 0.000 0.941± 0.000 0.936± 0.001 0.937± 0.000 0.942± 0.000 0.933± 0.003
ranolazine_mpo 0.735± 0.013 0.728± 0.012 0.760± 0.009 0.774± 0.008 0.810± 0.011 0.801± 0.006 0.731± 0.023
scaffold_hop 0.548± 0.019 0.517± 0.007 0.560± 0.019 0.547± 0.026 0.585± 0.041 0.567± 0.008 0.516± 0.022

sitagliptin_mpo 0.186± 0.055 0.433± 0.075 0.021± 0.003 0.567± 0.034 0.577± 0.036 0.284± 0.050 0.496± 0.020
thiothixene_rediscovery 0.559± 0.027 0.479± 0.025 0.534± 0.013 0.514± 0.037 0.599± 0.073 0.550± 0.041 0.658± 0.024
troglitazone_rediscovery 0.410± 0.015 0.390± 0.016 0.441± 0.032 0.380± 0.026 0.455± 0.016 0.540± 0.048 0.352± 0.040

valsartan_smarts 0.000± 0.000 0.000± 0.000 0.178± 0.358 0.000± 0.000 0.092± 0.242 0.000± 0.000 0.000± 0.000
zaleplon_mpo 0.221± 0.072 0.346± 0.032 0.358± 0.062 0.515± 0.017 0.545± 0.023 0.394± 0.026 0.402± 0.019

Sum of scores (↑) 13.156 13.751 14.196 14.708 15.678 15.002 14.682

Table 3: Performance of LICO on 5 tasks with different language instructions.

Task albuterol_similarity amlodipine_mpo celecoxib_rediscovery deco_hop drd2 Sum (↑)

LICO w/o Language 0.615± 0.104 0.491± 0.018 0.396± 0.051 0.585± 0.010 0.840± 0.063 2.927
LICO w/o Task prompt 0.641± 0.107 0.523± 0.018 0.457± 0.041 0.595± 0.006 0.844± 0.105 3.060

LICO 0.656± 0.125 0.541± 0.026 0.447± 0.073 0.596± 0.010 0.859± 0.066 3.099

BioT5 to generate valid molecules, which has been finetuned extensively on molecules, protein, and
molecule-related text data, while LICO leveraged a general LLM like Llama. Moreover, MOLLEO
prompts the LLM with a detailed textual description of the task such as "Your job is to generate
a SELFIES molecule that looks more like a drug", which possibly has data contamination issues,
since the finetuning data may have included similar tasks. On the other hand, we use LICO as a
black-box surrogate model, where the model makes predictions based purely on in-context learning
of the mapping between molecule fingerprints and their corresponding scores.

On the original PMO setting, Table 2 shows the competitive performance of LICO with the two
state-of-the-art methods Genetic GFN and Augmented Memory. It is important to note that other
methods have significant advantages over LICO, since both Genetic GFN and Augmented Memory
update their models from real data during optimization, whereas LICO performs in-context learning
without being explicitly trained on data from downstream objectives. This impressive result shows
the effectiveness of semi-synthetic training in enabling generalization to a broad range of functions
via in-context prompting.

The most closely related method to LICO is GP BO, where the only difference between the two is
the surrogate model. This indicates the superiority of LICO compared to GP, a popular surrogate
model for black-box optimization. To verify this, we compare the predictive performance of LICO
and GP on several objective functions. We do this by first labeling the ZINC unlabeled dataset with
the objective functions and randomly choosing a subset of the labeled data points for evaluation.
For each task, we vary the number of examples given to each method from 32 to 512, and evaluate
their performance on 128 held-out data points. We use negative log-likelihood, mean squared
error, and root mean squared calibration error as the evaluation metrics. Figure 2 compares the
predictive performance of LICO and GP in 3 objective functions, median1, ranolazine_mpo,
and troglitazone_rediscovery. The figure shows that the optimization performance of the
method closely aligns with the predictive performance of the surrogate model. In median1 and
ranolazine_mpo where LICO outperforms GP in terms of optimization score, the model also
achieves lower negative log-likelihood, mean squared error, and calibration error. Similarly, LICO
has worse predictive performance in troglitazone_rediscovery where it underperforms GP.
This verifies our hypothesis and proves the effectiveness of LICO for surrogate modeling.

8

Published as a conference paper at ICLR 2025

100 200 300 400 500

2.8

2.6

2.4

2.2

2.0

m
ed

ia
n1

NLL

100 200 300 400 500
0.0002

0.0004

0.0006

0.0008

0.0010

MSE

100 200 300 400 500

0.02

0.04

0.06

0.08

0.10

RMS Cal

100 200 300 400 500

2.0

1.5

1.0

0.5

0.0

0.5

1.0

ra
no

la
zin

e_
m

po

100 200 300 400 500
0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

100 200 300 400 500

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

100 200 300 400 500

2.5

2.4

2.3

2.2

2.1

2.0

1.9

1.8

tro
gl

ita
zo

ne
_r

ed
isc

ov
er

y

100 200 300 400 500
Number of observed points

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.0010

0.0011

100 200 300 400 500

0.02

0.04

0.06

0.08

0.10

LICO GP

Figure 2: The predictive performance of LICO and GP on 3 objective functions in PMO with different
metrics and varying numbers of observations.

Table 4: Performance of LICO on 5 tasks with different ratios of synthetic data.

Task albuterol_similarity amlodipine_mpo celecoxib_rediscovery deco_hop drd2 Sum (↑)

LICO Intrinsic 0.598± 0.115 0.524± 0.029 0.412± 0.042 0.585± 0.005 0.891± 0.032 3.010
LICO 0.1 Synthetic 0.656± 0.125 0.541± 0.026 0.447± 0.073 0.596± 0.010 0.859± 0.066 3.099
LICO 0.5 Synthetic 0.663± 0.140 0.504± 0.016 0.402± 0.016 0.588± 0.006 0.907± 0.020 3.063

LICO Synthetic 0.547± 0.080 0.498± 0.026 0.404± 0.103 0.585± 0.003 0.902± 0.012 2.936

5.2 ABLATION ANALYSIS

We perform various ablation studies to understand the importance of different components and design
choices in LICO. For the ablation experiments, we consider the first 5 tasks in Table 1 only. We
report the aggregated performance of different models using AUC Top-10 across 5 random seeds.

5.2.1 LICO WITHOUT LANGUAGE INSTRUCTION

First, we examine the importance of language instructions to the performance of LICO. We compare
3 variants of LICO: 1) LICO without any language instruction, 2) LICO with special tokens <x> and
<y> but without a task prompt, and 3) LICO with both special tokens and the task prompt. Table 3
compares the performance of the 3 variants. LICO performs the best in 4/5 tasks, followed by LICO
without the task prompt. LICO without any language instruction performs the worst, often by a large
margin. This result confirms the importance of guiding a pretrained LLM with language instruction
when applying the model to in-context reasoning in a completely new domain.

5.2.2 LICO WITH DIFFERENT SYNTHETIC RATIOS

We investigate the importance of training LICO on both intrinsic and synthetic data. To do this,
we gradually increase the ratio of synthetic functions in the training data from 0 (intrinsic-only) to
1 (synthetic-only), and compare the performance of LICO across different ratios. Table 4 shows
that LICO with semi-synthetic training performs the best, outperforming both intrinsic-only and
synthetic-only data. Training with synthetic data only performs the worst, which is expected when
synthetic functions generated by a GP do not include any domain knowledge that is encoded by
the intrinsic functions. In other words, synthetic data alone provides too little relevant signal
for the model to generalize to unseen downstream objectives. Training with intrinsic functions

9

Published as a conference paper at ICLR 2025

Table 5: Performance of pretrained vs randomly initial-
ized LLMs.

Task Pretrained LLM Scratch LLM

albuterol_similarity 0.656± 0.125 0.575± 0.064
amlodipine_mpo 0.541± 0.026 0.503± 0.029

celecoxib_rediscovery 0.447± 0.073 0.410± 0.034
deco_hop 0.596± 0.010 0.583± 0.005
drd2 0.859± 0.066 0.827± 0.085

Sum 3.099 2.898

2 3 4 5 6 7
Number of Parameters (Billions)

4.7

4.8

4.9

5.0

5.1

5.2

Su
m

 P
er

fo
rm

an
ce

Qwen-1.5

Phi-2

Qwen-1.5

Llama-2

Figure 3: LICO with different LLM sizes.

only, on the other hand, results in quite good performances on most tasks. However, in tasks like
albuterol_similarity, semi-synthetic training outperforms this baseline by a large margin.
We hypothesize that the underlying objective in albuterol_similarity is far from the intrinsic
functions used to train LICO, leading to poor generalization. Finally, training with small (0.1) to
moderate (0.5) ratios of synthetic data achieves similarly good performance.

5.2.3 RANDOMLY INITIALIZED VS PRETRAINED LLMS

To understand the importance of using a pretrained LLM, we compare LICO with an autoregressive
transformer model of the same size (7B). The transformer architecture is the same as in (Garg et al.,
2022), and we train this model to perform in-context learning on the semi-synthetic data from scratch.
Table 5 shows the comparison. The scratch model performs much worse than LICO with a pretrained
LLM on all tasks despite sharing the same number of parameters. This highlights the importance of
the pattern-matching capabilities that LLMs like Llama-2 acquire via extensive language pretraining.

5.2.4 LICO WITH DIFFERENT LLM SIZES

Previous works have shown the favorable scaling laws of Large Language Models where larger
models consistently perform better on downstream tasks (Kaplan et al., 2020). In this section, we
investigate the scaling properties of LLMs but in the context of black-box optimization. Specifically,
we compare 4 different base LLMs with different sizes – Qwen-1.5 1.8B and 4B (Bai et al., 2023),
Phi-2 2.7B (Javaheripi et al., 2023), and Llama-2 7B (Touvron et al., 2023b). We use the same
language instructions for all models. We evaluate each model on the first 8 tasks in Table 1 and
average the results across 5 random seeds. We report the sum of performance across 8 tasks.

The comparison in Figure 3 shows that the optimization performance scales consistently with the
model size, with Llama-2 7B being the best method. This experiment indicates that larger LLMs
not only perform better in language tasks but also obtain stronger pattern-matching capabilities that
can be transferred to a completely different domain. Given this scaling, we can further improve the
current performance of LICO by scaling up the base LLM size.

6 CONCLUSION AND FUTURE WORK

We develop LICO, a new method that leverages pretrained Large Language Models for black-box
optimization. LICO extends existing LLMs to non-language domains with separate embedding and
prediction layers. To enable efficient generalization to various optimization tasks, we train LICO on
a diverse set of semi-synthetic functions for few-shot predictions. LICO achieves state-of-the-art
performance on PMO, a challenging molecular optimization benchmark with over 20 objective
functions. Ablation analyses highlight the importance of incorporating language instruction to guide
in-context learning and semi-synthetic training for better generalization. One limitation of our
method is the assumption of an accessible set of intrinsic functions. While this is true for molecular
optimization, it may not apply to other scientific domains. In such cases, a better synthetic data
generation process incorporating domain knowledge is needed to aid generalization. Future directions
include evaluating LICO in other domains to test its applicability and generality, exploring other
prompts that better exploit the capabilities of pretrained LLMs, and using LLMs for other aspects of
optimization, such as candidate suggestion or exploration.

10

Published as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy
Colwell. Model-based reinforcement learning for biological sequence design. 2020.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. The Journal of Machine Learning Research, 24(1):10006–10060, 2023.

Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. Safe controller optimization for
quadrotors with gaussian processes. In 2016 IEEE international conference on robotics and
automation (ICRA), pp. 491–496. IEEE, 2016.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

Herbie Bradley, Honglu Fan, Theodoros Galanos, Ryan Zhou, Daniel Scott, and Joel Lehman. The
openelm library: Leveraging progress in language models for novel evolutionary algorithms.
Genetic Programming Theory and Practice XX. Springer, 2024.

David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for
robust design. In International conference on machine learning, pp. 773–782. PMLR, 2019.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096–1108, 2019.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Angelica Chen, David M Dohan, and David R So. Evoprompting: Language models for code-level
neural architecture search. arXiv preprint arXiv:2302.14838, 2023.

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Richard Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, et al. Towards learning
universal hyperparameter optimizers with transformers. Advances in Neural Information Process-
ing Systems, 35:32053–32068, 2022.

Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong
Sohn, Dimitris Papailiopoulos, and Kangwook Lee. Lift: Language-interfaced fine-tuning for
non-language machine learning tasks. Advances in Neural Information Processing Systems, 35:
11763–11784, 2022.

Yin Fang, Ningyu Zhang, Zhuo Chen, Lingbing Guo, Xiaohui Fan, and Huajun Chen. Domain-
agnostic molecular generation with self-feedback. arXiv preprint arXiv:2301.11259, 2023.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a benchmark
for practical molecular optimization. Advances in Neural Information Processing Systems, 35:
21342–21357, 2022.

11

Published as a conference paper at ICLR 2025

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale
bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107, 2012.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
zero-shot time series forecasters. arXiv preprint arXiv:2310.07820, 2023.

Philipp Guevorguian, Menua Bedrosian, Tigran Fahradyan, Gayane Chilingaryan, Hrant Khachatrian,
and Armen Aghajanyan. Small molecule optimization with large language models. arXiv preprint
arXiv:2407.18897, 2024.

Jeff Guo and Philippe Schwaller. Augmented memory: Capitalizing on experience replay to accelerate
de novo molecular design. arXiv preprint arXiv:2305.16160, 2023.

Kam Hamidieh. A data-driven statistical model for predicting the critical temperature of a supercon-
ductor. Computational Materials Science, 154:346–354, 2018.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu, Steven Shimizu,
Shivam Sahni, Haowen Ning, and Yanning Chen. Liger kernel: Efficient triton kernels for llm
training. arXiv preprint arXiv:2410.10989, 2024. URL https://arxiv.org/abs/2410.
10989.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio
César Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al.
Phi-2: The surprising power of small language models. Microsoft Research Blog, 2023.

Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for the
exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Hyeonah Kim, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Genetic-guided gflownets: Advancing
in practical molecular optimization benchmark. arXiv preprint arXiv:2402.05961, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Generative pretraining for
black-box optimization. In ICML, 2023a.

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for
black-box optimization. In ICML, 2023b.

Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alan Aspuru-Guzik, and
Geoff Pleiss. A sober look at llms for material discovery: Are they actually good for bayesian
optimization over molecules? In Forty-first International Conference on Machine Learning.

12

https://arxiv.org/abs/2410.10989
https://arxiv.org/abs/2410.10989

Published as a conference paper at ICLR 2025

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of Evolutionary Machine Learning, pp. 331–366.
Springer, 2023.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An
Huang, Ekin Akyürek, Anima Anandkumar, et al. Pre-trained language models for interactive
decision-making. Advances in Neural Information Processing Systems, 35:31199–31212, 2022.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional
graph generative model. Journal of cheminformatics, 10:1–24, 2018.

Thomas Liao, Grant Wang, Brian Yang, Rene Lee, Kristofer Pister, Sergey Levine, and Roberto Calan-
dra. Data-efficient learning of morphology and controller for a microrobot. In 2019 International
Conference on Robotics and Automation (ICRA), pp. 2488–2494. IEEE, 2019.

Fei Liu, Xi Lin, Zhenkun Wang, Shunyu Yao, Xialiang Tong, Mingxuan Yuan, and Qingfu
Zhang. Large language model for multi-objective evolutionary optimization. arXiv preprint
arXiv:2310.12541, 2023a.

Shengchao Liu, Jiongxiao Wang, Yijin Yang, Chengpeng Wang, Ling Liu, Hongyu Guo, and Chaowei
Xiao. Chatgpt-powered conversational drug editing using retrieval and domain feedback. arXiv
preprint arXiv:2305.18090, 2023b.

Shengchao Liu, Jiongxiao Wang, Yijin Yang, Chengpeng Wang, Ling Liu, Hongyu Guo, and Chaowei
Xiao. Conversational drug editing using retrieval and domain feedback. In The Twelfth International
Conference on Learning Representations, 2024.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language
models to enhance bayesian optimization. In The Twelfth International Conference on Learning
Representations.

Micha Livne, Zulfat Miftahutdinov, Elena Tutubalina, Maksim Kuznetsov, Daniil Polykovskiy,
Annika Brundyn, Aastha Jhunjhunwala, Anthony Costa, Alex Aliper, Alán Aspuru-Guzik, et al.
nach0: Multimodal natural and chemical languages foundation model. Chemical Science, 15(22):
8380–8389, 2024.

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Frozen pretrained transformers as
universal computation engines. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 7628–7636, 2022.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. arXiv preprint arXiv:2310.12931, 2023.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Arash Moradi, Amy K Hoover, and Joel
Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2023.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines.
arXiv preprint arXiv:2307.04721, 2023.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
via sequence modeling. In ICML, 2022.

Tung Nguyen, Sudhanshu Agrawal, and Aditya Grover. Expt: Synthetic pretraining for few-shot
experimental design. In NeurIPS, 2023.

Allen Nie, Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Importance of directional
feedback for llm-based optimizers. In NeurIPS 2023 Foundation Models for Decision Making
Workshop, 2023.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9(1):1–14, 2017.

13

Published as a conference paper at ICLR 2025

Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan Gao, Lijun Wu, Yingce Xia, and Rui Yan.
Biot5: Enriching cross-modal integration in biology with chemical knowledge and natural language
associations. In The 2023 Conference on Empirical Methods in Natural Language Processing.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Mayk Caldas Ramos, Shane S Michtavy, Marc D Porosoff, and Andrew D White. Bayesian optimiza-
tion of catalysts with in-context learning. arXiv preprint arXiv:2304.05341, 2023.

Bojana Ranković and Philippe Schwaller. Bochemian: Large language model embeddings for
bayesian optimization of chemical reactions. In NeurIPS 2023 Workshop on Adaptive Experimental
Design and Active Learning in the Real World, 2023.

Karen S Sarkisyan, Dmitry A Bolotin, Margarita V Meer, Dinara R Usmanova, Alexander S Mishin,
George V Sharonov, Dmitry N Ivankov, Nina G Bozhanova, Mikhail S Baranov, Onuralp Soylemez,
et al. Local fitness landscape of the green fluorescent protein. Nature, 533(7603):397–401, 2016.

Junhong Shen, Liam Li, Lucio M Dery, Corey Staten, Mikhail Khodak, Graham Neubig, and Ameet
Talwalkar. Cross-modal fine-tuning: Align then refine. arXiv preprint arXiv:2302.05738, 2023.

Henry W Sprueill, Carl Edwards, Khushbu Agarwal, Mariefel V Olarte, Udishnu Sanyal, Conrad
Johnston, Hongbin Liu, Heng Ji, and Sutanay Choudhury. Chemreasoner: Heuristic search over
a large language model’s knowledge space using quantum-chemical feedback. arXiv preprint
arXiv:2402.10980, 2024.

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Austin Tripp, Gregor NC Simm, and José Miguel Hernández-Lobato. A fresh look at de novo
molecular design benchmarks. In NeurIPS 2021 AI for Science Workshop, 2021.

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill.
Multimodal few-shot learning with frozen language models. Advances in Neural Information
Processing Systems, 34:200–212, 2021.

Christoph Völker, Tehseen Rug, Kevin Maik Jablonka, and Sabine Kruschwitz. Llms can design
sustainable concrete–a systematic benchmark. 2024.

Haorui Wang, Marta Skreta, Cher-Tian Ser, Wenhao Gao, Lingkai Kong, Felix Strieth-Kalthoff,
Chenru Duan, Yuchen Zhuang, Yue Yu, Yanqiao Zhu, et al. Efficient evolutionary search over
chemical space with large language models. arXiv preprint arXiv:2406.16976, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

14

Published as a conference paper at ICLR 2025

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

Geyan Ye, Xibao Cai, Houtim Lai, Xing Wang, Junhong Huang, Longyue Wang, Wei Liu, and
Xiangxiang Zeng. Drugassist: A large language model for molecule optimization. arXiv preprint
arXiv:2401.10334, 2023.

Michael R Zhang, Nishkrit Desai, Juhan Bae, Jonathan Lorraine, and Jimmy Ba. Using large language
models for hyperparameter optimization. arXiv e-prints, pp. arXiv–2312, 2023.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

15

Published as a conference paper at ICLR 2025

A LICO IMPLEMENTATION DETAILS

A.1 MOLECULAR INTRINSIC FUNCTIONS

We utilize 47 intrinsic properties of molecules for pretraining LICO. Table 6 shows the intrinsic
properties and their explanation.

Table 6: Inherent Properties of Molecules and their Explanations

Property Explanation
Molecular Weight Total mass of all atoms in the molecule.
Number of Rotatable Bonds Bonds that allow free rotation around themselves.
Number of Rings Count of ring structures in the molecule.
Number of H Donors Atoms in the molecule that can donate a hydrogen atom.
Number of H Acceptors Atoms in the molecule capable of accepting a hydrogen atom.
Num Aromatic Rings Count of rings with a pattern of alternating single and double bonds.
Num Aliphatic Rings Count of non-aromatic rings in the molecule.
Num Saturated Rings Rings with single bonds only.
Num Heteroatoms Atoms other than carbon or hydrogen.
Fraction Csp3 Fraction of carbon atoms bonded with a single pair of electrons.
Heavy Atom Count Count of all atoms except hydrogen.
Num Valence Electrons Total number of electrons that can participate in the formation of chemical bonds.
Num Aromatic CarboRings Aromatic rings composed solely of carbon atoms.
Num Aromatic HeteroRings Aromatic rings containing at least one heteroatom.
Num Saturated CarboRings Saturated rings made only of carbon atoms.
Num Saturated HeteroRings Saturated rings containing at least one heteroatom.
BalabanJ Topological index to quantify molecular branching.
BertzCT A measure of structural complexity of the molecule.
Ipc Information content on the vertex degree.
HallKierAlpha Valence connectivity index used in molecular shape analysis.
Kappa1 Shape descriptor based on the skeleton of the molecule.
Kappa2 Hydrogen suppressed graph descriptor.
Kappa3 Hydrogen complete graph descriptor.
Chi0 Randić molecular connectivity index.
Chi1 Valence modified Randić molecular connectivity index.
Chi0n Randić connectivity index normalized.
Chi1n Valence modified Randić connectivity index normalized.
Chi2n Second order Randić connectivity index normalized.
Chi3n Third order Randić connectivity index normalized.
Chi4n Fourth order Randić connectivity index normalized.
Chi0v Randić connectivity index for valence electrons.
Chi1v First order valence molecular connectivity index.
Chi2v Second order valence molecular connectivity index.
Chi3v Third order valence molecular connectivity index.
Chi4v Fourth order valence molecular connectivity index.
Molar Refractivity Measure of the molecule’s polarizability.
AMW Average molecular weight of all atoms in the molecule.
Max Partial Charge Maximum partial charge in the molecule.
Min Partial Charge Minimum partial charge in the molecule.
Max Abs Partial Charge Maximum absolute value of the partial charges in the molecule.
Min Abs Partial Charge Minimum absolute value of the partial charges in the molecule.
Labute ASA Labute’s Approximate Surface Area, an estimate of the molecular surface area.
Max EState Index Maximum electrotopological state index of the atoms in the molecule.
Min EState Index Minimum electrotopological state index of the atoms in the molecule.
Max Abs EState Index Maximum absolute value of the electrotopological state indices in the molecule.
Min Abs EState Index Minimum absolute value of the electrotopological state indices in the molecule.
fr_C_O Frequency of carbon-oxygen bonds in the molecule.

A.2 TRAINING DETAILS

The x embedding layer, y embedding layer, and prediction layer in LICO are MLPs with a hidden
dimension of 1024. We train LICO for 20000 steps with a batch size of 4. For each data point in the
batch, we randomly decide whether to sample an intrinsic or a synthetic function, with the probability
of choosing synthetic functions being 0.1. Each data point is a sequence of (x, y) pairs with length
n ∼ U [64, 800]. If the function is an intrinsic function, we uniformly sample a property from Table 6,
otherwise sample synthetic data following Equation equation 4.

We use Llama-2-7b (Touvron et al., 2023b) as the base LLM, and use LoRA (Hu et al., 2021) for
parameter-efficient finetuning. We use a base learning rate of 5e− 4 with a linear warmup for 1000

16

Published as a conference paper at ICLR 2025

steps and a cosine decay for the remaining 19000 steps. We use LoRA with a rank of 16 and α scale
of 16.

A.3 BLACK-BOX OPTIMIZATION HYPERPARAMETERS

We use Algorithm 1 to optimize a black-box function with LICO. We initialize the observed dataset
Dobs with a population of 34 molecules sampled randomly from ZINC. At each iteration, we use
the best 34 candidates in Dobs to generate new candidates via crossover and mutation operations,
with the mutation rate being 0.01. The candidate pool size C is 100. We predict the mean µi and
standard deviation σi for each candidate xi in the pool using LICO. We employ a UCB acquisition
function to compute the utility score ui = µi + βσi, which balances exploration and exploitation.
Following (Gao et al., 2022), we set β = 10b, where b ∼ U [−0.5, 1.5]. We then pick k = 15
candidates with the highest utility scores. We evaluate each selected candidate xj using the black-box
function f , and add the new data point (xj , yj) to the observed dataset Dobs. The process continues
with the updated observed dataset, and stops when |Dobs| = 1000.

When predicting µi, σi = fθ(xi,Dobs), we normalize all the y′s values in Dobs to have mean 0
and standard deviation 1. This is to resemble the finetuning data distribution of LICO. We then
denormalize µi and σi to the original space.

A.4 BLACK-BOX OPTIMIZATION WITH LICO

Algorithm 1 outlines the optimization algorithm using LICO as the surrogate model.

Algorithm 1 Black-box optimization with LICO
Require: objective f , LICO model fθ , budget B, candidate pool size C, acquisition function α, batch size k

Initialize Dobs = {}
while |Dobs| < B do

Generate a set of candidates {xi}Ci=1

for each candidate xi do
Predict µi, σi = fθ(xi,Dobs)
Compute utility score ui = α(µi, σi)

end for
Select k candidates with the highest utility scores
for each selected candidate xj do

Evaluate xj using the actual objective yj = f(xj)
Add (xj , yj) to the observation dataset Dobs

end for
end while

B BASELINE DETAILS

TNP is a transformer-based architecture for in-context learning. We refer to Nguyen & Grover
(2022) for more details about TNP. We train a TNP model with 16 attention layers and 2048 hidden
dimensions. Other hyperparameters are the same as for LICO. After training, we use TNP for
black-box optimization using Algorithm 1 with the same optimization hyperparameters but replace
LICO with TNP.

GP BO replaces the LICO surrogate model in Algorithm 1 with a Gaussian Process with a Tanimoto
kernel. We optimize the Gaussian Process hyperparameters via maximum likelihood estimation on
the initial population sampled from ZINC.

Graph GA is a model-free variant of Algorithm 1. Specifically, at each iteration, Graph GA
generates a set of candidates using the same crossover and mutation operations, and directly evaluates
and adds them to Dobs, since it does not employ a surrogate model.

REINVENT adopts a policy-based RL approach to finetune a pretrained RNN to generate SMILES
strings with high returns. At each optimization iteration, we sample a set of molecules from the

17

Published as a conference paper at ICLR 2025

finetuned RNN, evaluate these molecules using the black-box function f , and add the new data points
to Dobs. We refer to Gao et al. (2022) for more details of the algorithm and other hyperparameters.

B.1 HYPERPARAMETER TUNING FOR THE BASELINES

To ensure the baselines achieve the best possible performance for the new PMO-1K benchmark, we
performed extensive hyperparameter tuning for each baseline on the first 5 tasks with grid search,
and used the optimal hyperparameters for the rest of the tasks. Table 7 specifies the grid search for
each method.

Table 7: Grid search and optimal hyperparameters for the baseline methods.

Method Grid Search Optimal Hyperparameters
GP BO population_size ∈ {50, 100, 150,

..., 350}
offspring_size ∈ {50, 100, 150}
kept_offspring_size ∈ {5, 10,
..., 50}

population_size = 50
offspring_size = 100
kept_offspring_size = 15

Graph GA population_size ∈ {50, 100, 150,
..., 350}
offspring_size ∈ {50, 100, 150}

population_size = 50
offspring_size = 100

REINVENT batch_size ∈ {4, 8, 16, 32, 64}
experience_replay ∈ {4, 8, 16,
24, 32}

batch_size = 16
experience_replay = 24

Genetic GFN learning_rate ∈ {0.0001, 0.0005}
batch_size ∈ {4, 8, 16, 32, 64}
num_keep ∈ {128, 256, 512, 1024}
offspring_size ∈ {2, 4, 8}
ga_generations ∈ {1, 2}

learning_rate = 0.0001
batch_size = 8
num_keep = 128
offspring_size = 2
ga_generations = 1

Augmented Memory batch_size ∈ {4, 8, 16, 32, 64}
replay_buffer_size ∈ {50, 100,
150}

batch_size = 32
replay_buffer_size = 100

C ADDITIONAL RESULTS

C.1 ADDITIONAL METRICS

In addition to AUC Average Top-10, we measure the optimization performance of different methods
on AUC Average Top-1 and AUC Average Top-100 for a more comprehensive comparison. Table 8
and 9 show AUC Average Top-1 and AUC Average Top-100 performances, respectively.

18

Published as a conference paper at ICLR 2025

Table 8: The performance of LICO and the baselines on 21 optimization tasks in PMO with AUC
Average Top-1 metric. A higher score is better. We report the mean and stddev of scores averaged
over 5 random seeds. We use blue and violet to denote the best and second-best method for each task.

Task GP BO Graph GA LICO REINVENT TNP

albuterol_similarity 0.672± 0.109 0.647± 0.080 0.695± 0.150 0.572± 0.026 0.611± 0.042
amlodipine_mpo 0.538± 0.016 0.526± 0.017 0.560± 0.026 0.500± 0.016 0.513± 0.016

celecoxib_rediscovery 0.434± 0.052 0.466± 0.062 0.492± 0.079 0.415± 0.031 0.482± 0.067
deco_hop 0.598± 0.013 0.590± 0.005 0.603± 0.012 0.585± 0.010 0.597± 0.002

drd2_current 0.895± 0.067 0.898± 0.048 0.902± 0.055 0.867± 0.077 0.831± 0.043
fexofenadine_mpo 0.728± 0.022 0.691± 0.011 0.719± 0.025 0.696± 0.012 0.706± 0.014
isomers_c7h8n2o2 0.576± 0.154 0.815± 0.120 0.834± 0.109 0.846± 0.070 0.761± 0.145

isomers_c9h10n2o2pf2cl 0.644± 0.053 0.708± 0.083 0.714± 0.084 0.724± 0.043 0.701± 0.086
median1 0.235± 0.016 0.233± 0.018 0.242± 0.020 0.229± 0.015 0.238± 0.015
median2 0.212± 0.010 0.193± 0.011 0.201± 0.009 0.209± 0.013 0.200± 0.018

mestranol_similarity 0.449± 0.028 0.387± 0.020 0.445± 0.014 0.433± 0.034 0.406± 0.011
osimertinib_mpo 0.788± 0.008 0.777± 0.008 0.781± 0.007 0.780± 0.009 0.776± 0.007
perindopril_mpo 0.475± 0.019 0.460± 0.025 0.492± 0.011 0.432± 0.010 0.457± 0.012

qed 0.926± 0.011 0.930± 0.004 0.935± 0.002 0.934± 0.003 0.931± 0.001
ranolazine_mpo 0.729± 0.024 0.684± 0.015 0.711± 0.028 0.657± 0.048 0.669± 0.032
scaffold_hop 0.486± 0.010 0.475± 0.008 0.491± 0.013 0.468± 0.010 0.484± 0.019

sitagliptin_mpo 0.268± 0.098 0.281± 0.069 0.363± 0.114 0.333± 0.030 0.274± 0.044
thiothixene_rediscovery 0.371± 0.046 0.351± 0.029 0.368± 0.041 0.345± 0.026 0.332± 0.041
troglitazone_rediscovery 0.329± 0.019 0.289± 0.021 0.309± 0.033 0.276± 0.009 0.286± 0.012

valsartan_smarts 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000
zaleplon_mpo 0.431± 0.031 0.418± 0.022 0.435± 0.027 0.456± 0.020 0.428± 0.022

Sum of scores (↑) 10.784 10.818 11.291 10.755 10.683
Mean rank (↓) 2.52 3.57 1.62 3.48 3.75

Table 9: The performance of LICO and the baselines on 21 optimization tasks in PMO with AUC
Average Top-100 metric. A higher score is better. We report the mean and stddev of scores averaged
over 5 random seeds. We use blue and violet to denote the best and second-best method for each task.

Task GP BO Graph GA LICO REINVENT TNP

albuterol_similarity 0.548± 0.100 0.470± 0.042 0.563± 0.093 0.395± 0.012 0.448± 0.028
amlodipine_mpo 0.458± 0.008 0.422± 0.014 0.486± 0.025 0.407± 0.005 0.420± 0.013

celecoxib_rediscovery 0.363± 0.040 0.346± 0.036 0.372± 0.070 0.296± 0.024 0.346± 0.026
deco_hop 0.579± 0.013 0.563± 0.006 0.583± 0.009 0.550± 0.006 0.568± 0.004

drd2_current 0.741± 0.097 0.605± 0.086 0.725± 0.092 0.615± 0.098 0.556± 0.095
fexofenadine_mpo 0.645± 0.018 0.588± 0.008 0.636± 0.022 0.549± 0.004 0.599± 0.016
isomers_c7h8n2o2 0.300± 0.142 0.535± 0.091 0.450± 0.149 0.511± 0.058 0.492± 0.115

isomers_c9h10n2o2pf2cl 0.474± 0.038 0.441± 0.068 0.535± 0.067 0.445± 0.027 0.447± 0.049
median1 0.175± 0.022 0.168± 0.013 0.166± 0.019 0.162± 0.007 0.170± 0.008
median2 0.184± 0.006 0.158± 0.008 0.175± 0.010 0.155± 0.006 0.162± 0.009

mestranol_similarity 0.379± 0.020 0.311± 0.016 0.361± 0.030 0.302± 0.016 0.314± 0.003
osimertinib_mpo 0.706± 0.006 0.667± 0.008 0.694± 0.010 0.623± 0.014 0.671± 0.006
perindopril_mpo 0.405± 0.019 0.357± 0.012 0.424± 0.007 0.332± 0.011 0.359± 0.010

qed 0.853± 0.010 0.854± 0.011 0.882± 0.007 0.874± 0.003 0.857± 0.003
ranolazine_mpo 0.633± 0.020 0.462± 0.022 0.617± 0.021 0.436± 0.040 0.468± 0.042
scaffold_hop 0.462± 0.006 0.435± 0.008 0.462± 0.006 0.415± 0.009 0.440± 0.010

sitagliptin_mpo 0.133± 0.062 0.103± 0.032 0.171± 0.045 0.134± 0.016 0.100± 0.023
thiothixene_rediscovery 0.311± 0.030 0.270± 0.015 0.299± 0.026 0.256± 0.015 0.261± 0.024
troglitazone_rediscovery 0.283± 0.014 0.228± 0.008 0.258± 0.024 0.201± 0.008 0.230± 0.005

valsartan_smarts 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000
zaleplon_mpo 0.301± 0.036 0.258± 0.016 0.318± 0.018 0.296± 0.009 0.257± 0.013

Sum of scores (↑) 8.933 8.242 9.175 7.954 8.167
Mean rank (↓) 1.95 3.62 1.76 4.14 3.45

19

Published as a conference paper at ICLR 2025

C.2 LICO WITH LLMS TRAINED ON MOLECULAR CORPORA

One may wonder whether using an LLM finetuned on molecular corpora helps improve the perfor-
mance of LICO. To answer this question, we compare the performance of LICO with two different
base LLMs: T5-base (Raffel et al., 2020) and Nach0-base (Livne et al., 2024), which finetunes
T5-base on molecule corpora. Due to time constraints, we did not perform optimization with these
new models, but compared their predictive performance instead. Figure 4 summarizes the results.
There are two interesting observations from this figure. First, Nach0 works significantly better than
plain T5, confirming the hypothesis that proper finetuning of a language model on molecule data
helps boost its in-context property prediction in LICO. Second, Llama-2 works better than Nach0. As
we explained in the paper, because we perform in-context learning in the embedding space of the
language model, we rely on the general pattern-matching capability of the model, i.e., the ability to
extract the relationship between embeddings of x and y from examples. From this perspective, it is
not surprising that Llama-2 works better than a T5-based model, since it is much larger and has been
pretrained with a lot more data, leading to a superior pattern-matching capability. One more benefit
of using general LLMs like Llama is that they are domain-agnostic, which means we can finetune
them for other non-molecule domains as well.

Figure 4: Predictive performance of LICO with T5-base, Nach0, and Llama-2 as the backbones.

C.3 LICO VS GPT-4 FOR MOLECULAR PROPERTY PREDICTION

One may wonder if we can prompt state-of-the-art LLMs like GPT-4 to perform molecular property
prediction. To investigate this, we conducted an experiment where we prompted GPT-4o to perform
in-context property prediction in the text space. The following text box shows the prompt we used.

I will give you a list of molecules and their corresponding property values. Based on these
examples, your task is to predict the property value of a new molecule. Please provide your
answer as a single number placed inside a pair of parentheses without any other information.
For example, if you think the property value of the new molecule is 0.5, you should write 0.5.
Molecule: [m1], Property: [p1]
Molecule: [m2], Property: [p2]
. . .
Molecule: [mn], Property:

20

Published as a conference paper at ICLR 2025

100 200 300 400 500
0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

0.00225

m
ed

ia
n1

100 200 300 400 500
Number of observed points

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

ra
no

la
zin

e_
m

po

MSE

100 200 300 400 500

0.0008

0.0010

0.0012

0.0014

tro
gl

ita
zo

ne
_r

ed
isc

ov
er

y

LICO GPT-4o

Figure 5: Predictive performance of LICO vs GPT-4o.

Figure 5 compares the predictive performance of LICO with GPT-4o on 3 tasks – median1,
ranolazine_mpo, and troglitazone_rediscovery, similar to the paper. We vary the
context length from 32 to 512, and for each context length average the mean squared error across 128
target molecules. The result shows that prompting GPT4-o directly in the text space performs poorly,
while LICO works much better and its performance improves as we increase the context length.

C.4 LLM EMBEDDINGS FOR MOLECULAR OPTIMIZATION

This work explored using LLMs as the in-context backbone for surrogate modeling in molecular
optimization. Another way to make use of a pretrained LLM is to use the embeddings of an LLM
as feature vectors for molecules and train a regressor on top of the embedding space. This section
explores this idea with two regression models: a 4-layer MLP and a Gaussian Process (GP), both
using the last hidden layer of the frozen LLama-2-7B model as the LLM embeddings. For the MLP
baseline, we train the model on the full data buffer for 10 epochs with a batch size of 128 and a
learning rate of 1e− 4, for every 150 molecules collected (every time after each new set of molecules
is selected and labeled by the oracle). For the GP baseline, we keep the same hyperparameters as
the GP BO method that uses fingerprint features. We compare LICO with these two baselines in the
PMO benchmark.

Table 10: Comparison of LICO and other baselines with LLM embeddings on 23 optimization tasks
in PMO. A higher score is better. We report the mean and stddev of scores averaged over random
seeds. We bold the best method for each task.

Task LICO MLP w/ LLM Embedding GP BO w/ LLM Embedding

albuterol_similarity 0.885± 0.019 0.740± 0.149 0.868± 0.175
amlodipine_mpo 0.679± 0.027 0.621± 0.058 0.558± 0.025

celecoxib_rediscovery 0.664± 0.122 0.549± 0.113 0.633± 0.187
deco_hop 0.619± 0.015 0.594± 0.006 0.611± 0.007

drd2 0.928± 0.018 0.931± 0.194 0.852± 0.263
fexofenadine_mpo 0.772± 0.023 0.734± 0.045 0.709± 0.053

gsk3b 0.876± 0.045 0.793± 0.034 0.845± 0.067
isomers_c7h8n2o2 0.939± 0.022 0.941± 0.116 0.908± 0.170

isomers_c9h10n2o2pf2cl 0.819± 0.039 0.835± 0.111 0.739± 0.119
jnk3 0.731± 0.037 0.725± 0.021 0.728± 0.029

median1 0.291± 0.016 0.282± 0.039 0.306± 0.044
median2 0.280± 0.019 0.223± 0.026 0.280± 0.037

mestranol_similarity 0.614± 0.064 0.770± 0.120 0.612± 0.150
osimertinib_mpo 0.820± 0.012 0.809± 0.011 0.785± 0.012
perindopril_mpo 0.557± 0.028 0.497± 0.024 0.484± 0.034

qed 0.936± 0.001 0.946± 0.002 0.946± 0.002
ranolazine_mpo 0.774± 0.008 0.736± 0.085 0.715± 0.109
scaffold_hop 0.547± 0.026 0.478± 0.012 0.506± 0.010

sitagliptin_mpo 0.567± 0.034 0.544± 0.116 0.429± 0.129
thiothixene_rediscovery 0.514± 0.037 0.430± 0.083 0.521± 0.125
troglitazone_rediscovery 0.380± 0.026 0.299± 0.040 0.370± 0.083

valsartan_smarts 0.000± 0.000 0.000± 0.000 0.000± 0.000
zaleplon_mpo 0.515± 0.017 0.500± 0.037 0.483± 0.043

Sum of scores (↑) 14.708 13.975 13.887

21

Published as a conference paper at ICLR 2025

Table 10 shows the superior performance of LICO against the two baselines, achieving the best
performance in 14/23 tasks in PMO. In addition to the stronger empirical performance, a significant
advantage of LICO is the ability to generalize to any objective function via in-context learning without
finetuning.

D BROADER IMPACT

Our work studies the application of large language models to black-box optimization, particularly
in the domain of molecular optimization. This intersection of machine learning and optimization
holds significant promise for advancing our understanding of LLMs’ capabilities and limitations,
and has significant potential in areas like material science and drug discovery. Our main goal is
to enhance machine learning and optimization techniques, but it’s also important to consider how
these advancements might affect society, such as speeding up the development of new medicines and
materials.

E COMPUTE RESOURCES

All experiments in this paper are run on a cluster of 4 A6000 GPUs, each with 49GB of memory.

22

	Introduction
	Problem Statement
	Related Work
	Method
	Model Architecture
	Semi-synthetic Training
	LICO for Black-box Optimization

	Experiments
	PMO Benchmark
	Ablation Analysis
	LICO without language instruction
	LICO with different synthetic ratios
	Randomly initialized vs Pretrained LLMs
	LICO with different LLM sizes

	Conclusion and Future Work
	LICO implementation details
	Molecular intrinsic functions
	Training details
	Black-box optimization hyperparameters
	Black-box optimization with LICO

	Baseline details
	Hyperparameter tuning for the baselines

	Additional results
	Additional metrics
	LICO with LLMs trained on molecular corpora
	LICO vs GPT-4 for molecular property prediction
	LLM Embeddings for molecular optimization

	Broader impact
	Compute Resources

