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B Additional details for proof of Theorem 1

B.1 Details for (6)

To compare P and Pa, we can equivalently characterize these distributions as follows:

• Draw X ∼ PX .
• Conditional on X , draw Z | X ∈ Xm ∼ Bernoulli(0.5) (for the distribution P , or for the

distribution Pa if m = 1), or Z | X ∈ Xm ∼ Bernoulli(0.5 + amε) (for the distribution Pa
if m ≥ 2).

• Conditional on X,Z draw Y as

Y | X = x, Z = z ∼ P zY |X=x.

Define P̃ as the distribution over (X,Y, Z) induced by P , and P̃a as the distribution over (X,Y, Z)

induced by Pa. Then the marginal distribution of (X,Y ) under P̃ and under P̃a is given by P and by
Pa, respectively.

Now consider comparing two distributions on triples (X1, Z1, Y1), . . . , (Xn, Zn, Yn). We will
compare P̃n versus the mixture distribution P̃mix defined as follows:

• Draw A1, A2, . . .
iid∼ Unif{±1}.

• Conditional on A1, A2, . . . , draw (X1, Y1, Z1), . . . , (Xn, Yn, Zn)
iid∼ P̃A.

Since in our characterization above, the distribution of Y1, . . . , Yn conditional on X1, . . . , Xn and on
Z1, . . . , Zn is the same for both, the only difference lies in the conditional distribution of Z1, . . . , Zn
given X1, . . . , Xn. Therefore, we can apply Lemma 2 with ε1 = 0 and ε2 = ε3 = · · · = ε to obtain

dTV

(
P̃mix, P̃

n
)
≤ 2n

√∑
m≥2

ε4p2m.

Now let Pmix be the marginal distribution of (X1, Y1), . . . , (Xn, Yn) under P̃mix. Noting that Pn is
the marginal distribution of (X1, Y1), . . . , (Xn, Yn) under P̃n, we therefore have

dTV (Pmix, P
n) ≤ dTV

(
P̃mix, P̃

n
)
≤ 2n

√∑
m≥2

ε4p2m.
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C Proof of Theorem 2

First, define pm = PPX
{
X = x(m)

}
. The following lemma establishes some results on its support,

expected value, and concentration properties of Z:

Lemma C.1. For Z and N≥2 defined as in (4) and (3), the following holds:

E [Z] =

∞∑
m=1

(µ(x(m))− µP (x(m)))2 ·
(
npm − 1 + (1− pm)n

)
,

E [Z | X1, . . . , Xn] =

∞∑
m=1

(nm − 1)+ ·
(
µ(x(m))− µP (x(m))

)2
,

Var (E [Z | X1, . . . , Xn]) ≤ 2E [Z] ,

Var (Z | X1, . . . , Xn) ≤ N≥2 + 2E [Z | X1, . . . , Xn] .

In particular, the first part of the lemma will allow us to use E [Z] to bound the error in µ—here the
calculations are similar to those in Chan et al. [2014] for the setting of testing discrete distributions.
Recalling the definition of M∗γ (PX) given in (2), define

∆ =

√
2M∗γ (PX) + n

n(n− 1)
·
√
E [Z].

We have

M∗γ (PX)∑
m=1

pm|µ(x(m))− µP (x(m))| =
M∗γ (PX)∑
m=1

pm|µ(x(m))− µP (x(m))|√
2 + npm

·
√

2 + npm

≤

√√√√M∗γ (PX)∑
m=1

p2m(µ(x(m))− µP (x(m)))2

2 + npm
·

√√√√M∗γ (PX)∑
m=1

2 + npm

≤

√
E [Z]

n(n− 1)
·
√

2M∗γ (PX) + n

= ∆,

where the next-to-last step holds by the following identity:

Lemma C.2. For all n ≥ 1 and p ∈ [0, 1], np− 1 + (1− p)n ≥ n(n−1)p2
2+np .

Next, we will use Lemma C.1 to relate ∆ and ∆̂. By Chebyshev’s inequality, conditional on
X1, . . . , Xn, with probability at least 1− δ/4 we have

Z ≥ E [Z | X1, . . . , Xn]−

√
Var (Z | X1, . . . , Xn)

δ/4
≥ E [Z | X1, . . . , Xn]−

√
N≥2 + 2E [Z | X1, . . . , Xn]

δ/4
,

which can be relaxed to

E [Z | X1, . . . , Xn] ≤ 2Z + 4
√
N≥2/δ + 8/δ.

Marginalizing over X1, . . . , Xn, this bound holds with probability at least 1− δ/4. Moreover, again
applying Chebyshev’s inequality, with probability at least 1− δ/4 we have

E [Z | X1, . . . , Xn] ≥ E [Z]−

√
Var (E [Z | X1, . . . , Xn])

δ/4
≥ E [Z]−

√
2E [Z]

δ/4
,

which can be relaxed to
E [Z] ≤ 2E [Z | X1, . . . , Xn] + 8/δ.
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Combining our bounds, then, we have E [Z] ≤ 4Z + 8
√
N≥2/δ + 24/δ with probability at least

1− δ/2. Since P
{
M̂γ ≥M∗γ (PX)

}
≥ 1− δ/2 by Hoeffding’s inequality, this implies that

P
{

∆̂ ≥ ∆
}
≥ 1− δ.

Now we verify the coverage properties of Ĉn. We have

P
{
µP (Xn+1) 6∈ Ĉn(Xn+1)

}
= P

{
|µP (Xn+1)− µ(Xn+1)| > (α− δ − γ)−1∆̂

}
≤ P

{
∆̂ < ∆

}
+ P

{
|µP (Xn+1)− µ(Xn+1)| > (α− δ − γ)−1∆

}
≤ P

{
∆̂ < ∆

}
+ P

{
Xn+1 6∈ {x(1), . . . , x(M

∗
γ (PX))

}
+

M∗γ (PX)∑
m=1

P
{
Xn+1 = x(m), |µP (Xn+1)− µ(Xn+1)| > (α− δ − γ)−1∆

}

≤ δ + γ +

M∗γ (PX)∑
m=1

P
{
Xn+1 = x(m), |µP (Xn+1)− µ(Xn+1)| > (α− δ − γ)−1∆

}

≤ δ + γ +

M∗γ (PX)∑
m=1

pm1
{∣∣∣µP (x(m))− µ(x(m))

∣∣∣ > (α− δ − γ)−1∆
}

≤ δ + γ +

∑M∗γ (PX)

m=1 pm
∣∣µP (x(m))− µ(x(m))

∣∣
(α− δ − γ)−1∆

≤ δ + γ +
∆

(α− δ − γ)−1∆
= α,

which verifies the desired coverage guarantee.

D Proof of Theorem 3

First, we have M̂γ ≤ M almost surely by our assumption on PX . Next we need to bound E [Z+].
We have

E [Z−] ≤ E [(Z − E [Z | X1, . . . , Xn])−] since this conditional expectation is nonnegative

≤
√

E [(Z − E [Z | X1, . . . , Xn])2]

=
√

E [E [(Z − E [Z | X1, . . . , Xn])2 | X1, . . . , Xn]]

=
√

E [Var (Z | X1, . . . , Xn)]

≤
√
E [N≥2 + 2E [Z | X1, . . . , Xn]] by Lemma C.1

=
√
E [N≥2] + 2E [Z].

We then have

E [Z+] = E [Z] + E [Z−] ≤ E [Z] +
√

2E [Z] + E [N≥2] ≤ 1.5E [Z] + 1 +
√
E [N≥2].

Next we need a lemma:

Lemma D.1. For all n ≥ 1 and p ∈ [0, 1], np− 1 + (1− p)n ≤ n2p2

1+np .
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Combined with the calculation of E [Z] in Lemma C.1, we have

E [Z] ≤
M∑
m=1

(µ(x(m))− µP (x(m)))2 · n2p2m
1 + npm

≤
M∑
m=1

pm · (µ(x(m))− µP (x(m)))2 · n2 · η/M
1 + n · η/M

=
ηn2

M + ηn
· EPX

[
(µP (X)− µ(X))2

]
≤ (errµ)2 · ηn2

M + ηn
,

since we have assumed that PX is supported on {x(1), . . . , x(M)} and that PPX
{
X = x(m)

}
≤ η/M

for all m, where we must have η ≥ 1. Furthermore, we have

E [N≥2] =

M∑
m=1

P {nm ≥ 2} ≤
M∑
m=1

E [(nm − 1)+]

=

M∑
m=1

n · PPX
{
X = x(m)

}
− 1 +

(
1− PPX

{
X = x(m)

})n
as calculated as in the proof of Lemma C.1

≤
M∑
m=1

n · η/M − 1 + (1− η/M)n

≤
M∑
m=1

n2(η/M)2

1 + nη/M
by Lemma D.1

=
η2n2

M + ηn
.

We also have N≥2 ≤ M almost surely, and so combining these two bounds, E [N≥2] ≤
min{η

2n2

M ,M}. Combining everything, then,

E [Z+] ≤ 1.5(errµ)2 · ηn2

M + ηn
+ 1 +

√
min

{
η2n2

M
,M

}
.

Plugging these calculations into the definition of ∆̂, we obtain

E
[
∆̂
]

= E

√2M̂γ + n

n(n− 1)
·
√

4Z+ + 8
√
N≥2/δ + 24/δ


≤ E

[√
2M + n

n(n− 1)
·
√

4Z+ + 8
√
N≥2/δ + 24/δ

]

≤

√
2M + n

n(n− 1)
·
√

4E [Z+] + 8
√

E [N≥2] /δ + 24/δ

≤

√
2M + n

n(n− 1)
·

√√√√4

(
1.5(errµ)2 · ηn2

M + ηn
+ 1 +

√
min

{
η2n2

M
,M

})
+ 8

√
min

{
n2

M
,M

}
· 1/δ + 24/δ

≤

√
2M + n

n(n− 1)
·


√

6(errµ)2 · ηn2

M + ηn
+

√√√√4(1 + 2/
√
δ)

√
min

{
η2n2

M
,M

}
+
√

4 + 24/δ

 .
We can assume that M ≤ n2 and n ≥ 2 (as otherwise, the upper bound would be trivial, since we
must have Leb(Ĉn(Xn+1)) ≤ 1 by construction). If M ≥ n, then 2M+n

n(n−1) ≤
6M
n2 and the above
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simplifies to

E
[
∆̂
]
≤ 6
√
η · errµ +

√
6(4 + 24/δ)M

n2
+

√
24η(1 + 2/

√
δ)

4

√
M

n2
,

and since we assume M ≤ n2, we therefore have

E
[
∆̂
]
≤ 6
√
η · errµ +

(√
6(4 + 24/δ) +

√
24η(1 + 2/

√
δ)

)
· 4

√
M

n2
. (D.2)

If instead M < n, then 2M+n
n(n−1) ≤

6
n and the above bound on E

[
∆̂
]

simplifies to

E
[
∆̂
]
≤ 6 · errµ +

√
6

n
·
[√

4(1 + 2/
√
δ)
√
M +

√
4 + 24/δ

]
,

which again yields the same bound (D.2) sinceM ≥ 1 and η ≥ 1. Finally, by definition of Ĉn(Xn+1),
we have

E
[
Leb(Ĉn(Xn+1))

]
≤ E

[
∆̂
]
· 2

α− δ − γ
,

which completes the proof for c chosen appropriately as a function of α, δ, γ, η.

E Proofs of lemmas

E.1 Proof of Lemma 1

Let xmed be the median of Q. Define
q< = PQ {X < xmed} , q> = PQ {X > xmed} ,

and note that q<, q> ∈ [0, 0.5]. ForX ∼ Q, letQ< be the distribution ofX conditional onX < xmed
and let Q> be the distribution of X conditional on X > xmed. Then we can write

Q = q< ·Q< + (1− q< − q>) · δxmed + q> ·Q>,
where δt denotes the point mass distribution at t. Now define

Q0 = 2q< ·Q< + (1− 2q<) · δxmed

and
Q1 = 2q> ·Q> + (1− 2q>) · δxmed .

Then clearly Q = 0.5Q0 + 0.5Q1. Next let µ0, µ1 be the means of these two distributions, satisfying
µ0+µ1

2 = µ where µ is the mean of Q, and let σ2
0 , σ

2
1 be the variances of these two distributions. By

the law of total variance, we have

σ2 = Var (0.5δµ0 + 0.5δµ1) + E
[
0.5δσ2

0
+ 0.5δσ2

1

]
=

(µ1 − µ0)2

4
+ 0.5σ2

0 + 0.5σ2
1 .

Next, Q0 is a distribution supported on [0, xmed] with mean µ0, so its variance is bounded as
σ2
0 ≤ µ0(xmed − µ0),

where the maximum is attained if all the mass is placed on the endpoints 0 or xmed. Similarly, Q1 is a
distribution supported on [xmed, 1] with mean µ1, so its variance is bounded as

σ2
1 ≤ (1− µ1)(µ1 − xmed).

Using the fact that µ0+µ1

2 = µ, we can simplify to

σ2
0 + σ2

1 ≤ µ0(xmed − µ0) + (1− µ1)(µ1 − xmed)

= µ(xmed − µ0) + (1− µ)(µ1 − xmed)− 0.5(µ1 − µ0)2.

Therefore, we have

σ2 =
(µ1 − µ0)2

4
+ 0.5σ2

0 + 0.5σ2
1 ≤ 0.5µ(xmed − µ0) + 0.5(1− µ)(µ1 − xmed)

= 0.5(2µ− 1)xmed − 0.5µµ0 + 0.5(1− µ)µ1 = 0.5(2µ− 1)(xmed − µ) + 0.25(µ1 − µ0).

Next, |2µ − 1| ≤ 1 since µ ∈ [0, 1], and |xmed − µ| ≤ 0.5|µ1 − µ0| since µ0 ≤ xmed ≤ µ1 and
µ0+µ1

2 = µ. Therefore, σ2 ≤ 0.5(µ1 − µ0), proving the lemma.

5



E.2 Proof of Lemma 2

First we need a supporting lemma.
Lemma E.1. For any N ≥ 1 and any ε ∈ [0, 0.5],

dKL

(
0.5 · Binom(N, 0.5 + ε) + 0.5 · Binom(N, 0.5− ε)

∥∥ Binom(N, 0.5)
)
≤ 8N(N − 1)ε4.

Proof of Lemma E.1. Let f0 be the probability mass function of the Binom(N, 0.5) distribution, and
let f1 be the probability mass function of the mixture 0.5·Binom(N, 0.5+ε)+0.5·Binom(N, 0.5−ε).
Then we would like to bound dKL(f1‖f0). We calculate the ratio

f1(k)

f0(k)
=

0.5 ·
(
N
k

)
(0.5 + ε)k(0.5− ε)N−k + 0.5 ·

(
N
k

)
(0.5− ε)k(0.5 + ε)N−k(

N
k

)
(0.5)N

=
(1 + 2ε)k(1− 2ε)N−k + (1− 2ε)k(1 + 2ε)N−k

2
.

Therefore, it holds that

EBinom(N,0.5)

[(
f1(X)

f0(X)

)2
]

= EBinom(N,0.5)

[(
(1 + 2ε)X(1− 2ε)N−X + (1− 2ε)X(1 + 2ε)N−X

2

)2
]

= EBinom(N,0.5)

[
(1 + 2ε)2X(1− 2ε)2N−2X + (1− 2ε)2X(1 + 2ε)2N−2X + 2(1− 4ε2)N

4

]

=

(1− 2ε)2NEBinom(N,0.5)

[(
1+2ε
1−2ε

)2X]
+ (1 + 2ε)2NEBinom(N,0.5)

[(
1−2ε
1+2ε

)2X]
+ 2(1− 4ε2)N

4

=

(1− 2ε)2NEBern(0.5)

[(
1+2ε
1−2ε

)2X]N
+ (1 + 2ε)2NEBern(0.5)

[(
1−2ε
1+2ε

)2X]N
+ 2(1− 4ε2)N

4

=

(1− 2ε)2N
[
0.5
(

1+2ε
1−2ε

)2
+ 0.5

]N
+ (1 + 2ε)2N

[
0.5
(

1−2ε
1+2ε

)2
+ 0.5

]N
+ 2(1− 4ε2)N

4

=

[
0.5(1 + 2ε)2 + 0.5(1− 2ε)2

]N
+
[
0.5(1− 2ε)2 + 0.5(1 + 2ε)2

]N
+ 2(1− 4ε2)N

4

=
(1 + 4ε2)N + (1− 4ε2)N

2

= 1 +
∑
k≥1

(
N

2k

)
(4ε2)2k

= 1 +
∑
k≥1

N(N − 1) . . . (N − 2k + 2)(N − 2k + 1)

(2k)!
(4ε2)2k

≤ 1 +
∑
k≥1

(N(N − 1))k

2kk!
(4ε2)2k

≤ e8ε
4N(N−1).

Applying Jensen’s inequality, we then have

dKL(f1‖f0) =

n∑
k=0

f1(k) log

(
f1(k)

f0(k)

)
= Ef1

[
log

(
f1(X)

f0(X)

)]
≤ log

(
Ef1

[
f1(X)

f0(X)

])

= log

(
EBinom(N,0.5)

[(
f1(X)

f0(X)

)2
])
≤ log

(
e8ε

4N(N−1)
)

= 8ε4N(N − 1).
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Now we turn to the proof of Lemma 2. Let pm = P {X ∈ Xm} for each m = 1, 2, . . . . Define a
distribution P ′0 on (W,Z) ∈ N× {0, 1} as:

Draw W ∼
∞∑
m=1

pmδm, and draw Z ∼ Bernoulli(0.5), independently from W .

and for any signs a1, a2, · · · ∈ {±1}, define a distribution P ′a on (W,Z) ∈ N× {0, 1} as:

Draw W ∼
∞∑
m=1

pmδm, and conditional on W , draw Z|W = m ∼ Bernoulli(0.5 + am · εm).

Then define P̃ ′0 = (P ′0)n and define P̃ ′1 as the following mixture distribution.

• Draw A1, A2, . . .
iid∼ Unif{±1}.

• Conditional on A1, A2, . . . , draw (W1, Z1), . . . , (Wn, Zn)
iid∼ P ′A.

Note that (X1, Z1), . . . , (Xn, Zn) ∼ P̃0 can be drawn by first drawing (W1, Z1), . . . , (Wn, Zn) ∼
P̃ ′0 and then drawing Xi|Wi ∼ PX|X∈XWi for each i. Similarly, (X1, Z1), . . . , (Xn, Zn) ∼ P̃1 is
equivalent to first drawing (W1, Z1), . . . , (Wn, Zn) ∼ P̃ ′1 and then drawing Xi|Wi ∼ PX|X∈XWi
for each i. This implies dTV(P̃1||P̃0) ≤ dTV(P̃ ′1||P̃ ′0).

Now we can calculate the probability mass function of P̃ ′0 as

P̃ ′0
(
(w1, z1), . . . , (wn, zn)

)
=

n∏
i=1

(pwi · 0.5) ,

and for P̃ ′1 as

P̃ ′1
(
(w1, z1), . . . , (wn, zn)

)
= E

Ai
iid∼Unif{±1}

[
n∏
i=1

(
pwi · (0.5 +Awiεm)zi · (0.5−Awiεm)1−zi

)]
.

Defining summary statistics

nm =

n∑
i=1

1 {wi = m} and km =

n∑
i=1

1 {wi = m, zi = 1} ,

we can rewrite the above as

P̃ ′0
(
(w1, z1), . . . , (wn, zn)

)
=

∞∏
m=1

pnmm · 0.5nm ,

and

P̃ ′1
(
(w1, z1), . . . , (wn, zn)

)
= E

Ai
iid∼Unif{±1}

[ ∞∏
m=1

pnmm · (0.5 +Amεm)km · (0.5−Amεm)nm−km

]

=

∞∏
m=1

pnmm · 1

2

∑
am∈{±1}

(0.5 + amεm)km · (0.5− amεm)nm−km
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We then calculate

dKL(P̃ ′1||P̃ ′0) = EP̃1

[
log

(
P̃ ′1
(
(W1, Z1), . . . , (Wn, Zn)

)
P̃ ′0
(
(W1, Z1), . . . , (Wn, Zn)

))]

= EP̃ ′1

[
log

(∏∞
m=1 p

Nm
m · 12

∑
am∈{±1}(0.5 + amεm)Km · (0.5− amεm)Nm−Km∏∞

m=1 p
Nm
m · (0.5)Nm

)]

=

∞∑
m=1

EP̃ ′1

[
log

(
1
2

∑
am∈{±1}(0.5 + amεm)Km · (0.5− amεm)Nm−Km

(0.5)Nm

)]

=

∞∑
m=1

EP̃ ′1

[
EP̃ ′1

[
log

(
1
2

∑
am∈{±1}(0.5 + amεm)Km · (0.5− amεm)Nm−Km

(0.5)Nm

) ∣∣∣∣Nm
]]

,

where

Nm =

n∑
i=1

1 {Wi = m} and Km =

n∑
i=1

1 {Wi = m,Zi = 1} ,

Next, we calculate the conditional expectation in the last expression above. If Nm = 0 then trivially
it is equal to log(1) = 0. If Nm ≥ 1, then under P̃ ′1, we can see that

Km | Nm ∼ 0.5 · Binom(Nm, 0.5 + εm) + 0.5 · Binom(Nm, 0.5− εm),

and therefore,

EP̃ ′1

[
log

(
1
2

∑
am∈{±1}(0.5 + amεm)Km · (0.5− amεm)Nm−Km

(0.5)Nm

) ∣∣∣∣Nm
]

= dKL

(
0.5·Binom(Nm, 0.5+εm)+0.5·Binom(Nm, 0.5−εm)

∥∥Binom(Nm, 0.5)
)
≤ 8Nm(Nm−1)ε4m,

where the last step applies Lemma E.1. Therefore,

dKL(P̃ ′1||P̃ ′0) ≤
∞∑
m=1

EP̃ ′1
[
8Nm(Nm − 1)ε4m

]
= 8

∞∑
m=1

ε4mEP̃ ′1
[
N2
m −Nm

]
= 8

∞∑
m=1

ε4m
((
npm(1− pm) + n2p2m

)
− npm

)
= 8 · n(n− 1)

∞∑
m=1

ε4mp
2
m,

since Nm ∼ Binom(n, pm) by definition. Applying Pinsker’s inequality and dTV(P̃1||P̃0) ≤
dTV(P̃ ′1||P̃ ′0) completes the proof.

E.3 Proof of Lemma C.1

Define

Zm =

{
(nm − 1) ·

(
(ȳm − µ(x(m)))2 − n−1m s2m

)
, nm ≥ 2,

0, nm = 0 or 1.

Then Z =
∑∞
m=1 Zm. Now we calculate the conditional mean and variance. Conditional on

X1, . . . , Xn, ȳm and s2m are the sample mean and sample variance of nm i.i.d. draws from a
distribution with mean µP (x(m)) and variance σ2

P (x(m)), supported on [0, 1], where we let σ2
P (x(m))

be the variance of the distribution of Y |X = x(m), under the joint distribution P . For any m with
nm ≥ 2, we therefore have

E [ȳm | X1, . . . , Xn] = µP (x(m)), Var (ȳm | X1, . . . , Xn) = n−1m σ2
P (x(m)) = E

[
n−1m s2m

∣∣ X1, . . . , Xn

]
,
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and so

E
[
(ȳm − µ(x(m)))2 − n−1m s2m

∣∣∣ X1, . . . , Xn

]
= n−1m σ2

P (x(m)) + (µP (x(m))− µ(x(m)))2 − n−1m σ2
P (x(m)) = (µP (x(m))− µ(x(m)))2.

Next, we have (n1, . . . , nM ) ∼ Multinom(n, p), which implies that marginally nm ∼ Binom(n, pm)
and so

E [(nm − 1)+] = E [nm − 1 + 1 {nm = 0}] = npm − 1 + (1− pm)n.

Combining these calculations completes the proof for the expected value E [Z] and conditional
expected value E [Z | X1, . . . , Xn].

Next, we calculate conditional and marginal variance. We have

Var
(

(ȳm − µ(x(m)))2 − n−1m s2m

∣∣∣ X1, . . . , Xn

)
= Var

(
(ȳm − µ(x(m)))2 − n−1m s2m − (µP (x(m))− µ(x(m)))2

∣∣∣ X1, . . . , Xn

)
≤ E

[(
(ȳm − µ(x(m)))2 − n−1m s2m − (µP (x(m))− µ(x(m)))2

)2 ∣∣∣∣ X1, . . . , Xn

]
= E

[(
(ȳm − µP (x(m)))2 + 2(ȳm − µP (x(m)))(µP (x(m))− µ(x(m)))− n−1m s2m

)2 ∣∣∣∣ X1, . . . , Xn

]
≤ 4E

[(
(ȳm − µP (x(m)))

)4 ∣∣∣∣ X1, . . . , Xn

]
+ 2E

[(
2(ȳm − µP (x(m)))(µP (x(m))− µ(x(m)))

)2 ∣∣∣∣ X1, . . . , Xn

]
+ 4E

[(
n−1m s2m

)2 ∣∣∣ X1, . . . , Xn

]
,

where the last step holds since (a+ b+ c)2 ≤ 4a2 + 2b2 + 4c2 for any a, b, c. Now we bound each
term separately. First, we have

E
[(

(ȳm − µP (x(m)))
)4 ∣∣∣∣ X1, . . . , Xn

]
=

1

n4m

∑
i1,i2,i3,i4 s.t.

Xi1=Xi2=Xi3=Xi4=x
(m)

E

[
4∏
k=1

(Yik − µP (x(m)))

∣∣∣∣∣ X1, . . . , Xn

]

=
1

n4m

[
nm · E

[
(Y − µP (x(m)))4

∣∣∣ X = x(m)
]

+ 3nm(nm − 1) · E
[
(Y − µP (x(m)))2

∣∣∣ X = x(m)
]2]

≤ 1

n4m

[
nm · σ2

P (x(m)) + 3nm(nm − 1) · (σ2
P (x(m)))2

]
≤ 1

n4m

[
nm · 14 + 3nm(nm − 1) · ( 1

4 )2
]

=
3nm + 1

16n3m
,

where the second step holds by counting tuples (i1, i2, i3, i4) where either all four indices are equal,
or there are two pairs of equal indices (since otherwise, the expected value of the product is zero).
Next,

E
[(

2(ȳm − µP (x(m)))(µP (x(m))− µ(x(m)))
)2 ∣∣∣∣ X1, . . . , Xn

]
= 4(µP (x(m))− µ(x(m)))2E

[
(ȳm − µP (x(m)))2

∣∣∣ X1, . . . , Xn

]
= 4(µP (x(m))− µ(x(m)))2 · n−1m σ2

P (x(m))

≤ n−1m (µP (x(m))− µ(x(m)))2.
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Finally, since s2m ≤ nm
4(nm−1) holds deterministically,

E
[(
n−1m s2m

)2 ∣∣∣ X1, . . . , Xn

]
≤ n−2m ·

nm
4(nm − 1)

· E
[
s2m
∣∣ X1, . . . , Xn

]
= n−2m ·

nm
4(nm − 1)

· σ2
P (x(m)) ≤ 1

16nm(nm − 1)
.

Combining everything, then,

Var
(

(ȳm − µ(x(m)))2 − n−1m s2m

∣∣∣ X1, . . . , Xn

)
≤ 4 · 3nm + 1

16n3m
+ 2 · n−1m (µP (x(m))− µ(x(m)))2 + 4 · 1

16nm(nm − 1)
,

and so for nm ≥ 2,

Var (Zm | X1, . . . , Xn)

≤ (nm − 1)2 ·
[
4 · 3nm + 1

16n3m
+ 2 · n−1m (µP (x(m))− µ(x(m)))2 + 4 · 1

16nm(nm − 1)

]
≤ 1 + 2(nm − 1) · (µP (x(m))− µ(x(m)))2 = 0.5 + 2E [Zm | X1, . . . , Xn] .

If instead nm = 0 or nm = 1 then Zm = 0 by definition, and so Var (Zm | X1, . . . , Xn) = 0.
Therefore, in all cases, we have

Var (Zm | X1, . . . , Xn) ≤ 1 {nm ≥ 2}+ 2E [Zm | X1, . . . , Xn] .

It is also clear that, conditional on X1, . . . , Xn, the Zm’s are independent, and so

Var (Z | X1, . . . , Xn) =

∞∑
m=1

Var (Zm | X1, . . . , Xn) ≤ N≥2 + 2E [Z | X1, . . . , Xn] .

Finally, we need to bound Var (E [Z | X1, . . . , Xn]). First, we have

Var (E [Zm | X1, . . . , Xn]) = Var ((nm − 1)+) · (µP (x(m))− µ(x(m)))4

≤ Var ((nm − 1)+) · (µP (x(m))− µ(x(m)))2,

and we can calculate

Var ((nm − 1)+)

= Var (nm + 1 {nm = 0})
= Var (nm) + Var (1 {nm = 0}) + 2Cov (nm,1 {nm = 0})
= Var (nm) + Var (1 {nm = 0})− 2E [nm]E [1 {nm = 0}] since nm · 1 {nm = 0} = 0 almost surely

= npm(1− pm) + (1− pm)n
(
1− (1− pm)n

)
− 2npm(1− pm)n.

Therefore,

2E [(nm − 1)+]− Var ((nm − 1)+)

= 2npm − 2 + 2(1− pm)n − npm(1− pm)− (1− pm)n
(
1− (1− pm)n

)
+ 2npm(1− pm)n

= npm(1 + pm) + (1− pm)n
(
1 + 2npm + (1− pm)n

)
− 2

≥ 0,

where the last step holds since, defining f(t) = nt(1 + t) + (1− t)n
(
1 + 2nt+ (1− t)n

)
, we can

see that f(0) = 2 and f ′(t) ≥ 0 for all t ∈ [0, 1]. This verifies that

Var (E [Zm | X1, . . . , Xn]) ≤ Var ((nm − 1)+) · (µP (x(m))− µ(x(m)))2

≤ 2E [(nm − 1)+] · (µP (x(m))− µ(x(m)))2 = 2E [Zm] .
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Next, for any m 6= m′,
Cov (E [Zm | X1, . . . , Xn],E [Zm′ | X1, . . . , Xn])

= Cov ((nm − 1)+, (nm′ − 1)+) · (µP (x(m))− µ(x(m)))2 · (µP (x(m
′))− µ(x(m

′)))2

≤ 0.

For the last step, we use the fact that Cov ((nm − 1)+, (nm′ − 1)+) ≤ 0, which holds since, condi-
tional on nm, we have nm′ ∼ Binom

(
n− nm, pm′

1−pm

)
, and so the distribution of nm′ is stochasti-

cally smaller whenever nm is larger. Therefore,

Var (E [Z | X1, . . . , Xn]) ≤
∞∑
m=1

Var (E [Zm | X1, . . . , Xn]) ≤
∞∑
m=1

2E [Zm] = 2E [Z] .

E.4 Proofs of Lemma C.2 and Lemma D.1

Replacing p with 1− s, equivalently, we need to show that, for all s ∈ [0, 1],
n(n− 1)(1− s)2

2 + n(1− s)
≤ n(1− s)− 1 + sn ≤ n2(1− s)2

1 + n(1− s)
.

After simplifying, this is equivalent to proving that
n(1− s)2 + 2n(1− s)

2 + n(1− s)
≥ 1− sn ≥ n(1− s)

1 + n(1− s)
,

which we can further simplify to
n(1− s) + 2n

2 + n(1− s)
≥ 1 + s+ · · ·+ sn−1 ≥ n

1 + n(1− s)
(E.2)

by dividing by 1− s (note that this division can be performed whenever s < 1, while if s = 1, then
the desired inequalities hold trivially).

Now we address the two desired inequalities separately. For the left-hand inequality in (E.2), define
h(s) = (2 + n(1− s)) · (s+ s2 + · · ·+ sn−1) = ns+ 2(s+ s2 + · · ·+ sn−1)− nsn.

We calculate h(1) = 2(n− 1), and for any s ∈ [0, 1],

h′(s) = n+

n−1∑
i=1

2isi−1 − n2sn−1 ≥ n+

n−1∑
i=1

2isn−1 − n2sn−1

= n+ sn−1

(
n−1∑
i=1

2i− n2
)

= n− nsn−1 ≥ 0,

where the first inequality holds since si−1 ≥ sn−1 for all i = 1, . . . , n− 1, and the second inequality
holds since sn−1 ≤ 1. Therefore, h(s) ≤ h(1) = 2(n− 1) for all s ∈ [0, 1], and so

1 + s+ · · ·+ sn−1 =
(1 + s+ · · ·+ sn−1) · (2 + n(1− s))

2 + n(1− s)

=
2 + n(1− s) + h(s)

2 + n(1− s)
≤ 2 + n(1− s) + 2(n− 1)

2 + n(1− s)
=
n(1− s) + 2n

2 + n(1− s)
,

as desired.

To verify the right-hand inequality in (E.2), we have

1 + s+ · · ·+ sn−1 =
(1 + s+ · · ·+ sn−1) · (1 + n(1− s))

1 + n(1− s)

=
(n+ 1)(1 + s+ · · ·+ sn−1)− n(s+ s2 + · · ·+ sn)

1 + n(1− s)

=
n+ (1 + s+ · · ·+ sn−1)− nsn

1 + n(1− s)

≥ n

1 + n(1− s)
,

where the last step holds since, for s ∈ [0, 1], we have si ≥ sn for all i = 0, 1, . . . , n− 1.
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