Supplementary materials for: Distribution-free inference for regression: discrete, continuous, and in between

Yonghoon Lee Department of Statistics University of Chicago Chicago, IL 60637 yhoony31@uchicago.edu Rina Foygel Barber Department of Statistics University of Chicago Chicago, IL 60637 rina@uchicago.edu

B Additional details for proof of Theorem 1

B.1 Details for (6)

To compare P and P_a , we can equivalently characterize these distributions as follows:

- Draw $X \sim P_X$.
- Conditional on X, draw $Z \mid X \in \mathcal{X}_m \sim \text{Bernoulli}(0.5)$ (for the distribution P, or for the distribution P_a if m = 1), or $Z \mid X \in \mathcal{X}_m \sim \text{Bernoulli}(0.5 + a_m \epsilon)$ (for the distribution P_a if $m \ge 2$).
- Conditional on X, Z draw Y as

$$Y \mid X = x, Z = z \sim P_{Y|X=x}^z.$$

Define \tilde{P} as the distribution over (X, Y, Z) induced by P, and \tilde{P}_a as the distribution over (X, Y, Z) induced by P_a . Then the marginal distribution of (X, Y) under \tilde{P} and under \tilde{P}_a is given by P and by P_a , respectively.

Now consider comparing two distributions on triples $(X_1, Z_1, Y_1), \ldots, (X_n, Z_n, Y_n)$. We will compare \tilde{P}^n versus the mixture distribution \tilde{P}_{mix} defined as follows:

- Draw $A_1, A_2, \ldots \stackrel{\text{iid}}{\sim} \text{Unif}\{\pm 1\}.$
- Conditional on A_1, A_2, \ldots , draw $(X_1, Y_1, Z_1), \ldots, (X_n, Y_n, Z_n) \stackrel{\text{iid}}{\sim} \tilde{P}_A$.

Since in our characterization above, the distribution of Y_1, \ldots, Y_n conditional on X_1, \ldots, X_n and on Z_1, \ldots, Z_n is the same for both, the only difference lies in the conditional distribution of Z_1, \ldots, Z_n given X_1, \ldots, X_n . Therefore, we can apply Lemma 2 with $\epsilon_1 = 0$ and $\epsilon_2 = \epsilon_3 = \cdots = \epsilon$ to obtain

$$d_{\mathrm{TV}}\left(\tilde{P}_{\mathrm{mix}},\tilde{P}^n\right) \leq 2n\sqrt{\sum_{m\geq 2}\epsilon^4 p_m^2}.$$

Now let P_{mix} be the marginal distribution of $(X_1, Y_1), \ldots, (X_n, Y_n)$ under \tilde{P}_{mix} . Noting that P^n is the marginal distribution of $(X_1, Y_1), \ldots, (X_n, Y_n)$ under \tilde{P}^n , we therefore have

$$d_{\text{TV}}\left(P_{\text{mix}}, P^{n}\right) \leq d_{\text{TV}}\left(\tilde{P}_{\text{mix}}, \tilde{P}^{n}\right) \leq 2n \sqrt{\sum_{m \geq 2} \epsilon^{4} p_{m}^{2}}.$$

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

C Proof of Theorem 2

First, define $p_m = \mathbb{P}_{P_X} \{ X = x^{(m)} \}$. The following lemma establishes some results on its support, expected value, and concentration properties of Z:

Lemma C.1. For Z and $N_{>2}$ defined as in (4) and (3), the following holds:

$$\mathbb{E}[Z] = \sum_{m=1}^{\infty} (\mu(x^{(m)}) - \mu_P(x^{(m)}))^2 \cdot (np_m - 1 + (1 - p_m)^n),$$

$$\mathbb{E}[Z \mid X_1, \dots, X_n] = \sum_{m=1}^{\infty} (n_m - 1)_+ \cdot (\mu(x^{(m)}) - \mu_P(x^{(m)}))^2,$$

$$\operatorname{Var}(\mathbb{E}[Z \mid X_1, \dots, X_n]) \le 2\mathbb{E}[Z],$$

$$\operatorname{Var}(Z \mid X_1, \dots, X_n) \le N_{\ge 2} + 2\mathbb{E}[Z \mid X_1, \dots, X_n].$$

In particular, the first part of the lemma will allow us to use $\mathbb{E}[Z]$ to bound the error in μ —here the calculations are similar to those in Chan et al. [2014] for the setting of testing discrete distributions. Recalling the definition of $M^*_{\gamma}(P_X)$ given in (2), define

$$\Delta = \sqrt{\frac{2M_{\gamma}^{*}(P_{X}) + n}{n(n-1)}} \cdot \sqrt{\mathbb{E}[Z]}.$$

We have

$$\sum_{m=1}^{M_{\gamma}^{*}(P_{X})} p_{m} |\mu(x^{(m)}) - \mu_{P}(x^{(m)})| = \sum_{m=1}^{M_{\gamma}^{*}(P_{X})} \frac{p_{m} |\mu(x^{(m)}) - \mu_{P}(x^{(m)})|}{\sqrt{2 + np_{m}}} \cdot \sqrt{2 + np_{m}}$$
$$\leq \sqrt{\sum_{m=1}^{M_{\gamma}^{*}(P_{X})} \frac{p_{m}^{*}(\mu(x^{(m)}) - \mu_{P}(x^{(m)}))^{2}}{2 + np_{m}}} \cdot \sqrt{\sum_{m=1}^{M_{\gamma}^{*}(P_{X})} 2 + np_{m}}$$
$$\leq \sqrt{\frac{\mathbb{E}[Z]}{n(n-1)}} \cdot \sqrt{2M_{\gamma}^{*}(P_{X}) + n}$$
$$= \Delta,$$

where the next-to-last step holds by the following identity:

Lemma C.2. For all $n \ge 1$ and $p \in [0, 1]$, $np - 1 + (1 - p)^n \ge \frac{n(n-1)p^2}{2+np}$.

Next, we will use Lemma C.1 to relate Δ and $\widehat{\Delta}$. By Chebyshev's inequality, conditional on X_1, \ldots, X_n , with probability at least $1 - \delta/4$ we have

$$Z \ge \mathbb{E}\left[Z \mid X_1, \dots, X_n\right] - \sqrt{\frac{\operatorname{Var}\left(Z \mid X_1, \dots, X_n\right)}{\delta/4}} \ge \mathbb{E}\left[Z \mid X_1, \dots, X_n\right] - \sqrt{\frac{N_{\ge 2} + 2\mathbb{E}\left[Z \mid X_1, \dots, X_n\right]}{\delta/4}},$$

which can be relaxed to

$$\mathbb{E}\left[Z \mid X_1, \dots, X_n\right] \le 2Z + 4\sqrt{N_{\ge 2}/\delta} + 8/\delta.$$

Marginalizing over X_1, \ldots, X_n , this bound holds with probability at least $1 - \delta/4$. Moreover, again applying Chebyshev's inequality, with probability at least $1 - \delta/4$ we have

$$\mathbb{E}\left[Z \mid X_1, \dots, X_n\right] \ge \mathbb{E}\left[Z\right] - \sqrt{\frac{\operatorname{Var}\left(\mathbb{E}\left[Z \mid X_1, \dots, X_n\right]\right)}{\delta/4}} \ge \mathbb{E}\left[Z\right] - \sqrt{\frac{2\mathbb{E}\left[Z\right]}{\delta/4}},$$

which can be relaxed to

$$\mathbb{E}[Z] \le 2\mathbb{E}[Z \mid X_1, \dots, X_n] + 8/\delta.$$

Combining our bounds, then, we have $\mathbb{E}[Z] \leq 4Z + 8\sqrt{N_{\geq 2}/\delta} + 24/\delta$ with probability at least $1 - \delta/2$. Since $\mathbb{P}\left\{\widehat{M}_{\gamma} \geq M_{\gamma}^*(P_X)\right\} \geq 1 - \delta/2$ by Hoeffding's inequality, this implies that

$$\mathbb{P}\left\{\widehat{\Delta} \ge \Delta\right\} \ge 1 - \delta.$$

Now we verify the coverage properties of $\widehat{C}_n.$ We have

$$\mathbb{P}\left\{ \mu_{P}(X_{n+1}) \notin \widehat{C}_{n}(X_{n+1}) \right\} = \mathbb{P}\left\{ |\mu_{P}(X_{n+1}) - \mu(X_{n+1})| > (\alpha - \delta - \gamma)^{-1}\widehat{\Delta} \right\}$$

$$\leq \mathbb{P}\left\{ \widehat{\Delta} < \Delta \right\} + \mathbb{P}\left\{ |\mu_{P}(X_{n+1}) - \mu(X_{n+1})| > (\alpha - \delta - \gamma)^{-1}\Delta \right\}$$

$$= \mathbb{P}\left\{ \widehat{\Delta} < \Delta \right\} + \mathbb{P}\left\{ X_{n+1} \notin \{x^{(1)}, \dots, x^{(M_{\gamma}^{*}(P_{X}))} \right\}$$

$$+ \sum_{m=1}^{M_{\gamma}^{*}(P_{X})} \mathbb{P}\left\{ X_{n+1} = x^{(m)}, |\mu_{P}(X_{n+1}) - \mu(X_{n+1})| > (\alpha - \delta - \gamma)^{-1}\Delta \right\}$$

$$\leq \delta + \gamma + \sum_{m=1}^{M_{\gamma}^{*}(P_{X})} \mathbb{P}\left\{ X_{n+1} = x^{(m)}, |\mu_{P}(X_{n+1}) - \mu(X_{n+1})| > (\alpha - \delta - \gamma)^{-1}\Delta \right\}$$

$$\leq \delta + \gamma + \sum_{m=1}^{M_{\gamma}^{*}(P_{X})} p_{m} \mathbb{1}\left\{ \left| \mu_{P}(x^{(m)}) - \mu(x^{(m)}) \right| > (\alpha - \delta - \gamma)^{-1}\Delta \right\}$$

$$\leq \delta + \gamma + \frac{\sum_{m=1}^{M_{\gamma}^{*}(P_{X})}}{(\alpha - \delta - \gamma)^{-1}\Delta} = \alpha,$$

which verifies the desired coverage guarantee.

D Proof of Theorem 3

First, we have $\widehat{M}_{\gamma} \leq M$ almost surely by our assumption on P_X . Next we need to bound $\mathbb{E}[Z_+]$. We have

$$\begin{split} \mathbb{E}\left[Z_{-}\right] &\leq \mathbb{E}\left[(Z - \mathbb{E}\left[Z \mid X_{1}, \dots, X_{n}\right])_{-}\right] \text{ since this conditional expectation is nonnegative} \\ &\leq \sqrt{\mathbb{E}\left[(Z - \mathbb{E}\left[Z \mid X_{1}, \dots, X_{n}\right])^{2}\right]} \\ &= \sqrt{\mathbb{E}\left[\mathbb{E}\left[(Z - \mathbb{E}\left[Z \mid X_{1}, \dots, X_{n}\right]\right)^{2} \mid X_{1}, \dots, X_{n}\right]\right]} \\ &= \sqrt{\mathbb{E}\left[\operatorname{Var}\left(Z \mid X_{1}, \dots, X_{n}\right)\right]} \\ &\leq \sqrt{\mathbb{E}\left[\operatorname{N}_{\geq 2} + 2\mathbb{E}\left[Z \mid X_{1}, \dots, X_{n}\right]\right]} \text{ by Lemma C.1} \\ &= \sqrt{\mathbb{E}\left[N_{\geq 2}\right] + 2\mathbb{E}\left[Z\right]}. \end{split}$$

We then have

$$\mathbb{E}[Z_+] = \mathbb{E}[Z] + \mathbb{E}[Z_-] \le \mathbb{E}[Z] + \sqrt{2\mathbb{E}[Z] + \mathbb{E}[N_{\ge 2}]} \le 1.5\mathbb{E}[Z] + 1 + \sqrt{\mathbb{E}[N_{\ge 2}]}.$$

Next we need a lemma:

Lemma D.1. For all $n \ge 1$ and $p \in [0, 1]$, $np - 1 + (1 - p)^n \le \frac{n^2 p^2}{1 + np}$.

Combined with the calculation of $\mathbb{E}[Z]$ in Lemma C.1, we have

$$\mathbb{E}\left[Z\right] \leq \sum_{m=1}^{M} (\mu(x^{(m)}) - \mu_P(x^{(m)}))^2 \cdot \frac{n^2 p_m^2}{1 + n p_m}$$

$$\leq \sum_{m=1}^{M} p_m \cdot (\mu(x^{(m)}) - \mu_P(x^{(m)}))^2 \cdot \frac{n^2 \cdot \eta/M}{1 + n \cdot \eta/M}$$

$$= \frac{\eta n^2}{M + \eta n} \cdot \mathbb{E}_{P_X} \left[(\mu_P(X) - \mu(X))^2 \right]$$

$$\leq (\operatorname{err}_{\mu})^2 \cdot \frac{\eta n^2}{M + \eta n},$$

since we have assumed that P_X is supported on $\{x^{(1)}, \ldots, x^{(M)}\}$ and that $\mathbb{P}_{P_X} \{X = x^{(m)}\} \leq \eta/M$ for all m, where we must have $\eta \geq 1$. Furthermore, we have

$$\mathbb{E}\left[N_{\geq 2}\right] = \sum_{m=1}^{M} \mathbb{P}\left\{n_{m} \geq 2\right\} \leq \sum_{m=1}^{M} \mathbb{E}\left[(n_{m}-1)_{+}\right]$$

$$= \sum_{m=1}^{M} n \cdot \mathbb{P}_{P_{X}}\left\{X = x^{(m)}\right\} - 1 + \left(1 - \mathbb{P}_{P_{X}}\left\{X = x^{(m)}\right\}\right)^{n} \text{ as calculated as in the proof of Lemma C.1}$$

$$\leq \sum_{m=1}^{M} n \cdot \eta/M - 1 + (1 - \eta/M)^{n}$$

$$\leq \sum_{m=1}^{M} \frac{n^{2}(\eta/M)^{2}}{1 + n\eta/M} \text{ by Lemma D.1}$$

$$= \frac{\eta^{2}n^{2}}{M + \eta n}.$$

We also have $N_{\geq 2} \leq M$ almost surely, and so combining these two bounds, $\mathbb{E}[N_{\geq 2}] \leq \min\{\frac{\eta^2 n^2}{M}, M\}$. Combining everything, then,

$$\mathbb{E}\left[Z_{+}\right] \leq 1.5(\mathrm{err}_{\mu})^{2} \cdot \frac{\eta n^{2}}{M+\eta n} + 1 + \sqrt{\min\left\{\frac{\eta^{2}n^{2}}{M}, M\right\}}.$$

Plugging these calculations into the definition of $\widehat{\Delta}$, we obtain

$$\begin{split} & \mathbb{E}\left[\widehat{\Delta}\right] = \mathbb{E}\left[\sqrt{\frac{2\widehat{M}_{\gamma} + n}{n(n-1)}} \cdot \sqrt{4Z_{+} + 8\sqrt{N_{\geq 2}/\delta} + 24/\delta}\right] \\ & \leq \mathbb{E}\left[\sqrt{\frac{2M+n}{n(n-1)}} \cdot \sqrt{4Z_{+} + 8\sqrt{N_{\geq 2}/\delta} + 24/\delta}\right] \\ & \leq \sqrt{\frac{2M+n}{n(n-1)}} \cdot \sqrt{4\mathbb{E}\left[Z_{+}\right] + 8\sqrt{\mathbb{E}\left[N_{\geq 2}\right]/\delta} + 24/\delta} \\ & \leq \sqrt{\frac{2M+n}{n(n-1)}} \cdot \sqrt{4\left(1.5(\operatorname{err}_{\mu})^{2} \cdot \frac{\eta n^{2}}{M+\eta n} + 1 + \sqrt{\min\left\{\frac{\eta^{2}n^{2}}{M}, M\right\}}\right) + 8\sqrt{\min\left\{\frac{n^{2}}{M}, M\right\}} \cdot 1/\delta} + 24/\delta} \\ & \leq \sqrt{\frac{2M+n}{n(n-1)}} \cdot \left[\sqrt{6(\operatorname{err}_{\mu})^{2} \cdot \frac{\eta n^{2}}{M+\eta n}} + \sqrt{4(1+2/\sqrt{\delta})\sqrt{\min\left\{\frac{\eta^{2}n^{2}}{M}, M\right\}}} + \sqrt{4+24/\delta}\right]. \end{split}$$

We can assume that $M \le n^2$ and $n \ge 2$ (as otherwise, the upper bound would be trivial, since we must have $\text{Leb}(\widehat{C}_n(X_{n+1})) \le 1$ by construction). If $M \ge n$, then $\frac{2M+n}{n(n-1)} \le \frac{6M}{n^2}$ and the above

simplifies to

$$\mathbb{E}\left[\widehat{\Delta}\right] \leq 6\sqrt{\eta} \cdot \operatorname{err}_{\mu} + \sqrt{\frac{6(4+24/\delta)M}{n^2}} + \sqrt{24\eta(1+2/\sqrt{\delta})} \sqrt[4]{\frac{M}{n^2}},$$

and since we assume $M \leq n^2$, we therefore have

$$\mathbb{E}\left[\widehat{\Delta}\right] \le 6\sqrt{\eta} \cdot \operatorname{err}_{\mu} + \left(\sqrt{6(4+24/\delta)} + \sqrt{24\eta(1+2/\sqrt{\delta})}\right) \cdot \sqrt[4]{\frac{M}{n^2}}.$$
 (D.2)

If instead M < n, then $\frac{2M+n}{n(n-1)} \leq \frac{6}{n}$ and the above bound on $\mathbb{E}\left[\widehat{\Delta}\right]$ simplifies to

$$\mathbb{E}\left[\widehat{\Delta}\right] \le 6 \cdot \operatorname{err}_{\mu} + \sqrt{\frac{6}{n}} \cdot \left[\sqrt{4(1+2/\sqrt{\delta})\sqrt{M}} + \sqrt{4+24/\delta}\right]$$

which again yields the same bound (D.2) since $M \ge 1$ and $\eta \ge 1$. Finally, by definition of $\widehat{C}_n(X_{n+1})$, we have

$$\mathbb{E}\left[\operatorname{Leb}(\widehat{C}_n(X_{n+1}))\right] \leq \mathbb{E}\left[\widehat{\Delta}\right] \cdot \frac{2}{\alpha - \delta - \gamma},$$

which completes the proof for c chosen appropriately as a function of $\alpha, \delta, \gamma, \eta$.

E Proofs of lemmas

E.1 Proof of Lemma 1

Let x_{med} be the median of Q. Define

 $q_{<} = \mathbb{P}_{Q} \left\{ X < x_{\text{med}} \right\}, \ q_{>} = \mathbb{P}_{Q} \left\{ X > x_{\text{med}} \right\},$

and note that $q_{<}, q_{>} \in [0, 0.5]$. For $X \sim Q$, let $Q_{<}$ be the distribution of X conditional on $X < x_{\text{med}}$ and let $Q_{>}$ be the distribution of X conditional on $X > x_{\text{med}}$. Then we can write

$$Q = q_{<} \cdot Q_{<} + (1 - q_{<} - q_{>}) \cdot \delta_{x_{\rm med}} + q_{>} \cdot Q_{>},$$

where δ_t denotes the point mass distribution at t. Now define

$$Q_0 = 2q_{<} \cdot Q_{<} + (1 - 2q_{<}) \cdot \delta_{x_{\rm med}}$$

and

$$Q_1 = 2q_> \cdot Q_> + (1 - 2q_>) \cdot \delta_{x_{\text{med}}}.$$

Then clearly $Q = 0.5Q_0 + 0.5Q_1$. Next let μ_0, μ_1 be the means of these two distributions, satisfying $\frac{\mu_0 + \mu_1}{2} = \mu$ where μ is the mean of Q, and let σ_0^2, σ_1^2 be the variances of these two distributions. By the law of total variance, we have

$$\sigma^{2} = \operatorname{Var} \left(0.5\delta_{\mu_{0}} + 0.5\delta_{\mu_{1}} \right) + \mathbb{E} \left[0.5\delta_{\sigma_{0}^{2}} + 0.5\delta_{\sigma_{1}^{2}} \right]$$
$$= \frac{(\mu_{1} - \mu_{0})^{2}}{4} + 0.5\sigma_{0}^{2} + 0.5\sigma_{1}^{2}.$$

Next, Q_0 is a distribution supported on $[0, x_{med}]$ with mean μ_0 , so its variance is bounded as

$$\sigma_0^2 \le \mu_0 (x_{\text{med}} - \mu_0),$$

where the maximum is attained if all the mass is placed on the endpoints 0 or x_{med} . Similarly, Q_1 is a distribution supported on $[x_{\text{med}}, 1]$ with mean μ_1 , so its variance is bounded as

$$\sigma_1^2 \le (1 - \mu_1)(\mu_1 - x_{\text{med}}).$$

Using the fact that $\frac{\mu_0 + \mu_1}{2} = \mu$, we can simplify to

$$\begin{split} \sigma_0^2 + \sigma_1^2 &\leq \mu_0(x_{\rm med} - \mu_0) + (1 - \mu_1)(\mu_1 - x_{\rm med}) \\ &= \mu(x_{\rm med} - \mu_0) + (1 - \mu)(\mu_1 - x_{\rm med}) - 0.5(\mu_1 - \mu_0)^2. \end{split}$$

Therefore, we have

$$\sigma^{2} = \frac{(\mu_{1} - \mu_{0})^{2}}{4} + 0.5\sigma_{0}^{2} + 0.5\sigma_{1}^{2} \le 0.5\mu(x_{\text{med}} - \mu_{0}) + 0.5(1 - \mu)(\mu_{1} - x_{\text{med}})$$

= 0.5(2\mu_{-1})\vec{m}{m} = 0.5(2\mu_{-1})(\vec{m}{m} - \vec{m}{m}) + 0.25(\vec{m}{m})

 $= 0.5(2\mu - 1)x_{\text{med}} - 0.5\mu\mu_0 + 0.5(1 - \mu)\mu_1 = 0.5(2\mu - 1)(x_{\text{med}} - \mu) + 0.25(\mu_1 - \mu_0).$ Next, $|2\mu - 1| \le 1$ since $\mu \in [0, 1]$, and $|x_{\text{med}} - \mu| \le 0.5|\mu_1 - \mu_0|$ since $\mu_0 \le x_{\text{med}} \le \mu_1$ and $\frac{\mu_0 + \mu_1}{2} = \mu$. Therefore, $\sigma^2 \le 0.5(\mu_1 - \mu_0)$, proving the lemma.

E.2 Proof of Lemma 2

First we need a supporting lemma.

Lemma E.1. For any $N \ge 1$ and any $\epsilon \in [0, 0.5]$, $d_{KL} \Big(0.5 \cdot \operatorname{Binom}(N, 0.5 + \epsilon) + 0.5 \cdot \operatorname{Binom}(N, 0.5 - \epsilon) \parallel \operatorname{Binom}(N, 0.5) \Big) \le 8N(N-1)\epsilon^4.$

Proof of Lemma E.1. Let f_0 be the probability mass function of the Binom(N, 0.5) distribution, and let f_1 be the probability mass function of the mixture $0.5 \cdot \text{Binom}(N, 0.5 + \epsilon) + 0.5 \cdot \text{Binom}(N, 0.5 - \epsilon)$. Then we would like to bound $d_{\text{KL}}(f_1 || f_0)$. We calculate the ratio

$$\frac{f_1(k)}{f_0(k)} = \frac{0.5 \cdot \binom{N}{k} (0.5 + \epsilon)^k (0.5 - \epsilon)^{N-k} + 0.5 \cdot \binom{N}{k} (0.5 - \epsilon)^k (0.5 + \epsilon)^{N-k}}{\binom{N}{k} (0.5)^N} \\ = \frac{(1 + 2\epsilon)^k (1 - 2\epsilon)^{N-k} + (1 - 2\epsilon)^k (1 + 2\epsilon)^{N-k}}{2}.$$

Therefore, it holds that

$$\begin{split} \mathbb{E}_{\mathsf{Binom}(N,0.5)} \left[\left(\frac{f_1(X)}{f_0(X)} \right)^2 \right] \\ &= \mathbb{E}_{\mathsf{Binom}(N,0.5)} \left[\left(\frac{(1+2\epsilon)^X (1-2\epsilon)^{N-X} + (1-2\epsilon)^X (1+2\epsilon)^{N-X}}{2} \right)^2 \right] \\ &= \mathbb{E}_{\mathsf{Binom}(N,0.5)} \left[\frac{(1+2\epsilon)^{2X} (1-2\epsilon)^{2N-2X} + (1-2\epsilon)^{2X} (1+2\epsilon)^{2N-2X} + 2(1-4\epsilon^2)^N}{4} \right] \\ &= \frac{(1-2\epsilon)^{2N} \mathbb{E}_{\mathsf{Binom}(N,0.5)} \left[\left(\frac{1+2\epsilon}{1-2\epsilon} \right)^{2X} \right]^N + (1+2\epsilon)^{2N} \mathbb{E}_{\mathsf{Binom}(N,0.5)} \left[\left(\frac{1-2\epsilon}{1+2\epsilon} \right)^{2X} \right]^N + 2(1-4\epsilon^2)^N}{4} \\ &= \frac{(1-2\epsilon)^{2N} \mathbb{E}_{\mathsf{Bern}(0.5)} \left[\left(\frac{1+2\epsilon}{1-2\epsilon} \right)^2 + 0.5 \right]^N + (1+2\epsilon)^{2N} \mathbb{E}_{\mathsf{Bern}(0.5)} \left[\left(\frac{1-2\epsilon}{1+2\epsilon} \right)^2 + 0.5 \right]^N + 2(1-4\epsilon^2)^N}{4} \\ &= \frac{(1-2\epsilon)^{2N} \left[0.5 \left(\frac{1+2\epsilon}{1-2\epsilon} \right)^2 + 0.5 \right]^N + (1+2\epsilon)^{2N} \left[0.5 \left(\frac{1-2\epsilon}{1+2\epsilon} \right)^2 + 0.5 \right]^N + 2(1-4\epsilon^2)^N}{4} \\ &= \frac{(1-2\epsilon)^{2N} \left[0.5 \left(\frac{1+2\epsilon}{1-2\epsilon} \right)^2 + 0.5 \right]^N + (1+2\epsilon)^{2N} \left[0.5 \left(\frac{1-2\epsilon}{1+2\epsilon} \right)^2 + 0.5 \right]^N + 2(1-4\epsilon^2)^N}{4} \\ &= \frac{(1-2\epsilon)^{2N} \left[0.5 \left(\frac{1+2\epsilon}{1-2\epsilon} \right)^2 + 0.5 \right]^N + (1+2\epsilon)^{2N} \left[0.5 \left(\frac{1-2\epsilon}{1+2\epsilon} \right)^2 + 0.5 \right]^N + 2(1-4\epsilon^2)^N}{4} \\ &= \frac{(1+4\epsilon^2)^N + (1-4\epsilon^2)^N}{2} \\ &= 1 + \sum_{k\geq 1} \frac{(N(N-1)\dots(N-2k+2)(N-2k+1)}{(2k)!} (4\epsilon^2)^{2k} \\ &\leq 1 + \sum_{k\geq 1} \frac{(N(N-1))...(N-2k+2)(N-2k+1)}{2^k k!} (4\epsilon^2)^{2k} \\ &\leq \epsilon^{8\epsilon^4N(N-1)}. \end{split}$$

Applying Jensen's inequality, we then have

$$\begin{aligned} \mathbf{d}_{\mathrm{KL}}(f_1 \| f_0) &= \sum_{k=0}^n f_1(k) \log\left(\frac{f_1(k)}{f_0(k)}\right) = \mathbb{E}_{f_1}\left[\log\left(\frac{f_1(X)}{f_0(X)}\right)\right] \le \log\left(\mathbb{E}_{f_1}\left[\frac{f_1(X)}{f_0(X)}\right]\right) \\ &= \log\left(\mathbb{E}_{\mathrm{Binom}(N,0.5)}\left[\left(\frac{f_1(X)}{f_0(X)}\right)^2\right]\right) \le \log\left(e^{8\epsilon^4 N(N-1)}\right) = 8\epsilon^4 N(N-1). \end{aligned}$$

Now we turn to the proof of Lemma 2. Let $p_m = \mathbb{P} \{ X \in \mathcal{X}_m \}$ for each m = 1, 2, ... Define a distribution P'_0 on $(W, Z) \in \mathbb{N} \times \{0, 1\}$ as:

Draw
$$W \sim \sum_{m=1}^{\infty} p_m \delta_m$$
, and draw $Z \sim \text{Bernoulli}(0.5)$, independently from W .

and for any signs $a_1, a_2, \dots \in \{\pm 1\}$, define a distribution P'_a on $(W, Z) \in \mathbb{N} \times \{0, 1\}$ as:

Draw
$$W \sim \sum_{m=1}^{\infty} p_m \delta_m$$
, and conditional on W , draw $Z|W = m \sim \text{Bernoulli}(0.5 + a_m \cdot \epsilon_m)$.

Then define $\tilde{P}'_0 = (P'_0)^n$ and define \tilde{P}'_1 as the following mixture distribution.

- Draw $A_1, A_2, \ldots \stackrel{\text{iid}}{\sim} \text{Unif}\{\pm 1\}.$
- Conditional on A_1, A_2, \ldots , draw $(W_1, Z_1), \ldots, (W_n, Z_n) \stackrel{\text{iid}}{\sim} P'_A$.

Note that $(X_1, Z_1), \ldots, (X_n, Z_n) \sim \tilde{P}_0$ can be drawn by first drawing $(W_1, Z_1), \ldots, (W_n, Z_n) \sim \tilde{P}'_0$ and then drawing $X_i | W_i \sim P_{X | X \in \mathcal{X}_{W_i}}$ for each *i*. Similarly, $(X_1, Z_1), \ldots, (X_n, Z_n) \sim \tilde{P}_1$ is equivalent to first drawing $(W_1, Z_1), \ldots, (W_n, Z_n) \sim \tilde{P}'_1$ and then drawing $X_i | W_i \sim P_{X | X \in \mathcal{X}_{W_i}}$ for each *i*. This implies $d_{\text{TV}}(\tilde{P}_1 || \tilde{P}_0) \leq d_{\text{TV}}(\tilde{P}'_1 || \tilde{P}'_0)$.

Now we can calculate the probability mass function of \tilde{P}'_0 as

$$\tilde{P}'_0((w_1, z_1), \dots, (w_n, z_n)) = \prod_{i=1}^n (p_{w_i} \cdot 0.5),$$

and for \tilde{P}'_1 as

$$\tilde{P}'_1((w_1, z_1), \dots, (w_n, z_n)) = \mathbb{E}_{A_i \stackrel{\text{id}}{\sim} \text{Unif}\{\pm 1\}} \left[\prod_{i=1}^n \left(p_{w_i} \cdot (0.5 + A_{w_i} \epsilon_m)^{z_i} \cdot (0.5 - A_{w_i} \epsilon_m)^{1-z_i} \right) \right].$$

Defining summary statistics

$$n_m = \sum_{i=1}^n \mathbb{1} \{ w_i = m \} \text{ and } k_m = \sum_{i=1}^n \mathbb{1} \{ w_i = m, z_i = 1 \},\$$

we can rewrite the above as

$$\tilde{P}'_0((w_1, z_1), \dots, (w_n, z_n)) = \prod_{m=1}^{\infty} p_m^{n_m} \cdot 0.5^{n_m},$$

and

$$\tilde{P}_{1}'((w_{1}, z_{1}), \dots, (w_{n}, z_{n})) = \mathbb{E}_{A_{i} \stackrel{\text{iid}}{\sim} \text{Unif}\{\pm 1\}} \left[\prod_{m=1}^{\infty} p_{m}^{n_{m}} \cdot (0.5 + A_{m} \epsilon_{m})^{k_{m}} \cdot (0.5 - A_{m} \epsilon_{m})^{n_{m} - k_{m}} \right]$$
$$= \prod_{m=1}^{\infty} p_{m}^{n_{m}} \cdot \frac{1}{2} \sum_{a_{m} \in \{\pm 1\}} (0.5 + a_{m} \epsilon_{m})^{k_{m}} \cdot (0.5 - a_{m} \epsilon_{m})^{n_{m} - k_{m}}$$

We then calculate

$$\begin{aligned} \mathbf{d}_{\mathrm{KL}}(\tilde{P}'_{1}||\tilde{P}'_{0}) &= \mathbb{E}_{\tilde{P}_{1}} \left[\log \left(\frac{\tilde{P}'_{1}((W_{1},Z_{1}),\ldots,(W_{n},Z_{n}))}{\tilde{P}'_{0}((W_{1},Z_{1}),\ldots,(W_{n},Z_{n}))} \right) \right] \\ &= \mathbb{E}_{\tilde{P}'_{1}} \left[\log \left(\frac{\prod_{m=1}^{\infty} p_{m}^{N_{m}} \cdot \frac{1}{2} \sum_{a_{m} \in \{\pm 1\}} (0.5 + a_{m}\epsilon_{m})^{K_{m}} \cdot (0.5 - a_{m}\epsilon_{m})^{N_{m} - K_{m}}}{\prod_{m=1}^{\infty} p_{m}^{N_{m}} \cdot (0.5)^{N_{m}}} \right) \right] \\ &= \sum_{m=1}^{\infty} \mathbb{E}_{\tilde{P}'_{1}} \left[\log \left(\frac{\frac{1}{2} \sum_{a_{m} \in \{\pm 1\}} (0.5 + a_{m}\epsilon_{m})^{K_{m}} \cdot (0.5 - a_{m}\epsilon_{m})^{N_{m} - K_{m}}}{(0.5)^{N_{m}}} \right) \right] \\ &= \sum_{m=1}^{\infty} \mathbb{E}_{\tilde{P}'_{1}} \left[\mathbb{E}_{\tilde{P}'_{1}} \left[\log \left(\frac{\frac{1}{2} \sum_{a_{m} \in \{\pm 1\}} (0.5 + a_{m}\epsilon_{m})^{K_{m}} \cdot (0.5 - a_{m}\epsilon_{m})^{N_{m} - K_{m}}}{(0.5)^{N_{m}}} \right) \right| N_{m} \right] \right], \end{aligned}$$

where

$$N_m = \sum_{i=1}^n \mathbb{1}\{W_i = m\} \text{ and } K_m = \sum_{i=1}^n \mathbb{1}\{W_i = m, Z_i = 1\}$$

Next, we calculate the conditional expectation in the last expression above. If $N_m = 0$ then trivially it is equal to $\log(1) = 0$. If $N_m \ge 1$, then under \tilde{P}'_1 , we can see that

$$K_m \mid N_m \sim 0.5 \cdot \operatorname{Binom}(N_m, 0.5 + \epsilon_m) + 0.5 \cdot \operatorname{Binom}(N_m, 0.5 - \epsilon_m)$$

and therefore,

$$\begin{split} & \mathbb{E}_{\tilde{P}_1'}\left[\log\left(\frac{\frac{1}{2}\sum_{a_m\in\{\pm 1\}}(0.5+a_m\epsilon_m)^{K_m}\cdot(0.5-a_m\epsilon_m)^{N_m-K_m}}{(0.5)^{N_m}}\right) \ \bigg| \ N_m\right] \\ & = \mathsf{d}_{\mathsf{KL}}\Big(0.5\cdot\mathsf{Binom}(N_m,0.5+\epsilon_m)+0.5\cdot\mathsf{Binom}(N_m,0.5-\epsilon_m) \ \big| \ \mathsf{Binom}(N_m,0.5)\Big) \leq 8N_m(N_m-1)\epsilon_m^4, \end{split}$$

where the last step applies Lemma E.1. Therefore,

$$\begin{aligned} \mathsf{d}_{\mathsf{KL}}(\tilde{P}'_{1}||\tilde{P}'_{0}) &\leq \sum_{m=1}^{\infty} \mathbb{E}_{\tilde{P}'_{1}} \left[8N_{m}(N_{m}-1)\epsilon_{m}^{4} \right] \\ &= 8\sum_{m=1}^{\infty} \epsilon_{m}^{4} \mathbb{E}_{\tilde{P}'_{1}} \left[N_{m}^{2} - N_{m} \right] \\ &= 8\sum_{m=1}^{\infty} \epsilon_{m}^{4} \left(\left(np_{m}(1-p_{m}) + n^{2}p_{m}^{2} \right) - np_{m} \right) \\ &= 8 \cdot n(n-1) \sum_{m=1}^{\infty} \epsilon_{m}^{4} p_{m}^{2}, \end{aligned}$$

since $N_m \sim \text{Binom}(n, p_m)$ by definition. Applying Pinsker's inequality and $d_{\text{TV}}(\tilde{P}_1 || \tilde{P}_0) \leq d_{\text{TV}}(\tilde{P}_1' || \tilde{P}_0')$ completes the proof.

E.3 Proof of Lemma C.1

Define

$$Z_m = \begin{cases} (n_m - 1) \cdot \left((\bar{y}_m - \mu(x^{(m)}))^2 - n_m^{-1} s_m^2 \right), & n_m \ge 2, \\ 0, & n_m = 0 \text{ or } 1. \end{cases}$$

Then $Z = \sum_{m=1}^{\infty} Z_m$. Now we calculate the conditional mean and variance. Conditional on X_1, \ldots, X_n , \bar{y}_m and s_m^2 are the sample mean and sample variance of n_m i.i.d. draws from a distribution with mean $\mu_P(x^{(m)})$ and variance $\sigma_P^2(x^{(m)})$, supported on [0, 1], where we let $\sigma_P^2(x^{(m)})$ be the variance of the distribution of $Y|X = x^{(m)}$, under the joint distribution P. For any m with $n_m \ge 2$, we therefore have

$$\mathbb{E}\left[\bar{y}_m \mid X_1, \dots, X_n\right] = \mu_P(x^{(m)}), \text{ Var } (\bar{y}_m \mid X_1, \dots, X_n) = n_m^{-1} \sigma_P^2(x^{(m)}) = \mathbb{E}\left[n_m^{-1} s_m^2 \mid X_1, \dots, X_n\right],$$

and so

$$\mathbb{E}\left[\left(\bar{y}_m - \mu(x^{(m)})\right)^2 - n_m^{-1}s_m^2 \mid X_1, \dots, X_n\right]$$

= $n_m^{-1}\sigma_P^2(x^{(m)}) + (\mu_P(x^{(m)}) - \mu(x^{(m)}))^2 - n_m^{-1}\sigma_P^2(x^{(m)}) = (\mu_P(x^{(m)}) - \mu(x^{(m)}))^2.$

Next, we have $(n_1, \ldots, n_M) \sim \text{Multinom}(n, p)$, which implies that marginally $n_m \sim \text{Binom}(n, p_m)$ and so

$$\mathbb{E}\left[(n_m - 1)_+\right] = \mathbb{E}\left[n_m - 1 + \mathbb{1}\left\{n_m = 0\right\}\right] = np_m - 1 + (1 - p_m)^n$$

Combining these calculations completes the proof for the expected value $\mathbb{E}[Z]$ and conditional expected value $\mathbb{E}[Z \mid X_1, \dots, X_n]$.

Next, we calculate conditional and marginal variance. We have

$$\begin{aligned} \operatorname{Var}\left((\bar{y}_{m} - \mu(x^{(m)}))^{2} - n_{m}^{-1}s_{m}^{2} \mid X_{1}, \dots, X_{n}\right) \\ &= \operatorname{Var}\left((\bar{y}_{m} - \mu(x^{(m)}))^{2} - n_{m}^{-1}s_{m}^{2} - (\mu_{P}(x^{(m)}) - \mu(x^{(m)}))^{2} \mid X_{1}, \dots, X_{n}\right) \\ &\leq \mathbb{E}\left[\left((\bar{y}_{m} - \mu(x^{(m)}))^{2} - n_{m}^{-1}s_{m}^{2} - (\mu_{P}(x^{(m)}) - \mu(x^{(m)}))^{2}\right)^{2} \mid X_{1}, \dots, X_{n}\right] \\ &= \mathbb{E}\left[\left((\bar{y}_{m} - \mu_{P}(x^{(m)}))^{2} + 2(\bar{y}_{m} - \mu_{P}(x^{(m)}))(\mu_{P}(x^{(m)}) - \mu(x^{(m)})) - n_{m}^{-1}s_{m}^{2}\right)^{2} \mid X_{1}, \dots, X_{n}\right] \\ &\leq 4\mathbb{E}\left[\left((\bar{y}_{m} - \mu_{P}(x^{(m)}))\right)^{4} \mid X_{1}, \dots, X_{n}\right] \\ &\quad + 2\mathbb{E}\left[\left(2(\bar{y}_{m} - \mu_{P}(x^{(m)}))(\mu_{P}(x^{(m)}) - \mu(x^{(m)}))\right)^{2} \mid X_{1}, \dots, X_{n}\right] \\ &\quad + 4\mathbb{E}\left[\left(n_{m}^{-1}s_{m}^{2}\right)^{2} \mid X_{1}, \dots, X_{n}\right], \end{aligned}$$

where the last step holds since $(a + b + c)^2 \le 4a^2 + 2b^2 + 4c^2$ for any a, b, c. Now we bound each term separately. First, we have

$$\begin{split} & \mathbb{E}\left[\left(\left(\bar{y}_m - \mu_P(x^{(m)})\right)\right)^4 \middle| X_1, \dots, X_n\right] \\ &= \frac{1}{n_m^4} \sum_{\substack{i_1, i_2, i_3, i_4 \text{ s.t.} \\ X_{i_1} = X_{i_2} = X_{i_3} = X_{i_4} = x^{(m)}}} \mathbb{E}\left[\prod_{k=1}^4 (Y_{i_k} - \mu_P(x^{(m)})) \middle| X_1, \dots, X_n\right] \\ &= \frac{1}{n_m^4} \left[n_m \cdot \mathbb{E}\left[(Y - \mu_P(x^{(m)}))^4 \middle| X = x^{(m)}\right] + 3n_m(n_m - 1) \cdot \mathbb{E}\left[(Y - \mu_P(x^{(m)}))^2 \middle| X = x^{(m)}\right]^2\right] \\ &\leq \frac{1}{n_m^4} \left[n_m \cdot \sigma_P^2(x^{(m)}) + 3n_m(n_m - 1) \cdot (\sigma_P^2(x^{(m)}))^2\right] \\ &\leq \frac{1}{n_m^4} \left[n_m \cdot \frac{1}{4} + 3n_m(n_m - 1) \cdot (\frac{1}{4})^2\right] = \frac{3n_m + 1}{16n_m^3}, \end{split}$$

where the second step holds by counting tuples (i_1, i_2, i_3, i_4) where either all four indices are equal, or there are two pairs of equal indices (since otherwise, the expected value of the product is zero). Next,

$$\mathbb{E}\left[\left(2(\bar{y}_m - \mu_P(x^{(m)}))(\mu_P(x^{(m)}) - \mu(x^{(m)}))\right)^2 \middle| X_1, \dots, X_n\right] \\
= 4(\mu_P(x^{(m)}) - \mu(x^{(m)}))^2 \mathbb{E}\left[(\bar{y}_m - \mu_P(x^{(m)}))^2 \middle| X_1, \dots, X_n\right] \\
= 4(\mu_P(x^{(m)}) - \mu(x^{(m)}))^2 \cdot n_m^{-1} \sigma_P^2(x^{(m)}) \\
\leq n_m^{-1}(\mu_P(x^{(m)}) - \mu(x^{(m)}))^2.$$

Finally, since $s_m^2 \leq \frac{n_m}{4(n_m-1)}$ holds deterministically,

$$\mathbb{E}\left[\left(n_m^{-1}s_m^2\right)^2 \mid X_1, \dots, X_n\right] \le n_m^{-2} \cdot \frac{n_m}{4(n_m - 1)} \cdot \mathbb{E}\left[s_m^2 \mid X_1, \dots, X_n\right] \\ = n_m^{-2} \cdot \frac{n_m}{4(n_m - 1)} \cdot \sigma_P^2(x^{(m)}) \le \frac{1}{16n_m(n_m - 1)}$$

Combining everything, then,

$$\begin{aligned} \operatorname{Var}\left((\bar{y}_m - \mu(x^{(m)}))^2 - n_m^{-1} s_m^2 \mid X_1, \dots, X_n\right) \\ &\leq 4 \cdot \frac{3n_m + 1}{16n_m^3} + 2 \cdot n_m^{-1} (\mu_P(x^{(m)}) - \mu(x^{(m)}))^2 + 4 \cdot \frac{1}{16n_m(n_m - 1)}, \end{aligned}$$

and so for $n_m \geq 2$,

$$\begin{aligned} \operatorname{Var}\left(Z_m \mid X_1, \dots, X_n\right) \\ &\leq (n_m - 1)^2 \cdot \left[4 \cdot \frac{3n_m + 1}{16n_m^3} + 2 \cdot n_m^{-1} (\mu_P(x^{(m)}) - \mu(x^{(m)}))^2 + 4 \cdot \frac{1}{16n_m(n_m - 1)}\right] \\ &\leq 1 + 2(n_m - 1) \cdot (\mu_P(x^{(m)}) - \mu(x^{(m)}))^2 = 0.5 + 2\mathbb{E}\left[Z_m \mid X_1, \dots, X_n\right]. \end{aligned}$$

If instead $n_m = 0$ or $n_m = 1$ then $Z_m = 0$ by definition, and so $Var(Z_m | X_1, ..., X_n) = 0$. Therefore, in all cases, we have

$$\operatorname{Var}(Z_m \mid X_1, \dots, X_n) \le \mathbb{1}\{n_m \ge 2\} + 2\mathbb{E}[Z_m \mid X_1, \dots, X_n].$$

It is also clear that, conditional on X_1, \ldots, X_n , the Z_m 's are independent, and so

$$\operatorname{Var}(Z \mid X_1, \dots, X_n) = \sum_{m=1}^{\infty} \operatorname{Var}(Z_m \mid X_1, \dots, X_n) \le N_{\ge 2} + 2\mathbb{E}[Z \mid X_1, \dots, X_n].$$

Finally, we need to bound Var $(\mathbb{E}[Z \mid X_1, \dots, X_n])$. First, we have

$$\begin{aligned} \operatorname{Var}\left(\mathbb{E}\left[Z_m \mid X_1, \dots, X_n\right]\right) &= \operatorname{Var}\left((n_m - 1)_+\right) \cdot (\mu_P(x^{(m)}) - \mu(x^{(m)}))^4 \\ &\leq \operatorname{Var}\left((n_m - 1)_+\right) \cdot (\mu_P(x^{(m)}) - \mu(x^{(m)}))^2, \end{aligned}$$

and we can calculate

$$\begin{aligned} &\operatorname{Var} \left((n_m - 1)_+ \right) \\ &= \operatorname{Var} \left(n_m + \mathbbm{1} \{ n_m = 0 \} \right) \\ &= \operatorname{Var} \left(n_m \right) + \operatorname{Var} \left(\mathbbm{1} \{ n_m = 0 \} \right) + 2 \operatorname{Cov} \left(n_m, \mathbbm{1} \{ n_m = 0 \} \right) \\ &= \operatorname{Var} \left(n_m \right) + \operatorname{Var} \left(\mathbbm{1} \{ n_m = 0 \} \right) - 2 \mathbbm{1} [n_m] \mathbbm{1} \mathbbm{1} \{ n_m = 0 \}] \text{ since } n_m \cdot \mathbbm{1} \{ n_m = 0 \} = 0 \text{ almost surely} \\ &= n p_m (1 - p_m) + (1 - p_m)^n \left(1 - (1 - p_m)^n \right) - 2 n p_m (1 - p_m)^n. \end{aligned}$$

Therefore,

$$\begin{split} & 2\mathbb{E}\left[(n_m-1)_+\right] - \operatorname{Var}\left((n_m-1)_+\right) \\ & = 2np_m - 2 + 2(1-p_m)^n - np_m(1-p_m) - (1-p_m)^n \left(1 - (1-p_m)^n\right) + 2np_m(1-p_m)^n \\ & = np_m(1+p_m) + (1-p_m)^n \left(1 + 2np_m + (1-p_m)^n\right) - 2 \\ & \geq 0, \end{split}$$

where the last step holds since, defining $f(t) = nt(1+t) + (1-t)^n (1 + 2nt + (1-t)^n)$, we can see that f(0) = 2 and $f'(t) \ge 0$ for all $t \in [0, 1]$. This verifies that

$$\begin{aligned} \operatorname{Var}\left(\mathbb{E}\left[Z_m \mid X_1, \dots, X_n\right]\right) &\leq \operatorname{Var}\left((n_m - 1)_+\right) \cdot (\mu_P(x^{(m)}) - \mu(x^{(m)}))^2 \\ &\leq 2\mathbb{E}\left[(n_m - 1)_+\right] \cdot (\mu_P(x^{(m)}) - \mu(x^{(m)}))^2 = 2\mathbb{E}\left[Z_m\right]. \end{aligned}$$

Next, for any $m \neq m'$,

$$Cov \left(\mathbb{E}\left[Z_m \mid X_1, \dots, X_n\right], \mathbb{E}\left[Z_{m'} \mid X_1, \dots, X_n\right]\right) \\ = Cov \left((n_m - 1)_+, (n_{m'} - 1)_+\right) \cdot \left(\mu_P(x^{(m)}) - \mu(x^{(m)})\right)^2 \cdot \left(\mu_P(x^{(m')}) - \mu(x^{(m')})\right)^2 \\ \le 0.$$

For the last step, we use the fact that $\operatorname{Cov}((n_m - 1)_+, (n_{m'} - 1)_+) \leq 0$, which holds since, conditional on n_m , we have $n_{m'} \sim \operatorname{Binom}\left(n - n_m, \frac{p_{m'}}{1 - p_m}\right)$, and so the distribution of $n_{m'}$ is stochastically smaller whenever n_m is larger. Therefore,

$$\operatorname{Var}\left(\mathbb{E}\left[Z \mid X_{1}, \dots, X_{n}\right]\right) \leq \sum_{m=1}^{\infty} \operatorname{Var}\left(\mathbb{E}\left[Z_{m} \mid X_{1}, \dots, X_{n}\right]\right) \leq \sum_{m=1}^{\infty} 2\mathbb{E}\left[Z_{m}\right] = 2\mathbb{E}\left[Z\right].$$

E.4 Proofs of Lemma C.2 and Lemma D.1

Replacing p with 1 - s, equivalently, we need to show that, for all $s \in [0, 1]$,

$$\frac{n(n-1)(1-s)^2}{2+n(1-s)} \le n(1-s) - 1 + s^n \le \frac{n^2(1-s)^2}{1+n(1-s)}.$$

After simplifying, this is equivalent to proving that

$$\frac{n(1-s)^2 + 2n(1-s)}{2 + n(1-s)} \ge 1 - s^n \ge \frac{n(1-s)}{1 + n(1-s)},$$

which we can further simplify to

$$\frac{n(1-s)+2n}{2+n(1-s)} \ge 1+s+\dots+s^{n-1} \ge \frac{n}{1+n(1-s)}$$
(E.2)

by dividing by 1 - s (note that this division can be performed whenever s < 1, while if s = 1, then the desired inequalities hold trivially).

Now we address the two desired inequalities separately. For the left-hand inequality in (E.2), define $h(s) = (2 + n(1 - s)) \cdot (s + s^2 + \dots + s^{n-1}) = ns + 2(s + s^2 + \dots + s^{n-1}) - ns^n$.

We calculate h(1) = 2(n-1), and for any $s \in [0, 1]$,

$$h'(s) = n + \sum_{i=1}^{n-1} 2is^{i-1} - n^2 s^{n-1} \ge n + \sum_{i=1}^{n-1} 2is^{n-1} - n^2 s^{n-1}$$
$$= n + s^{n-1} \left(\sum_{i=1}^{n-1} 2i - n^2 \right) = n - ns^{n-1} \ge 0,$$

where the first inequality holds since $s^{i-1} \ge s^{n-1}$ for all i = 1, ..., n-1, and the second inequality holds since $s^{n-1} \le 1$. Therefore, $h(s) \le h(1) = 2(n-1)$ for all $s \in [0,1]$, and so

$$1 + s + \dots + s^{n-1} = \frac{(1 + s + \dots + s^{n-1}) \cdot (2 + n(1 - s))}{2 + n(1 - s)}$$
$$= \frac{2 + n(1 - s) + h(s)}{2 + n(1 - s)} \le \frac{2 + n(1 - s) + 2(n - 1)}{2 + n(1 - s)} = \frac{n(1 - s) + 2n}{2 + n(1 - s)},$$

as desired.

To verify the right-hand inequality in (E.2), we have

$$1 + s + \dots + s^{n-1} = \frac{(1 + s + \dots + s^{n-1}) \cdot (1 + n(1 - s))}{1 + n(1 - s)}$$
$$= \frac{(n+1)(1 + s + \dots + s^{n-1}) - n(s + s^2 + \dots + s^n)}{1 + n(1 - s)}$$
$$= \frac{n + (1 + s + \dots + s^{n-1}) - ns^n}{1 + n(1 - s)}$$
$$\ge \frac{n}{1 + n(1 - s)},$$

where the last step holds since, for $s \in [0, 1]$, we have $s^i \ge s^n$ for all i = 0, 1, ..., n - 1.

References

Siu-On Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. Optimal algorithms for testing closeness of discrete distributions. In *Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms*, pages 1193–1203. SIAM, 2014.