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Abstract

We study the design of explicable reward functions for a reinforcement learning
agent while guaranteeing that an optimal policy induced by the function belongs
to a set of target policies. By being explicable, we seek to capture two properties:
(a) informativeness so that the rewards speed up the agent’s convergence, and (b)
sparseness as a proxy for ease of interpretability of the rewards. The key challenge
is that higher informativeness typically requires dense rewards for many learning
tasks, and existing techniques do not allow one to balance these two properties
appropriately. In this paper, we investigate the problem from the perspective
of discrete optimization and introduce a novel framework, EXPRD, to design
explicable reward functions. EXPRD builds upon an informativeness criterion that
captures the (sub-)optimality of target policies at different time horizons in terms of
actions taken from any given starting state. We provide a mathematical analysis of
EXPRD, and show its connections to existing reward design techniques, including
potential-based reward shaping. Experimental results on two navigation tasks
demonstrate the effectiveness of EXPRD in designing explicable reward functions.

1 Introduction

A reward function plays the central role during the learning/training process of a reinforcement
learning (RL) agent. Given a “task” the agent is expected to perform (i.e., the desired learning
outcome), there are typically many different reward specifications under which an optimal policy
has the same performance guarantees on the task. This freedom in choosing the reward function, in
turn, leads to the fundamental question of reward design: What are different criteria that one should
consider in designing a reward function for the agent, apart from the agent’s final output policy? [1–3].

One of the important criteria is informativeness, capturing that the rewards should speed up the
agent’s convergence [1–6]. For instance, a major challenge faced by an RL agent is because
of delayed rewards during training; in the worst-case, the agent’s convergence is slowed down
exponentially w.r.t. the time horizon of delay [7]. In this case, we seek to design a new reward
function that reduces this time horizon of delay while guaranteeing that any optimal policy induced by
the designed function is also optimal under the original reward function [3]. The classical technique
of potential-based reward shaping (when applied with appropriate state potentials) indeed allows us to
reduce this time horizon of delay to 1; see [3, 8] and Section 2. With 1, it means that globally optimal
actions for any state are also myopically optimal, thereby making the agent’s learning process trivial.

While informativeness is an important criterion, it is not the only criterion to consider when designing
rewards for many practical applications. Another natural criterion to consider is sparseness as a proxy
for ease of interpretability of the rewards. There are several practical settings where sparseness and
interpretability of rewards are important, as discussed next. The first motivating application is when
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rewards are designed for human learners who are learning to perform sequential tasks, for instance, in
pedagogical applications such as educational games [9], virtual reality-based training simulators [10,
11], and solving open-ended problems (e.g., block-based visual programming [12]). In this context,
tasks can be challenging for novice learners and a teacher agent can assist these learners by designing
explicable rewards associated with these tasks. The second motivating application is when rewards are
designed for complex compositional tasks in the robotics domain that involve reward specifications in
terms of logic, automata, or subgoals [13, 14]—these specifications induce a form of sparsity structure
on the underlying reward function. The third motivating application is related to defense against
reward-poisoning attacks in RL (see [15–19]) by designing structured and sparse reward functions that
are easy to debug/verify. Beyond these practical settings, many naturally occurring reward functions in
real-life tasks are inherently sparse and interpretable, further motivating the need to distill these proper-
ties in the automated reward design process. The key challenge is that higher informativeness typically
requires dense rewards for many learning tasks – for instance, the above-mentioned potential-based
shaped rewards that achieve a time horizon of 1 would require most of the states be associated with
some real-valued reward (see Sections 2 and 4). To this end, an important research question that we
seek to address is: How to balance these two criteria of informativeness and sparseness in the reward
design process while guaranteeing an optimality criterion on policies induced by the reward function?

In this paper, we formalize the problem of designing explicable reward functions, focusing on the
criteria of informativeness and sparseness. We investigate this problem from an expert/teacher’s point
of view who has full domain knowledge (in this case, an original reward function along with optimal
policies induced by the original function), and seeks to design a new reward function for the agent—
see Figure 1 and further discussion in Section 5 on expert-driven vs. agent-driven reward design. We
tackle the problem from the perspective of discrete optimization and introduce a novel framework,
EXPRD, to design reward functions. EXPRD allows us to appropriately balance informativeness
and sparseness while guaranteeing that an optimal policy induced by the function belongs to a set of
target policies. EXPRD builds upon an informativeness criterion that captures the (sub-)optimality of
target policies at different time horizons from any given starting state. Our main contributions are:1

I. We formulate the problem of explicable reward functions to balance the two important criteria
of informativeness and sparseness in the reward design process. (Sections 2 and 3.1)

II. We propose a novel optimization framework, EXPRD, to design reward functions. As part of
this framework, we introduce a new criterion capturing informativeness of reward functions that
is amenable to optimization techniques and is of independent interest. (Sections 3.2 and 3.3)

III. We provide a detailed mathematical analysis of EXPRD and show its connections to popular
techniques, including potential-based reward shaping. (Sections 3.3 and 3.4)

IV. We provide a practical extension to apply our framework to large state spaces. We perform
extensive experiments on two navigation tasks to demonstrate the effectiveness of EXPRD in
designing explicable reward functions. (Sections 3.5 and 4)

2 Problem Setup

Environment. An environment is defined as a Markov Decision Process (MDP) M :=
(S,A, T, γ,R), where the set of states and actions are denoted by S and A respectively. T :
S ×S ×A → [0, 1] captures the state transition dynamics, i.e., T (s′ | s, a) denotes the probability of
landing in state s′ by taking action a from state s. Here, γ is the discounting factor. The underlying
reward function is given by R : S ×A → [−Rmax, Rmax], for some Rmax > 0. We interchangeably
represent the reward function by a vector R ∈ R|S|·|A|, whose (s |A|+ a)-th entry is given by
R (s, a). We define the support of R as supp(R) := {s : s ∈ S, R (s, a) 6= 0 for some a ∈ A}, and
the `0-norm of R as ‖R‖0 := |supp(R)|.
Preliminaries and definitions. We denote a stochastic policy π : S → ∆ (A) as a mapping from
a state to a probability distribution over actions, and a deterministic policy π : S → A as a mapping
from a state to an action. For any policy π, the state value function V π∞ and the action value function
Qπ∞ in the MDPM are defined as follows respectively: V π∞ (s) = E [

∑∞
t=0 γ

tR(st, at)|s0 = s, T, π]
and Qπ∞ (s, a) = E [

∑∞
t=0 γ

trt|s0 = s, a0 = a, T, π]. Further, the optimal value functions are
given by V ∗∞ (s) = supπ V

π
∞ (s) and Q∗∞ (s, a) = supπ Q

π
∞ (s, a). There always exists a

1Github repo: https://github.com/adishs/neurips2021_explicable-reward-design_code.
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Task specified as an
MDP M with given
reward function R

(a)

Teacher computes
optimal Q

∗
∞ and Π

∗

w.r.t. R

(b)

Teacher designs a
new explicable
reward function R̂

(c)

RL agent learns an
optimal π̂∗ ∈ Π̂∗

w.r.t. R̂

(d)

Figure 1: Illustration of the explicable reward design problem in terms of a task specified through MDP
M , an RL agent whose objective is to perform this task, and a teacher/expert whose objective is to help
this RL agent. (a) MDPM with a given reward functionR specifying the task the RL agent is expected
to perform; (b) The teacher computes optimal action value function Q

∗
∞ along with the set of optimal

policies Π
∗

w.r.t. R; (c) The teacher designs a new explicable reward function R̂ for the RL agent;
(d) The RL agent trains using the designed reward R̂ and outputs a policy π̂∗ from the set of optimal
policies Π̂∗ w.r.t. R̂. Our framework designs an explicable reward function R̂ with three properties:
invariance, informativeness, and sparseness; see main text for formal definitions of these properties.

deterministic stationary policy π that achieves the optimal value function simultaneously for
all s ∈ S [7, 20], and we denote all such deterministic optimal policies by the set Π∗ :=
{π : S → A s.t. V π∞ (s) = V ∗∞ (s) ,∀s ∈ S}. From here onwards, we focus on deterministic policies
unless stated otherwise. For any π and R, we define the following quantities that capture the∞-step
(global) optimality gap and the 0-step (myopic) optimality gap of action a at state s, respectively:

δπ∞(s, a) := Qπ∞(s, π(s))−Qπ∞(s, a), and δπ0 (s, a) := Qπ0 (s, π(s))−Qπ0 (s, a), ∀s ∈ S, a ∈ A,
where Qπ0 (s, a) = R (s, a) is the 0-step action value function of policy π. The δπ∞(s, a) values
are same for all π ∈ Π∗, and we denote it by δ∗∞(s, a) = V ∗∞(s) −Q∗∞(s, a); however, this is not
the case with δπ0 (s, a) values in general. For any state s ∈ S and a set of policies Π, we define
Πs := {a : a = π(s), π ∈ Π}. Then, we have that δ∗∞(s, a) = 0,∀s ∈ S, a ∈ Π∗s .

Explicable reward design. Figure 1 presents an illustration of the explicable reward design problem
that we formalize below. A task is specified as an MDP M with a given goal-based reward function R
where R has non-zero rewards only on goal states G ⊆ S , i.e., R (s, a) = 0,∀s ∈ S\G, a ∈ A. Many
naturally occurring tasks (see Section 1 for motivating applications) are goal-based and challenging
for learning an optimal policy when the state space S is very large. In this paper, we study the
following explicable reward design problem from an expert/teacher’s point of view: Given R and the
corresponding optimal policy set Π

∗
w.r.t. R as the input, the teacher designs a new reward function

R̂ with criteria of informativeness and sparseness while guaranteeing an invariance requirement
(these properties are formalized in Section 3). Informally, the invariance requirement is that any
optimal policy learned using the new reward R̂ belongs to the optimal policy set Π

∗
induced by R.2

Typical techniques for reward design and issues. Given a set of important states (subgoals) in the
environment, one could design a handcrafted reward function R̂CRAFT by assigning non-zero reward
values only to these states. Even though this simple approach produces a reward function with a
specified sparsity level, it often fails to satisfy the invariance requirement. In particular, there are
some well-known “reward bugs” that can arise in this approach and mislead the agent into learning
sub-optimal policies (see [2, 3]). In the seminal work [3], the authors introduced the potential-based
reward shaping (PBRS) method to alleviate this issue. The reward function produced by the PBRS
method with optimal value function V

∗
∞ under R as the potential function is defined as follows:

R̂PBRS (s, a) := R (s, a) + γ
∑
s′∈S

T (s′ | s, a) · V ∗∞ (s′)− V ∗∞ (s) . (1)

The set of optimal policies Π̂∗ induced by R̂PBRS is exactly equal to the set of optimal policies Π
∗

induced by R since δ̂π∞(s, a) = δ
∗
∞(s, a) for all π ∈ Π

∗
[3]. In addition, for any state s ∈ S , globally

optimal actions Π
∗
s ⊆ A underR are also myopically optimal under R̂PBRS since δ̂π0 (s, a) = δ

∗
∞(s, a)

for all π ∈ Π
∗

[3, 8] – this leads to a dramatic speed-up in the learning process. However, the potential-
based reward shaping produces dense reward function which is less interpretable (see Section 4).

2In the rest of the paper, the quantities defined corresponding to R := R are denoted by an overline, e.g.,
the optimal policy set by Π

∗
and the∞-step optimality gaps by δ

∗
∞; the quantities defined corresponding to

R := R̂ are denoted by a widehat, e.g., the optimal policy set by Π̂∗.
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3 Our Reward Design Framework EXPRD

In Sections 3.1, 3.2, and 3.3, we propose an optimization formulation and a greedy solution for the
explicable reward design problem. In Section 3.4, we provide a theoretical analysis of our greedy
solution. In Section 3.5, we provide a practical extension to apply our framework to large state spaces.

3.1 Discrete Optimization Formulation

Given R and the corresponding optimal policy set Π
∗
, we systematically develop a discrete optimiza-

tion framework (EXPRD) to design an explicable reward function R̂ (see Figure 1).

Sparseness, informativeness, and invariance. The sparseness of the reward function R̂ is captured
by supp(R̂). In Section 3.2, we formalize an informativeness criterion I(R̂) of R̂ that captures
how hard/easy it is to learn an optimal behavior induced by R̂. We explicitly enforce the invariance
requirement (see Section 2) for the new reward R̂ by choosing a set of candidate policies Π† ⊆ Π

∗
,

and satisfying the following (Bellman-optimality) conditions:

Qπ
†

∞ (s, a) = R̂(s, a) + γ
∑
s′∈S

T (s′|s, a) ·Qπ
†

∞ (s′, π†(s′)), ∀a ∈ A, s ∈ S, π† ∈ Π† (C.1)

Qπ
†

∞ (s, π†(s)) ≥ Qπ
†

∞ (s, a) + δ
∗
∞(s), ∀a ∈ A\Π∗s, s ∈ S, π† ∈ Π†, (C.2)

where δ
∗
∞(s) := mina∈A\Π∗s

δ
∗
∞(s, a),∀s ∈ S.3 The above conditions guarantee that any optimal

policy induced by R̂ is also optimal under R, i.e., Π† ⊆ Π̂∗ ⊆ Π
∗
. Here, the set Π† ⊆ Π

∗
is used

to reduce the number of constraints. Note that for the potential-based shaped reward R̂PBRS, we
have Π̂∗ = Π

∗
.

Maximizing informativeness for a given set of important states. When a domain expert provides
us a set of important states (subgoals) in the environment [21–24], we want to use this set in a
principled way to design a reward R̂, while avoiding the “reward bugs” that can arise from hand-
crafted rewards R̂CRAFT. To this end, for any given set of subgoals Z ⊆ S\G, we optimize the
informativeness criterion I(R) while satisfying the invariance requirement:

g(Z) := max
R:supp(R)⊆Z∪G

I(R)

subject to conditions (C.1)− (C.2) with R̂ replaced by R hold (P1)
|R (s, a)| ≤ Rmax, ∀s ∈ S, a ∈ A.

Let R(Z) denote the R that maximizes g(Z). LetR ⊆ R|S|·|A| be a constraint set on R that captures
only the conditions (C.1)− (C.2) and the Rmax bound.

Jointly finding subgoals along with maximizing informativeness. Based on (P1), we propose the
following discrete optimization formulation that allows us to select a set of important states (of size
B) and design a reward function that maximizes informativeness automatically:

max
Z:Z⊆S\G,|Z|≤B

g(Z). (P2)

We can incorporate prior knowledge about the quality of subgoals using a set function D : 2S → R
(we assume D to be a submodular function [25]). Finally, the full EXPRD formulation is given by:

max
Z:Z⊆S\G,|Z|≤B

g(Z) + λ ·D(Z ∪ G), for some λ ≥ 0. (P3)

We study the problems (P1), (P2), and (P3) in the following subsections.

3Note that the true action values Q
∗
∞ are used in the conditions (C.1)− (C.2) to obtain the terms δ

∗
∞(s, a),

A\Π∗s , and Π†. However, when we only have an approximate estimate of Q
∗
∞, we can adapt (C.1) − (C.2)

appropriately with approximate versions of δ
∗
∞(s, a), A\Π∗s , and Π†.
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3.2 Informativeness Criterion

Understanding the informativeness of a reward function is an important problem, and several works
have investigated it [4, 5, 26–28]. Our goal is to define an informativeness criterion that is amenable
to optimization techniques. As noted in Section 2, for any policy π ∈ Π

∗
, 0-step and ∞-step

optimality gaps induced by R̂PBRS are all equal to ∞-step optimality gaps induced by R, i.e.,
δ̂π0 (s, a) = δ̂π∞(s, a) = δ

∗
∞(s, a). For any reward function R, one could ask how much these two

quantities could differ, and even consider the intermediate cases between 0-step and∞-step optimality.
Inspired by the h-step optimality notions studied in [4, 26], we define the h-step action value
function of any policy π as Qπh (s, a) = E

[∑h
t=0 γ

tR(st, at)|s0 = s, a0 = a, T, π
]
, and it satisfies

the following recursive relationship: Qπh(s, a) = R(s, a) + γ
∑
s′∈S T (s′|s, a) ·Qπh−1(s′, π(s′)).

Let H be a set of horizons for which we want to maximize informativeness. For any policy π and
reward functionR, we define the following quantity that captures the h-step optimality gap of action a
at state s: δπh(s, a) := Qπh(s, π(s))−Qπh(s, a),∀s ∈ S, a ∈ A, h ∈ H. Later, in the proof of Proposi-
tion 2, we show that δπh(s, a) is linear in R, i.e., δπh(s, a) =

〈
wh;(s,a), R

〉
for some vector wh;(s,a) ∈

R|S|·|A|. Interestingly, the following proposition states that, for any policy π ∈ Π
∗

and any h, the h-
step optimality gap induced by R̂PBRS given in (1) is equal to the∞-step optimality gap induced byR:

Proposition 1. The goal-based reward function R, and the potential-based shaped reward function
R̂PBRS given in (1) satisfy the following: δ̂πh(s, a) = δ

∗
∞(s, a),∀s ∈ S, a ∈ A, π ∈ Π

∗
, h ∈ H.

Let ` : R → R be a monotonically non-decreasing concave function. Then, based on the h-step
optimality gaps, we define the informativeness criterion of the reward R as follows:

I`(R) :=
∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗s

`(δπ
†

h (s, a)).

From here onwards, we let I be I` in the problem (P1). As an example for `, we consider the negated
hinge loss given by `hg(δ(s, a)) := −max(0, δ

∗
∞(s, a)− δ(s, a)). By Proposition 1, we have that

I`hg
(R̂PBRS) = 0, and I`hg

(R) ≤ 0 for any other R, i.e., R̂PBRS achieves the maximum value of I`hg .

3.3 Iterative Greedy Algorithm

First, we show that the problem (P1) can be efficiently solved using the standard concave optimization
methods to find R(Z) for any given Z ⊆ S\G:
Proposition 2. For any given Z ⊆ S\G, the problem (P1) is a concave optimization problem in
R ∈ R|S|·|A| with linear constraints. Further, the feasible set of the problem (P1) is non-empty.

Then, inspired by the Forward Stepwise Selection method from [29], we propose an iterative greedy
solution (see Algorithm 1) to solve the problems (P2) and (P3). To compute the incremental gain at
each step, we would need to solve the concave optimization problem (P1) for different values of Z .
The problem (P1) has |S| · |A| optimization variables and O(|S| · |A| ·

∣∣Π†∣∣ · |H|) constraints.

Algorithm 1 Iterative Greedy Algorithm for EXPRD

1: Input: MDP M :=
(
S,A, T, γ,R

)
, δ
∗
∞(s, a) values, sets Π

∗
,Π
†
,G,H, sparsity budget B

2: Initialize: Z0 ← ∅
3: for k = 1, 2, . . . , B do
4: zk ← arg maxz∈S\Zk−1

g(Zk−1∪{z})+λ·D(Zk−1∪G∪{z})−g(Zk−1)−λ·D(Zk−1∪G)

5: Zk ← Zk−1 ∪ {zk}
6: Output: ZB and the corresponding optimal reward function R(ZB).

3.4 Theoretical Analysis

Here, we provide guarantees for the solution returned by our Algorithm 1. Below, we give an
overview of the main technical ideas, and leave a detailed discussion along with proofs in the
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Appendix. For some µ ≥ 0, let I reg
` (R) := I`(R) − µ ‖R‖22 be the regularized informativeness

criterion. We define a normalized set function f : 2S → R as follows:
f(Z) = max

R:supp(R)⊆Z∪G,R∈R
(I reg
` (R)− I reg

` (R(∅))) + λ · (D(Z ∪ G)−D(G)), (2)

where R(∅) = arg maxR:supp(R)⊆G,R∈R I
reg
` (R). Note that the regularized variant (I` replaced

by I reg
` ) of the optimization problem (P3) is equivalent to maxZ:Z⊆S\G,|Z|≤B f (Z). For a given

sparsity budget B, let ZGreedy
B be the set selected by our Algorithm 1 and ZOPT

B be the optimal set
that maximizes the regularized variant of problem (P3). The corresponding f values of these sets
are denoted by fGreedy

B and fOPT
B respectively; in the following, we are interested in comparing

these two values. The problem (P3) is closely related to the subset selection problem studied in [29]
with a twist of an additional constraint setR (see the discussion after (P1)), making the theoretical
analysis more challenging. Inspired by the analysis in [29], we need to prove a weak form of
submodularity [25, 30] for f (since D is already a submodular function, we need to prove this
for the case when λ = 0). To this end, we require the regularized informativeness criterion I reg

` to
satisfy certain structural assumptions. First, we define the restricted strongly concavity and restricted
smoothness notions of a function that are used in our analysis.
Definition 1 (Restricted Strong Concavity, Restricted Smoothness [31]). A functionL : R|S|·|A| → R
is said to be restricted strong concave with parameter mΩ and restricted smooth with parameter MΩ

on a domain Ω ⊂ R|S|·|A| × R|S|·|A| if for all (x, y) ∈ Ω:

−mΩ

2
‖y − x‖22 ≥ L (y)− L (x)− 〈∇L (x), y − x〉 ≥ − MΩ

2
‖y − x‖22 .

For any integer k, we define the following two sets: Ωk := {(x, y) : ‖x‖0 ≤ k, ‖y‖0 ≤ k, ‖x− y‖0 ≤
k, x, y ∈ R}, and Ω̃k := {(x, y) : ‖x‖0 ≤ k, ‖y‖0 ≤ k, ‖x− y‖0 ≤ 1, x, y ∈ R}. Let mk := mΩk

and Mk := MΩk (similarly we define m̃k and M̃k).

When there is no R ∈ R constraint in (2), the following assumption on the regularized
informativeness criterion is sufficient to prove the weak submodularity of f [29]:
Assumption 1. The regularized informativeness criterion I reg

` ism2B+|G|-restricted strongly concave
and M2B+|G|-restricted smooth on Ω2B+|G|.

However, due to the additional R ∈ R constraint, we need to enforce further requirements on I reg
`

formally captured in Assumption 2 provided in the Appendix; here, we discuss these requirements
informally. Let Z be any set such that Z ⊆ S\G, and∇I reg

` (R(Z)) be the gradient of the regularized
informativeness criterion at the optimal reward R(Z). Then, we need to ensure the following: (i) the
`2-norm of the projection of ∇I reg

` (R(Z)) on (Z ∪ G) is upper-bounded, captured by dopt
max; (ii) the

`2-norm of the projection of∇I reg
` (R(Z)) on any j ∈ S\(Z∪G) is lower-bounded, captured by dnon

min;
and (iii) the components of the optimal reward R(Z) outside (Z ∪ G) do not lie in the boundary ofR,
captured by κ. Then, by using Assumption 1 and Assumption 2 (see Appendix), we prove the weak
submodularity of f . Finally, by applying Theorem 3 from [29], we obtain the following theorem:
Theorem 1. Let I reg

` satisfies Assumption 1 and Assumption 2 requirements. Then, we have fGreedy
B ≥

(1− e−γ) fOPT
B , where γ =

κ·m2B+|G|
M2B+|G|

· (dnonmin)2

(doptmax)
2
+(dnonmin)

2 .

We provide Assumption 2 and a detailed proof of the theorem in the Appendix.

3.5 Extension to Large State Spaces using State Abstractions

This section presents an extension of our EXPRD framework that is scalable to large state spaces
by leveraging the techniques from state abstraction literature [32–34]. We use an abstraction
φ : S → Xφ, which is a mapping from high-dimensional state space S to a low-dimensional latent
space Xφ. Let φ−1(x) := {s ∈ S : φ(s) = x} ,∀x ∈ Xφ, and M :=

(
S,A, T, γ,R

)
. We propose

the following pipeline:

1. By using M and φ, we construct an abstract MDP Mφ =
(
Xφ,A, Tφ, γ, Rφ

)
as follows,

∀x, x′ ∈ Xφ, a ∈ A: Tφ(x′|x, a) = 1
|φ−1(x)|

∑
s∈φ−1(x)

∑
s′∈φ−1(x′) T (s′|s, a), and Rφ(x, a) =

1
|φ−1(x)|

∑
s∈φ−1(x)R(s, a). We compute the set of optimal policies Π

∗
φ for the MDP Mφ.
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2. We run our EXPRD framework on Mφ with Π† = Π
∗
φ, and the resulting reward is denoted R̂φ.

3. We define the reward function R̂ on the state space S as follows: R̂(s, a) = R̂φ(φ(s), a).

By assuming certain structural conditions on φ formalized in the Appendix, we can show that any opti-
mal policy induced by the above reward R̂ acts nearly optimal w.r.t. R. This pipeline can be extended
to continuous state space as well, similar to [34–36]. We provide more details in the Appendix.

4 Experimental Evaluation

In this section, we evaluate EXPRD on two environments: ROOMSNAVENV (Section 4.1) and
LINEKEYNAVENV (Section 4.2). ROOMSNAVENV corresponds to a navigation task in a grid-world
where the agent has to learn a policy to quickly reach the goal location in one of four rooms, starting
from an initial location. Even though this environment has a small state space, it provides a very
rich and an intuitive problem setting to validate different reward design techniques, and variants of
ROOMSNAVENV have been used extensively in the literature [14, 21, 22, 37–40]. LINEKEYNAVENV
corresponds to a navigation task in a one-dimensional space where the agent has to first pick the
key and then reach the goal. The agent’s location in this environment is represented as a point on
a line segment. Given the large state space representation, it is computationally challenging to apply
the reward design technique from Section 3.3 and we use the state abstraction-based extension of
our framework from Section 3.5. This environment is inspired by variants of navigation tasks in
the literature where an agent needs to perform sub-tasks [3, 41]. We give an overview of main results
here, and provide a more detailed description of the setup and additional results in the Appendix.

4.1 Evaluation on ROOMSNAVENV

Figure 2: ROOMSNAVENV

ROOMSNAVENV (Figure 2). We represent the environment as
an MDP with S states each corresponding to cells in the grid-
world indicating the agent’s current location (shown as “blue-
circle”). Goal (shown as “green-star”) is located at the top-right
corner cell. The agent can take four actions given by A :=
{“up”, “left”, “down”, “right”}. An action takes the agent to the
neighbouring cell represented by the direction of the action; how-
ever, if there is a wall (shown as “brown-segment”), the agent stays
at the current location. Furthermore, when an agent takes an action
a ∈ A, there is prand probability that an action a′ ∈ A \ {a} will
be executed instead of a. In addition to these walls, there are a few
terminal walls (shown as “thick-red-segment”) that terminates the
episode—at the bottom-left corner cell, “left” and “down” actions terminate; at the top-right corner
cell, “right” action terminates. The agent gets a reward of Rmax after it has navigated to the goal and
then takes a “right” action (i.e., only one state-action pair has a reward); note that this action also
terminates the episode. The reward is 0 for all other state-action pairs and there is a discount factor γ.
This MDP has |S| = 49 and |A| = 4; we set prand = 0.1, Rmax = 10, and γ = 0.95 in our evaluation.

Techniques evaluated. We consider the following baselines: (i) R̂ORIG := R, which simply
represents default reward function, (ii) R̂PBRS obtained via the PBRS technique with the optimal
value function V

∗
∞ w.r.t. R (see Section 2), (iii) R̂CRAFT that we design manually (see Section 2 and

description below), and (iv) R̂PBRS-CRAFT(B=5) obtained via the PBRS technique with the optimal
value function w.r.t. R̂CRAFT instead of V

∗
∞ [42].4 To design R̂CRAFT, we first hand-crafted a set

function D that assigns scores to the states in the MDP, e.g., the scores are higher for the four
entry points in the rooms. In general, one could learn such D automatically using the techniques
from [21–24]—see full details about D in the Appendix. Then, for a fixed budget B, we pick the
top B states according to the scoring by D and assign a reward of +1 for optimal actions and −1

for others. For the evaluation, we use B = 5 and denote the function as R̂CRAFT(B=5). Note that
apart from B states, R̂CRAFT(B=5) also has a reward assigned for the goal state taken from R.

4The reward shaping method in [42] is based on the PBRS technique and leads to dense reward functions.
However, their method is more practical as it does not require solving the original task w.r.t. R.
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Figure 3: Results for ROOMSNAVENV. (a) shows convergence in performance of the agent w.r.t.
training episodes. Here, performance is measured as the expected reward per episode computed using
R; note that the x-axis is exponential in scale. (b-d) visualize the designed reward functions R̂ORIG,
R̂PBRS, and R̂EXPRD(B=5,λ=0). These plots illustrate reward values for all combinations of S × A
shown as four 7×7 grids corresponding to different actions. Blue color represents positive reward, red
color represents negative reward, and the magnitude of the reward is indicated by color intensity. As an
example, consider “right” action grid for R̂ORIG in (b) where the dark blue color in the corner indicates
the goal. To increase the color contrast, we clipped rewards in the range [−4,+4] for this visualization
even though the designed rewards are in the range [−10,+10]. See Section 4.1 for details.

The reward functions R̂EXPRD designed by our EXPRD framework are parameterized by budgetB and
hyperparameter λ. For λ, we consider two extreme settings: (a) λ = 0 where the problem (P3) reduces
to (P2), and (b) λ→∞ where the problem (P3) reduces to (P1) corresponding to the reward design
with subgoals pre-selected by the function D. We use the same function D that we used for R̂CRAFT

above. For budget B, we consider values from {3, 5, |S|}. In particular, we evaluate the following
reward functions: R̂EXPRD(B=5,λ→∞), R̂EXPRD(B=3,λ=0), R̂EXPRD(B=5,λ=0), and R̂EXPRD(B=|S|,λ=0).
For the evaluation in this section, we use the following parameter choices for EXPRD: H =

{1, 4, 8, 16, 32}, ` is the negated hinge loss `hg, and Π† contains only one policy from Π
∗
.

Results. We use standard Q-learning method for the agent with a learning rate 0.5 and exploration
factor 0.1 [7]. During training, the agent receives rewards based on R̂, however, is evaluated based
on R. A training episode ends when the maximum steps (set to 50) is reached or an agent’s action
terminates the episode. All the results are reported as average over 40 runs and convergence plots
show mean with standard error bars. The convergence behavior in Figure 3a demonstrates the
effectiveness of the reward functions designed by our EXPRD framework.5 Note that R̂CRAFT(B=5)

leads to sub-optimal behavior due to “reward bugs” (see Section 2), whereas R̂EXPRD(B=5,λ→∞)

fixes this issue using the same set of subgoals. EXPRD leads to good performance even without
domain knowledge (i.e., when λ = 0), e.g., the performance corresponding to R̂EXPRD(B=3,λ=0) is
comparable to that of R̂EXPRD(B=5,λ→∞). The visualizations of R̂ORIG, R̂PBRS, and R̂EXPRD(B=5,λ=0)

in Figures 3b, 3c, and 3d highlight the trade-offs in terms of sparseness and interpretability of
the reward functions. The reward function R̂EXPRD(B=5,λ=0) designed by our EXPRD framework
provides a good balance in terms of convergence performance while maintaining high sparseness.
Additional visualizations and results are provided in the Appendix.

4.2 Evaluation on LINEKEYNAVENV

Figure 4: LINEKEYNAVENV

LINEKEYNAVENV (Figure 4). We represent the environment as an
MDP with S states corresponding to the agent’s status comprising of
the current location (shown as “blue-circle” and is a point x in [0, 1])
and a binary flag whether the agent has acquired a key (shown as
“cyan-bolt”). Goal (shown as “green-star”) is available in locations
on the segment [0.9, 1], and the key is available in locations on
the segment [0.1, 0.2]. The agent can take three actions given by
A := {“left”, “right”, , “pick”}. “pick” action does not change the agent’s location, however, when

5As we discussed in Sections 1 and 2, R̂PBRS designed using V
∗
∞ makes the agent’s learning process trivial.
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Figure 5: Results for LINEKEYNAVENV. (a) shows convergence in performance of the agent w.r.t.
training episodes. Here, performance is measured as the expected reward per episode computed
using R. (b-d) visualize the designed reward functions R̂ORIG, R̂PBRS, and R̂EXPRD(B=5,λ=0). These
plots illustrate reward values for all combination of triplets, i.e., agent’s location on the segment
[0.0, 1.0] (shown as horizontal bar), agent’s status whether it has acquired key or not (indicated as
‘K’ or ‘-’), and three actions (indicated as ‘l’ for “left”, ‘r’ for “right”, ‘p’ for “pick”). We use a color
representation similar to Figure 3, and we clipped rewards in the range [−3,+3] to increase the color
contrast for this visualization. As an example, consider ‘rK’ bar for R̂ORIG in (b) where the dark
blue color on the segment [0.9, 1] indicate the locations with goal. See Section 4.2 for details.

executed in locations with availability of the key, the agent acquires the key; if agent already had
a key, the action does not affect the status. A move action of “left” or “right” takes the agent from
the current location in the direction of move with the dynamics of the final location captured by
two hyperparameters (∆a,1,∆a,2); for instance, with current location x and action “left”, the new
location x′ is sampled uniformly among locations from (x −∆a,1 −∆a,2) to (x −∆a,1 + ∆a,2).
Similar to ROOMSNAVENV, the agent’s move action is not applied if the new location crosses the
wall, and there is prand probability of a random action. The agent gets a reward of Rmax after it has
navigated to the goal locations after acquiring the key and then takes a “right” action; note that this
action also terminates the episode. The reward is 0 elsewhere and there is a discount factor γ. We
set prand = 0.1, Rmax = 10, γ = 0.95, ∆a,1 = 0.075 and ∆a,2 = 0.01.

Techniques evaluated. The baseline R̂ORIG := R represents the default reward function. We evaluate
the variants of R̂PBRS and R̂EXPRD using an abstraction. For a given hyperparameter α ∈ (0, 1), the
set of possible locations X are obtained by α-level discretization of the line segment from 0.0 to 1.0,
leading to a 1/α set of locations. For the abstraction φ associated with this discretization [43], the
abstract MDP Mφ (see Section 3.5) has |Xφ| = 2/α and |A| = 3. We use α = 0.05. We compute the
optimal state value function in the abstract MDP Mφ, lift it to the original state space via φ, and use
the lifted value function as the potential to design R̂PBRS [35]. We follow the pipeline in Section 3.5 to
design R̂EXPRD – in the subroutine, we run EXPRD on Mφ for a budget B = 5 and a full budget B =
|Xφ|; we set λ = 0. For other parameters (H, `, and Π†), we use the same choices as in Section 4.1.

Results. The agent uses Q-learning method in the original MDP M by using a fine-grained dis-
cretization of the state space; rest of the method’s parameters are same as in Section 4.1. All the
results are reported as average over 40 runs and convergence plots show mean with standard error
bars. Figure 5a demonstrates that all three designed reward functions—R̂PBRS, R̂EXPRD(B=5,λ=0),
R̂EXPRD(B=|Xφ|,λ=0)—substantially improves the convergence, whereas the agent is not able to learn
under R̂ORIG. Based on the visualizations in Figures 5b, 5c, and 5d, R̂EXPRD(B=5,λ=0) provides a good
balance between convergence and sparseness. Interestingly, R̂EXPRD(B=5,λ=0) assigned a high posi-
tive reward for the “pick” action when the agent is in the locations with key (see ‘p-’ bar in Figure 5d).

5 Related Work
Potential-based reward shaping. Introduced in the seminal work of [3], potential-based reward
shaping is one of the most well-studied reward design technique (see [8, 14, 37, 38, 40, 44, 45, 45–
48]). As we discussed in Section 2, the shaped reward function R̂PBRS is obtained by modifying R
using a state-dependent potential function. The technique preserves a strong invariance property: a
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policy π is optimal under R̂PBRS iff it is optimal under R. Furthermore, when using the optimal value-
function V

∗
∞ under R as the potential function, the shaped rewards achieve the maximum possible

informativeness as per the notion we use in EXPRD. To balance informativeness and sparseness, our
framework EXPRD can be seen as a relaxation of the potential-based shaping in the following ways: (i)
EXPRD provides a guarantee on preserving a weaker invariance property whereby an optimal policy
under R̂EXPRD is also optimal under R; (ii) EXPRD finds R̂EXPRD that maximizes informativeness
under hard constraints of preserving this weaker policy-invariant property and a given spareness-level.

Optimization-based techniques for reward design. Beyond potential-based shaping, we can
formulate reward design as an optimization problem [15–19]. In particular, optimization-based
techniques for reward design are popularly used in data poisoning attacks where an attacker’s goal
is to minimally perturb the original reward function to force the agent into executing a target policy
chosen by the attacker [17–19]. Our EXPRD framework builds on the optimization framework of
[17–19]. The key novelty of EXPRD is that we optimize for informativeness of the reward function
under a sparseness constraint, which makes our problem formulation much more challenging.

Agent-driven reward design. An important categorization of reward design techniques is based on
who is designing the rewards and what domain knowledge is available. Agent-driven reward design
techniques involve a reinforcement learning method where an agent self-designs its own rewards
during the training process, with the objective of improving the exploration and speeding up the
convergence [6, 49–53]. These agent-driven techniques use a wide-variety of ideas such as designing
intrinsic rewards based on exploration bonus [49, 50, 54], designing rewards using some additional
domain knowledge [51], and using credit assignment to create intermediate rewards [6, 52].

Expert-driven reward design. In contrast to agent-driven techniques, we have expert-driven reward
design techniques where an expert/teacher with full domain knowledge can design a reward function
for the agent [1, 3, 14–19, 48]. Our EXPRD framework falls into the category of teacher-driven reward
design. The above-mentioned techniques of potential-based reward shaping and optimization-based
techniques can be seen as expert-driven reward design techniques; however, the distinction between
expert-driven and agent-driven techniques can be blurry at times when one uses an expert-driven
technique with minimal domain knowledge (e.g., when using approximate potentials [3]).

Reward automatas, landmark-based rewards, and subgoal discovery. Our EXPRD framework
is also connected to techniques that specify rewards using higher-level abstract representations of
the environment including symbolic automata and landmarks [13, 14, 37, 40, 55, 56]. In recent
works [13, 14, 55, 56], potential-based reward shaping technique has been used with automata-based
rewards to design interpretable and informative rewards. While similar in the overall objective, our
work is technically quite different and our proposed optimization framework to reward design can be
seen as complementary to these works. Another relevant line of work focuses on automatic discovery
of subgoals in the environment [21–24] – these works are complementary and useful as subroutines in
our framework by providing a prior knowledge about which states are important for assigning rewards.

6 Conclusions
We developed a novel optimization framework, EXPRD, to design explicable reward functions in
which we can appropriately balance informativeness and sparseness in the reward design process. As
part of the framework, we introduced a new criterion capturing informativeness of reward functions
that is of independent interest. The mathematical analysis of EXPRD shows connections of our
framework to the popular reward-design techniques, and provides theoretical underpinnings of expert-
driven explicable reward design. Importantly, EXPRD allows one to go beyond using a potential
function for principled reward design, and provides a general recipe for developing an optimization-
based reward design framework with different structural constraints. We also provided a practical
extension to apply our framework in environments with large state spaces via state abstractions.

To make our framework more scalable, we plan to investigate alternate formulations of the reward
design problem that avoids enumerating all the constraints explicitly (see Section 3). There are
several promising directions for future work, including but not limited to the following: (a) using a
combination of our optimization-based reward design technique with automata-driven rewards as
well as other structured rewards, (b) extending our framework for agent-driven reward design, (c)
applying our framework in a transfer setting using techniques from [42, 57], and (d) investigating the
usage of our informativeness criterion for discovering subgoals.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the pa-

per’s contributions and scope? [Yes] The paper is organized exactly according to the
contributions listed at the end of the introduction section.

(b) Did you describe the limitations of your work? [Yes] We discussed the scalability
related limitations of our EXPRD framework in Sections 3.3 and 6. We also outlined a
future plan to address these limitations.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] As stated
in Section 6, this work primarily presents the theoretical underpinnings of reward
design in reinforcement learning. As such in the present form there are no direct
negative societal impacts of our work. However, given the importance of reward design
in RL, one needs to be cautious in practical applications of these techniques in future.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
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A List of Appendices

In this section, we give a brief description of the content provided in the appendices of the paper.

• Appendix B provides proofs for Propositions 1 and 2. (Sections 3.2 and 3.3)
• Appendix C provides additional details and proofs for the theoretical analysis. (Section 3.4)
• Appendix D provides additional details and proofs for using state abstractions. (Section 3.5)
• Appendix E provides additional results for ROOMSNAVENV. (Section 4.1)
• Appendix F provides additional results for LINEKEYNAVENV. (Section 4.2)

B Proofs for Propositions 1 and 2 (Sections 3.2 and 3.3)

B.1 Proof of Proposition 1

Proposition 1. The goal-based reward function R, and the potential-based shaped reward function
R̂PBRS given in (1) satisfy the following: δ̂πh(s, a) = δ

∗
∞(s, a),∀s ∈ S, a ∈ A, π ∈ Π

∗
, h ∈ H.

Proof. Consider any optimal policy π ∈ Π
∗
, s ∈ S, a ∈ A, and h ∈ H. The∞-step optimality gap

induced by R is δ
∗
∞(s, a) = V

∗
∞ (s)−Q∗∞ (s, a), and the h-step optimality gap induced by R̂PBRS

is δ̂πh(s, a) = Q̂πh(s, π(s))− Q̂πh(s, a). In the following, we express the two terms of δ̂πh in terms of
V
∗
∞ and Q

∗
∞.

The term Q̂πh(s, π(s)) for any π ∈ Π
∗. We show that Q̂πh(s, π(s)) = 0 for any non-negative

integer h by using mathematical induction. First (h = 0 case), we consider the 0-step optimal action
value function:

Q̂π0 (s, π (s)) = R̂PBRS (s, π (s))

= R (s, π (s)) + γ
∑
s′∈S

T (s′ | s, π (s))V
∗
∞ (s′)− V ∗∞ (s)

= Q
∗
∞ (s, π (s))− V ∗∞ (s)

= V
∗
∞ (s)− V ∗∞ (s)

= 0.

Now assume that Q̂πh−1(s, π(s)) = 0. Then, consider the h-step optimal action value function:

Q̂πh(s, π (s)) = R̂PBRS (s, π (s)) + γ
∑
s′∈S

T (s′ | s, π (s)) Q̂πh−1 (s′, π (s))

= R̂PBRS (s, π (s)) + 0

= 0.

Thus, by mathematical induction, we have that Q̂πh(s, π(s)) = 0 for any non-negative integer h.

The term Q̂πh(s, a) for any a ∈ A. Consider the h-step optimal action value function:

Q̂πh(s, a) = R̂PBRS (s, a) + γ
∑
s′∈S

T (s′ | s, a) Q̂πh−1 (s′, π (s′))

= R̂PBRS (s, a) + 0

= R (s, a) + γ
∑
s′∈S

T (s′ | s, a)V
∗
∞ (s′)− V ∗∞ (s)

= Q
∗
∞ (s, a)− V ∗∞ (s) .

Finally, by combining these two terms, we get:

δ̂πh(s, a) = Q̂πh(s, π(s))− Q̂πh(s, a) = V
∗
∞ (s)−Q∗∞ (s, a) = δ

∗
∞(s, a).
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B.2 Proof of Proposition 2

Proposition 2. For any given Z ⊆ S\G, the problem (P1) is a concave optimization problem in
R ∈ R|S|·|A| with linear constraints. Further, the feasible set of the problem (P1) is non-empty.

Proof. We write the problem (P1) explicitly as follows:

max
R

∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗s

`(δπ
†

h (s, a)) (3)

subject to R (s, a) = 0, ∀s ∈ S\ {Z ∪ G} , a ∈ A (4)

Qπ
†

∞ (s, a) = R(s, a) + γ
∑
s′∈S

T (s′|s, a)Qπ
†

∞ (s′, π†(s′)), ∀s ∈ S, a ∈ A, π† ∈ Π
†

(5)

Qπ
†

∞ (s, π†(s)) ≥ Qπ
†

∞ (s, a) + δ
∗
∞(s), ∀s ∈ S, a ∈ A\Π∗s, π† ∈ Π

†
(6)

Qπ
†

0 (s, a) = R(s, a), ∀s ∈ S, a ∈ A, π† ∈ Π
†

(7)

Qπ
†

h (s, a) = R(s, a) + γ
∑
s′∈S

T (s′|s, a)Qπ
†

h−1(s′, π(s′)), ∀s ∈ S, a ∈ A, h ∈ H, π† ∈ Π
†

(8)

δπ
†

h (s, a) = Qπh(s, π†(s))−Qπ
†

h (s, a),∀s ∈ S, a ∈ A, h ∈ H, π† ∈ Π
†

(9)
|R (s, a)| ≤ Rmax, ∀s ∈ S, a ∈ A (10)

In the following, we show that the above problem is a concave optimization problem (the objective is
concave and the constraints are linear) by writing it in the matrix form as follows:

max
R∈R|S|·|A|

∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗s

`
(〈
wπ
†

h;(s,a), R
〉)

subject to A ·R � b,

for some vectors wπ
†

h;(s,a), b ∈ R|S|·|A|, and some matrix A ∈ R|S|·|A|×|S|·|A|.

Notation. We mainly follow the notation from [58]. Given a deterministic policy π : S → A, we
define the transition matrix Tπ ∈ R|S|·|A|×|S|·|A| induced by π as follows:

[Tπ](s,a),(s′,a′) :=

{
T (s′|s, a), if a′ = π(s′)

0, otherwise.

Also, for any s ∈ S, we define Idπ (s) ∈ R|A|×|A| as follows:

[Idπ (s)]:,a :=

{
1, if a = π(s)

0, otherwise.

Then, we define Idπ ∈ R|S|·|A|×|S|·|A| as a block diagonal matrix with block size of |A| × |A|, and
Idπ (s) as the sth diagonal block, ∀s ∈ S. We define the diagonal matrix LΠ

∗ ∈ R|S|·|A|×|S|·|A|,
whose (s, a)th diagonal entry is given by:

[LΠ
∗ ]

(s,a),(s,a)
:=

{
0, if a ∈ Π

∗
s

1, otherwise.

We define the diagonal matrix LZ ∈ R|S|·|A|×|S|·|A|, whose (s, a)th diagonal entry is given by:

[LZ ](s,a),(s,a) :=

{
0, if s ∈ Z
1, otherwise.

Let ei ∈ R|S|·|A| be a vector having 1 only in the ith entry, and 0 elsewhere. Let δ
∗
∞ ∈ R|S|·|A| be

a vector such that its (s, a)th entry is given by
[
δ
∗
∞

]
(s,a)

= δ
∗
∞ (s) ,∀a ∈ A. Let 1 ∈ R|S|·|A| be a

vector of all ones. Let Id ∈ R|S|·|A|×|S|·|A| be the identity matrix.
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Bound constraint. The bound constraint in Eq. (10) can be written as follows:

Rmax · 1 � R � −Rmax · 1.

The above is linear inequality in R.

Sparsity constraint. The sparsity constraint in Eq. (4) can be written as follows:

LZR = 0.

The above is linear equality in R.

Global optimality constraints. The recursive form of the action value function Qπ∞(s, a) =
R(s, a) + γ

∑
s′∈S T (s′ | s, a)Qπ∞(s′, π(s′)) can be written in the matrix form as follows:

Qπ∞ = R+ γTπQ
π
∞ =⇒ Qπ∞ = (Id− γTπ)

−1
R.

Then, the global optimality constraints in Eq. (6) can be written as follows, for all π† ∈ Π
†
:

(Idπ† − Id)Qπ
†

∞ � LΠ
∗δ
∗
∞ =⇒ (Idπ† − Id) (Id− γTπ†)

−1
R � LΠ

∗δ
∗
∞.

The above is linear inequality in R.

Information I`(R) is concave in R. For h = 0, Qπ0 (s, a) = R (s, a) can be written as follows:

Qπ0 = R.

For h = 1, Qπ1 (s, a) = R(s, a) + γ
∑
s′∈S T (s′ | s, a)Qπ0 (s′, π(s′)) can be written as follows:

Qπ1 = R+ γTπQ
π
0 = (Id + γTπ)R.

For h = 2, Qπ2 (s, a) = R(s, a) + γ
∑
s′∈S T (s′ | s, a)Qπ1 (s′, π(s′)) can be written as follows:

Qπ2 = R+ γTπQ
π
1 =

(
Id + γTπ + γ2TπTπ

)
R.

For any h, Qπh(s, a) = R(s, a) + γ
∑
s′∈S T (s′ | s, a)Qπh−1(s′, π(s′)) can be written as follows:

Qπh =
(

Id + γTπ + γ2T (2)
π + · · ·+ γhT (h)

π

)
R,

where T (h)
π = TπTπ · · ·Tπ︸ ︷︷ ︸

h−times

. Then, we can write δπh(s, a) = Qπh(s, π(s))−Qπh(s, a) as follows:

δπh(s, a) =
〈

(Idπ − Id)
(

Id + γTπ + γ2T (2)
π + · · ·+ γhT (h)

π

)
R, e(s,a)

〉
,

i.e., δπh(s, a) is linear in R for every s ∈ S, and a ∈ A. From the above equation, one can easily

show that δπh(s, a) =
〈
wπ
†

h;(s,a), R
〉

, where wπ
†

h;(s,a) := ρπ
†

h;(s,π†(s)) − ρ
π†

h;(s,a). Since ` : R → R is
monotonically non-decreasing concave function, we have that ` ◦ δπh(s, a) is concave [59]. From the
fact that the sum of concave functions is concave, I`(R) is concave in R.

In summary, for the problem (P1), the objective is concave and the constraints are of linear form
(A ·R � b). Thus, (P1) is a concave optimization problem.

Feasibility. One can easily verify that the original reward function R satisfies all the constraints
in (4)-(10) of the sparse reward shaping formulation for any Z , i.e., R is a feasible solution. Further-
more, when Z = S\G, the potential-based shaped reward function R̂PBRS given in (1) satisfies all
the constraints in (4)-(10) of the sparse reward shaping formulation.
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C Additional Details and Proofs for Theoretical Analysis (Section 3.4)

First, we define the submodularity and weak submodularity notions of a normalized set function,
which are used in the proof of Theorem 1.
Definition 2 (Submodularity [60]). Let g : 2V → R be a normalized set function (g(∅) = 0). g is
submodular if for allW ⊆ V and j, k ∈ V\W:

g(W ∪ {k})− g(W) ≥ g(W ∪ {j, k})− g(W ∪ {j}).

Definition 3 (Weak Submodularity [30]). Let Y,X ⊂ V be two disjoint sets, and g : 2V → R be a
normalized set function. The submodularity ratio of X with respect to Y is given by

γX ,Y :=

∑
j∈Y (g (X ∪ {j})− g (X ))

g (X ∪ Y)− g (X )
. (11)

The submodularity ratio of a setW with respect to an integer k is given by

γW,k := min
X ,Y:X∩Y=∅,X⊆W,|Y|≤k

γX ,Y .

Let γ > 0. We call a function γ-weakly submodular at a setW and an integer k if γW,k ≥ γ.

A set function g : 2V → R is called monotone if and only if g(X ) ≤ g(Y) for all X ⊆ Y .

For any x ∈ R|S|·|A| and U ⊆ S, xU is defined as xU (j, a) = x (j, a) ,∀a ∈ A when j ∈ U , and
xU (j, a) = 0,∀a ∈ A otherwise. For any j ∈ S, ej ∈ R|S|·|A| is defined as ej (j′, a) = 1,∀a ∈ A
when j′ = j, and ej (j′, a) = 0,∀a ∈ A otherwise. The following assumption captures the additional
requirements on the regularized informativeness criterion I reg

` :

Assumption 2. Let Z be any set such that Z ⊆ S\G. The regularized informativeness criterion I reg
`

satisfies the following:

•
∥∥∥∇I reg

` (R(Z))
(Z∪G)

∥∥∥
2
≤ dopt

max,

•
∥∥∥∇I reg

` (R(Z))
j

∥∥∥
2
≥ dnon

min, ∀j ∈ S\(Z ∪ G),

•
∥∥∥∇I reg

` (R(Z))
j

∥∥∥
∞
≤ dnon

max,∀j ∈ S\(Z ∪ G), and

• ∃κ ≤ 1 such that ∀j ∈ S\(Z ∪ G) : R(Z) ± κ · dnonmax

M̃|Z|+|G|+1
· ej ∈ R.

C.1 Proof of Theorem 1

Let Z ⊆ S\G. Consider the set function f : 2S → R+ defined in (2):

f(Z) = max
R:supp(R)⊆Z∪G,R∈R

(I reg
` (R)− I reg

` (R(∅))) + λ · (D(Z ∪ G)−D(G)),

where R(∅) = arg maxR:supp(R)⊆G,R∈R I
reg
` (R). Note that f is a normalized, monotone set function.

For a given sparsity budget B, let ZGreedy
B be the set selected by our Algorithm 1, and ZOPT

B be the
optimal set that maximizes the regularized variant of problem (P3). The corresponding f values of
these sets are denoted by fGreedy

B and fOPT
B respectively.

Theorem 1. Let I reg
` satisfies Assumption 1 and Assumption 2 requirements. Then, we have fGreedy

B ≥
(1− e−γ) fOPT

B , where γ =
κ·m2B+|G|
M2B+|G|

· (dnonmin)2

(doptmax)
2
+(dnonmin)

2 .

Proof. If f is γ-weakly submodular at the set ZB and the integer B (i.e., γZB ,B ≥ γ), then, using
Theorem 3 from [29] (which holds for any normalized, monotone, γ-weakly submodular function),
we can complete the proof of Theorem 1:

fGreedy ≥
(

1− e
−γ
ZGreedy
B

,B

)
fOPT ≥

(
1− e−γ

)
fOPT.
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Thus, it remains to prove the weak submodularity of f . Let f0 denote f with λ = 0, and define
D̄ (Z) := D (Z ∪ G)−D (G). Note that D̄ is a normalized, monotone, submodular function. Then,
the submodularity ratio of f with general λ is bounded as follows:

γX ,Y =

∑
j∈Y (f0 (X ∪ {j})− f0 (X )) + λ

∑
j∈Y

(
D̄ (X ∪ {j})− D̄ (X )

)
f0 (X ∪ Y)− f0 (X ) + λ

(
D̄ (X ∪ Y)− D̄ (X )

)
≥ min

(∑
j∈Y (f0 (X ∪ {j})− f0 (X ))

f0 (X ∪ Y)− f0 (X )
, 1

)
,

where the inequality is due to the fact that the submodularity ratio of D̄ is ≥ 1 [29]. If the submodu-
larity ratio of f0 is ≥ 1, then γX ,Y ≥ 1. This would lead to the following bound:

fGreedy ≥
(

1− 1

e

)
fOPT.

If the submodularity ratio of f0 is ≤ 1 (this would be the case in general; thus, we consider this
case in the theorem), then the submodularity ratio γX ,Y of f with general λ is lower bounded by

the submodularity ratio of f0. By applying Lemma 1 with
(
ZGreedy
B , B

)
, we have that (since∣∣∣ZGreedy

B

∣∣∣ = B):

γZGreedy
B ,B ≥

κ ·m2B+|G|

M2B+|G|
· (dnon

min)
2(

dopt
max

)2
+ (dnon

min)
2

=: γ.

This completes the proof.

The following lemma provides a lower bound on the submodularity ratio γZ,k of f0 (for any Z s.t.
|Z| ≤ B, and k ≤ B):
Lemma 1. Let the regularized informativeness criterion I reg

` satisfies the Assumption 1 and 2. Then,
for any set Z s.t. Z ⊆ S\G, |Z| ≤ B, and k ≤ B, the submodularity ratio γZ,k of f0 is lower
bounded by

γZ,k ≥
κ ·m|Z|+|G|+k
M|Z|+|G|+k

· (dnon
min)

2(
dopt

max

)2
+ (dnon

min)
2
.

Proof. Since I reg
` ism2B+|G|-restricted strongly concave andM2B+|G|-restricted smooth on Ω2B+|G|,

we have that I reg
` is m|Z|+|G|+k-restricted strongly concave and M|Z|+|G|+k-restricted smooth on

Ω|Z|+|G|+k for any Z s.t. |Z| ≤ B, and k ≤ B. In addition I reg
` is M̃|Z|+|G|+1-restricted smooth

on Ω̃|Z|+|G|+1 since Ω|Z|+|G|+k ⊇ Ω̃|Z|+|G|+k ⊇ Ω̃|Z|+|G|+1 (and M|Z|+|G|+k ≥ M̃|Z|+|G|+k ≥
M̃|Z|+|G|+1).

Consider the two sets X ,Y such that (X ∪ G) ∩ Y = ∅, X ⊆ Z , and |Y| ≤ k. We proceed by upper
bounding the denominator and lower bounding the numerator of Eq. (11). Let k = |X |+ |G|+ k.
First, we apply Definition 1 with x = R(X ) and y = R(X∪Y) (note that (x, y) ∈ Ωk):

mk

2

∥∥∥R(X∪Y) −R(X )
∥∥∥2

2
≤ I reg

` (R(X ))− I reg
` (R(X∪Y)) +

〈
∇I reg

` (R(X )), R(X∪Y) −R(X )
〉
.

Rearranging and noting that I reg
` is monotone for increasing supports:

0 ≤ I reg
` (R(X∪Y))− I reg

` (R(X )) ≤
〈
∇I reg

` (R(X )), R(X∪Y) −R(X )
〉
−
mk

2

∥∥∥R(X∪Y) −R(X )
∥∥∥2

2

≤ max
v:v(X∪Y∪G)c=0

〈
∇I reg

` (R(X )), v −R(X )
〉
−
mk

2

∥∥∥v −R(X )
∥∥∥2

2
.

Setting v = R(X ) + 1
mk
∇I reg

` (R(X ))X∪Y∪G that achieves the maximum above, we have

0 ≤ I reg
` (R(X∪Y))− I reg

` (R(X )) ≤ 1

2mk

∥∥∥∇I reg
` (R(X ))X∪Y∪G

∥∥∥2

2
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=
1

2mk

(∥∥∥∇I reg
` (R(X ))X∪G

∥∥∥2

2
+
∥∥∥∇I reg

` (R(X ))Y

∥∥∥2

2

)
,

where the last equality is due to (X ∪ G) ∩ Y = ∅.

Next, consider a single state j ∈ Y . The function I reg
` at R(X∪{j}) is larger than the function

at any other R on the same support. In particular, I reg
`

(
R(X∪{j})) ≥ I reg

` (yj), where yj :=

R(X ) + κ
M̃|X|+|G|+1

∇I reg
` (R(X ))

j
. Noting that

(
x = R(X ), y = yj

)
∈ Ω̃|X |+|G|+1 and applying

Definition 1:

I reg
` (R(X∪{j}))− I reg

` (R(X ))

≥ I reg
`

(
R(X ) +

κ

M̃|X |+|G|+1

∇I reg
` (R(X ))

j

)
− I reg

` (R(X ))

≥

〈
∇I reg

` (R(X )),
κ

M̃|X |+|G|+1

∇I reg
` (R(X ))

j

〉
−
M̃|X |+|G|+1

2

∥∥∥∥∥ κ

M̃|X |+|G|+1

∇I reg
` (R(X ))

j

∥∥∥∥∥
2

2

=
κ

M̃|X |+|G|+1

∥∥∥∇I reg
` (R(X ))

j

∥∥∥2

2
− κ2

2M̃|X |+|G|+1

∥∥∥∇I reg
` (R(X ))

j

∥∥∥2

2

≥ κ

2M̃|X |+|G|+1

∥∥∥∇I reg
` (R(X ))

j

∥∥∥2

2
.

Summing over all j ∈ Y:∑
j∈Y

[
I reg
` (R(X∪{j}))− I reg

` (R(X ))
]
≥ κ

2M̃|X |+|G|+1

∑
j∈Y

∥∥∥∇I reg
` (R(X ))

j

∥∥∥2

2

=
κ

2M̃|X |+|G|+1

∥∥∥∇I reg
` (R(X ))Y

∥∥∥2

2
.

Then, we have:

γX ,Y ≥
κ ·m|X |+|G|+k
M̃|X |+|G|+1

·

∥∥∥∇I reg
` (R(X ))Y

∥∥∥2

2∥∥∥∇I reg
` (R(X ))X∪G

∥∥∥2

2
+
∥∥∥∇I reg

` (R(X ))Y

∥∥∥2

2

=
κ ·m|X |+|G|+k
M̃|X |+|G|+1

· 1

‖∇I reg
` (R(X))X∪G‖

2

2

‖∇I reg
` (R(X))Y‖

2

2

+ 1

(i)

≥
κ ·m|X |+|G|+k
M̃|X |+|G|+1

· 1

(doptmax)
2

(dnonmin)
2 + 1

(ii)

≥
κ ·m|Z|+|G|+k
M|Z|+|G|+k

· 1

(doptmax)
2

(dnonmin)
2 + 1

,

where (i) is due to
∥∥∥∇I reg

` (R(X ))X∪G

∥∥∥2

2
≤ (dopt

max)
2 and

∥∥∥∇I reg
` (R(X ))Y

∥∥∥2

2
≥ |Y| (dnon

min)
2 ≥

(dnon
min)

2 (see Assumption 2); and (ii) is due to m|X |+|G|+k ≥ m|Z|+|G|+k and M|Z|+|G|+k ≥
M̃|X |+|G|+k ≥ M̃|X |+|G|+1 (note that 1 ≤ |Y| ≤ k and 1 ≤ |X | ≤ |Z|).
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D Additional Details and Proofs for using State Abstractions (Section 3.5)

We present an extension of our EXPRD framework that is scalable to large state spaces by leveraging
the techniques from state abstraction literature [32–34]. We use an abstraction φ : S → Xφ,
which is a mapping from high-dimensional state-space S to a low-dimensional latent space Xφ. Let
φ−1(x) := {s ∈ S : φ(s) = x} ,∀x ∈ Xφ. We propose the following pipeline (called EXPRD-ABS):

1. By using the original MDP M =
(
S,A, T, γ, P0, R

)
and the abstraction φ, we construct an

abstract MDP Mφ =
(
Xφ,A, Tφ, γ, P0, Rφ

)
as follows, ∀x, x′ ∈ Xφ, a ∈ A: Tφ(x′|x, a) =

1
|φ−1(x)|

∑
s∈φ−1(x)

∑
s′∈φ−1(x′) T (s′|s, a), and Rφ(x, a) = 1

|φ−1(x)|
∑
s∈φ−1(x)R(s, a). We

compute the set of optimal policies Π
∗
φ for the MDP Mφ.

2. We run our EXPRD framework on Mφ with Π† = Π
∗
φ, and the resulting reward is denoted R̂φ.

The corresponding MDP is denoted by M̂φ =
(
Xφ,A, Tφ, γ, P0, R̂φ

)
.

3. We define the reward function R̂ on the state space S as follows: R̂(s, a) = R̂φ(φ(s), a). The

corresponding MDP is denoted by M̂ =
(
S,A, T, γ, P0, R̂

)
.

In summary, the EXPRD-ABS pipeline is given by: M →Mφ → M̂φ → M̂ .

Define εφ := minx∈Xφ mina∈A\Π∗φ,x
δ
∗
φ,∞(x, a), where δ

∗
φ,∞ is the∞-step optimality gap in the

abstract MDP Mφ =
(
Xφ,A, Tφ, γ, P0, Rφ

)
. For our analysis, we require the abstraction φ : S →

Xφ to satisfy the following conditions:

• φ is (εR, εT )-approximate model irrelevant abstraction [34] for the MDP M =
(
S,A, T, γ, P0, R

)
,

i.e., ∀s1, s2 ∈ S where φ(s1) = φ(s2), we have, ∀a ∈ A:
∣∣R(s1, a)−R(s2, a)

∣∣ ≤ εR, and∑
x′∈Xφ

∣∣∣∑s′∈φ−1(x′) (T (s′|s1, a)− T (s′|s2, a))
∣∣∣ ≤ εT .

• The change in the transition dynamics T during the compression-decompression process using the
abstraction φ is very small, i.e., maxs,a

∑
s′

∣∣∣T (s′|s, a)− Tφ(φ(s′)|φ(s),a)
|φ−1(φ(s′))|

∣∣∣ ≤ (1−γ)2εφ
2γRmax

.

The following theorem shows that any optimal policy induced by the reward R̂ resulting from the
EXPRD-ABS pipeline acts nearly optimal w.r.t. R:
Theorem 2. Let φ : S → Xφ satisfy the conditions discussed above. The original reward function R,
and the reward function R̂ output by the EXPRD-ABS pipeline satisfy the following: maxs

∣∣V ∗∞(s)−
V
π

∞(s)
∣∣ ≤ 2εR

(1−γ)2 + γ·εT ·Rmax

2(1−γ)3 ,∀π ∈ Π̂∗, i.e., any optimal policy induced by R̂ acts nearly optimal

w.r.t. R.

Proof. Given an abstract policy π : Xφ → A acting onXφ, we define the lifted policy [π]↑M : S → A
as [π]↑M (s) := π (φ (s)) ,∀s ∈ S . Similarly, given a set of policies Π = {π : Xφ → A}, we define

[Π]↑M := {[π]↑M : π ∈ Π}. We define an auxiliary MDP M̃ =
(
S,A, T̃ , γ, P0, R̃

)
, where

R̃(s, a) = R̂φ(φ(s), a), and T̃ (s′|s, a) =
Tφ(φ(s′)|φ(s),a)
|φ−1(φ(s′))| .

Step M → Mφ. Since φ is (εR, εT )-approximate model irrelevant abstraction, we have the
following (see [34]):∣∣∣Q∗∞(s, a)−Q∗φ,∞(φ(s), a)

∣∣∣ ≤ εR
1− γ

+
γ · εT ·Rmax

2(1− γ)2
, ∀s ∈ S, a ∈ A,

where Q
∗
φ,∞ is the optimal action value function of the MDP Mφ. Then, for any π ∈

[
Π
∗
φ

]
↑M

, we

have the following (see [61]):

max
s

∣∣∣V ∗∞(s)− V π∞(s)
∣∣∣ ≤ 2

1− γ
·max
s,a

∣∣∣Q∗∞(s, a)−Q∗φ,∞(φ(s), a)
∣∣∣ ≤ 2εR

(1− γ)2
+
γ · εT ·Rmax

2(1− γ)3
,

i.e., any optimal policy of Mφ, when lifted to S, acts as a near-optimal policy in M .
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Step Mφ → M̂φ. In the step 2 of our EXPRD-ABS pipeline, we set Π† = Π
∗
φ. Our EXPRD frame-

work ensures that any optimal policy for M̂φ is also optimal in Mφ, i.e., Π̂∗φ ⊆ Π
∗
φ. In addition, since

Π† = Π
∗
φ and Π† ⊆ Π̂∗φ, we have that Π̂∗φ = Π

∗
φ.

Step M̂φ → M̃ . By the definition of M̃ , φ is a model irrelevant abstraction for M̃ . Thus, we have
the following (see [34]):

Q̃∗∞(s, a) = Q̂∗φ,∞(φ(s), a), ∀s ∈ S, a ∈ A. (12)

From the above equation, note that Π̃∗ =
[
Π̂∗φ

]
↑M̃

. Finally, we have that, for any π ∈ Π̃∗:

max
s

∣∣∣V ∗∞(s)− V π∞(s)
∣∣∣ ≤ 2εR

(1− γ)2
+
γ · εT ·Rmax

2(1− γ)3
,

i.e., any optimal policy of M̃ acts as a near-optimal policy in the original MDP M .

Optimality in M̃ . Our EXPRD framework guarantees the following:

Q̂π
†

φ,∞(x, π†(x)) ≥ Q̂π
†

φ,∞(x, a) + εφ, ∀x ∈ Xφ, a ∈ A\Π
∗
φ,x, π

† ∈ Π†,

which can be rewritten as follows:

Q̂∗φ,∞(φ(s), π†(φ(s))) ≥ Q̂∗φ,∞(φ(s), a) + εφ, ∀s ∈ S, a ∈ A\Π∗φ,φ(s), π
† ∈ Π†.

From the above inequality and using (12), we have the following:

Q̃∗∞(s,
[
π†
]
↑M̃ (s)) ≥ Q̃∗∞(s, a) + εφ, ∀s ∈ S, a ∈ A\

[
Π
∗
φ

]
↑M̃,s

,
[
π†
]
↑M̃ ∈

[
Π†
]
↑M̃ ,

which can be rewritten as follows:

Q̃∗∞(s, π∗(s)) ≥ Q̃∗∞(s, a) + εφ, ∀s ∈ S, a ∈ A\Π̃∗s, π∗ ∈ Π̃∗.

From the above inequality, for any deterministic policy π /∈ Π̃∗, we have (at least on one state s ∈ S):

Ṽ ∗∞(s) = Q̃∗∞(s, π∗(s)) ≥ Q̃∗∞(s, π(s)) + εφ ≥ Q̃π∞(s, π(s)) + εφ = Ṽ π∞(s) + εφ,

i.e., maxs

∣∣∣Ṽ ∗∞(s)− Ṽ π∞(s)
∣∣∣ ≥ εφ.

Comparison M̂ vs. M̃ . Now, we show that any deterministic optimal policy in M̂ is also optimal
in M̃ , i.e., Π̂∗ ⊆ Π̃∗. Let maxs,a

∥∥∥T (·|s, a)− T̃ (·|s, a)
∥∥∥

1
= βT . Then, for any π̂ ∈ Π̂∗ and s ∈ S,

we have:∣∣∣Ṽ ∗∞(s)− Ṽ π̂∞(s)
∣∣∣ ≤ ∣∣∣Ṽ ∗∞(s)− V̂ π̂∞(s)

∣∣∣+
∣∣∣V̂ π̂∞(s)− Ṽ π̂∞(s)

∣∣∣ ≤ 2γβTRmax

(1− γ)2
< εφ,

where the second last inequality is due to Lemma 3 and Lemma 4 from [36]. Then, from the optimality
in M̃ , it must me the case that π̂ ∈ Π̃∗.

Finally, for any π ∈ Π̂∗, we have:

max
s

∣∣∣V ∗∞(s)− V π∞(s)
∣∣∣ ≤ 2εR

(1− γ)2
+
γ · εT ·Rmax

2(1− γ)3
,

i.e., any optimal policy of M̂ acts as a near-optimal policy in the original MDP M .
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E Additional Details and Results for ROOMSNAVENV (Section 4.1)

In this appendix, we expand on Section 4.1 and provide a more detailed description of the setup
as well as additional results. Full implementation of our techniques is available in a Github repo
as mentioned in Footnote 1.

Recall that the MDP for ROOMSNAVENV has |S| = 49 states corresponding to cells in the grid-world
and four actions given by A := {“up”, “left”, “down”, “right”}. To refer to a specific state, we will
use an enumeration scheme where the bottom-left cell is s = 0; the cell numbers increase going from
left to right and bottom to top. With this convention, the top-right cell with the goal is s = 48, and four
“gates” (cells that need to be crossed to go across rooms when navigating to the goal) correspond to
states {9, 15, 19, 37}. In this MDP, we have one goal state s = 48, i.e., the set G in the problem (P3)
is {48}. Furthermore, the original reward function has R(48, “right”) = Rmax and is 0 elsewhere.

Additional details for the techniques evaluated. Below, we describe different reward design
techniques along with hyperparameters that are evaluated in this section. More concretely, we have:

(i) R̂ORIG simply represents the default reward function R.

(ii) R̂PBRS is obtained via the PBRS technique based on Eq. 1, see Section 2.

(iii) R̂CRAFT(B) is designed manually based on the ideas discussed in Section 2. For selecting the
states that we will assign non-zero rewards, we first develop a set function D as described below
after this list. Then, for a fixed budget B, we pick a set of top B + |G| states that maximize the
value of the set function D. Then, we assign rewards to these picked states as follows: (a) for
the B states excluding |G| goal states, we assign a reward of +1 for one of the optimal action
and −1 for others; (b) for |G| goal states, we assign the same rewards as R. For the evaluation,
we use B = 5 and denote the function as R̂CRAFT(B=5).

(iv) R̂PBRS-CRAFT(B=5) is obtained via the reward shaping technique from [42]. First, we compute the
optimal state value function V̂ ∗∞ w.r.t. R̂CRAFT(B=5) designed above, i.e., we need to solve the task
with the reward function R̂CRAFT(B=5). Then, we obtain the reward function R̂PBRS-CRAFT(B=5)

using the PBRS technique based on Eq. 1 with the value function V̂ ∗∞ instead of the optimal
value function V

∗
∞ w.r.t. R.

(v) R̂EXPRD(B,λ→∞) is the reward function designed by our EXPRD framework for a budget B and
an extreme setting of λ→∞. For this setting, the problem (P3) reduces to (P1) corresponding
to the reward design with subgoals pre-selected by the function D—we use the same function
D that we used for R̂CRAFT above. For the evaluation, we use B = 5 and denote the designed
reward function as R̂EXPRD(B=5,λ→∞). As discussed in Section 3, the budget B here refers to
the additional number of states that are allowed to be in supp(R) along with the goal states G
(see (P3)). Apart from hyperparameters B and λ, EXPRD requires a choice of Π†,H, and I(R)
– we discuss that below after this list.

(vi) R̂EXPRD(B,λ=0) is the reward function designed by our EXPRD framework for a budget B and
an important setting of λ = 0 where the problem (P3) reduces to (P2) corresponding to fully
automated reward design without using any prior knowledge about the importance of states.
For budget B, we consider values from {3, 5, |S|} and denote the designed reward functions
as R̂EXPRD(B=3,λ=0), R̂EXPRD(B=5,λ=0), and R̂EXPRD(B=|S|,λ=0). As stated above, the budget
B here refers to the additional number of states that are allowed to be in supp(R) along with
the goal states G; the choice of Π†,H, and I(R) is discussed below.

Here we describe the set function D used for computing R̂CRAFT(B=5) and R̂EXPRD(B=5,λ→∞). For
the set function D, we used a simple modular function given by D(Z) :=

∑
s∈Z ws where ws is

a weight/score assigned to a state s capturing its importance in terms of reward design. We used
the following weights: ws = 2 for s = 48 (the goal state); ws = 1 for s = 9, s = 15, s = 19, and
s = 37 (the four “gates”); ws = 0.5 for s = 8, s = 11, s = 29, and s = 32 (centers of the four
rooms); and ws = 0.1 otherwise. Even though this function is simple, it captures the prior knowledge
one expects to intuitively apply in practice. In general, one could learn such D automatically using
the techniques from [21–24].
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Reward R̂ Sparseness Invariance property Informativeness Convergence: #Episodes to % value
|supp(R̂)| Eq. 13 Eq. 14 I(R̂) 25% 75% 95%

R̂ORIG 1 0.0009 0.0009 −0.1557 1, 688 6, 752 20, 570

R̂PBRS 49 0.0009 0.0009 0.0000 3 5 15

R̂CRAFT(B=5) 6 −4.8366 −0.1645 −0.1122 1010 ∞ ∞
R̂PBRS-CRAFT(B=5) 49 0.0009 0.0009 −0.0797 35 79 146

R̂EXPRD(B=5,λ→∞) 6 0.0000 0.0010 −0.1070 49 773 14, 252

R̂EXPRD(B=3,λ=0) 4 0.0000 0.0009 −0.0842 177 474 1, 514

R̂EXPRD(B=5,λ=0) 6 0.0000 0.0009 −0.0709 37 280 822

R̂EXPRD(B=|S|,λ=0) 49 0.0000 1.5147 0.0000 9 48 90

Figure 6: Results for ROOMSNAVENV. The designed reward functions are evaluated w.r.t. criteria of
sparseness, invariance, informativeness, and convergence. Here, the invariance property is captured
through two different notions stated in Eq. 13 and Eq. 14 (a negative value represents a violation
in the invariance property). Convergence is measured w.r.t the number of episodes needed to get
a specific % of the total expected reward, and are based on the convergence results in Figure 3a.

Apart from B and λ, EXPRD requires us to specify Π†, H, and I(R). For the results reported in
Figures 3 and 6, we use the following parameter choices for EXPRD: H = {1, 4, 8, 16, 32}, I(R)

is given by Eq. 15, and the set Π† contains only one policy from Π
∗
. Later in this section, we also

consider variations ofH and I(R), and report additional results in Figures 9 and 10.

Results w.r.t. different criteria. Next, we evaluate the above-mentioned designed reward functions
w.r.t. criteria of sparseness, invariance, informativeness, and convergence. Sparseness is measured by
|supp(R̂)|, and informativeness is measured by I(R̂) that is used in the optimization problem (P3).
Convergence is measured w.r.t the number of episodes needed to get a specific % of the total expected
reward, and is based on the convergence results in Figure 3a by taking various horizontal slices of the
convergence plot. To measure the invariance property, we consider two different notions stated below:

min
π̂∗∈Π̂∗

min
s∈S

(
Q
∗
∞(s, π̂∗(s))−Q∗∞(s, π∗(s))

)
for any π∗ ∈ Π

∗
(13)

min
π∈Π†

min
s∈S

min
a∈A\Π∗s

(
Q̂π∞(s, π(s))− Q̂π∞(s, a)

)
(14)

The notion in Eq. (13) looks at one of the optimal policy π̂∗ w.r.t. R̂, and compares the gap in Q
action values w.r.t. R – this quantity should be zero to ensure that none of the optimal policies w.r.t.
R̂ is suboptimal w.r.t. R. The notion in (14) is closer to the invariance constraint that we incorporate
in the optimization problem of EXPRD – this quantity should be non-negative to ensure that none
of the optimal policies w.r.t. R̂ is suboptimal w.r.t. R.

In Figure 6, we compare the designed reward functions w.r.t. these different criteria. In
the “Sparseness” column, the quantity |supp(R̂)| is B + 1 for R̂CRAFT(B=5), R̂EXPRD(B=5,λ→∞),
R̂EXPRD(B=3,λ=0), and R̂EXPRD(B=5,λ=0) as the goal states G are included in the design. In the
“Invariance property” columns, we see that R̂CRAFT(B=5) fails to satisfy the invariance property
highlighting the well-known “reward bugs” that can arise in this approach and mislead the agent
into learning suboptimal policies (see Section 2 and [2, 3]); this issue is further emphasized in the
“Convergence” columns for R̂CRAFT(B=5), highlighting that the agent is stuck with a suboptimal policy.

The last three columns related to “Convergence” highlight that the informativeness criteria we use
in the optimization problem is a useful indicator about the agent’s convergence when learning from
designed reward functions. Furthermore, EXPRD can provide an effective trade-off in sparseness
and informativeness while maintaining invariance property and speed up the agent’s convergence.
Even for small budgets of B = 3 or B = 5, the reward functions R̂EXPRD(3,λ=0) and R̂EXPRD(5,λ=0)

lead to substantial speedups in the agent’s convergence in contrast to the original reward function R.
Figures 7f and 7g further highlights that the states picked by EXPRD are important – the Algorithm 1
automatically picked the “gates” in the design process.
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Visualizations of the designed reward functions. Figure 7 below shows a visualization of the eight
different designed reward functions – this visualization is a variant of the visualization shown in
Figure 3, where only three reward functions were shown.
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(b) R̂PBRS
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(c) R̂CRAFT(B=5)
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(d) R̂PBRS-CRAFT(B=5)
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(e) R̂EXPRD(B=5,λ→∞)
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(f) R̂EXPRD(B=3,λ=0)
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(g) R̂EXPRD(B=5,λ=0)
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(h) R̂EXPRD(B=|S|,λ=0)

Figure 7: Results for ROOMSNAVENV. These plots show visualization of different designed reward
functions discussed in Figure 6 – this visualization is a variant of the visualization shown in Figure 3
where only three reward functions were shown. For each of the reward functions, the first plot titled
R(s, .) 6= 0 shows which states have a non-zero reward assigned to at least one action and are marked
with Gray color. The next four plots titledR(s, “up”),R(s, “left”),R(s, “down”),R(s, “right”) show
rewards assigned to each state/action: here, a negative reward is shown in Red color with sign “−”,
a positive reward is shown in Blue color with sign “+” and zero reward is shown in white. The mag-
nitude of the reward is indicated by Red or Blue color intensity (see color representation in Figure 3).
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Results w.r.t. variations in I(R). For the results reported in Figures 3 and 9a, we fix H =

{1, 4, 8, 16, 32}, the set Π† contains only one policy from Π
∗
, and we use the following functional

form for I(R) corresponding to the negated hinge loss:

I1(R) :=
1

|Π†| · |H| · |S|
·
∑
π†∈Π†

∑
h∈H

∑
s∈S

max
a∈A\Π∗s

(
−max(0, δ

∗
∞(s)− δπ

†

h (s, a))
)

(15)

Here, we perform additional experiments to understand the effect of variations in I(R) on the
reward functions designed by EXPRD. In Figures 9b, 9c, and 9d, we consider the following different
functional forms of I(R) corresponding to the negated hinge loss, respectively:

I2(R) :=
1

|Π†| · |H| · |S|
·
∑
π†∈Π†

∑
h∈H

∑
s∈S

max
a∈A\Π∗s

(
−max(0, δ

∗
∞(s, a)− δπ

†

h (s, a))
)

(16)

I3(R) :=
1

|Π†| · |H| · |S|
·
∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗s

(
−max(0, δ

∗
∞(s)− δπ

†

h (s, a))
)

(17)

I4(R) :=
1

|Π†| · |H| · |S|
·
∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗s

(
−max(0, δ

∗
∞(s, a)− δπ

†

h (s, a))
)

(18)

Finally, in Figures 9e and 9f, we use the following different functional forms of I(R) corresponding
to the linear and negated exponential functions (instead of negated hinge loss), respectively:

I5(R) :=
1

|Π†| · |H| · |S|
·
∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗s

(
−(δ

∗
∞(s, a)− δπ

†

h (s, a))
)

(19)

I6(R) :=
1

|Π†| · |H| · |S|
·
∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗s

(
− exp(δ

∗
∞(s, a)− δπ

†

h (s, a))
)

(20)

Additionally, we report results by varying the choice of the setH. More concretely, in Figure 10, we
fix the functional form of I(R) as given Eq. 15, the set Π† is same as above, and we vary the set
H as follows: {1, 4, 8, 16, 32}, {1, 2, . . . , 19, 20}, and {10, 11, . . . , 19, 20}. Note that the value 20
corresponds to 1

1−γ .

All the results in this section are reported as an average over 40 runs and convergence plots show
mean with standard error bars. Overall, the convergence behavior in Figures 9 and 10 suggests that
the reward functions designed by our EXPRD framework are effective under different functional
forms of I(R) and different choices of the setH.

Run times for a varying number of states and actions. Here, we report the run times for solving
an instance of the optimization problem (P1) when set Z is fixed. In order to easily vary the number
of states |S| as well as the number of actions |A|, we consider a simple chain navigation environment
where an agent can take “left” or “right” actions to navigate across the states (think of this as a
one-dimensional variant of ROOMSNAVENV). To increase |A| beyond size 2, we added dummy
actions which keep the agent’s location unchanged. For reporting the run times, we consider |Π†| = 1,
H = {1, 4, 8, 16, 32}, and vary |S| as well as |A|. These run times are reported when solving the
formulation of the optimization problem in terms of matrices as shown in Section 2. Numbers are
reported in seconds and are based on an average of 5 runs for each setting. These run times are
obtained by running the computation on a laptop machine with 2.3 GHz Quad-Core Intel Core i5
processor and 16 GB RAM. Overall, these run times are of the same order as that of solving an
optimization problem instance in environment poisoning attacks reported in the literature (see [19]
and Section 5).

|A|
|S|

25 50 75 100 125 150 175 200

2 0.42s 0.91s 1.63s 2.35s 3.22s 4.34s 6.42s 7.62s
5 1.11s 3.04s 6.73s 13.48s 26.89s 51.52s 102.22s 335.38s

Figure 8: Run times for solving an instance of the optimization problem (P1) as we vary |S| and |A|.
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(a) I(R) from Eq. 15
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(b) I(R) from Eq. 16
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(c) I(R) from Eq. 17
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(d) I(R) from Eq. 18
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(e) I(R) from Eq. 19
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(f) I(R) from Eq. 20

Figure 9: Results for ROOMSNAVENV. The plots show convergence in performance of the agent
w.r.t. training episodes. Here, performance is measured as the expected reward per episode computed
using R; note that the x-axis is exponential in scale. As the parameter choices for EXPRD, we use
H = {1, 4, 8, 16, 32} and the set Π† contains only one policy from Π

∗
. Each plot is obtained for

a different functional form of I(R).
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(a)H = {1, 4, 8, 16, 32}
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(b)H = {1, 2, . . . , 19, 20}
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(c)H = {10, 11, . . . , 19, 20}

Figure 10: Results for ROOMSNAVENV. The plots show convergence in performance of the agent
w.r.t. training episodes. Here, performance is measured as the expected reward per episode computed
using R; note that the x-axis is exponential in scale. As the parameter choices for EXPRD, we
use I(R) from Eq. 15 and the set Π† contains only one policy from Π

∗
. Each plot is obtained for

a different choice ofH. Note that Figure 10a is same as Figure 9a.
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F Additional Details and Results for LINEKEYNAVENV (Section 4.2)

In this appendix, we expand on Section 4.2 and provide a more detailed description of the setup
as well as additional results. Full implementation of our techniques is available in a Github repo
as mentioned in Footnote 1.

Additional details for the techniques evaluated. Below, we describe different reward design
techniques along with hyperparameters that are evaluated in this section. More concretely, we have:

(i) R̂ORIG simply represents the default reward function R.

(ii) R̂PBRS is obtained via the PBRS technique based on Eq. 1 and using an abstraction (see
Section 3.5, [35]). We first define an abstraction φ : S → Xφ as described below after this list.
Based on this abstraction φ, we construct an abstract MDP Mφ using the original MDP M ,
and compute the optimal state value function V

∗
φ,∞ in the abstract MDP Mφ. Finally, we lift

V
∗
φ,∞ to the original state space S (see Appendix D), and use the lifted value function as the

potential function for the PBRS.

(iii) R̂PBRS-ABS is a variant of R̂PBRS. Similar to R̂PBRS, we compute the optimal state value function
V
∗
φ,∞ in the abstract MDPMφ. We use this value function as the potential function for the PBRS

to design R̂PBRS,φ in the MDP Mφ. Finally, we lift R̂PBRS,φ to the original state space S (see
Appendix D). Note that R̂PBRS-ABS is not guaranteed to satisfy the invariance property of R̂PBRS.

(iv) R̂EXPRD(B,λ=0) is the reward function designed by our pipeline in Section 3.5 that relies on
our EXPRD framework and an abstraction. We use the same abstraction φ : S → Xφ for
all the techniques and is described below after this list. In the subroutine, we run EXPRD on
Mφ for a budget B = 5 and a full budget B = |Xφ|; we set λ = 0. We denote the designed
reward functions as R̂EXPRD(B=5,λ=0) and R̂EXPRD(B=|Xφ|,λ=0). Similar to Figure 9a, we fix
H = {1, 4, 8, 16, 32}, and we use the functional form given in Eq. 15 for I(R).

Here, we describe the abstraction φ used for computing R̂PBRS, R̂PBRS-ABS, and R̂EXPRD(B,λ=0).
Recall the description of the original MDP M from Section 4.2 – the state corresponds to the agent’s
status comprising of the current location (a point x in [0, 1]) and a binary flag whether the agent
has acquired a key. For a given hyperparameter α ∈ (0, 1), we obtain a finite set of locations X
by α-level discretization of the line segment [0, 1], leading to a 1/α number of locations. For the
abstraction φ associated with this discretization, the abstract MDP Mφ has |Xφ| = 2/α corresponding
to 1/α locations and a binary flag for the key. We use α = 0.05 in the experiments.

Results for Q-learning agent with 0.01-level location discretization. For the results reported in
the main paper (Figure 5a) and in Figure 11a, the agent uses Q-learning method in a discretized
version of the original MDP M with a 0.01-level discretization of the location (i.e., the number
of states in the agent’s discretized MDP is 200). The rest of the method’s parameters are same
as in Section 4.1, i.e., we use standard Q-learning method for the agent with a learning rate 0.5

and exploration factor 0.1 [7]. During training, the agent receives rewards based on R̂, however,
is evaluated based on R. A training episode ends when the maximum steps (set to 50) is reached
or an agent’s action terminates the episode. For this agent, the convergence results are reported
in Figure 11a as an average over 40 runs. These results demonstrate that all four designed reward
functions—R̂PBRS, R̂PBRS-ABS, R̂EXPRD(B=5,λ=0), R̂EXPRD(B=|Xφ|,λ=0)—substantially improves the
convergence, whereas the agent is not able to learn under R̂ORIG.

Results for Q-learning agent with 0.005-level location discretization. Here, we demonstrate
that our abstraction based pipeline in Section 3.5 is robust to the state representation used by the
agent. In particular, for the results reported in Figure 11b, the agent uses a discretized version
of the original MDP M with a 0.005-level discretization of the location. As in the setting above,
the agent uses Q-learning method in this discretized version of the original MDP M . Similar to
Figure 11a, Figure 11b demonstrates that the performance associated with all four designed reward
functions—R̂PBRS, R̂PBRS-ABS, R̂EXPRD(B=5,λ=0), R̂EXPRD(B=|Xφ|,λ=0)—substantially improves the
convergence in contrast to R̂ORIG.
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(a) Q-learning agent (0.01)
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(b) Q-learning agent (0.005)
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(c) REINFORCE agent

Figure 11: Results for LINEKEYNAVENV. These plots show convergence in performance of the
agent w.r.t. training episodes. Here, performance is measured as the expected reward per episode
computed using R. (a) shows convergence for a Q-learning agent who uses a 0.01-level discretization
of the location. (b) shows convergence for a Q-learning agent who uses a 0.005-level discretization
of the location. (c) shows convergence for an agent who uses REINFORCE learning method with
continuous representation of the location. All these agents receive rewards using the designed reward
functions shown in Figure 12.

Results for REINFORCE agent with continuous location representation. For the results reported
in Figure 11c, the agent uses the REINFORCE policy gradient method (see [7, 62]) in the original MDP
M with continuous representation of the location. We use a neural network to learn the policy, which
takes a continuous value in [0, 1] (the location) and a binary flag (whether the agent has acquired a
key) as the input representing a state s. The neural network has a hidden layer with 256 nodes. Given
a state s (the input to the network), the policy network outputs three scores for three different actions.
Then, applying softmax operation over these three scores gives the policy’s action distribution. We
use the REINFORCE method with a learning rate 0.0005. The gradient update happens at the end of
each episode. In contrast to the maximum episode length of 50 used by Q-learning agents, we set this
to 150 for the REINFORCE agent.

Figure 11c shows convergence results for this agent as an average over 20 runs; for each individual
run, we additionally applied a moving-window average over a window size of 100 episodes. With
neural representation for states, the policy invariance might not hold anymore. However, Figure 11c
demonstrates that all four designed reward functions—R̂PBRS, R̂PBRS-ABS, R̂EXPRD(B=5,λ=0),
R̂EXPRD(B=|Xφ|,λ=0)—substantially improves the convergence (slightly weaker compared to
Figures 11a and 11b), whereas the agent is not able to learn under R̂ORIG. This observation highlights
our pipeline in Section 3.5 as a promising approach for reward design in high-dimensional settings.
As future work, we plan to (both theoretically and empirically) investigate the effectiveness of the
reward functions designed by our EXPRD framework or its adaptions in accelerating the learning
process in high-dimensional settings for policy gradient methods.

Visualizations of the designed reward functions. Figure 12 shows visualization of the five different
designed reward functions discussed above – this visualization is a variant of the visualization
shown in Figure 5 where only three reward functions were shown. This visualization provides
important insights into the reward functions designed by EXPRD. Interestingly, R̂EXPRD(B=5,λ=0)

assigned a high positive reward for the “pick” action when the agent is in the locations with key (see
R((x,−), “pick”) bar in Figure 12d).
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Figure 12: Results for LINEKEYNAVENV. These plots show visualization of the five different
designed reward functions discussed above – this visualization is a variant of the visualization shown
in Figure 5 where only three reward functions were shown. For each of the reward functions, we
show a total of 8 horizontal bars. Denoting a state as tuple (x,−) (i.e., location x when the key
has not been picked) or (x, key) (i.e., location x when the key has been picked), these 8 horizontal
bars have the following interpretation. The two bars, titled R((x,−), ·) 6= 0 and R((x, key), ·) 6= 0,
indicate states in Gray color for which a non-zero reward is assigned to at least one action; in these
two bars, we have further highlighted the segment [0.9, 1] with the goal, and the segment [0.1, 0.2]
with the key. The remaining six bars, titled R((x,−), “left”), R((x,−), “right”), R((x,−), “pick”),
R((x, key), “left”), R((x, key), “right”), and R((x, key), “pick”), show rewards assigned to each
state/action: here, a negative reward is shown in Red color, a positive reward is shown in Blue color,
and zero reward is shown in white. The magnitude of the reward is indicated by Red or Blue color
intensity and we use the same color representation as in Figure 5.
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