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ABSTRACT

We study the problem of model selection in causal inference, specifically for con-
ditional average treatment effect (CATE) estimation. Unlike machine learning,
there is no perfect analogue of cross-validation for model selection as we do not
observe the counterfactual potential outcomes. Towards this, a variety of surro-
gate metrics have been proposed for CATE model selection that use only observed
data. However, we do not have a good understanding regarding their effectiveness
due to limited comparisons in prior studies. We conduct an extensive empirical
analysis to benchmark the surrogate model selection metrics introduced in the
literature, as well as the novel ones introduced in this work. We ensure a fair com-
parison by tuning the hyperparameters associated with these metrics via AutoML,
and provide more detailed trends by incorporating realistic datasets via generative
modeling. Our analysis suggests novel model selection strategies based on careful
hyperparameter selection of CATE estimators and causal ensembling.

1 INTRODUCTION

Several decision-making tasks require us to compute the personalized effect of interventions on an
individual. If interventions are assigned based on the average effect, then it might result in sub-
optimal outcomes (Segal et al., 2012) as the heterogeneity of the data is not taken into account.
Hence, identifying which individuals benefit the most from an intervention would result in better
policies. The emphasis on individual treatments effects has been shown in multiple domains, from
personalised healthcare (Foster et al., 2011) to social sciences (Xie et al., 2012).

This has led to several techniques that estimate flexible and accurate models of heterogeneous treat-
ment effects. These approaches range from adapting neural networks (Shi et al., 2019) to random
forests (Wager & Athey, 2018), along with frameworks like double machine learning (Chernozhukov
et al., 2016; Foster & Syrgkanis, 2019; Nie & Wager, 2021), instrumental variables (Hartford et al.,
2017), meta learners (Künzel et al., 2019), etc. But how do we select between the different estima-
tors? While in some situations we can choose between the estimators based on domain knowledge
and application requirements, it is desirable to have a model-free approach for model selection.
Further, the commonly used practice of cross-validation in supervised learning problems (Bengio
et al., 2013) cannot be used for model selection in causal inference, as we never observe both of the
potential outcomes for an individual (fundamental problem of causal inference (Holland, 1986)).

Towards this, surrogate metrics have been proposed that perform model selection using only obser-
vational data. Earlier proposals were based on evaluating the nuisance models associated with the
estimators, and the utility of decision policy (Zhao et al., 2017) based on the heterogeneous treat-
ment effects of the estimator. Recently, the focus has shifted towards designing surrogate metrics
that approximate the true effect and compute its deviation from the estimator’s treatment effect (Nie
& Wager, 2021; Saito & Yasui, 2020), and they have also been shown to be more effective than
other metrics (Schuler et al., 2018; Alaa & Van Der Schaar, 2019). However, most of these evalua-
tion studies have been performed only on a few synthetic datasets, therefore, the trend in such studies
could be questionable. Also, there is often a lack of fair comparison between the various metrics as

∗Equal Advising. Correspondence to: divyat.mahajan@mila.quebec

1



Published as a conference paper at ICLR 2024

some of them are excluded from the baselines when authors evaluate their proposed metrics. Hence,
we have a poor understanding of which surrogate criteria should be used for model selection.

Contributions. In this work, we perform a comprehensive empirical study 1 over 78 datasets to
understand the efficacy of 34 surrogate metrics for conditional average treatment effect (CATE)
model selection, where the model selection task is made challenging by training a large number of
estimators (415 CATE estimators) for each dataset. Our evaluation framework encourages unbiased
evaluation of surrogate metrics by proper tuning of their nuisance models using AutoML (Wang
et al., 2021), which were chosen in a limited manner even in recent benchmarking studies (Curth &
van der Schaar, 2023). We also provide a novel two-level model selection strategy based on careful
hyperparameter selection for each class of meta-estimators, and causal ensembling which improves
the performance of several surrogate metrics significantly.

To ensure we have reliable conclusions, unlike prior works, we also make use of recent advances in
generative modeling for causal inference (Neal et al., 2020) to include realistic benchmarks in our
analysis. Further, we introduce several new surrogate metrics inspired by other related strands of the
literature such as TMLE, policy learning, calibration, and uplift modeling.

Our analysis shows that metrics that incorporate doubly robust aspects significantly dominate the
rest across all datasets. Interestingly, we also find that plug-in metrics based on T-Learner are never
dominated by other metrics across all datasets, which suggests the impact of tuning the nuisance
models properly with AutoML for CATE model selection.

Notations: Capital letter denote random variables (X) and small case letters (x) denote their realiza-
tions. The nuisance models of the CATE estimators have upward hat η̂ = (µ̂, π̂), while the nuisance
models of surrogate metrics have downward hat η̌ = (µ̌, π̌). Potential outcomes are denoted as
(Y (0), Y (1)) while the pseudo-outcomes are represented as Y (η) = Y1(η)− Y0(η).

2 CATE MODEL SELECTION: SETUP & BACKGROUND

We work with the potential outcomes framework (Rubin, 2005) and have samples of random vari-
ables (Y,W,X), where X are the pre-treatment covariates, W is the treatment assignment, and
Y is the outcome of interest. We consider binary treatments W ∈ {0, 1}, and have two potential
outcomes (Y (0), Y (1)) corresponding to the interventions (do(W = 0), do(W = 1)). The observa-
tional data {x,w, y} are sampled from an unknown joint distribution Pθ(X,W, Y (0), Y (1)).

Typical causal inference queries require information about the propensity (treatment assignment)
distribution (πw(x) = P[W = w|X = x)) and the expected potential outcomes (µw(x) =
E[Y (w)|X = x]), commonly referred as the nuisance parameters η = (µ0, µ1, π).

Our target of inference is the conditional average treatment effect (CATE), that represents the aver-
age effect of intervention (Y (1)− Y (0)) on the population with covariates X = x.

CATE: τ(x) = E[Y (1)− Y (0)|X = x] = µ1(x)− µ0(x).

Under the standard assumptions of ignorability (Peters et al., 2017) the expected outcomes are iden-
tified using observational data as E[Y (w)|X = x] = E[Y |W = w,X = x], which further implies
CATE is identified as follows (more details in Appendix A.1):

τ(x) = E [Y |W = 1, X = x]− E [Y |W = 0, X = x]

Meta-Learners for CATE Estimation. We consider the meta-learner framework (Künzel et al.,
2019) that relies on estimates of nuisance parameters (η̂) to predict CATE. E.g., if we can reliably
estimate the potential outcomes (E[Y |W = w,X = x]) from observational data by learning regres-
sion functions µ̂w that predict the outcomes y from the covariates x for treatment groups w ∈ {0, 1},
then we can estimate the CATE as follows, also known as the T-Learner

τ̂T (x) = µ̂1(x)− µ̂0(x) (1)

1The code repository can be accessed here: github.com/divyat09/cate-estimator-selection
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Similarly, we could also learn a single regression function (µ̂x,w) to estimate the potential outcomes,
also known as the S-Learner

τ̂S(x) = µ̂(x, 1)− µ̂(x, 0) (2)

Following Curth & Van der Schaar (2021), such estimating strategies are called indirect meta-
learners, as their main learning objective is to estimate potential outcomes and not CATE directly.
In contrast, with direct meta-learners we learn additional regression models (f ) to estimate CATE
from covariates X , which provides additional regularization. One popular direct meta-learner is the
Doubly Robust (DR) Learner (Kennedy, 2020), where we first estimate the DR pseudo-outcomes
yDR(η̂) and then learn the CATE predictor f̂ by regressing the pseudo-outcomes on the covariates.

yDR(η̂) = yDR
1 (η̂)− yDR

0 (η̂) where yDR
w (η̂) = µ̂(x,w) +

y − µ̂(x,w)

π̂w(x)
(3)

τ̂DR := f̂DR = argmin
f∈F

∑
{x,w,y}

(
yDR(η̂)− f(x)

)2
(4)

Please refer to Appendix A for a detailed recap on meta-learners used in this study.

CATE Model Selection. Given a set of CATE estimates {τ̂1, .., τ̂M} from estimators
{E1, .., EM}, CATE model selection refers to finding the best estimator, Em∗ s.t. m∗ =
argmini L(τ̂i), where the L(τ̂) denotes the precision of heterogeneous effects (PEHE) (Hill, 2011).

L(τ̂) = EX [(τ̂(X)− τ(X))2] (5)

If we had access to counterfactual data (observed both Y (0), Y (1)), then we could compute the
true effect τ(X) and use the ideal metric PEHE for model selection. Hence, the main difficulty
stems from not observing both potential outcomes for each sample, and we need to design surrogate
metrics (M(τ̂)) that use only observational data for model selection.

Surrogate Metrics for CATE Model Selection. A common approach for designing surrogate
metrics (M(τ̂)) is to learn an approximation of the ground truth CATE as τ̃(x) and then compute
the PEHE as follows (Schuler et al., 2018).

M(τ̂) =
1

N

N∑
i=1

(τ̂(xi)− τ̃(xi))
2 (6)

Different choices for τ̃ would give rise to different surrogate metrics. We briefly describe a few tech-
niques commonly used for estimating τ̃ , with a more detailed description of the various surrogate
metrics considered in our work can be found in Appendix B.

One class of surrogate metrics are the plug-in surrogate metrics which estimate τ̃ by training another
CATE estimator on the validation set, and we could employ similar estimation strategies as meta-
learners. E.g., analogous to T-Learner, we can learn τ̃(x) as the difference in the estimated potential
outcomes µ̌1(x)− µ̌0(x), known as the T-Score (Alaa & Van Der Schaar, 2019).

MT (τ̂) :=
1

N

N∑
i=1

(τ̂(xi)− τ̃T (xi))
2

τ̃T (x) := µ̌1(x)− µ̌0(x) (T Score)

Another class of surrogate metrics are the pseudo-outcome surrogate metrics that estimate τ̃ as
pseudo-outcomes (Y (η̌)). E.g., we can construct the pseudo-outcome metric using DR pseudo-
outcome (E.q. 3), known as the DR Score (Saito & Yasui, 2020).

MDR(τ̂) :=
1

N

N∑
i=1

(τ̂(xi)− τ̃DR(xi))
2

τ̃DR := yDR(η̌) (DR Score)

Note that DR-Learner would require training the CATE predictor (fDR) as well, however with the
pseudo-outcome metrics we don’t train such direct predictors of CATE. Infact, training a direct
CATE predictor (f̌DR) for the metric as well would make it a plug-in surrogate metric.
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Which surrogate criteria to use? While there have been several surrogate metrics proposed in the
literature that enable CATE model selection using only observed data, we have a poor understanding
of their relative advantages/disadvantages. Towards this, there have been a couple of benchmarking
studies, the first one by Schuler et al. (2018) where they found the R-Score (Nie & Wager, 2021)
strategy to be the most effective. However, since their work, there have been new surrogate cri-
teria proposed (Alaa & Van Der Schaar, 2019; Saito & Yasui, 2020) and also they experimented
with only a single synthetic data generation process. The latest study by Curth & van der Schaar
(2023) considers an exhaustive set of surrogate metrics and analyzes their performance on a care-
fully designed synthetic data generation process. Their analysis shows the limitations of the factual
prediction criteria that rely on evaluating the generalization of nuisance models for model selection.
They also find that pseudo-outcome variants are less susceptible to congeniality bias as compared
to their plug-in counterparts. In this work, we build further in the same spirit of conducting a more
thorough analysis to obtain insightful trends regarding the performance of different surrogate met-
rics. The next section provides details on the proposed evaluation framework and highlights the
associated important design choices ignored in the prior works.

3 FRAMEWORK FOR COMPARING MODEL SELECTION STRATEGIES

Consider a set of trained CATE estimators (E) and a set of surrogate metrics ({M(τ̂)}), our task is
to determine the effectiveness of each metric. Let E∗

M denote the set of estimators that are optimal
w.r.t the metric M , i.e., E∗

M = argmine∈E M(τ̂e). Then, similar to prior works, we judge the
performance of any surrogate metric M by computing the ideal PEHE metric (E.q. 5) for the best
estimators selected by it, i.e., PEHE(E∗

M )= 1
|E∗

M | ∗
∑

e∈E∗
M
L(τ̂e). Since PEHE(E∗

M ) determines
the quality of the best estimators selected by a metric M , hence it can be used to compare the
different surrogate metrics. We now state the novel aspects of our evaluation framework (Figure 1)
for comparing the surrogate metrics for CATE model selection.

Well-tuned surrogate metrics via AutoML. Since surrogate metrics involve approximating the
ground-truth CATE (τ̃ ) (E.q. 6), we need to infer the associated nuisance models (η̌) on the validation
set. The nuisance models (η̌) play a critical role in the performance of these metrics as sub-optimal
choices for them can lead to a biased approximation (τ̃ ) of the true CATE. Despite its importance,
tuning of metric’s nuisance models is done by searching over a small manually specified grid of
hyperparameters in prior works. Hence, we use AutoML, specifically FLAML (Wang et al., 2021)
to select the best-performing nuisance model class as well as its hyperparameters. Since AutoML
can select much better nuisance models than grid search or random search would for the same
amount of compute, the surrogate metrics would have less tendency to be biased.

Two-level model selection strategy. The set of trained CATE estimators can be grouped based on
the different learning criteria. E.g., consider the population of CATE estimators to be comprised of
two groups, where the first group ET = {τ̂T (η̂1), · · · , τ̂T (η̂m)} contains all the estimators of type
T-Learner and the second group EDR = {τ̂DR(η̂1), · · · , τ̂DR(η̂n)} contain all the estimators of type
DR-Learner. Given a surrogate metric M(τ̂), prior works select over the entire estimator population,
E∗

M = argmine∈ET∪EDR
M(τ̂e), which we term as single-level model selection strategy.

However, another approach would be to first select amongst the estimators within each meta-learner
using a criterion better suited for that specific meta-learner, and then select over the remaining
population of meta-learners using the surrogate metric. In the example above, we could use T Score
to select amongst the T-Learner group, i.e., E∗

T = argmine∈ET
MT (τ̂e). Similarly, we could use

DR Score to select amongst the DR-Learner group, i.e, E∗
DR = argmine∈EDR

MDR(τ̂e). Then we
could select between E′ = E∗

T∪E∗
DR using the surrogate metric M , i.e., E∗

M = argmine∈E′ M(τ̂e).
We term this two-level model selection strategy, and since we were more careful in selecting over
hyperparameters of each meta-learner, it might help the surrogate metric in model selection.

Hence, denoting the CATE estimator population as E = {∪JEJ} where EJ represents all the
estimators of type meta-learner J , the two-level selection strategy can be summarized as follows.

1. Select using meta-learner based metric (MJ(τ̂)), E∗
J = argmine∈EJ

MJ(τ̂e) ∀J
2. Select using the surrogate metric M(τ̂), E∗

M = argmine∈E′ M(τ̂e) where E′ = ∪JE
∗
J
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Casual Ensembling. The prior works typically judge the performance of any metric as per its best
performing CATE estimators2, however, this approach is prone to outliers where the top-1 choice
selected using the metric is bad but the top-k choices are good. Analogous to super-learning (used
successfully for predictive model selection (Ju et al., 2018)), instead of returning the best CATE
estimator using a metric M , we instead return a weighted combination of CATE estimators, where
the weight of each CATE estimator is proportional to exp{κM(τ̂i)}, i.e. a softmax weight with κ as
the temperature which can be tuned. This helps to avoid the sharp discontinuities of the best CATE
estimator selected using any surrogate metric as we select an ensemble of CATE estimators.

Realistic benchmarks. While the surrogate metrics themselves do not require counterfactual data,
the same would be needed for the ideal PEHE score(E.q. 5) to judge the quality of the best CATE
estimators returned by any metric. Hence, the prior works have experimented only with synthetic
datasets where counterfactuals are known. We overcome this issue by using RealCause (Neal
et al., 2020), which closely models the distribution of real datasets using state-of-the-art genera-
tive modeling techniques such as normalizing flows (Huang et al., 2018) and verifies its closeness
to the original datasets using a variety of visualizations and statistical tests. They model the se-
lection mechanism (P(W |X)) and the output mechanism (P(Y |W,X)) using generative models
(Pmodel(W |X), Pmodel(Y |W,X)), where the covariates X are sampled from the observed real-
istic dataset. This gives us access to the interventional distributions (Pmodel(Y |do(W = 0), X),
Pmodel(Y |do(W = 1), X)), hence we can sample both potential outcomes in realistic datasets.

4 NOVEL SURROGATE CRITERIA FOR CATE MODEL SELECTION

We also propose a variety of new metrics that are based on blending ideas from other strands of the
literature and which have not been examined in prior works. The primary reason for including these
new metrics was to have a more comprehensive evaluation, not necessarily to beat the prior metrics.

4.1 ADAPTIVE PROPENSITY CLIPPING METRICS

Consider the DR Score where the pseduo-outcomes depend upon the inverse of the propensity func-
tion (π̌(x)). Hence, if some samples have an extremely small propensity for the observed treatment,
then their pseudo-outcome estimates might be biased. Therefore, we introduce propensity clipping
techniques from the policy learning and evaluation literature (Wang et al., 2017; Thomas & Brun-
skill, 2016; Su et al., 2019) for surrogate metrics that depend on the propensity function. We start
with clipping the propensity estimate in the range [ϵ, 1 − ϵ], π̃(xi) = max {ϵ,min {1− ϵ, π̌(xi)}}.
Then we can create a variant that uses the adaptive approach of switching to approximate τ̃ as fol-
lows:

τ̃DR-Switch =

{
τ̃DR if ϵ ≤ π̌w(x)

τ̃S/T if π̌w(x) < ϵ
(DR Switch)

This metric is the same as the DR Score for samples that do not have an extremely small propensity
of the observed treatment, otherwise, it uses another surrogate metric like S/T Score that doesn’t
depend on propensity function for reliable estimates of τ̃(x).

Another idea in policy learning is blending (Thomas & Brunskill, 2016), where we consider a convex
combination of the DR pseudo-outcome and the potential-outcome based estimate, i.e. τ̃Blend

i =

ατ̃ IPW
i + (1 − α)τ̃

S/T
i , where α is some constant. A successor to blending is Continuous Adaptive

Blending (CAB) (Su et al., 2019), which makes α adaptive to the propensity of the sample and
combines it with switching ideas. We present here an adaptation of CAB for CATE estimation:

τ̃DR-CAB =

{
τ̃DR if ϵ ≤ π̌w(x)
π̌w(x)

ϵ τ̃DR +
(
1− π̌w(x)

ϵ

)
τ̃S/T if π̌w(x) < ϵ

(DR CAB)

2Recent prior work of Han & Wu (2022) also considers a variant of causal ensembling using a particular
loss and based on convex regression.
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4.2 TARGETED LEARNING

An alternative to alleviate extreme propensities is instead to learn how much inverse propensity
correction we need to add. This is roughly the idea in targeted learning, which has been explored for
average treatment effect (ATE) estimation, but we are not aware of any prior application for CATE
estimation. We describe the S-Learner variant of TMLE, but the same can be done with a T-Learner.
We learn a conditional linear predictor of the residual outcome (Y − µ̌(X,W )) in a boosting manner
from the inverse propensity ǎ(X,W ) := W−π̌(X)

π̌(X) (1−π̌(X)) .

ϵ̌ := argmin
f∈F

1

N

N∑
i=1

(yi − µ̌(xi, wi)− ϵ(xi) ǎ(xi, wi))
2

The above corresponds to a weighted regression problem with weights ǎ(xi, wi)
2 and labels

(yi − µ̌(xi, wi))/ǎ(xi, wi). In our implementation, we used a causal forest approach to solve this
regression problem, viewing Y − µ̌(X,W ) as the outcome, ǎ(X,W ) as the treatment, and ϵ(X) as
the heterogeneous effect. Then we add the correction term to obtain the updated regression model
µ̌TMLE(X,W ) := µ̌(X,W ) + ϵ̌(X) ǎ(X,W ) and define the corresponding metric:

MTMLE(τ̂) =
1

N

N∑
i=1

(τ̂(xi)− τ̃TMLE(xi))
2

τ̃TMLE =µ̌TMLE(x, 1)− µ̌TMLE(x, 0) (TMLE Score)

4.3 CALIBRATION SCORES

Calibration scores do not plug-in a proxy for the true τ(x), rather they check for consistency of
the CATE predictions (τ̂(x)) within quantiles on the validation set. We split the CATE predictions
(τ̂(x)) into K percentiles (bottom 25%, next 25% etc.), and within each group Gk(τ̂) calculate the
out-of-sample group ATE using DR pseudo-outcomes (E.q. 3) and also using the CATE predictions.

GATEDR
k (τ̂) =

1

|Gk(τ̂)|
∑

i∈Gk(τ̂)

τ̃DR(xi) ĜATEk(τ̂) :=
1

|Gk(τ̂)|
∑

i∈Gk(τ̂)

τ̂(xi).

Viewing GATEDR
k (τ̂) as the unbiased estimate of group ATE, we measure its weighted absolute

discrepancy from the estimate of group ATE computed via input CATE predictions (ĜATEk(τ̂)).

MCal-DR(τ̂) :=

K∑
k=1

∣∣Gk(τ̂)
∣∣ ∣∣∣ĜATEk(τ̂)− GATEDR

k (τ̂)
∣∣∣ (Cal DR Score)

The calibration score has been studied or RCTs in Dwivedi et al. (2020) and its variants in (Cher-
nozhukov et al., 2018; Athey & Wager, 2019); we adapted it to be used for CATE model selection.

4.4 QINI SCORES

The Qini score is based on the uplift modeling literature (Surry & Radcliffe, 2011) and measures the
benefit with the policy of assigning treatment based on the top-k percentile of input CATE estimates
as opposed to the policy of assigning treatments uniformly at random. Let G≥k(τ̂) denote the group
with treatment effects in the top k-th percentile of the input CATE estimates. We can measure the
group ATE for it using DR pseudo-outcomes (E.q. 3), GATEDR

≥k(τ̂) :=
1

|G≥k(τ̂)|
∑

i∈G≥k
τ̃DR(xi).

The cumulative effect from this group should be much better than treating the same population
uniformly at random, which can be approximated as ATEDR := 1

N

∑N
i=1 τ̃DR(xi). This yields the

following score (higher is better):

MQini-DR(τ̂) :=

100∑
k=1

∣∣G≥k(τ̂)
∣∣ (GATEDR

≥k(τ̂)− ATEDR
)

(Qini DR Score)
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5 EMPIRICAL ANALYSIS

We now present our findings from the extensive benchmarking study of 34 metrics for selecting
amongst a total of 415 CATE estimators across 78 datasets over 20 random seeds for each dataset.

5.1 EXPERIMENT SETUP

We work with the ACIC 2016 (Dorie et al., 2019) benchmark, where we discard datasets that have
variance in true CATE lower than 0.01 to ensure heterogeneity; which leaves us with 75 datasets
from the ACIC 2016 competition. Further, we incorporate three realistic datasets, LaLonde PSID,
LaLonde CPS (LaLonde, 1986), and Twins (Louizos et al., 2017), using RealCause. For each
dataset, the CATE estimator population comprises 7 different types of meta-learners, where the
nuisance models (η̂) are learned using AutoML (Wang et al., 2021). For the CATE predictor (f̂ ) in
direct meta-learners, we allow for multiple choices with variation across the regression model class
and hyperparameters, resulting in a diverse collection of estimators for each direct meta-learner.
Even the most recent benchmarking study by Curth & van der Schaar (2023) did not consider a
large range of hyperparameters for direct meta-learners, while me make the task of model selection
more challenging with a larger grid of hyperparameters. For the set of surrogate metrics, we in-
corporate all the metrics used in the prior works and go beyond to consider various modifications
of them, along with the novel metrics described in Section 4. As stated before in Section 3, we
use AutoML for selecting the nuisance models (η̌) of surrogate metrics on the validation set. More
details regarding the experiment setup can be found in Appendix C.

5.2 RESULTS

Following the discussion in Section 3, we compute PEHE of the best estimators selected by a sur-
rogate metric to judge its performance, PEHE(E∗

M )= 1
|E∗

M | ∗
∑

e∈E∗
M
L(τ̂e). Since the scale of the

true CATE can vary a lot across datasets, we compute a normalized version where we take the %
difference of the PEHE of the best estimators chosen by each metric (E∗

M ) from the PEHE of the
overall best estimator (E†), Normalized-PEHE(M )= [ PEHE(E∗

M ) - PEHE(E†) ] / PEHE(E†).
For each dataset, we report the mean (standard error) Normalized-PEHE over 20 random seeds.
Since we have multiple datasets under the ACIC 2016 benchmark, we first compute the mean per-
formance across them and then compute the mean and standard error across the random seeds. For
each dataset group, we bold the dominating metrics using the following rule; A metric M is said to
be a dominating metric if the confidence interval of the performance of metric M either overlaps or
lies strictly below the confidence interval of the performance of any other metric M̃ ̸= M .

5.2.1 SINGLE-LEVEL MODEL SELECTION STRATEGY

We first provide results with the single-level model selection strategy for a selected list of metrics in
Table 1. Results with the complete list of surrogate metrics can be found in Table 7 in Appendix D.

Doubly Robust and TMLE variants as globally dominating metrics. Across all the datasets,
DR T Score (and its variants) and TMLE T score are optimal as compared to the other metrics. They
produce even better results than Calibration and Qini based scores. Further, the improvements due to
adaptive propensity clipping techniques (Switch, CAB) over the basic DR score are not significant.

Plug-in surrogate metrics are globally optimal. It is interesting to observe that plug-in metrics
like T/X Score are rarely dominated by other metrics! This highlights the importance of learning
nuisance models with AutoML, as it enhances the model selection ability due to lower bias in the
estimated nuisance parameters. Since the prior works did not search over a large grid for learning
nuisance models, that could explain why the plug-in metrics were sub-optimal in their results.

Superior performance of T-Learner based metrics. In Table 2 we compare the metrics that have
the choice of estimating the potential outcomes (µ̂0, µ̂1) using either S-Learner or T-Learner. We
find that metrics with the T-Learner strategy are better than those with S-Learner strategy in all
the cases, which further highlights that choice of nuisance models is critical to the performance of
surrogate metrics.
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Metric ACIC 2016 LaLonde CPS LaLonde PSID TWINS

Value Score 1.05e+7 (4.31e+6) 6.63 (5.52) 0.48 (0.06) 0.57 (0.15)

Value DR Score 13.02 (11.73) 2.33 (1.41) 0.46 (0.05) 1.61 (1.02)

Match Score 3.60 (0.16) 0.23 (0.04) 0.50 (0.06) 0.38 (0.08)

S Score 0.95 (0.02) 0.90 (0.04) 0.74 (0.04) 0.29 (0.05)

T Score 0.56 (0.02) 0.16 (0.03) 0.42 (0.03) 0.31 (0.05)

X Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.35 (0.06)

R Score 4.0 (0.11) 0.83 (0.04) 0.67 (0.03) 0.60 (0.11)

Influence Score 1455.75 (1439.46) 0.95 (0.04) 0.80 (0.02) 1.08 (0.1)

IPW Score 3.21 (0.12) 0.25 (0.05) 0.32 (0.02) 0.37 (0.06)

DR T Score 0.56 (0.02) 0.16 (0.02) 0.41 (0.03) 0.32 (0.07)

DR Switch T Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.28 (0.05)

DR CAB T Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.33 ( 0.06 )

TMLE T Score 0.64 (0.03) 0.16 (0.03) 0.42 (0.03) 0.31 (0.05)

Cal DR T Score 3.45 (0.11) 0.17 (0.03) 0.42 (0.03) 0.21 (0.03)

Qini DR T Score 1.32 (0.07) 2.87 (1.53) 0.57 (0.05) 2.08e+7 (1.90e+7)

Table 1: Normalized PEHE of the best estimators chosen by each metric with the single-level
model selection strategy; results report the mean (standard error) across 20 seeds and also across
datasets for the ACIC 2016 benchmark. Lower value is better.

Metric ACIC 2016 LaLonde CPS LaLonde PSID TWINS
S Score 0.95 (0.02) 0.90 (0.04) 0.74 (0.04) 0.29 (0.05)
T Score 0.56 (0.02) 0.16 (0.03) 0.42 (0.03) 0.31 (0.05)

DR S Score 0.93 (0.02) 0.85 (0.05) 0.73 (0.04) 0.35 (0.06)
DR T Score 0.56 (0.02) 0.16 (0.02) 0.41 (0.03) 0.32 (0.07)

TMLE S Score 1.06 (0.04) 0.91 (0.04) 0.74 (0.04) 0.26 (0.05)
TMLE T Score 0.64 (0.03) 0.16 (0.03) 0.42 (0.03) 0.31 (0.05)

Cal DR S Score 5.78 (0.19) 0.87 (0.05) 0.72 (0.04) 0.19 (0.03)
Cal DR T Score 3.45 (0.11) 0.17 (0.03) 0.42 (0.03) 0.21 (0.03)

Table 2: Comparing the S-Learner vs T-Learner based metrics. Each cell represents the Normalized
PEHE of the best estimators with the single-level strategy; results report the mean (standard error)
across 20 seeds and also across datasets for the ACIC 2016 benchmark. Lower value is better.

5.2.2 TWO-LEVEL MODEL SELECTION STRATEGY

We now provide results with the two-level model selection strategy for a selected list of metrics in
Table 3. Results with the complete list of metrics can be found in Table 8 in Appendix D.

Better performance than single-level strategy. We find that the two-level selection strategy per-
forms much better as compared to the single-level selection strategy, and we find better performance
in approximately 28.7% cases over all datasets and metrics; with statistically indistinguishable per-
formance for the other cases. Since in no scenario it happens that this strategy gets dominated by
the single-level selection strategy, we recommend this as a good practice for CATE model selection.

In fact, Qini DR score ended up as a dominating metric for almost all of the datasets with the two-
level strategy, while it was among the worst metrics with the single-level strategy for the TWINS
dataset. Also, the Value DR score ends up as a globally dominating metric with this strategy, which
is a big improvement in contrast to its performance before. Further, the major conclusions from

8



Published as a conference paper at ICLR 2024

Metric ACIC 2016 LaLonde CPS LaLonde PSID TWINS

Value Score 3.97 (1.98) 0.34 (0.09) 0.43 (0.03) 0.21 (0.03)

Value DR Score 0.64 (0.03) 0.25 (0.08) 0.47 (0.04) 0.21 (0.03)

Match Score 1.76 (0.09) 0.17 (0.03) 0.45 (0.03) 0.21 (0.03)

S Score 0.93 (0.02) 0.90 (0.04) 0.75 (0.04) 0.21 (0.03)

T Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.21 (0.03)

X Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.21 (0.03)

R Score 3.88 (0.11) 0.86 (0.03) 0.62 (0.03) 0.21 (0.03)

Influence Score 3.26 (0.1) 0.93 (0.04) 0.77 (0.03) 0.16 (0.02)

IPW Score 1.41 (0.06) 0.16 (0.04) 0.38 (0.02) 0.21 (0.03)

DR T Score 0.56 (0.02) 0.16 (0.02) 0.41 (0.03) 0.21 (0.03)

DR Switch T Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.21 (0.03)

DR CAB T Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.21 (0.03)

TMLE T Score 0.61 (0.03) 0.16 (0.03) 0.42 (0.03) 0.21 (0.03)

Cal DR T Score 0.62 (0.02) 0.19 (0.04) 0.42 (0.03) 0.22 (0.03)

Qini DR T Score 0.58 (0.02) 0.14 (0.03) 0.52 (0.03) 0.24 (0.04)

Table 3: Normalized PEHE of the best estimators chosen by each metric with the two-level model
selection strategy; results report the mean (standard error) across 20 seeds and also across datasets
for the ACIC 2016 benchmark. Lower value is better.

before regarding the dominance of DR/TMLE and the plug-in T/X metrics are still valid with the
two-level strategy, along with the superior performance of T-Learner over S-Learner based metrics.

Hence, a two-level selection strategy can lead to significant benefits, and designing better methods
towards the same can be a fruitful direction. Note the proposed choice of using meta-learner based
metric (MJ(τ̂)) to select amongst all meta-estimators of type J is not guaranteed to be optimal, and
we chose it to mimic the inductive bias of meta-learner J . In Appendix D, Tables 10 to 13 provide
results for selecting amongst only a particular class of meta-learners using any surrogate metric, and
we can see that in some cases the optimal choice is not MJ(τ̂). E.g., in Table 13, the S Score is not
always optimal for selecting amongst estimators of type Projected S-Learner.

Enhanced performance with causal ensembling. Since we are still selecting the best meta-
learner with the two-level strategy in Table 3, we now consider selecting an ensemble of meta-
learners with the two-level strategy and provide its results in Table 9 (Appendix D). We find that
ensembling is statistically better than non-ensembling on ≈ 5.8% of the experiments (across all
datasets and metrics), and otherwise has statistically indistinguishable performance.

6 CONCLUSION

Our work shows the importance of consistent evaluation across a wide range of datasets for surrogate
model selection metrics, which leads to more detailed trends as opposed to prior works. With well-
tuned nuisance models via AutoML, we show that even plug-in surrogate metrics (T Score) can be
competitive for model selection. Further, we present novel strategies of two-level model selection
and causal ensembling, which can be adopted to enhance the performance of any surrogate metric.
Among all the metrics, the DR/TMLE based variants always seem to be among the dominating
metrics, hence if one were to use a global rule, such metrics are to be preferred. However, we
believe that a more contextual metric is the right avenue and has great potential for future research.
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Appendix
LIST OF CONTENTS

The content in the Appendix has been organized as follows.

• Appendix A provides a review of the meta-learners CATE estimation.
• Appendix B provides a review of the surrogate metrics for CATE models selection.
• Appendix C provides the implementation details of our empirical study.

– Figure 1: Overview of the proposed framework for comparing the different surrogate
model selection strategies

– Figure 2: Illustrating the construction of indirect and direct meta-learners used in our
empirical study.

– Figure 3: Illustrating the use of AutoML in selecting the nuisance parameters of sur-
rogate metrics for CATE model selection.

• Appendix D provides the additional results from our empirical study.
– Table 7: Results for single-level model selection strategy.
– Table 8: Results for two-level model selection strategy.
– Table 9: Results for ensemble selection with two-level selection strategy
– Table 10: Results for model selection amongst only DR-Learners.
– Table 11: Results for model selection amongst only DML-Learners.
– Table 12: Results for model selection amongst only X-Learners.
– Table 13: Results for model selection amongst only Projected S-Learners.
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A REVIEW OF CATE ESTIMATION

A.1 IDENTIFICATION OF CATE

The objective of CATE by definition relies on interventional data, which implies we cannot estimate
this using only observational data.

CATE: τ(x) = E[Y (1)− Y (0)|X = x] = µ1(x)− µ0(x).

However, we can make the ignorability assumptions (Peters et al., 2017) which enables us to identify
the expected potential outcomes from observational data (E[Y (t)|X = x] = E[Y |W = t,X = x]),
hence identify CATE from observational data.

The ignorability assumption consists of the following three assumptions:

• Consistency: It implies that the outcome we observe reflects the true potential outcome
under the observed treatment, Y = W · Y (1) + (1−W ) · Y (0).

• Exchangeability: It implies that we do not have any unobserved confounders,
Y (0), Y (1) ⊥⊥ W | X . Unobserved confounders would lead to open backdoor paths
between Y(0), Y(1) and W, hence we would not have conditional independence.

• Overlap: It implies that the treatment assignment for each sample is probabilistic, 0 <
π(x) < 1 ∀x ∈ X . Therefore, each sample has a non-trivial chance of being assigned to
either group (W = 0 or W = 1).

A.2 META-LEARNERS FOR CATE ESTIMATION

We consider only meta-learners for CATE estimation as they reduce CATE estimation to a series
of (weighted) regression and classification problems, which makes it easy to apply out-of-the-box
machine learning techniques to solve each sub-problem. Such approaches have been extensively
studied in the literature and are heavily used in industry practice. Following (Curth & Van der
Schaar, 2021), we divide the meta-learners into two categories, indirect and direct meta-learners.

Indirect Meta-Learners. The main learning objective of these estimators is to accurately model
the potential outcomes (µ̂0, µ̂1) using the observational data and then we can obtain CATE estimate
indirectly as the difference in the learned potential outcomes.

The T-Learner approach approximates the potential outcome E[Y |W = 0, X = x] as µ̂0 by
regressing Y on X using samples from the un-treated population {x, y}w=0, and E[Y |W = 1, X =
x] as µ̂1 by regressing Y on X using samples {x, y}w=1 from the treated population.

τ̂T (x) = µ̂1(x)− µ̂0(x) (7)

While the S-Leaner approach learns a single regression model µ̂(x,w), regressing Y jointly on the
features X and the treatment assignments W from observational data {x,w, y}.

τ̂S(x) = µ̂(x, 1)− µ̂(x, 0) (8)

If the nuisances models (µ̂0(x), µ̂1(x), µ̂(x,w)) are universal function approximators, then S-
Learner and T-Leaner would offer unbiased estimates of CATE. However, there will be statistical
errors in practice due to the nuisance model class not capturing the true potential outcome. This
will be amplified more as compared to standard regression tasks as we also do model-extrapolation
while computing CATE, i.e. use µ̂w(x) to make predictions for data points with the same features
as observed data points but different treatment assignment (Kennedy, 2020).

Direct Meta-Learners. Direct meta-learners also learn the nuisance parameters (µ̂, π̂) from ob-
servational data but then learn a regression function to directly predict CATE. For example, we can
transform the indirect S-Learner described above into a direct meta-learner, known as the Projected
S-Learner (Battocchi et al., 2019), which learns a final projection step by regressing the difference
in the estimated potential outcomes µ̂(x, 1)− µ̂(x, 0) on the covariates.
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τ̂PS = argmin
f∈F

∑
{x,w,y}

(µ̂(x, 1)− µ̂(x, 0)− f(x))
2 (9)

This introduces an extra regularization step which could avoid potential overfitting, especially if we
have some prior belief on the functional form or the smoothness of the CATE function.

Another example is the the X-Learner (Künzel et al., 2019) approach, which first trains the nui-
sance models (µ̂0(x), µ̂1(x)) as in the T-Learner approach. But rather than using the difference in
estimated potential outcomes to predict CATE, we model the CATE directly for the control and the
treatment group using regression models (f0

θ , f
1
θ ) as follows.

τ̂0 = argmin
f∈F

∑
i,wi=0

(µ̂1(xi)− yi − f(xi))
2

τ̂1 = argmin
f∈F

∑
i,wi=1

(yi − µ̂0(xi)− f(xi))
2

(10)

The first approach imputes treatment counterfactuals for each control sample and views (µ̂1(x)− y)
as a proxy for the individual treatment effect. Then learn the CATE predictor by regressing that
on covariates x. The second approach takes the analogous approach using the treated population.
Finally, we use the learned propensity model π̂(x) to combine the CATE predictions from both
groups:

τ̂X(x) = π̂(x) τ̂0(x) + (1− π̂(x)) τ̂1(x) (11)

The intuition behind the weighting is that the estimate τ̂0 relies on the function µ̂1, which performs
well in regions of X where we have many treated units (i.e. when π(x) is large). Similarly, the
estimate τ̂1 relies on µ̂0 which performs well in regions where we have many controls units.

We now discuss in detail the widely used direct meta-learners; doubly robust and double machine
learning techniques for CATE estimation.

Doubly Robust Learner (DR-Learner) To avoid the heavy dependence on the potential out-
come regression functions with indirect meta-learners, recent works have proposed generalizations
of the doubly robust estimator (traditionally used for ATE inference), for CATE estimation (Foster
& Syrgkanis, 2019; Kennedy, 2020). The DR learner is a mixture of the S-learner with an inverse
propensity (IPW) based approach. First, we state the vanilla inverse propensity based learner and
then the DR leaner The inverse propensity weighted (IPW) estimator, uses the learned propensity
model (π̂w(x)) to compute the IPW pseudo-outcome as follows:

yIPW(η̂) = yIPW
1 (η̂)− yIPW

0 (η̂) where yIPW
w (η̂) =

y

π̂w(x)
(12)

It can be shown that under the true propensity model, we have the following (Peters et al., 2017):

E[Y IPW
w (η)|X] = E[Y (w)|X]

Hence, Y IPW
w (η̂) gives an unbiased estimate of the potential outcome Y (t) and the pseudo-outcome

Y IPW(η̂) = Y IPW
1 (η̂)− Y IPW

0 (η̂) can be used to approximate the CATE. Therefore, we can learn the
CATE predictor (f̂IPW) by regressing the IPW pseudo outcomes on the covariates.

τ̂IPW := argmin
f∈F

∑
{x,y,w}

(
yIPW
w (η̂)− f(x)

)2
(13)

Unlike the S-Learner, the IPW-Learner does not depend on any potential outcome regression model
but heavily relies on the learned propensity model π̂w. Further, there are numerical stability issues
if the true probability of a certain treatment is low, as then we are dividing by very small numbers.
Hence, the IPW-Learner can have very high variance, which can be overcome by doubly robust
learning (Foster & Syrgkanis, 2019; Kennedy, 2020). It can be interpreted as a hybrid approach,
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where it first directly approximates the potential outcomes (µ̂(x,w)) like S-Learner, and then it
debiases the estimate using the IPW based approach on the residual (y− µ̂(x,w)), as shown below:

yDR(η̂) = yDR
1 (η̂)− yDR

0 (η̂) where yDR
w (η̂) = µ̂(x,w) +

y − µ̂(x,w)

π̂w(x)
(14)

Finally, we learn the CATE predictor (f̂DR) that maps the covariates to the DR pseudo-outcomes:

τ̂DR := argmin
f∈F

∑
{x,w,y}

(
yDR(η̂)− f(x)

)2
(15)

Double Machine Learning (R-Learner) The Dobule ML approach to CATE estimation (Cher-
nozhukov et al., 2016; Nie & Wager, 2021), also known in the literature as the R-Learner (Nie &
Wager, 2021), solves the CATE estimation task by learning the following nuisance models (π̂, q̂),
where π̂ is an estimate of the true propensity model, and q̂ is an estimate of E[Y |X], i.e, predicting
potential outcomes only from the covariates. Then it computes the residuals from both the potential
outcome prediction task (ỹ := y− µ̂(x)) and the treatment assignment task (w̃ := w− π̂(x)). In the
final step it learns the CATE predictor (f̂DML) by minimizing the following loss function:

τ̂DML := argmin
f∈F

∑
{x,y,w}

(ỹ − f(x) · w̃)2 = argmin
f∈F

∑
{x,y,w}

w̃2 (ỹ/w̃ − f(x))
2 (16)

This can be viewed as a weighted regression problem with weights w̃2
i and labels ỹi/w̃i. This

learning objective can be justified by simply observing that for a binary treatment, we have:

E[Y | X,W ] = τ(X) ·W ⇒ E[Y − E[Y | X] | X,W ] = T (X) · (W − E[W | X])

Therefore, the R-Learner loss is the square loss that corresponds to the latter regression equation.
The R-Learner has been shown to enjoy theoretical robustness properties similar to the DR learner
(i.e. that the impact of errors in the nuisance models π̂, µ̂) on the final estimate is alleviated, albeit
for the R-Learner the accuracy of the propensity is more important and the method is not consistent
if the propensity model is not consistent (while the DR-Learner would be if the regression model
was consistent but the propensity model was inconsistent). Moreover, if the model space F does not
contain the true CATE model τ , then the outcome of the DR Learner can be interpreted asymptoti-
cally as a projection of τ on the model space, with respect to the L2 norm, while the outcome of the
R-Learner is a weighted projection, weighted by the variance of the treatment; hence approximating
the true τ more accurately in regions where the treatment is more random.
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B REVIEW OF CATE MODEL SELECTION SURROGATE METRICS

Surrogate PEHE metrics. Majority of the surrogate metrics for CATE model selection that we
consider in our analysis learn an approximation of the ground truth CATE as τ̃(x) and then compute
the PEHE (E.q. 5), i.e, mean squared loss of the input CATE estimator’s prediction (τ̂(x)) from τ̃(x)
on the validation set.

M(τ̂) =
1

N

N∑
i=1

(τ̂(xi)− τ̃(xi))
2 (17)

Since the approximate true CATE (τ̃(x)) is, in general, a function of nuisance parameters as well, to
differentiate the nuisance parameters of the surrogate metrics (M ) as compared to those associated
with the CATE estimators (E), we represent the nuisance models of the metrics with downward hats
(µ̌, π̌), while nuisance models of the estimators have upward hats (µ̂, π̂). Note that the nuisance
models associated with the surrogate metrics are trained only on the validation set and we do not
assume any access to training data in this stage. These metrics are broadly classified into two
categories, plug-in surrogate and pseudo-outcome surrogate metrics, as discussed below.

Plug-in surrogate metrics. The plug-in surrogate metrics learn τ̃(x) in an analogous way to meta-
learners and use it to score the input CATE estimate (τ̂(x)). For example, we can construct the
plug-in metrics based on the indirect meta-learner strategies as follows, which were also used as
baselines by Alaa & Van Der Schaar (2019).

MS(τ̂) :=
1

N

N∑
i=1

(τ̂(xi)− τ̃S(xi))
2

τ̃S(x) := µ̌(x, 1)− µ̌(x, 0) (S Score)

MT (τ̂) :=
1

N

N∑
i=1

(τ̂(xi)− τ̃T (xi))
2

τ̃T (x) := µ̌1(x)− µ̌0(x) (T Score)

Another plug-in surrogate metric we consider is the matching score, which estimates τ̃(x) using the
matching method (Rolling & Yang, 2013), for each point xi, find its nearest neighbour from the
opposite treatment group, ĩ = argminj|wj ̸=wi

∥xj − xi∥2, then define τ̃i = yi − yĩ.

MMatch(τ̂) :=
1

N

N∑
i=1

(τ̂(xi)− τ̃Match(xi))
2 τ̃Match(xi) := y − yĩ (Matching Score)

Note that in general, we could use direct meta-learners as well for estimating τ̃(x) in plug-in metrics,
however, we do not consider them as they are more susceptible to congeniality bias (Curth & van der
Schaar, 2023). For surrogate metrics based on direct meta-learner strategies, we only consider the
pseudo-outcome variant as described ahead.

Pseudo-outcome surrogate metrics. These surrogate metrics approximate τ̃(x) using pseduo-
outcomes Y (η̌) such that under the assumption of true nuisance parameters, we have E[Yη|X] =
τ(x), hence justifying their choice for approximating the ground truth CATE.

For example, we can construct the pseudo-outcome metrics using IPW (E.q. 12) and DR pseudo-
outcome (E.q. 14), which was first proposed for model selection by Saito & Yasui (2020).

M IPW(τ̂) :=
1

N

N∑
i=1

(τ̂(xi)− τ̃IPW(xi))
2

τ̃IPW := yIPW(η̌) (IPW Score)

MDR(τ̂) :=
1

N

N∑
i=1

(τ̂(xi)− τ̃DR(xi))
2

τ̃DR := yDR(η̌) (DR Score)

Since we use the S-Learner strategy to obtain the nuisance models for computing the DR pseudo
outcomes, we will refer to it as DR S Score. If instead we used the T-Learner strategy (µ̌0, µ̌1) for
computing DR pseudo outcomes, yDR

w (η̌) = µ̌w(x) +
y−µ̌w(x)
π̌w(x) , we will refer to it as DR T Score.

17



Published as a conference paper at ICLR 2024

Further, we define propensity clipped versions of metrics that depend on the propensity function.
We update the propensity function with the clipped propensity estimates in the range [ϵ, 1− ϵ]:

π̃(xi) = max {ϵ,min {1− ϵ, π̌(xi)}} (18)

Whenever such propensity clipping is introduced in the score, we will annotate it with the extra
keyword “Clip” (e.g. IPW Clip Score, DR Clip T Score, etc.).

We also consider R-Score (Nie & Wager, 2021) that uses Double Machine Learning (DML) to ap-
proximate τ̃(x), which was found to be the best performing surrogate metric in the evaluation study
of Schuler et al. (2018). Using the approximation of τ̃(X) via the DML method, we know that τ̃(X)
would be the solution to the regression problem (E.q. 16). Hence, to compute the deviation of the
input CATE estimator’s prediction τ̂(x) from τ̃(x), we substitute τ̂(x) in the DML regression prob-
lem (equation 16), as shown below, where π̌(xi) is the probability of xi belonging to the treatment
class w = 1, i.e., the propensity.

MR(τ̂) :=
1

N

N∑
i=1

(
(yi − µ̌(xi))− τ̂(xi) (wi − π̌(xi))

)2
(R-Score)

The Influence Score proposed by Alaa & Van Der Schaar (2019) also falls in the category of
pseudo-outcome surrogate metrics. To compute the influence score, we first compute a plug-in sur-
rogate metric using T-Learner (E.q. T Score) and then debias it using influence functions. Following
Theorem 2 in their work, the correction term is defined as follows:

IF-Correction(τ̂ , τ̃) =(1−B)(τ̃(X))2 +BY (τ̃(X)− τ̂(X))− (A+ 1)L̃(τ̂) + (τ̂(X))2

where A = W − π̌(X), B = 2W AC−1, and C = π̌(X) (1 − π̌(X)) This is summarized in the
equation below, where we add influence correction to the plug-in surrogate metric.

M IF(τ̂) :=
1

N

N∑
i=1

[
(τ̂(xi)− (µ̌1(xi)− µ̌0(xi)))

2
]
+ IF-Correction(τ̂ , τ̃) (Influence Score)

Finally, we also propose the X-Score that computes pseudo-outcomes based on the X-Leaner
methodology (E.q. 11). Following the learning objective of CATE predictors per group (E.q. 10),
the potential outcomes associated with each group are given as follows:

τ̃0(x) = µ̌1(x)− y τ̃1(x) = y − µ̌0(x)

These are combined using the propensity model (π̌(x)) to construct the final potential outcome based
approximation of the true CATE as τ̃(x) = π̌(x)τ̃0(x) + (1− π̌(x)) τ̃1(x)

MX(τ̂) :=
1

N

N∑
i=1

(τ̂(xi)− τ̃X(xi))
2

τ̃X(x) := π̌(x)τ̃0(x) + (1− π̌(x)) τ̃1(x) (X Score)

Utility of treatment policy based metrics. As opposed to approximating the true CATE, we also
consider the surrogate metrics based on the estimates of the value of an optimal policy designed via
the input estimator’s CATE prediction (τ̂(x)). We derive the optimal treatment policy corresponding
to the input CATE estimator as d̂(x) := 1(τ̂(x) > 0) (assuming larger potential outcome is better).
Then, one such metric, value score (Zhao et al., 2017), constructs an IPW (Equation 12) based
estimates of the policy value:

M value(τ̂) :=
1

N

N∑
i=1

yi
π̌wi

(xi)
· 1(wi = d̂(xi))) (Value Score)

An issue with the Value Score is that it only utilizes a portion of the data where the decision policy
and the observed treatment agree. This is handled in the value DR score (Athey & Wager, 2017),
where we use the DR pseudo-outcomes (Equation 14), to estimate the policy value:

M value-DR(τ̂) :=
1

N

N∑
i=1

d̂(xi) · yDR
wi

(η̌) (Value DR Score)
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Proposed surrogate metrics. In Section 4 we introduced novel surrogate metrics based on ideas
from related areas like policy learning, uplift modeling, etc. The primary reason for including these
new metrics was to have a more comprehensive evaluation and include more good candidates for
model selection, not necessarily to beat the prior metrics. The ideas of switching, blending, etc.
have been well-studied and extensively used in the policy learning literature, but their application in
the context of CATE estimation/ model selection has not been shown. Similarly, targeted learning
has been used for learning ATE estimators but it remains unexplored for CATE model selection.

The motivation for adaptive propensity clipping and targeted learning metrics is the extreme propen-
sity regime, where the metrics that depend on inverse propensity scores (IPW, DR) can become bi-
ased. Hence, these proposed metrics can handle the extreme propensity region (very small propen-
sity for the observed treatment) by using estimates from the regression-based learners (S/T Learner)
as in DR Switch, DR CAB, or adding the inverse propensity correction as in TMLE Score. Since
we only described the adaptive propensity clipped variants of DR-Score in the main text, we now
provide the same for the IPW-Score for convenience.

τ̃IPW-Switch =

{
τ̃IPW if ϵ ≤ π̌w(x)

τ̃S/T if π̌w(x) < ϵ
(IPW Switch)

τ̃IPW-CAB =

{
τ̃IPW if ϵ ≤ π̌w(x)
π̌w(x)

ϵ τ̃IPW +
(
1− π̌w(x)

ϵ

)
τ̃S/T if π̌w(x) < ϵ

(IPW CAB)

For the Calibration score, the intuition is to match the group ATE across subgroups denoted by
the different percentiles of the CATE estimates. We compute the group ATE using DR/TMLE
which is viewed as an unbiased sample of the group ATE. Subsequently, we compute the weighted
absolute error of the group ATE computed using the input CATE estimates against the unbiased
group ATE. For the Qini score, rather than computing the group ATE with the input CATE estimates
as in Calibration, here we compare the improvement with unbiased group ATE estimates (computed
using DR/TMLE) versus the uniform sampling estimate. Intuitively, if there is heterogeneity in the
data, then we should expect the policy of uniformly treating an individual to be worse as compared
to the policy that assigns treatment to the top-k percentile of the input CATE estimates. Hence, the
Qini score is qualitatively different than most of the other metrics as it does not directly compare
the CATE estimates, rather it evaluates whether the groups most likely to be treated would actually
benefit from the treatment. Since we only described the case of unbiased group ATE estimates
computed using DR pseudo-outcomes (Cal DR Score, Qini DR Score), we now provide the same
for the case of TMLE for convenience.

MCal-TMLE(τ̂) :=

K∑
k=1

∣∣Gk(τ̂)
∣∣ ∣∣∣ĜATEk(τ̂)− GATETMLE

k (τ̂)
∣∣∣ (Cal TMLE Score)

MQini-TMLE(τ̂) :=

100∑
k=1

∣∣G≥k(τ̂)
∣∣ (GATETMLE

≥k (τ̂)− ATETMLE
)

(Qini TMLE Score)

where GATETMLE
k (τ̂) := 1

|Gk(τ̂)|
∑

i∈Gk
τ̃TMLE(xi), ĜATEk(τ̂) :=

1
|Gk(τ̂)|

∑
i∈Gk(τ̂)

τ̂(xi)

GATETMLE
≥k (τ̂) := 1

|G≥k(τ̂)|
∑

i∈G≥k
τ̃TMLE(xi), ATETMLE := 1

N

∑N
i=1 τ̃TMLE(xi)
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C EXPERIMENT SETUP DETAILS

Figure 1: The proposed framework for comparing the different surrogate model selection strategies
M(τ̂). We first perform intra-meta-learner selection using meta-learner based metrics, and then con-
struct an ensemble over the optimal meta-learners using the input surrogate metric M(τ̂). Further,
RealCause enables us to sample counterfactual data for realistic datases as well and benchmark the
performance of each surrogate metric M(τ̂) as the PEHE of the ensemble returned by it.

C.1 DATASET STATISTICS

Dataset Group ACIC 2016 LaLonde CPS LaLonde PSID TWINS
Training Data Size 3841 8089 1338 5992

Evaluation Data Size 961 6470 1069 4794

Covariate Dimension 82 8 8 75

Table 4: Statistics for the various datasets used in our analysis

Dataset LaLonde CPS LaLonde PSID TWINS
CATE (Mean) −10274.49 −57280.61 −0.02

CATE (Variance) 3.73e+ 07 5.92e+ 08 0.01

Treatment Class % (Train) 0.01 0.06 0.74

Treatment Class % (Eval) 0.01 0.06 0.75

Table 5: Extra statistics for the RealCause datasets used in our analysis. Train and Eval correspond
to the different splits of the dataset used for training and evaluating CATE estimators.

We provide details regarding the training and evaluation sample size, along with the covariate di-
mensions in Table 4. We also provide more details regarding the mean and variance of CATE as well
as the true propensity (fraction of samples in the treatment class) in Table 5 for the realistic datasets,
and the same for ACIC 2016 datasets in Table 6. Note that the ACIC 2016 synthetic benchmark con-
tains several datasets, where we had discarded datasets that have variance in true CATE lower than
0.01 to ensure heterogeneity; which leaves us with 75 datasets. Further, LaLonde CPS, LaLonde
PSID and TWINS are the realistic benchmarks that do not contain the counterfactual potential out-
comes for each individual. Hence, we used RealCause (Neal et al., 2020) to model the counterfactual
potential outcomes for these datasets, essentially making them semi-synthetic datasets.
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C.2 CATE ESTIMATORS IMPLEMENTATION DETAILS

Figure 2: Illustrating the construction of indirect and direct meta-learners used in our empirical
study. We use a large grid over different regression model classes and hyperparameters for choosing
the CATE predictor in direct meta-learners, resulting in 103 different CATE estimators per direct
meta-learner. This design choice is an improvement from prior works which consider only a few
choices for hyperparameters of direct meta-learners.

For each dataset, we consider 7 different type of meta-learners for CATE estimation, including both
indirect and direct meta-learners. For indirect meta-learners, we consider both the S-Learner and
T-Learner; while for direct meta-learners, we consider the Projected S-Learner, X-Learner, DR-
Learner, R-Learner, and Causal Forest Learner. Details regarding each of these meta-learners can
be found in Appendix A. Note that we do not consider deep learning based CATE estimators since
the scale of our study is already quite large. Also, the basic ML techniques with appropriate hyper-
parameter tuning should have good performance as well since we work with tabular datasets.

The nuisance models (η̂) associated with all these various meta-learners are learned using Au-
toML (Wang et al., 2021) with a budget of 30 minutes. Specifically, we have five different types
of nuisance models; propensity model (π̂(X)), outcome model used in S-Learner, Projected S-
Learner, DR-Learner (µ̂(X,W )), outcome models used in T-Learner, X-Learner (µ̂0(X), µ̂1(X)),
and outcome model for R-Learner, Causal Forest Learner (µ̂(X)); each learned using AutoML.

Further, for the CATE predictor (f̂ ) in direct meta-learners, we use a total of 103 different regression
models with variation across regression model class and associated hyperparameters, specified be-
low. We used sklearn for implementing all the regression models and we use the same notation from
sklearn for representing the regression model class and the corresponding hyperparameter names.
For representing the hyperparameter ranges, we use the numpy logspace function to sample from a
range (unless specified otherwise), with the syntax (start value, end value, total entries).

• Linear Regression; No Hyperparameter

• Linear Regression; Degree 2 polynomial features; No interaction terms; No Hypereparam-
eter

• Linear Regression; Degree 2 polynomial features; Interaction term; No Hyperparameter

• Ridge Regression; Hyperparameters (α): np.logspace(−4, 5, 10)

• Kernel Ridge Regression; Hyperparameters (α): np.logspace(−4, 5, 10)

• Lasso Regression; Hyperparameters (α): np.logspace(−4, 5, 10)

• Elastic Net Regression; Hyperparameters (α): np.logspace(−4, 5, 10)

• SVR; Sigmoid Kernel; Hyperparameters (C): np.logspace(−4, 5, 10)

• SVR; RBF Kernel; Hyperparameters (C): np.logspace(−4, 5, 10)

• Linear SVR; Hyperparameters (C): np.logspace(−4, 5, 10)

• Decision Tree: Hyperparameters (max depth): list(range(2, 11)) + [None]

• Random Forest: Hyperparameters (max depth): list(range(2, 11)) + [None]

• Gradient Boosting: Hyperparameters (max depth): list(range(2, 11)) + [None]
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Hence, we have 103 different CATE estimators for each type of direct meta-learner, and a single
CATE estimator for each type of indirect meta-learner, resulting in a total of 415 CATE estimators
per dataset. This difference between the construction of indirect vs direct meta-learners is also
visualized in Figure 2. Note that Causal Forest DML-Learner technically is a direct meta-learner,
but we use the default random forest provided in the EconML implementation (Battocchi et al.,
2019), hence effectively we do not consider variations across its CATE predictor (f̂ ) function.

C.3 SURROGATE METRICS IMPLEMENTATION DETAILS

Figure 3: Illustrating the use of AutoML in selecting the nuisance parameters of surrogate metrics
for CATE model selection. This is an important design choice in contrast to prior works which relied
on small grid searches to infer the nuisance parameters associated with surrogate metrics, potentially
resulting in biased estimates and affecting the model selection ability of surrogate metrics.

Please refer to Appendix B for full details regarding the implementation for each surrogate criteria
of CATE model selection. An important point to highlight is that for surrogate metrics based on
direct meta-learner strategies, we only consider the pseudo-outcome variant. E.g., DR Score only
uses pseudo-outcomes to approximate τ̃(x) and does not train any regression model for direct CATE
estimation (like we do in DR-Learner). Further, all nuisance models (η̌) are trained on the validation
set using AutoML, specifically FLAML (Wang et al., 2021), with a budget of 30 minutes (Figure 3).

Regarding the two-level model selection strategy, each metric MJ(τ̂) for selecting amongst meta-
estimators of type J is provided below.

• DR T Score for selecting amongst DR-Learners
• R Score for selecting amongst DML-Learners
• X Score for selecting amongst X-Learners
• S Score for selecting amongst Projected S-Learners

Note that for the remaining meta-learners (S-Learner, T-Learner, Causal Forest Learner) we did not
have any hyperparameters to select over as their nuisance models have been learned via AutoML.
Hence, the first step in the two-level model selection strategy is trivial for them and they can be
directly for the second step of model selection via a general surrogate metric.
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Dataset CATE (Mean) CATE (Variance) Treatment Class % (Train) Treatment Class % (Eval)

ACIC 2016 0 1.44 10.99 0.29 0.29
ACIC 2016 3 2.99 29.36 0.37 0.35
ACIC 2016 4 5.48 30.62 0.28 0.30
ACIC 2016 5 3.38 4.46 0.29 0.29
ACIC 2016 6 3.79 6.85 0.28 0.30
ACIC 2016 7 4.45 9.40 0.30 0.30
ACIC 2016 8 4.00 9.27 0.29 0.30
ACIC 2016 9 2.06 8.44 0.32 0.31

ACIC 2016 10 3.71 11.77 0.29 0.31
ACIC 2016 11 5.32 26.08 0.32 0.30
ACIC 2016 12 2.95 17.74 0.50 0.49
ACIC 2016 13 3.27 7.14 0.50 0.54
ACIC 2016 14 2.34 45.37 0.47 0.46
ACIC 2016 15 4.48 46.08 0.57 0.55
ACIC 2016 16 3.80 23.87 0.57 0.56
ACIC 2016 17 0.24 18.76 0.37 0.38
ACIC 2016 18 3.16 16.24 0.52 0.56
ACIC 2016 19 1.85 77.99 0.52 0.51
ACIC 2016 20 4.45 5.94 0.29 0.27
ACIC 2016 21 6.39 56.62 0.32 0.32
ACIC 2016 22 5.75 3.96 0.33 0.35
ACIC 2016 23 3.44 11.47 0.27 0.26
ACIC 2016 24 4.73 5.97 0.35 0.35
ACIC 2016 25 3.92 6.93 0.31 0.32
ACIC 2016 26 2.18 40.74 0.31 0.29
ACIC 2016 27 3.19 23.88 0.33 0.31
ACIC 2016 28 3.25 5.42 0.33 0.36
ACIC 2016 29 3.75 9.41 0.35 0.36
ACIC 2016 30 3.35 10.82 0.36 0.34
ACIC 2016 31 3.84 20.17 0.35 0.34
ACIC 2016 32 2.83 14.85 0.33 0.34
ACIC 2016 33 5.22 19.58 0.63 0.63
ACIC 2016 34 5.40 4.55 0.52 0.53
ACIC 2016 35 2.72 22.20 0.36 0.35
ACIC 2016 36 3.15 5.98 0.57 0.53
ACIC 2016 37 5.38 11.32 0.60 0.63
ACIC 2016 38 3.66 3.96 0.63 0.59
ACIC 2016 39 5.12 4.23 0.63 0.63
ACIC 2016 40 0.95 5.30 0.62 0.67
ACIC 2016 41 3.87 3.66 0.59 0.57
ACIC 2016 42 3.03 15.11 0.64 0.67
ACIC 2016 43 3.87 25.95 0.66 0.65
ACIC 2016 44 4.37 23.13 0.67 0.70
ACIC 2016 45 4.93 25.60 0.65 0.69
ACIC 2016 46 2.18 33.00 0.65 0.63
ACIC 2016 47 5.35 1.21 0.32 0.35
ACIC 2016 48 3.79 4.84 0.27 0.27
ACIC 2016 49 5.85 1.06 0.23 0.21
ACIC 2016 50 3.62 40.87 0.32 0.28
ACIC 2016 51 4.15 12.54 0.19 0.18
ACIC 2016 52 4.90 79.71 0.31 0.33
ACIC 2016 53 2.58 33.89 0.29 0.29
ACIC 2016 54 5.41 28.30 0.36 0.35
ACIC 2016 55 3.63 4.37 0.36 0.36
ACIC 2016 56 2.30 9.71 0.34 0.36
ACIC 2016 57 3.31 13.43 0.36 0.34
ACIC 2016 58 4.66 41.14 0.38 0.37
ACIC 2016 59 4.84 40.29 0.38 0.35
ACIC 2016 60 2.51 34.84 0.35 0.36
ACIC 2016 61 4.23 30.48 0.35 0.34
ACIC 2016 62 4.00 1.29 0.56 0.57
ACIC 2016 63 3.31 15.72 0.51 0.49
ACIC 2016 64 3.22 9.29 0.54 0.57
ACIC 2016 65 3.90 28.30 0.56 0.55
ACIC 2016 66 2.16 38.81 0.57 0.62
ACIC 2016 67 5.41 117.43 0.61 0.60
ACIC 2016 68 3.04 18.27 0.60 0.58
ACIC 2016 69 2.82 4.75 0.65 0.63
ACIC 2016 70 2.48 17.11 0.65 0.65
ACIC 2016 71 2.55 18.66 0.69 0.65
ACIC 2016 72 1.58 4.61 0.63 0.62
ACIC 2016 73 4.31 5.44 0.63 0.62
ACIC 2016 74 4.49 34.16 0.66 0.67
ACIC 2016 75 3.20 29.85 0.64 0.63
ACIC 2016 76 4.96 15.60 0.63 0.61

Table 6: Extra statistics for the various ACIC 2016 datasets used in our analysis. Train and Eval
correspond to the different splits of the dataset used for training and evaluating CATE estimators.
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D ADDITIONAL RESULTS

Metric ACIC 2016 LaLonde CPS LaLonde PSID TWINS

Value Score 1.05e+7 (4.31e+6) 6.63 (5.52) 0.48 (0.06) 0.57 (0.15)

Value DR Score 13.02 (11.73) 2.33 (1.41) 0.46 (0.05) 1.61 (1.02)

Value DR Clip Score 13.02 (11.73) 0.43 (0.09) 3.96 (3.51) 1.68 (1.02)

Match Score 3.60 (0.16) 0.23 (0.04) 0.50 (0.06) 0.38 (0.08)

S Score 0.95 (0.02) 0.90 (0.04) 0.74 (0.04) 0.29 (0.05)

T Score 0.56 (0.02) 0.16 (0.03) 0.42 (0.03) 0.31 (0.05)

X Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.35 (0.06)

R Score 4.0 (0.11) 0.83 (0.04) 0.67 (0.03) 0.60 (0.11)

Influence Score 1455.75 (1439.46) 0.95 (0.04) 0.80 (0.02) 1.08 (0.1)

Influence Clip Score 1449.74 (1439.72) 87.13 (60.29) 1.16 (0.16) 1.06 (0.09)

IPW Score 3.21 (0.12) 0.25 (0.05) 0.32 (0.02) 0.37 (0.06)

IPW Clip Score 3.21 (0.12) 0.60 (0.07) 0.32 (0.02) 0.37 (0.06)

IPW Switch S Score 3.21 (0.12) 0.29 (0.06) 0.31 (0.02) 0.37 (0.06)

IPW Switch T Score 3.21 (0.12) 0.29 (0.06) 0.31 (0.02) 0.37 (0.06)

IPW CAB S Score 3.20 (0.12) 0.29 (0.06) 0.31 (0.02) 0.37 (0.06)

IPW CAB T Score 3.20 (0.12) 0.29 (0.06) 0.31 (0.02) 0.37 (0.06)

DR S Score 0.93 (0.02) 0.85 (0.05) 0.73 (0.04) 0.35 (0.06)

DR S Clip Score 0.93 (0.02) 0.90 (0.04) 0.74 (0.04) 0.34 (0.06)

DR T Score 0.56 (0.02) 0.16 (0.02) 0.41 (0.03) 0.32 (0.07)

DR T Clip Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.33 (0.06)

DR Switch S Score 0.93 (0.02) 0.90 (0.04) 0.75 (0.04) 0.32 (0.06)

DR Switch T Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.28 (0.05)

DR CAB S Score 0.93 (0.02) 0.90 (0.04) 0.74 (0.04) 0.34 (0.06)

DR CAB T Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.33 ( 0.06 )

TMLE S Score 1.06 (0.04) 0.91 (0.04) 0.74 (0.04) 0.26 (0.05)

TMLE T Score 0.64 (0.03) 0.16 (0.03) 0.42 (0.03) 0.31 (0.05)

Cal DR S Score 5.78 (0.19) 0.87 (0.05) 0.72 (0.04) 0.19 (0.03)

Cal DR T Score 3.45 (0.11) 0.17 (0.03) 0.42 (0.03) 0.21 (0.03)

Cal TMLE S Score 6.12 (0.21) 0.90 (0.04) 0.75 (0.04) 0.17 (0.02)

Cal TMLE T Score 4.63 (0.18) 0.17 (0.03) 0.42 (0.03) 0.22 (0.03)

Qini DR S Score 1.54 (0.06) 917.0 (896.57) 16.12 (15.38) 1.78e+6 (1.77e+6)

Qini DR T Score 1.32 (0.07) 2.87 (1.53) 0.57 (0.05) 2.08e+7 (1.90e+7)

Qini TMLE S Score 1.55 (0.06) 295.06 (173.91) 0.70 (0.04) 1.78e+6 (1.78e+6)

Qini TMLE T Score 1.32 (0.07) 2.59 (1.49) 0.57 (0.04) 1.78e+6 (1.78e+6)

Table 7: Normalized PEHE of the best estimators chosen by each metric with the single-level
model selection strategy; results report the mean (standard error) across 20 seeds and also across
datasets for the ACIC 2016 benchmark. Lower value is better.
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Metric ACIC 2016 LaLonde CPS LaLonde PSID TWINS

Value Score 3.97 (1.98) 0.34 (0.09) 0.43 (0.03) 0.21 (0.03)

Value DR Score 0.64 (0.03) 0.25 (0.08) 0.47 (0.04) 0.21 (0.03)

Value DR Clip Score 0.64 (0.03) 0.22 (0.06) 0.47 (0.04) 0.21 (0.03)

Match Score 1.76 (0.09) 0.17 (0.03) 0.45 (0.03) 0.21 (0.03)

S Score 0.93 (0.02) 0.90 (0.04) 0.75 (0.04) 0.21 (0.03)

T Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.21 (0.03)

X Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.21 (0.03)

R Score 3.88 (0.11) 0.86 (0.03) 0.62 (0.03) 0.21 (0.03)

Influence Score 3.26 (0.1) 0.93 (0.04) 0.77 (0.03) 0.16 (0.02)

Influence Clip Score 3.19 (0.1) 68.67 (27.37) 1.26 (0.23) 0.16 (0.02)

IPW Score 1.41 (0.06) 0.16 (0.04) 0.38 (0.02) 0.21 (0.03)

IPW Clip Score 1.40 (0.06) 0.18 (0.04) 0.37 (0.02) 0.21 (0.03)

IPW Switch S Score 1.41 (0.06) 0.16 (0.04) 0.37 (0.02) 0.21 (0.03)

IPW Switch T Score 1.41 (0.06) 0.16 (0.04) 0.37 (0.02) 0.21 (0.03)

IPW CAB S Score 1.40 (0.06) 0.16 (0.04) 0.38 (0.02) 0.21 (0.03)

IPW CAB T Score 1.40 (0.06) 0.16 (0.04) 0.38 (0.02) 0.21 (0.03)

DR S Score 0.92 (0.02) 0.85 (0.04) 0.74 (0.04) 0.20 (0.03)

DR S Clip Score 0.92 (0.02) 0.90 (0.04) 0.74 (0.04) 0.20 (0.03)

DR T Score 0.56 (0.02) 0.16 (0.02) 0.41 (0.03) 0.21 (0.03)

DR T Clip Score 0.56 (0.02) 0.14 (0.03) 0.41 (0.03) 0.21 (0.03)

DR Switch S Score 0.92 (0.02) 0.90 (0.04) 0.74 (0.04) 0.21 (0.03)

DR Switch T Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.21 (0.03)

DR CAB S Score 0.92 (0.02) 0.90 (0.04) 0.74 (0.04) 0.20 (0.03)

DR CAB T Score 0.56 (0.02) 0.16 (0.03) 0.41 (0.03) 0.21 (0.03)

TMLE S Score 1.0 (0.03) 0.90 (0.04) 0.75 (0.04) 0.21 (0.03)

TMLE T Score 0.61 (0.03) 0.16 (0.03) 0.42 (0.03) 0.21 (0.03)

Cal DR S Score 1.18 (0.03) 0.86 (0.04) 0.74 (0.04) 0.21 (0.03)

Cal DR T Score 0.62 (0.02) 0.19 (0.04) 0.42 (0.03) 0.22 (0.03)

Cal TMLE S Score 1.39 (0.05) 0.90 (0.04) 0.74 (0.04) 0.18 (0.02)

Cal TMLE T Score 0.82 (0.02) 0.2 (0.04) 0.42 (0.03) 0.21 (0.02)

Qini DR S Score 0.62 (0.02) 21.18 (15.26) 0.68 (0.12) 0.21 (0.03)

Qini DR T Score 0.58 (0.02) 0.14 (0.03) 0.52 (0.03) 0.24 (0.04)

Qini TMLE S Score 0.67 (0.03) 14.68 (9.97) 0.60 (0.07) 0.21 (0.03)

Qini TMLE T Score 0.63 (0.03) 0.15 (0.03) 0.53 (0.03) 0.21 (0.03)

Table 8: Normalized PEHE of the best estimators chosen by each metric with the two-level model
selection strategy; results report the mean (standard error) across 20 seeds and also across datasets
for the ACIC 2016 benchmark. Lower value is better.
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Metric ACIC 2016 LaLonde CPS LaLonde PSID TWINS

Value Score 1.94 (0.31) 0.58 (0.08) 0.47 (0.03) 0.21 (0.03)

Value DR Score 0.71 (0.03) 0.37 (0.08) 0.51 (0.04) 0.21 (0.03)

Value DR Clip Score 0.71 (0.03) 0.27 (0.07) 0.51 (0.04) 0.21 (0.03)

Match Score 1.56 (0.07) 0.17 (0.03) 0.45 (0.03) 0.21 (0.03)

S Score 0.86 (0.02) 0.90 (0.04) 0.75 (0.04) 0.21 (0.03)

T Score 0.45 (0.02) 0.16 (0.03) 0.41 (0.03) 0.21 (0.03)

X Score 0.45 (0.02) 0.16 (0.03) 0.41 (0.03) 0.21 (0.03)

R Score 3.33 (0.09) 0.86 (0.03) 0.62 (0.03) 0.21 (0.03)

Influence Score 2.98 (0.11) 0.93 (0.04) 0.77 (0.03) 0.16 (0.02)

Influence Clip Score 2.89 (0.11) 68.67 (27.37) 1.26 (0.23) 0.16 (0.02)

IPW Score 1.33 (0.05) 0.16 (0.04) 0.38 (0.02) 0.20 (0.03)

IPW Clip Score 1.32 (0.05) 0.18 (0.04) 0.37 (0.02) 0.20 (0.03)

IPW Switch S Score 1.33 (0.05) 0.16 (0.04) 0.37 (0.02) 0.20 (0.03)

IPW Switch T Score 1.33 (0.05) 0.16 (0.04) 0.37 (0.02) 0.20 (0.03)

IPW CAB S Score 1.33 (0.06) 0.16 (0.04) 0.38 (0.02) 0.20 (0.03)

IPW CAB T Score 1.33 (0.06) 0.16 (0.04) 0.38 (0.02) 0.20 (0.03)

DR S Score 0.85 (0.02) 0.85 (0.04) 0.74 (0.04) 0.20 (0.03)

DR S Clip Score 0.85 (0.02) 0.90 (0.04) 0.74 (0.04) 0.21 (0.03)

DR T Score 0.45 (0.02) 0.16 (0.02) 0.41 (0.03) 0.21 (0.03)

DR T Clip Score 0.45 (0.02) 0.14 (0.03) 0.41 (0.03) 0.21 (0.03)

DR Switch S Score 0.85 (0.02) 0.90 (0.04) 0.74 (0.04) 0.21 (0.03)

DR Switch T Score 0.45 (0.02) 0.16 (0.03) 0.41 (0.03) 0.21 (0.03)

DR CAB S Score 0.85 (0.02) 0.90 (0.04) 0.74 (0.04) 0.21 (0.03)

DR CAB T Score 0.45 (0.02) 0.16 (0.03) 0.41 (0.03) 0.21 (0.03)

TMLE S Score 0.93 (0.03) 0.90 (0.04) 0.75 (0.04) 0.21 (0.03)

TMLE T Score 0.51 (0.03) 0.16 (0.03) 0.42 (0.03) 0.21 (0.03)

Cal DR S Score 1.42 (0.25) 0.89 (0.04) 0.74 (0.04) 0.20 (0.03)

Cal DR T Score 0.62 (0.02) 0.20 (0.04) 0.42 (0.03) 0.20 (0.03)

Cal TMLE S Score 1.43 (0.25) 0.89 (0.04) 0.74 (0.04) 0.21 (0.03)

Cal TMLE T Score 0.82 (0.02) 0.19 (0.04) 0.42 (0.03) 0.20 (0.03)

Qini DR S Score 0.62 (0.02) 24.86 (14.92) 0.63 (0.04) 0.21 (0.03)

Qini DR T Score 0.58 (0.02) 0.14 (0.03) 0.50 (0.03) 0.21 (0.03)

Qini TMLE S Score 0.67 (0.03) 11.96 (4.04) 0.63 (0.04) 0.21 (0.03)

Qini TMLE T Score 0.63 (0.03) 0.15 (0.03) 0.51 (0.02) 0.21 (0.03)

Table 9: Normalized PEHE of the ensemble estimators chosen by each metric with the two-level
model selection strategy; results report the mean (standard error) across 20 seeds and also across
datasets for the ACIC 2016 benchmark. Lower value is better.
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Metric ACIC 2016 LaLonde CPS LaLonde PSID TWINS

Value Score 1.21e+7 (6.21e+6) 1.15 (0.4) 0.64 (0.09) 0.57 (0.15)

Value DR Score 13.11 (11.72) 1.38 (0.41) 0.61 (0.04) 0.58 (0.14)

Value DR Clip Score 13.11 (11.72) 1.63 (0.46) 0.59 (0.05) 0.64 (0.16)

Match Score 3.49 (0.16) 0.43 (0.06) 0.51 (0.05) 0.38 (0.08)

S Score 0.98 (0.03) 0.83 (0.05) 0.75 (0.04) 0.29 (0.05)

T Score 0.61 (0.02) 0.35 (0.05) 0.48 (0.04) 0.31 (0.05)

X Score 0.61 (0.02) 0.35 (0.05) 0.48 (0.04) 0.35 (0.06)

R Score 3.31 (0.08) 0.83 (0.05) 0.68 (0.03) 0.60 (0.11)

Influence Score 1.04e+6 (7.76e+5) 0.91 (0.04) 0.79 (0.03) 0.19 (0.03)

Influence Clip Score 5.90e+5 (5.90e+5) 2.18 (0.38) 0.94 (0.06) 0.2 (0.03)

IPW Score 2.53 (0.09) 0.59 (0.1) 0.43 (0.03) 0.40 (0.07)

IPW Clip Score 2.53 (0.09) 0.80 (0.14) 0.38 (0.04) 0.40 (0.07)

IPW Switch S Score 2.53 (0.09) 0.59 (0.1) 0.43 (0.03) 0.40 (0.07)

IPW Switch T Score 2.53 (0.09) 0.59 (0.1) 0.43 (0.03) 0.40 (0.07)

IPW CAB S Score 2.53 (0.09) 0.59 (0.1) 0.43 (0.03) 0.40 (0.07)

IPW CAB T Score 2.53 (0.09) 0.59 (0.1) 0.43 (0.03) 0.40 (0.07)

DR S Score 0.95 (0.02) 0.81 (0.06) 0.74 (0.04) 0.37 (0.06)

DR S Clip Score 0.95 (0.02) 0.83 (0.05) 0.75 (0.04) 0.35 (0.06)

DR T Score 0.61 (0.02) 0.35 (0.05) 0.48 (0.04) 0.32 (0.07)

DR T Clip Score 0.61 (0.02) 0.35 (0.05) 0.48 (0.04) 0.33 (0.06)

DR Switch S Score 0.95 (0.02) 0.83 (0.05) 0.75 (0.04) 0.32 (0.06)

DR Switch T Score 0.61 (0.02) 0.35 (0.05) 0.48 (0.04) 0.28 (0.05)

DR CAB S Score 0.95 (0.02) 0.83 (0.05) 0.75 (0.04) 0.35 (0.06)

DR CAB T Score 0.61 (0.02) 0.35 (0.05) 0.48 (0.04) 0.33 (0.06)

TMLE S Score 1.04 (0.03) 0.83 (0.05) 0.76 (0.04) 0.26 (0.05)

TMLE T Score 0.65 (0.02) 0.35 (0.05) 0.49 (0.03) 0.31 (0.05)

Cal DR S Score 5.77 (0.14) 0.87 (0.07) 0.74 (0.04) 0.23 (0.04)

Cal DR T Score 3.60 (0.1) 0.38 (0.05) 0.48 (0.03) 0.22 (0.04)

Cal TMLE S Score 6.09 (0.19) 0.85 (0.05) 0.75 (0.04) 0.23 (0.05)

Cal TMLE T Score 4.62 (0.15) 0.39 (0.04) 0.49 (0.03) 0.24 (0.03)

Qini DR S Score 1.36 (0.05) 8.89 (2.74) 0.68 (0.08) 1.78e+6 (1.77e+6)

Qini DR T Score 1.16 (0.05) 0.79 (0.08) 0.66 (0.05) 1.78e+6 (1.77e+6)

Qini TMLE S Score 1.41 (0.06) 21.78 (14.52) 1.39 (0.67) 1.78e+6 (1.77e+6)

Qini TMLE T Score 1.17 (0.04) 0.89 (0.12) 0.65 (0.05) 1.78e+6 (1.77e+6)

Table 10: Normalized PEHE of the best estimators chosen by each metric amongst only the set of
DR-Learners; results report the mean (standard error) across 20 seeds and also across datasets for
the ACIC 2016 benchmark. Lower value is better.
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Metric ACIC 2016 LaLonde CPS LaLonde PSID TWINS

Value Score 2.78e+6 (1.58e+6) 800.39 (792.56) 0.46 (0.05) 1.21e+4 (1.21e+4)

Value DR Score 7.63e+5 (3.83e+5) 3.78 (1.82) 21.25 (15.63) 1.21e+4 (1.21e+4)

Value DR Clip Score 7.63e+5 (3.83e+5) 2.22 (0.77) 21.25 (15.63) 1.21e+4 (1.21e+4)

Match Score 5.48 (0.17) 0.27 (0.05) 0.48 (0.06) 0.17 (0.04)

S Score 4.39 (0.14) 0.9 (0.04) 0.73 (0.03) 0.10 (0.03)

T Score 4.26 (0.14) 0.2 (0.03) 0.43 (0.03) 0.12 (0.03)

X Score 4.26 (0.14) 0.2 (0.03) 0.43 (0.03) 0.13 (0.03)

R Score 6.35 (0.15) 0.86 (0.03) 0.64 (0.04) 0.32 (0.1)

Influence Score 2.81e+4 (2.49e+4) 0.96 (0.03) 0.81 (0.03) 1.08 (0.1)

Influence Clip Score 1.23e+4 (1.23e+4) 58.5 (56.51) 1.24 (0.17) 1.06 (0.09)

IPW Score 5.87 (0.18) 0.38 (0.06) 0.33 (0.02) 0.14 (0.03)

IPW Clip Score 5.87 (0.19) 0.57 (0.07) 0.33 (0.02) 0.12 (0.03)

IPW Switch S Score 5.86 (0.19) 0.41 (0.06) 0.32 (0.02) 0.12 (0.03)

IPW Switch T Score 5.86 (0.19) 0.41 (0.06) 0.32 (0.02) 0.12 (0.03)

IPW CAB S Score 5.86 (0.18) 0.41 (0.06) 0.32 (0.02) 0.12 (0.03)

IPW CAB T Score 5.86 (0.18) 0.41 (0.06) 0.32 (0.02) 0.12 (0.03)

DR S Score 4.38 (0.14) 0.84 (0.05) 0.72 (0.03) 0.13 (0.04)

DR S Clip Score 4.38 (0.14) 0.9 (0.04) 0.72 (0.03) 0.15 (0.04)

DR T Score 4.26 (0.14) 0.2 (0.03) 0.43 (0.03) 0.14 (0.04)

DR T Clip Score 4.26 (0.14) 0.2 (0.03) 0.43 (0.03) 0.14 (0.04)

DR Switch S Score 4.38 (0.14) 0.9 (0.04) 0.73 (0.03) 0.14 (0.04)

DR Switch T Score 4.26 (0.14) 0.2 (0.03) 0.43 (0.03) 0.15 (0.04)

DR CAB S Score 4.38 (0.14) 0.9 (0.04) 0.72 (0.03) 0.15 (0.04)

DR CAB T Score 4.26 (0.14) 0.2 (0.03) 0.43 (0.03) 0.14 (0.04)

TMLE S Score 4.45 (0.14) 0.91 (0.04) 0.74 (0.03) 0.1 (0.03)

TMLE T Score 4.3 (0.14) 0.18 (0.03) 0.43 (0.03) 0.13 (0.03)

Cal DR S Score 6.23 (0.19) 0.86 (0.05) 0.72 (0.03) 0.17 (0.03)

Cal DR T Score 5.94 (0.18) 0.19 (0.03) 0.43 (0.03) 0.19 (0.03)

Cal TMLE S Score 6.28 (0.2) 0.9 (0.04) 0.74 (0.03) 0.16 (0.02)

Cal TMLE T Score 6.02 (0.2) 0.19 (0.03) 0.43 (0.03) 0.19 (0.02)

Qini DR S Score 6.19e+6 (3.75e+6) 2.82e+3 (1.51e+3) 19.4 (15.6) 1.13e+7 (1.12e+7)

Qini DR T Score 8.22e+6 (4.09e+6) 3.47 (1.54) 3.92 (3.51) 1.13e+7 (1.13e+7)

Qini TMLE S Score 7.38e+6 (4.08e+6) 916.03 (599.74) 6.34 (4.07) 1.13e+7 (1.13e+7)

Qini TMLE T Score 6.91e+6 (4.00e+6) 4.71 (1.86) 3.94 (3.51) 2.13e+7 (1.47e+7)

Table 11: Normalized PEHE of the best estimators chosen by each metric amongst only the set of
DML-Learners; results report the mean (standard error) across 20 seeds and also across datasets
for the ACIC 2016 benchmark. Lower value is better.
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Metric ACIC 2016 LaLonde CPS LaLonde PSID TWINS

Value Score 1.04e+7 (4.23e+6) 1.47 (0.53) 0.45 (0.04) 0.28 (0.05)

Value DR Score 1.04 (0.1) 0.35 (0.1) 0.42 (0.04) 0.29 (0.04)

Value DR Clip Score 1.04 (0.1) 0.39 (0.09) 0.38 (0.04) 0.29 (0.04)

Match Score 3.40 (0.16) 0.31 (0.05) 0.47 (0.05) 0.26 (0.04)

S Score 0.88 (0.02) 0.72 (0.03) 0.72 (0.04) 0.22 (0.04)

T Score 0.34 (0.01) 0.20 (0.03) 0.42 (0.02) 0.31 (0.04)

X Score 0.34 (0.01) 0.20 (0.03) 0.40 (0.02) 0.29 (0.04)

R Score 3.14 (0.09) 0.72 (0.03) 0.61 (0.03) 0.28 (0.05)

Influence Score 1.45e+3 (1.44e+3) 0.75 (0.03) 0.76 (0.02) 0.41 (0.07)

Influence Clip Score 1.45e+3 (1.44e+3) 31.67 (24.68) 1.32 (0.21) 0.46 (0.09)

IPW Score 2.40 (0.11) 0.40 (0.06) 0.33 (0.02) 0.29 (0.04)

IPW Clip Score 2.39 (0.11) 0.58 (0.08) 0.33 (0.02) 0.29 (0.04)

IPW Switch S Score 2.40 (0.11) 0.40 (0.06) 0.32 (0.02) 0.29 (0.04)

IPW Switch T Score 2.40 (0.11) 0.40 (0.06) 0.32 (0.02) 0.29 (0.04)

IPW CAB S Score 2.40 (0.11) 0.40 (0.06) 0.32 (0.02) 0.29 (0.04)

IPW CAB T Score 2.40 (0.11) 0.40 (0.06) 0.32 (0.02) 0.29 (0.04)

DR S Score 0.85 (0.02) 0.68 (0.04) 0.7 (0.05) 0.28 (0.04)

DR S Clip Score 0.85 (0.02) 0.71 (0.04) 0.71 (0.04) 0.28 (0.04)

DR T Score 0.34 (0.01) 0.20 (0.03) 0.40 (0.02) 0.28 (0.04)

DR T Clip Score 0.34 (0.01) 0.20 (0.03) 0.40 (0.02) 0.28 (0.04)

DR Switch S Score 0.85 (0.02) 0.72 (0.03) 0.71 (0.04) 0.28 (0.04)

DR Switch T Score 0.34 (0.01) 0.20 (0.03) 0.40 (0.02) 0.32 (0.04)

DR CAB S Score 0.85 (0.02) 0.71 (0.04) 0.71 (0.04) 0.28 (0.04)

DR CAB T Score 0.34 (0.01) 0.20 (0.03) 0.40 (0.02) 0.28 (0.04)

TMLE S Score 0.96 (0.03) 0.73 (0.03) 0.73 (0.04) 0.25 (0.04)

TMLE T Score 0.39 (0.02) 0.20 (0.03) 0.42 ( 0.02 ) 0.31 (0.04)

Cal DR S Score 3.15 (0.1) 0.71 (0.04) 0.71 (0.04) 0.22 (0.03)

Cal DR T Score 1.40 (0.06) 0.24 (0.04) 0.41 ( 0.03 ) 0.22 (0.03)

Cal TMLE S Score 3.80 (0.11) 0.79 (0.04) 0.73 (0.04) 0.17 (0.02)

Cal TMLE T Score 2.04 (0.07) 0.2 (0.03) 0.41 ( 0.03 ) 0.20 (0.03)

Qini DR S Score 0.59 (0.03) 1.43 (0.75) 0.62 (0.15) 6.23e+5 (6.22e+5)

Qini DR T Score 0.47 (0.03) 0.89 (0.35) 0.33 (0.04) 1.96e+7 (1.90e+7)

Qini TMLE S Score 0.75 (0.04) 2.89 (1.14) 1.13 (0.6) 6.23e+5 (6.22e+5)

Qini TMLE T Score 0.51 (0.02) 1.47 (0.44) 0.31 (0.04) 6.23e+5 (6.22e+5)

Table 12: Normalized PEHE of the best estimators chosen by each metric amongst only the set of
X-Learners; results report the mean (standard error) across 20 seeds and also across datasets for the
ACIC 2016 benchmark. Lower value is better.

29



Published as a conference paper at ICLR 2024

Metric ACIC 2016 LaLonde CPS LaLonde PSID TWINS

Value Score 1.25e+7 (4.13e+6) 0.83 (0.06) 0.73 (0.03) 2.39e+6 (2.39e+6)

Value DR Score 1.24 (0.09) 0.83 (0.05) 0.73 (0.03) 0.22 (0.04)

Value DR Clip Score 1.23 (0.09) 0.83 (0.05) 8.53 (7.8) 0.22 (0.04)

Match Score 3.36 (0.16) 0.75 (0.06) 0.7 (0.02) 0.23 (0.04)

S Score 0.9 (0.02) 0.91 (0.05) 0.76 (0.04) 0.22 (0.04)

T Score 0.55 (0.01) 0.75 (0.06) 0.68 (0.02) 0.22 (0.04)

X Score 0.55 (0.01) 0.75 (0.06) 0.68 (0.02) 0.22 (0.04)

R Score 3.19 (0.09) 0.88 (0.04) 0.72 (0.03) 0.22 (0.04)

Influence Score 1.32e+6 (9.54e+5) 0.91 (0.04) 0.78 (0.02) 0.17 (0.03)

Influence Clip Score 7.49e+5 (7.49e+5) 0.94 (0.07) 0.83 (0.08) 0.16 (0.03)

IPW Score 2.33 (0.11) 0.75 (0.06) 0.68 (0.02) 0.21 (0.04)

IPW Clip Score 2.33 (0.11) 0.75 (0.06) 0.68 (0.02) 0.22 (0.04)

IPW Switch S Score 2.33 (0.11) 0.75 (0.06) 0.68 (0.02) 0.21 (0.04)

IPW Switch T Score 2.33 (0.11) 0.75 (0.06) 0.68 (0.02) 0.21 (0.04)

IPW CAB S Score 2.33 (0.11) 0.75 (0.06) 0.68 (0.02) 0.21 (0.04)

IPW CAB T Score 2.33 (0.11) 0.75 (0.06) 0.68 (0.02) 0.21 (0.04)

DR S Score 0.88 (0.02) 0.89 (0.04) 0.75 (0.04) 0.22 (0.04)

DR S Clip Score 0.88 (0.02) 0.91 (0.04) 0.75 (0.04) 0.21 (0.04)

DR T Score 0.55 (0.01) 0.75 (0.06) 0.68 (0.02) 0.22 (0.04)

DR T Clip Score 0.55 (0.01) 0.75 (0.06) 0.68 (0.02) 0.22 (0.04)

DR Switch S Score 0.88 (0.02) 0.91 (0.04) 0.75 (0.04) 0.22 (0.04)

DR Switch T Score 0.55 (0.01) 0.75 (0.06) 0.68 (0.02) 0.22 (0.04)

DR CAB S Score 0.88 (0.02) 0.91 (0.04) 0.75 (0.04) 0.21 (0.04)

DR CAB T Score 0.55 (0.01) 0.75 (0.06) 0.68 (0.02) 0.22 (0.04)

TMLE S Score 0.95 (0.03) 0.91 (0.04) 0.76 (0.04) 0.22 (0.04)

TMLE T Score 0.58 (0.01) 0.75 (0.06) 0.68 (0.02) 0.22 (0.04)

Cal DR S Score 5.14 (0.15) 0.9 (0.05) 0.75 (0.04) 0.22 (0.03)

Cal DR T Score 3.88 (0.1) 0.76 (0.06) 0.69 (0.02) 0.22 (0.03)

Cal TMLE S Score 5.66 (0.17) 0.9 (0.05) 0.76 (0.04) 0.2 (0.03)

Cal TMLE T Score 4.51 (0.15) 0.75 (0.06) 0.69 (0.02) 0.23 (0.03)

Qini DR S Score 1.1 (0.03) 0.85 (0.06) 0.8 (0.07) 0.22 (0.04)

Qini DR T Score 0.98 (0.03) 0.81 (0.06) 0.75 (0.03) 0.2 (0.04)

Qini TMLE S Score 1.16 (0.05) 185.85 (184.98) 0.81 (0.07) 0.22 (0.04)

Qini TMLE T Score 0.98 (0.03) 0.81 (0.06) 0.75 (0.03) 0.22 (0.04)

Table 13: Normalized PEHE of the best estimators chosen by each metric amongst only the set
of Projected S-Learners; results report the mean (standard error) across 20 seeds and also across
datasets for the ACIC 2016 benchmark. Lower value is better.
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