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ABSTRACT

In this paper, we explore the two-point zeroth-order gradient estimator and iden-
tify the distribution of random perturbations that minimizes the estimator’s asymp-
totic variance as the perturbation stepsize tends to zero. We formulate it as a con-
strained functional optimization problem over the space of perturbation distribu-
tions. Our findings reveal that such desired perturbations can align directionally
with the true gradient, instead of maintaining a fixed length. While existing re-
search has largely focused on fixed-length perturbations, the potential advantages
of directional alignment have been overlooked. To address this gap, we delve into
the theoretical and empirical properties of the directionally aligned perturbation
(DAP) scheme, which adaptively offers higher accuracy along critical directions.
Additionally, we provide a convergence analysis for stochastic gradient descent
using δ-unbiased random perturbations, extending existing complexity bounds to
a wider range of perturbations. Through empirical evaluations on both synthetic
problems and practical tasks, we demonstrate that DAPs outperform traditional
methods under specific conditions.

1 INTRODUCTION

Zeroth-order optimization (ZOO) has emerged as a crucial paradigm in machine learning and opti-
mization, particularly in scenarios where gradient information is unavailable or prohibitively expen-
sive to compute. This approach has garnered significant attention in diverse applications, including
black-box adversarial attacks on machine learning models (Papernot et al., 2017; Chen et al., 2017;
Kurakin et al., 2016; Cai et al., 2021), physical-informed neural networks with external black-box
PDE solvers (Shen et al., 2024; Ma et al., 2025), memory-efficient fine-tuning of large language
models (Malladi et al., 2023; Zhang et al., 2024; Gautam et al., 2024), and reinforcement learning
(Choromanski et al., 2018; Lei et al., 2022). In recent years, the memory-efficient consideration mo-
tivates the one-bit approach (Cai et al., 2022a) and the study on the sparsity of the gradient (Cai et al.,
2022b). The randomized method (Akhavan et al., 2022) has also emerged as a critical direction.

In this paper, we consider the following unconstrained stochastic optimization problem:

min
xPRd

fpxq :“ Eξ„Ξfpx; ξq, (1)

where the random data ξ is sampled from the underlying distribution Ξ, and the objective function
fpxq is defined as the expectation of the smooth individual loss function fpx; ξq. While traditional
first-order methods utilize the stochastic gradient ∇fpx; ξq to update parameters, zeroth-order op-
timization relies solely on function evaluations. A common approach in this context is to use the
standard two-point estimator to approximate the gradient, given by:

∇̂fpx; ξ, vq :“
1

µ
rfpx ` µv; ξq ´ fpx; ξqs v, (2)

˚This work was partially supported by NSF IIS 2347592, 2348169, DBI 2405416, CCF 2348306, CNS
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where µ P R` is the perturbation stepsize and v P Rd is a random vector, typically drawn from a
uniform distribution on the sphere or a standard Gaussian distribution.

The theoretical analysis of zeroth-order optimization methods has been extensively studied in the
existing literature. Numerous studies have provided valuable insights into the convergence proper-
ties and performance guarantees of these methods under various conditions (Ghadimi & Lan, 2013;
Duchi et al., 2015; Ji et al., 2019; Sahu et al., 2019; Coope & Tappenden, 2020; Kozak et al., 2023;
Rando et al., 2024a;b). However, when studying algorithms like SGD in the zeroth-order setting,
these analyses typically consider specific types of random perturbations, such as Gaussian or uni-
form distributions. While this approach has yielded important theoretical results, it often lacks a
comprehensive explanation for why these particular random perturbations are optimal with respect
to the variance of gradient estimator, which suggests the need for a more comprehensive framework
that can accommodate a broader class of random perturbations. This observation leads us to the
central question in this paper:

Q1: How can we determine the class of distributions of random perturba-
tion in a zeroth-order estimator to minimize its variance?

Contribution 1: To address this central question, we develop a novel approach based on solving the
following constrained functional optimization problem:

min
V

Ev„V }∇̂fpx; ξ, vq ´ ∇fpx; ξ, vq}2

s.t. Ev„V vv
J “ δId,

where ∇̂fpx; ξ, vq is the two-point gradient estimator for approximating the stochastic gradient
∇fpx; ξq as defined in Eq. (2), and δ ą 0 is a given scaling constant. This optimization problem
is formulated over a functional space encompassing all probability distributions over Rd, subject to
a linear constraint. The constraint follows the existing zeroth-order optimization literature (Kozak
et al., 2023; Rando et al., 2024b), which ensures that the direction of the two-point gradient esti-
mator is the same as the true gradient as the perturbation step µ is sufficiently small. Moreover,
this constraint is linear in the distribution V when treating it as an integral with respect to a gen-
eral measure dV . The solution to this optimization problem reveals a broader condition such that
the two-point gradient estimator achieves the minimum variance: either (a) the perturbation vector
v should have a fixed length, or (b) the inner product between v and the true gradient ∇fpx; ξq

should have a fixed magnitude. These insights extend beyond a specific type of distribution such as
uniform distributions over the sphere, enabling us to characterize a more general class of effective
perturbations. These findings naturally lead us to our second question:

Q2: Can we leverage these theoretical insights to design novel random
perturbation schemes that outperform existing methods?

Contribution 2: Existing literature reveals that most perturbation methods focus primarily on en-
suring a fixed length for the perturbation vector v (for more details, we include a brief discussion in
Appendix A.2). In contrast, we propose a novel scheme based on our second condition: choosing
the random perturbation v such that

`

∇fpx; ξ, vqJv
˘2

“ δ}∇fpx; ξ, vq}2

where δ ą 0 is a given constant. In practice, we replace the true stochastic gradient ∇fpx; ξ, vq with
its estimation ∇̂fpx; ξ, vq. This new random perturbation offers several advantages: (1) It extends
the minimum-variance random perturbation design, which is particularly drawn by the theoretical
interest. (2) When certain components of the gradient are large, our proposed method exhibits strong
anisotropic behavior and presents higher accuracy in these directions. This characteristic indicates
that our approach is more focused on effective dimensions, potentially leading to more efficient
optimization in high-dimensional spaces with sparse gradients.

Contribution 3: Lastly, to validate the empirical performance of our proposed perturbation scheme,
we conduct extensive experiments across multiple domains to demonstrate the effectiveness of our
proposed method. On synthetic optimization problems, we show that our approach achieves signifi-
cantly higher accuracy in gradient estimation compared to standard methods. In language model
fine-tuning tasks, we apply our method to optimize the OPT-1.3b model on the SST-2 dataset,
demonstrating faster convergence and higher final accuracy relative to existing zeroth-order ap-
proaches.
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1.1 PAPER STRUCTURE

The remainder of this paper is organized as follows: In Section 2, we analyze the two-point gra-
dient estimator and derive the sufficient conditions for minimum-variance random perturbations.
This analysis reveals two distinct classes of perturbations which minimize the asymptotic variance
(as the perturbation step µ Ñ 0) of two-point gradient estimation: fixed-length perturbations and
directionally aligned perturbations (DAPs). In Section 3, we present the convergence analysis for
SGD algorithm using δ-unbiased random perturbations. We establish the complexity that matches
the common dependence on the dimension d while extends to a broader class of perturbations, in-
cluding both traditional fixed-length methods and our proposed DAPs. In Section 4, we introduce
the DAP in detail. We examine its unique properties, particularly their anisotropic behavior and
ability to adapt to gradient magnitudes across different dimensions. We also present a practical al-
gorithm for implementing DAPs. In Section 5, we provide extensive experimental validation of our
theoretical findings. We evaluate DAPs against traditional perturbation methods on both synthetic
optimization problems and practical machine learning tasks.

2 THE DERIVATION OF MINIMUM-VARIANCE RANDOM PERTURBATIONS

In this section, we consider the two-point gradient estimator for approximating the gradient ∇fpxq

and seek to derive the minimum-variance random perturbation strategy.

In gradient-based optimization, the descent direction is the opposite of the gradient vector. This
naturally leads to the following unbiased assumption up to a scaling constant δ which ensures that
the direction of estimated gradient is aligned with the true gradient:
Assumption 2.1 (δ-Unbiasedness). Let the two-point gradient estimator for estimating the stochas-
tic gradient ∇fpx; ξq be ∇̂fpx; ξ, vq :“ 1

µ rfpx ` µv; ξq ´ fpx; ξqs v. The distribution V satisfies
the δ-unbiasedness if EvvJ “ δId, where Id is the identity matrix with the dimension d.

It should be noted that the concept of unbiasedness here is in the asymptotic sense, which holds
when µ Ñ 0. This assumption is commonly satisfied in existing zeroth-order optimization litera-
ture. Many popular random perturbation distributions satisfy this assumption, including Gaussian
perturbation (Ghadimi & Lan, 2013; Duchi et al., 2015; Nesterov & Spokoiny, 2017), uniform dis-
tribution over a sphere (Lin et al., 2022; Duchi et al., 2015), random coordinate/direction sampling
(Zhang et al., 2020; Coope & Tappenden, 2020; Kozak et al., 2023), and Rademacher distribution
(Spall, 1987; 1992). Building on this assumption, our next goal is to characterize the accuracy of
∇̂fpx; ξ, vq in approximating the true gradient ∇fpx; ξ, vq, which may lead to insights applicable
across various perturbation schemes.

Let V be a distribution such that for any v „ V , ErvvJs “ δId, where Id denotes the d ˆ d identity
matrix. The approximation error of the two-point zeroth-order gradient estimator for estimating
∇fpxq can be represented as:

Ev„V }∇̂fpx; vq ´ ∇fpxq}2 “ Ev„V

›

›

›

›

1

µ
rfpx ` µvq ´ fpxqsv ´ ∇fpxq

›

›

›

›

2

pµ Ñ 0q
piq
« Ev„V }

`

vvJ ´ I
˘

∇fpxq}2

“ Ev„V ∇fpxqJpvvJq2∇fpxq ` p1 ´ 2δq}∇fpxq}2.

where (i) applies the Taylor theorem fpx`µvq´fpxq “ µx∇fpxq, vy`
µ2

2 xMcpvq, vy (Lemma C.9)
and assumes the perturbation step µ is sufficiently small.
Remark (Taylor Approximation Error). We note that the above approximation and the unbiasedness
of the two-point gradient estimation require the perturbation step µ Ñ 0. This requirement is
commonly made in practice such as the language model fine-tuning (Malladi et al., 2023) and other
theoretical convergence analysis (Duchi et al., 2015). With making additional assumptions such as
the L-smoothness (Assumption C.1), we can have more accurate upper bound which we will use in
our final convergence analysis presented in Theorem 3.1 and Corollary 3.2. More explicitly, if the
function f is L-smooth, then it must have a L-bounded Hessian matrix. Therefore, we obtain

E}∇̂fpx; vq ´ ∇fpxq}2 ď ∇fpxqJ
`

vvJ
˘2∇fpxq ` p1 ´ 2δq}∇fpxq}2 ` L2µ2E}v}4.
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We will later bound the first term with respect to }∇fpxq}2. For the last term, we will make the
perturbation step µ to be sufficiently small to control its magnitude. Due to the page limit, we
include more detailed discussions on the accumulative error caused by the gradient approximation
and the Taylor approximation in Appendix F.

For notational convenience, we let a :“ ∇fpxq. Our objective is to find the distribution V that
minimizes the above expectation, formalized as:

min
V

Ev„V a
JpvvJq2a (3)

s.t. Ev„V vv
J “ δId.

The optimization problem we have formulated presents two significant challenges: (1) It requires
us to optimize over an infinite-dimensional space of probability distributions, a task that demands
sophisticated mathematical tools.(2) The constraint Ev„V vv

J “ δId imposes specific second-order
moment conditions on the distribution, adding a layer of complexity to our analysis. To address
these challenges, we develop a novel analytical approach, described in the following theorem:
Theorem 2.2. Let v be a random vector following the distribution V with Ev„V vv

J “ δId and
a P Rd be a fixed vector. Then

dδ2}a}2 ď Ev„V a
JpvvJq2a ď δ2d}a}2 `

}a}2

2
ρV `

}a}2

2

b

ρ2V ` 4δ2pd ´ 1qρV ,

where ρV :“ E}v}4 ´ δ2d2. The equality holds if one of the following conditions holds:

(a) }v}2 “ dδ holds almost surely.

(b) paJvq2 “ δ}a}2 holds almost surely.
Remark. When the equality holds, the two-point gradient estimator defined as Eq. (2) has the mini-
mum variance Ev„V }∇̂fpx; vq ´ ∇fpxq}2 “

`

δ2d ´ 2δ ` 1
˘

}∇fpxq}2 ` Opµq.

Proof. The details can be found in Appendix B.1. Let f “ pvJaqv ´ δa and g “ p}v}2 ´ δdqa.
Then we obtain

pErgJf sq2
piq
ď E}f}2E}g}2,

where (i) applies the Cauchy-Schwarz inequality. Then we obatin a quadratic function with respect
to the objective function Ev„V a

JpvvJq2a. By analyzing the equality condition of the Cauchy-
Schwarz inequality (i.e. f and g are linearly dependent), we obtain the sufficient and necessary
condition for achieving the minimum variance.

On the Necessity of Minimum Variance Conditions In our previous theorem (Theorem 2.2),
we only present the sufficient condition of achieving the asymptotic minimum variance as the per-
turbation step µ tends to 0. A simple counterexample demonstrates that this condition may not be
necessary: consider a mixed distribution that takes the DAP with probability p and the uniform per-
turbation over the sphere with probability 1 ´ p. Such a distribution would also achieve minimum
variance while satisfying neither condition exclusively. Extending the condition to sufficient and
necessary condition would be an interesting but challenging topic. Here we present one potential
scenario where we may obtain the necessary and sufficient condition: In the one-dimensional case,
assuming the random perturbation satisfying Ev “ 0 and Ev2 “ 1. , the unique distribution of
achieving the minimum variance is the Rademacher distribution, which is naturally derived by con-
sidering the Taylor expansion. This case may further be extended to d-dimension with requiring all
entries in the random perturbation to be mutually independent; however, this extension would be out
of the scope of our paper and excludes many interesting random distributions. We will still stick to
our δ-unbiased perturbations (Assumption 2.1) in the remaining of our manuscript.

This theorem reveals two underexplored insights in zeroth-order optimization: (1) The performance
of the two-point gradient estimator is significantly influenced by the fourth-order moment of the
perturbation distribution V . Choosing a V with an infinite fourth-order moment can result in a poorly
performing zeroth-order gradient estimator. This highlights the crucial role of perturbation choice in
gradient estimation performance. In the meanwhile, when choosing the perturbation distribution V
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with the minimum variance, the complexity of SGD with two-point gradient estimation achieves the
best known sample complexity, which we discuss further in Section 3. (2) The presented condition
naturally leads to two distinct classes of random perturbations that achieve the minimum variance:

(a) Constant Magnitude Perturbations: This class of perturbations arises from the Constant Mag-
nitude condition: }v}2 “ dδ. This condition gives rise to a diverse range of distributions, in-
cluding:

• Uniform distribution over a sphere: v is uniformly distributed on the surface of a sphere
with radius d, i.e., }v}2 “ d.

• Rademacher distribution: Each entry of v is independently sampled as vi “ ˘
?
δ with

equal probability, resulting in }v}2 “ dδ.
• Random coordinate: v “

?
dδei, where ei is a standard basis vector chosen uniformly at

random from e1, ..., ed, ensuring }v}2 “ dδ.
They all share the property of having a constant }v}2, satisfying the condition (a) in Theorem 2.2.
Surprisingly, the widely used Gaussian distribution v „ N p0, Idq has kurtosis Er}v}4s “ d2 `

2d ą d2, which exceeds the minimum variance. Therefore, the Gaussian random perturbation
doesn’t belong to the class of minimum-variance random perturbations, despite its popularity in
many optimization algorithms.

(b) Directionally Aligned Perturbations (DAPs): This class of perturbations stems from the con-
dition: paJvq2 “ δ}a}2. This condition suggests that a perturbation that minimizes the asymp-
totic variance of two-point gradient estimator as µ Ñ 0 should be distributed on the surface
aJv “ ˘

?
δ}a}. This class of perturbations, while theoretically promising, remains largely

underexplored in the existing literature on zeroth-order optimization. We note that in the prac-
tice of zeroth order optimization, this condition can not be imposed like it is, since ∇fpxq is
commonly not available. We provide further discussion of this class of perturbations, including
potential sampling stratagies and practical considerations, in Section 4.

In the following sections, we will present the sample complexity of SGD under minimum-variance
conditions for the two-point gradient estimator. Specifically, we will examine scenarios where
Eq. (3) achieves the minimum value of dδ2}∇fpx; ξq}2. Subsequently, we will explore the proper-
ties of DAPs, which is rarely explored in the existing literature.

3 CONVERGENCE OF SGD WITH δ-UNBIASED RANDOM PERTURBATIONS

In existing literature, the approximation error of the gradient estimation Ev„V }∇̂fpx; vq´∇fpxq}2

is often tailored to a specific type of random perturbation by utilizing the analytical form of the
probability densities. By applying the upper bound obtained from Theorem 2.2, we are able to
build a more general upper bound which maintains the desired dependence on the dimension d.
In summary, we analyze the convergence of Stochastic Gradient Descent (SGD) with δ-unbiased
random perturbations for the optimization problem defined in Eq. (1) with smooth individual loss
functions fpx; ξq, on which we make several standard assumptions including the L-smoothness
(Assumption C.1) and the strong convexity (Assumption C.2) detailed in Appendix C.1.

To solve the optimization problem presented in Eq. (1), we employ the SGD algorithm. Starting
from the initial parameter x1, we repeatedly update the parameter with the update rule

xt`1 “ xt ´ η∇̂fpxt; ξt, vtq (4)

for t “ 1, 2, . . . , T ´ 1, where ξt „ Ξ is the data point used at t-th update and ∇̂fpxt; ξt, vtq is
the estimation of the true gradient ∇fpxt; ξtq with vt sampled from the distribution V as defined in
Eq. (2). For non-convex settings, we monitor min1ďtďT }∇fpxtq}2, the minimum squared gradient
norm of the objective function during training. For strongly convex settings, we track fpxtq´f˚, the
function value gap, where f˚ :“ infxPRd fpxq. Both metrics are standard in smooth optimization
literature (Ghadimi & Lan, 2013). We also note that the quantity min1ďtďT }∇fpxtq}2 used in the
non-convex setting is not easy to check in the practice especially in the modern machine learning
senario, since the parameter space would be extreamly large.

Now we build the convergence analysis of SGD algorithm with δ-unbiased gradient estimators:
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Theorem 3.1. Suppose that Assumption 2.1 and Assumption C.1 are satisfied. Let txtu
T
t“1 be the

SGD dynamic solving Eq. (1) generated by the update rule Eq. (4). If the fourth-order moment of
the random perturbation is finite (i.e. Ev„V }v}4 ă `8), then

(a) If the learning rate η ď mint 1
2L ,

1

L
?

2T p2δ2d`ρV `2δ`1q
u, then

min
1ďtďT

E}∇fpxtq}2 ď

`

fpx1q ´ f˚
˘

δηT
`

2η

δ

”

LB2p1 ` βV q ` µ2αV

ı

,

where c is the strong-convexity constant defined in Assumption C.2, ρV :“ E}v}4´δ2d2, αV :“
L3E}v}4, βV :“ 2δ2d`ρV `1´2δ, and B2 :“ 2L

`

f˚ ´Eξ„Ξf
˚
ξ

˘

with f˚
ξ :“ infxPRd fpx; ξq.

(b) If the learning rate η ď mint 1
2L ,

δc
4L2

1
2δ2d`2δ`1`ρV

u, and additionally, Assumption C.2 is
satisfied, then

EfpxT q ´ f˚ ď
`

1 ´
c

2
δη

˘T´1`

fpx1q ´ f˚
˘

`
2

cδ
η

`

LB2p1 ` βV q ` µ2αV

˘

,

where ρV , αV , βV , and B2 are as defined in (a).

Proof. The proof directly follows Khaled & Richtárik (2022) and Mishchenko et al. (2020) with ad-
ditionally bounding the error term }∇̂fpxt; ξt, vtq´∇fpxtq}2 using Theorem 2.2. See Appendix C.1
for details.

This convergence upper bound reveals two important insights that have not been comprehensively
studied in existing literature:

(a) The impact of perturbation magnitude δ: A small-magnitude perturbation δ consistently leads to
more accurate approximation: According to Theorem 2.2, if we are using the uniform distribu-
tion over the sphere with δ “ 1, the approximation error limµÑ0 Ev„V }∇̂fpx; vq´∇fpxq}2 “

pd ´ 1q}∇fpxq}2. In the meanwhile, if we are using the uniform distribution over the sphere
with δ “ 1{d, the approximation error is minimized and achieves limµÑ0 Ev„V }∇̂fpx; vq ´

∇fpxq}2 “ p1 ´ 1{dq}∇fpxq}2. However, a small magnitude δ results in a 1
δ scale on the

convergence upper bound presented in Theorem 3.1. As a result, tuning the hyper-parameter
δ doesn’t change our theoretical complexity analysis; therefore, in the following corollary, we
only consider the case where δ “ 1.

(b) The influence of fourth-order moment E}v}4: The fourth-order moment of the random pertur-
bation E}v}4 significantly impacts the convergence performance of the SGD algorithm, a phe-
nomenon previously identified in the literature such as Duchi et al. (2015). Due to the influence
of E}v}4, our convergence analysis cannot guarantee that all δ-unbiased random perturbations
can achieve the optimal dependence on dimension d as reported in existing lower bounds (e.g.
consider any random distribution with the fourth-order moment d2`c for some c ą 0). How-
ever, as demonstrated in Corollary 3.2, all perturbations that achieve minimum variance will
attain this best-known dependence on d.

Corollary 3.2. Under the same assumptions as Theorem 3.1, let V achieve the minimum variance.
Then

(a) Let δ “ 1, η “ Θp ϵ
d q, and µ “ Op ϵ

d q. Then it requires at most T ď Op d
ϵ2 q iterations to achieve

min1ďtďT E}∇fpxtq}2 ă ϵ.

(b) Suppose that Assumption C.2 is satisfied. Let δ “ 1, η “ Θp ϵ
d q, and µ “ Op ϵ

d q. Then it requires
at most T ď Opd

ϵ q iterations to achieve EfpxT q ´ f˚ ă ϵ.

By applying this result, we extend the best-known complexity for zeroth-order SGD for smooth
objectives to a much broader class of minimum-variance random perturbations, including the uni-
form smoothing (Bach & Perchet, 2016), Rademacher distribution (Spall, 1987; 1992), coordinate
descent (Cai et al., 2021), random subspace (Kozak et al., 2021), and the general orthogonal pertur-
bations (Kozak et al., 2023). Notably, the results presented in existing literature are either tailored to
a specific type of random perturbation, or cannot characterize the convergence of SGD under DAPs.
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Figure 1: Illustration of the directional alignment property of DAP in d “ 2 with estimating the
gradient of fpxq “ x2

1 ` x2
2 at x “ r0.1 1s

J. We sample 5000 random perturbations from the
uniform distribution over the circle }x}2 “ 2 and DAPs with a “ ∇fpxq “ r0.2 2s

J, in which
100 samples are illustrated in the left figure. When projecting DAPs onto different axes, we observe
two distinct distributional patterns in the X-component and Y-component, demonstrating DAP’s
anisotropic nature. In contrast, uniform perturbations maintain same distributions across projections.

4 DIRECTIONALLY ALIGNED PERTURBATIONS (DAPS)

In the previous section, we discussed the condition of achieving the minimum variance for approxi-
mating the gradient ∇fpxq using a two-point gradient estimator defined in Eq. (2). We proved that
a δ-unbiased random perturbation V achieves the minimum asymptotic variance as µ Ñ 0 if it has
a fixed length or satisfies the following equation:

pvJ∇fpxqq2 “ δ}∇fpxq}2. (5)

We refer to the class of δ-unbiased random perturbations satisfying Eq. (5) as directionally aligned
perturbations (DAP). While it has been shown that this class of random perturbations achieves min-
imum variance, there is limited literature studying their empirical performance. The unknown true
gradient could potentially hinder the application of DAP; however, we also recognize several attrac-
tive features of DAP in zero-order gradient estimation.

4.1 DIRECTIONALLY ALIGNED PROPERTY

The primary characteristic of DAP is its directional alignment property. Unlike uniform perturba-
tions or other fixed-magnitude perturbation methods, DAP exhibits anisotropic behavior, meaning
its effects vary depending on the direction of projection (as illustrated in Figure 1). This anisotropy
is a direct consequence of DAP’s design, which inherently leverages information from the objective
function’s local geometry to perform different perturbation behaviors, which is usually ignored by
fixed-magnitude perturbation methods.

As a result of the directional alignment property, when the true gradient has a larger magnitude in
a specific direction, DAP adaptively introduces a low-variance perturbation in that direction, poten-
tially leading to higher accuracy. This effect is demonstrated in Figure 2. This adaptive behavior of
DAP may reduce noise in estimating gradients, particularly when the gradients are sparse or have
varying magnitudes across different dimensions. We further validate this hypothesis and explore its
implications in Section 5.

4.2 THE SAMPLING STRATEGY AND A PRACTICAL IMPLEMENTATION

While the theoretical properties of DAP are appealing, their practical implementation presents sev-
eral challenges. For the unknown gradient ∇fpxq, we can always apply a small batch of perturba-
tions to obtain an estimated gradient ∇̂fpxq. However, even with an estimated gradient, sampling
from the hyperplane pvJ∇̂fpxqq2 “ δ}∇̂fpxq}2 satisfying EvvJ “ δId remains challenging. This
necessitates the design of a specific sampling strategy to address this issue. Moreover, the use of a
batch of function evaluations for gradient estimation raises a practical consideration about whether
and how to reuse these estimators.
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Figure 2: Comparison of gradient estimation performance with estimating the gradient of fpxq “

x2
1 ` x2

2 at x “ r0.1 1s
J between Uniform perturbations and DAPs. The DAP exhibits a notably

smaller variance in the y-direction where the true gradient has a larger magnitude, compared to the
x-direction where the true gradient is close to zero. In contrast, the uniform perturbation method
shows similar variance in both directions, regardless of the true gradient’s magnitude.

To address these issues, we propose the following practical approach to sample from the DAP dis-
tribution. Here, Algorithm 1 describes the approach to generate the random vectors over the plane
pvJaq2 “ δ}a}2 satisfying EvvJ “ δId with a given vector a P Rd; its correctness is proved
in Proposition 4.1. And Algorithm 2 describes the practical zeroth-order gradient estimator using
DAPs.

Algorithm 1: The algorithm for sampling
from a hyper-plane

Input: The vector a P Rd

1 Generate a random vector vini such that
Evini„V rviniv

J
inis “ δId;

2 Generate an independent random variable ξ
uniformly from the set t´1,`1u;

3 Project vini onto the random plane
Pξ “ tv : aJv “ ξ

?
δ}a}u;

Output: The projected random vector
v :“ ProjPξ

pviniq

Algorithm 2: A practical implementation of
gradient estimator using DAPs
Input: The dimension d, the batch size b

/* Estimate the gradient */
1 Use b{{2 uniform perturbations to obtain

the gradient estimator ∇̂fpxq;
/* Generate DAPs */

2 Use ∇̂fpxq as the input of Algorithm 1 to
obtain b{{2 DAPs;

3 Use b{{2 DAPs to obtain another gradient
estimator ∇̃fpxq;

Output: The gradient estimator
1
2 r∇̂fpxq ` ∇̃fpxqs

Proposition 4.1. Let v be a random vector generated by Algorithm 1. Then it has the following
properties: (a) pvJaq2 “ δ}a}2, and (b) Ev„V vv

J “ δId.

Proof. The proof is deferred to Appendix B.2.

This proposition confirms that our sampling strategy yields the desired properties. These properties
guarantee that the resulting output v minimizes the variance of two-point gradient estimator. In
the next section, we will empirically evaluate our practical implementations in both synthetic and
real-world examples.

5 EXPERIMENTS

To validate our theoretical findings and demonstrate the practical effectiveness of DAPs in zeroth-
order optimization, we conduct experiments on two different problem settings: synthetic examples

8
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and language model optimization. For each target function f , we estimate its gradient using the
zeroth-order estimator defined by different random perturbation under the batch size b:

∇̂fpxq :“
1

µb

b
ÿ

i“1

rfpx ` µviq ´ fpxqsvi, (6)

where µ ą 0 is the perturbation size and vi are random vectors independently drawn from distribu-
tions according to the method used. For additional experiments, we refer the reader to Appendix E

5.1 SYNTHETIC EXAMPLES

We first evaluate our proposed method on the following two objective functions:

fQuadpxq “ xJAx, fProdpxq “

d
ź

i“1

xi,

where each entry of A P Rdˆd is independently sampled from the uniform distribution U r0, 1s. The
gradient of each objective function can be explicitly evaluated; that is, ∇fQuadpxq “ pA ` AJqx
and ∇fProdpxq “ rx2x3 . . . xd, x1x3 . . . xd, ¨ ¨ ¨ , x1x2 . . . xd´1s. We compare the performance of
different random perturbations using the τ -effective Mean-Square-Error (τ -MSE), which is defined
as

τ -MSEp∇̂fpx; vqq :“ r∇̂fpx; vq ´ ∇fpxqsJΣτ r∇̂fpx; vq ´ ∇fpxqs, (7)

where Στ is a diagonal matrix such that

Στ ri, is “

"

1 |∇fpxqi| ą τ

0 |∇fpxqi| ď τ
.

It represents the direction with a larger gradient value, which is of greater interest to us. In this
experiment, we set τ “ 10´4 for both figures in Figure 3. For the quadratic function, we force
half of the entries in x to be 0, while for the product function, we set the first element of x to 0.
This configuration ensures gradient sparsity; the product function represents an extremely sparse
case where only one entry, x2x3 . . . xd, is non-zero. Our compared methods include the DAP with
and without knowledge of the true gradient (Exact Gradient and Empirical Gradient), the Uniform
Perturbation (where v is uniformly distributed over the sphere with radius

?
d), and the Gaussian

Perturbation (where v „ N p0, Idq).

Figure 3: Comparison of τ -MSE (defined in Eq. (7)) for different random perturbations on Quadratic
(left) and Product (right) functions. Experiments were conducted with the dimension d “ 16 and
perturbation stepsize µ “ 10´4. The x-axis shows the batch size, and the y-axis shows the τ -MSE.
Lower τ -MSE indicates better gradient estimation accuracy along those more important directions.

9



Published as a conference paper at ICLR 2025

The experiment yields three key insights: (1) When the gradient is known exactly, the DAP con-
sistently outperforms classical random perturbations. As the batch size increases (to larger than
b “ 32 for the quadratic function), we observe the same phenomenon in the estimator generated
using Algorithm 2. (2) When the gradient is extremely sparse, the DAP achieves significantly better
accuracy along the effective direction.

5.2 LANGUAGE MODEL OPTIMIZATION

In this section, we demonstrate the practical applicability of the DAP in optimizing the neural net-
work. We apply it to the task of fine-tuning a pre-trained language model. Using zeroth-order
optimization to fine-tune the LLMs has been an active research field in recent years due to its ef-
fectiveness in saving memory (Malladi et al., 2023; Zhang et al., 2024; Gautam et al., 2024; Guo
et al., 2024); it allows for the adjustment of model parameters without requiring access to the full
computational graph, which can be prohibitively large for modern language models.

We conducted experiments using the OPT-1.3b model (Zhang et al., 2022) for sentiment classifi-
cation on the Stanford Sentiment Treebank (SST-2) dataset (Socher et al., 2013). To ensure fair
comparison, we maintained consistent parameters across experiments: learning rate η “ 10´4, per-
turbation size µ “ 10´5, and batch size b “ 2. Detailed experimental settings are provided in
Appendix D. As shown in Figure 4, zeroth-order optimization using DAPs achieved superior per-
formance compared to other random perturbation methods. Notably, we found that this superior
performance does not rely on a large batch size b, demonstrating the practical effectiveness of DAP
in real-world applications.

Figure 4: Performance comparison of different optimization methods for fine-tuning OPT-1.3b on
SST-2. DAPs achieve empirically superior performance among other perturbations including the
classical Gaussian smoothing and uniform smoothing.

6 CONCLUSION

In this work, we investigate zeroth-order optimization for smooth objective functions. We derive the
conditions for random perturbations that minimize the variance of the two-point gradient estimator,
revealing that in addition to traditional fixed-length random perturbations, directionally aligned per-
turbations (DAPs) can also achieve the minimum asymptotic variance as µ Ñ 0. Our theoretical
analysis extends best-known complexity bounds to encompass this broader class of perturbations,
including DAPs. We explore the directionally aligned property of DAPs in gradient estimation and
demonstrate their superior performance compared to traditional methods under specific conditions
through experiments on both synthetic problems and language model fine-tuning tasks. These find-
ings not only advance our understanding of zeroth-order optimization but also provide a new tools
for improving gradient estimation. Our work opens up new avenues for research in zeroth-order
methods and their applications in machine learning and optimization.
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A RELATED WORKS

A.1 RELATED RESULTS IN ZEROTH-ORDER OPTIMIZATION

Convergence Analysis for ZOO The convergence of Stochastic Gradient Descent (SGD) has
been extensively studied under various settings. Ghadimi & Lan (2013) established complexity
results for computing approximate solutions using first-order and zeroth-order (gradient-free) in-
formation with Gaussian smoothing. For smooth convex objective functions, Duchi et al. (2015)
obtained the optimal convergence upper bound for SGD under the zeroth-order optimization (ZOO)
setting. Nesterov & Spokoiny (2017) provided the optimal convergence upper bound for Gaussian
smoothing. In the realm of nonconvex optimization, Ji et al. (2019) proposed two new zeroth-order
variance-reduced optimization algorithms, ZO-SVRG-Coord-Rand and ZO-SPIDER-Coord, and
provided improved analysis for the existing ZO-SVRG-Coord algorithm. These methods achieved
better convergence rates and function query complexities than previous approaches. Berahas et al.
(2022) derived convergence analyses for finite differences, linear interpolation, Gaussian smooth-
ing, and uniform sphere smoothing methods. Recent studies have focused on non-smooth settings.
Davis et al. (2022) and Zhang et al. (2020) established the sample complexity for Lipschitz functions
without assuming smoothness. Lin et al. (2022) derived the complexity upper bound of SGD while
noting a

?
d scale compared to the smooth setting. Notably, Rando et al. (2024a) and Kornowski &

Shamir (2024) revealed that by applying certain techniques, the non-smooth case is not inherently
more challenging than the smooth case.

General Random Perturbations Kozak et al. (2021) introduces a stochastic subspace descent al-
gorithm for high-dimensional optimization problems with costly gradient evaluations. This method
offers theoretical convergence guarantees and demonstrates a more general class of random pertur-
bations that have convergence guarantees. Kozak et al. (2023); Rando et al. (2024b) later extends
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this concept to a more generalized orthogonal subspace method, which also presents the optimal
dependence on the dimension parameter d. In a related study, Duchi et al. (2015) examines random
perturbations with finite fourth-order momentum, which aligns closely with our findings. However,
their analysis is limited to convex optimization, whereas our work explores non-convex optimization
scenarios.

A.2 COMMON CHOICES OF RANDOM PERTURBATIONS

As observed in practice, the choice of distribution for the random perturbation vector v potentially
impacts the performance of zeroth-order gradient estimators. In this subsection, we review four
classical distributions below:

Gaussian Random Vector The Gaussian (or normal) distribution is widely used due to its theoret-
ical properties (Nesterov & Spokoiny, 2017) and ease of sampling. In this case, each component of
v is drawn independently from a standard normal distribution: vi „ N p0, 1q for i “ 1, . . . , d. More
generally, the random vector v can be sampled from a normal distribution with a given covariance
matrix Σ; that is, v „ N p0,Σq.

Uniform Random Vector Another common perturbation is the uniform random vector over the
unit sphere. It has been shown in Duchi et al. (2015) that the uniform random vector achieves the
optimal dependence on the dimension d. To sample such a random vector, it suffices to generate
a vector with independent standard normal components and then normalize it to unit length. This
method produces a vector uniformly distributed on the surface of the unit sphere.

Rademacher Random Vector The Rademacher distribution is widely used in the method known
as Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall, 1987; 1992). In this case,
each component of v is independently drawn from a Rademacher distribution, taking values `1
or ´1 with equal probability. This distribution is particularly useful for its simplicity in certain
optimization settings.

Random Coordinate The random coordinate method (Ji et al., 2019), also known as coordinate-
wise perturbation, involves perturbing only one randomly selected coordinate at a time. This ap-
proach can be particularly effective in high-dimensional spaces where full-vector perturbations
might be computationally expensive. To implement this, one randomly selects an index i P 1, . . . , d
and sets vi “ 1 and vj “ 0 for all j ‰ i. This method can lead to more stable estimates in certain
scenarios and is often used in large-scale optimization problems.

B DERIVATION OF THE MINIMUM-VARIANCE RANDOM PERTURBATION

Our proof technique is mainly inspired by the following result taken from Theorem 1 (Móri et al.,
1994), which indicates that E}v}4 is minimized when the distribution V is the uniform distribution
over the ball

∥∥v ´ s
2

∥∥2 “ d `
∥∥ s
2

∥∥2, where s :“ Ev„V

`

∥v∥2v
˘

. Here, we generalize its result by
considering the δ-unbiasedness structure Ev„V vv

J “ δId.

Lemma B.1. Let V be any distribution over Rd. Define s :“ Ev„V

`

∥v∥2v
˘

. Then

E}v}4 ě δ2d2 ` }s}2.

Proof. Let f “ }v}2 ´ δd and g “ sJv, where v is a random vector from the distribution V and
s :“ Ev„V

`

∥v∥2v
˘

. Then

}s}4 “ pEfgq2 ď Ef2Eg2 “
`

E}v}4 ´ δ2d2
˘

}s}2 “
`

ETrpvvJq2 ´ δ2d2
˘

}s}2.

Then we obtain }s}2 ` δ2d2 ď ETrpvvJq2.

By constructing appropriate f and g, we will obtain the desired estimation on EaJpvvJq2a.
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B.1 PROOF OF THEOREM 2.2

Proof. The proof logic mainly follows Lemma B.1. Here, we construct the desired f and g. First,
we notice that the equality

paJvq2 “ aJvvJa.

Let f “ pvJaqv ´ δa and g “ p}v}2 ´ δdqa. By these definitions, we have

}f}2 “ aJpvvJ ´ δIdq2a ` δ2}a}2 ´ 2aJpvvJ ´ δIdqa

“ aJpvvJq2a ´ 2δaJvvJa ` δ2}a}2 ´ 2aJvvJa ´ 2δ}a}2

E}f}2 “ aJEpvvJ ´ δIdq2a ´ 2δ2}a}2 ` δ2}a}2 ´ 2δ}a}2 ´ 2δ}a}2

“ EpvJaq2}v}2 ´ δ2}a}2.

}g}2 “ }a}2p}v}2 ´ δdq2

E}g}2 “ pE}v}4 ´ δ2d2q}a}2.

fJg “ aJpvvJ ´ δIdqa ¨ p}v}2 ´ δdq

“ rpaJvq2 ´ δ}a}2s ¨ p}v}2 ´ δdq

“ paJvq2|v}2 ´ δ}a}2}v}2 ´ δdpaJvq2 ` δd}a}2

EfJg “ ErpaJvq2|v}2s ´ dδ2}a}2 ´ dδ2}a}2 ` dδ2}a}2

“ EpaJvq2|v}2 ´ dδ2}a}2.

Then we obtain

rEfJgs2 “
“

EpvJaq2}v}2 ´ δ2d}a}2
‰2

piq
ď E}f}2E}g}2

“
“

EpvJaq2}v}2 ´ δ2}a}2
‰ “

pE}v}4 ´ δ2d2q}a}2
‰

where (i) applies the Cauchy-Schwarz inequality. For convenience, we define

X :“ EpvJaq2}v}2.

Then this inequality is simplified as:

rX ´ δ2d}a}2s2 ď rX ´ δ2}a}2srpE}v}4 ´ δ2d2q}a}2s.

ðñ X2 ` δ4d2}a}4 ´ 2δ2d}a}2X ď
“

pE}v}4 ´ δ2d2q}a}2
‰

X ´ δ2}a}2
“

pE}v}4 ´ δ2d2q}a}2
‰

.

ðñ X2 ´ 2δ2d}a}2X ď
“

pE}v}4 ´ δ2d2q}a}2
‰

X ´ δ2}a}4E}v}4.

ðñ X2 ´
“

2δ2d}a}2 `
“

pE}v}4 ´ δ2d2q}a}2
‰‰

X ď ´δ2}a}4E}v}4.

Let 2C “ 2δ2d}a}2 `
“

pE}v}4 ´ δ2d2q}a}2
‰

. Then

C2 ´ δ2}a}4E}v}4 “ δ4d2}a}4 `
}a}4

4

“

E}v}4 ´ δ2d2
‰2

` δ2d}a}4
“

E}v}4 ´ δ2d2
‰

´ δ2}a}4
“

E}v}4 ´ δ2d2 ` δ2d2
‰

“
}a}4

4

“

E}v}4 ´ δ2d2
‰2

` δ2d}a}4
“

E}v}4 ´ δ2d2
‰

´ δ2}a}4
“

E}v}4 ´ δ2d2
‰

“
}a}4

4

“

E}v}4 ´ δ2d2
‰2

` δ2pd ´ 1q}a}4
“

E}v}4 ´ δ2d2
‰

ě 0.

Therefore, we obtain an upper bound and a lower bound for X:

X ď C `
a

C2 ´ δ2}a}4E}v}4,

X ě C ´
a

C2 ´ δ2}a}4E}v}4
piq
ě δ2d}a}2.

Here, (i) additionally applies the following statement: We assume X “ δ2d}a}2 ´ c ă δ2d}a}2

for some distribution V and an error term c ą 0. Then we conclude that E}v}4 ă δ2d2, which is
impossible. The detailed proof is given as follows:

16



Published as a conference paper at ICLR 2025

Since EaJpvvJvvJqa “ δ2d}a}2 ´ c, for an orthogonal linear transformation O, we have

EpOkaqJ
´

vvJvvJ ´ pδ2d}a}2 ´ cqId

¯

Oka “ 0,

for k “ 1, 2, . . . , d ´ 1. Because tOkaudk“0 forms a basis of Rd, we conclude E
´

vvJvvJ ´

pδ2d}a}2´cqId

¯

“ 0d by using Lemma B.2, where 0d represents the zero matrix with the dimension
d ˆ d. This further leads to

TrE
´

vvJvvJ ´ pδ2d}a}2 ´ cqId

¯

“ 0d

ùñ E}v}4 “ δ2d2}a}2 ´ cd ă δ2d2}a}2.

Therefore, X ă δ2d}a}2 leads to a contradiction.

In the remaining of this proof, we will derive the equality condition. By the Cauchy–Schwarz
inequality, the equality holds if and only if f “ 0, g “ 0, or f “ rg for some r ą 0. We discuss
each of condition separately. Throughout this discussion, we assume a ‰ 0.

• f “ 0: That is, pvJaqv ´ δa “ 0 holds almost surely. By timing aJ on both sides, this
condition becomes

paJvq2 “ δ}a}2.

• g “ 0: That is, p}v}2 ´ δdqa “ 0 holds almost surely. By setting A “ p}v}2 ´ δdqId in
Lemma B.6, this equality holds if and only if

}v}2 “ δd.

• f “ rg for some r ą 0: That is,
pvJaqv ´ δa “ rp}v}2 ´ δdqa.

We will show that this condition cannot hold. Assume it holds for some r, then for the case
vJa ‰ 0, we have

pvJaq2 ´ δaJv “ rp}v}2 ´ δdqaJv

ùñ vJa ´ δ “ rp}v}2 ´ δdq

ùñ EvJa ´ δ “ rpE}v}2 ´ δdq

ùñ ´ δ “ 0.

For the case vJa “ 0, we directly take the expectation on both sides:
´δa “ 0.

Then the proof is completed.

B.2 PROOF OF PROPOSITION 4.1

Proof. We prove parts (a) and (b) of the proposition separately.

For part (a), we show that pvJaq2 “ δ}a}2. After projecting vini onto the plane

Pξ “ v P Rd : aJv “ ξ
?
δ}a},

the resulting vector v satisfies aJv “ ξ
?
δ}a}. Squaring both sides yields pvJaq2 “ paJvq2 “

pξ
?
δ}a}q2 “ δ}a}2, proving part (a).

For part (b), we prove that Ev„V rvvJs “ δId. We express v in terms of vini as v “ vini ´

paJvini ´ ξ
?
δ}a}q a

}a}2
. Let u “ a

}a}
be the unit vector in the direction of a. We can rewrite v as

v “ w ` ξ
?
δu, where w “ vini ´ puJviniqu is orthogonal to u. Computing vvJ and taking the

expectation, we get ErvvJs “ ErwwJs ` δuuJ. The cross terms vanish due to the independence of
ξ and vini, and because Erξs “ 0. Expanding wwJ and taking expectations, using Ervinis “ 0 and
Erviniv

J
inis “ δId, we obtain:

ErwwJs “ δId ´ δuuJ ´ δuuJ ` δuuJ “ δId ´ δuuJ.

Finally, we have ErvvJs “ ErwwJs ` δuuJ “ δId ´ δuuJ ` δuuJ “ δId, completing the proof
of part (b) and the proposition.
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B.3 SUPPORTING LEMMAS

The following result can be found in Hungerford (2012). We omit its proof here.
Lemma B.2. Let A P Rdˆd be a matrix. Suppose xJAx “ 0 for all x P Rd, then A must be a
skew-symmetric matrix (i.e. AJ “ ´A). Moreover, if A is a symmetric matrix (i.e. AJ “ A, then
A must be a zero matrix.

A stronger version of the following lemma is given by Mirsky (1975). The equality condition can
be found in Rhea (2011).
Lemma B.3. Let A and B be positive semidefinite. Then

TrpABq ď TrpAqTrpBq.

Proof. Let α “ TrpAq. Then

TrpABq
piq
“ TrpB1{2AB1{2q

piiq
ď TrpB1{2pαIqB1{2q “ TrpAqTrpBq.

Here, (i) applies the semidefinite of B and TrpABq “ TrpBAq; (ii) applies the operator monotonic-
ity of the trace operator.

The following lemma gives the explicit representation of the projection of a vector v P Rd on a
hyper-plane in Rd. This result can also be found in Seber & Lee (2012).
Lemma B.4. Let P :“ tv : uJv “ cu Ă Rd be a hyper-plane associated with fixed vector u P Rd

and a constant c P R. For a given vector v P Rd, suppose that Projpvq denotes the orthogonal
projection of v onto P . Then

Projpvq :“ v ´ upuJv ´ cq{}u}22.

Proof. The projection is given by the following optimization problem

min
wPRd

1

2
}w ´ v}2

s.t. wJu “ c.

The Lagrangian is given by

Lpw, λq “
1

2
}w ´ v}2 ` λpwJu ´ cq.

The projection is solved as
Projpvq “ v ´ upvJu ´ cq{}u}2.

Lemma B.5. Let v be a random vector following the distribution V and all entries are mutually
independent. Then

Ev„V

`

Tr
`

pvvJq2
˘˘

“

d
ÿ

i“1

Erv4i s ` dpd ´ 1q.

Proof. To prove this result, it requires to explicitly evaluate Ev„V

`

Tr
`

pvvJq2
˘˘

. Let

v “ rv1, v2, . . . , vds
J
.

We will evaluate E
`

pvvJq2
˘

by considering the i-th row and j-th column of vvJ:

pvvJqi¨ “
“

viv1, viv2, . . . , v
2
i , . . . , vivd

‰

,

pvvJq¨j “

»

—

—

—

—

—

—

—

–

v1vj
v2vj

...
v2j
...

vdvj

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Then, the pi, jq-th entry of pvvJq2 is

pvvJq2i,j “
“

viv1, viv2, . . . , v
2
i , . . . , vivd

‰

»

—

—

—

—

—

—

—

–

v1vj
v2vj

...
v2j
...

vdvj

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

d
ÿ

k“1

vivjv
2
k.

Taking the expectation on both sides and applying the independence, we obtain

E
“

pvvJq2i,j

‰

“

"

0 if i ‰ j,

Erv4i s ` pd ´ 1q if i “ j.

Here, the constraint ErvvJs “ Id implies that Erv2i s “ 1 for all i. Therefore, we have

E
`

Tr
`

pvvJq2
˘˘

“

d
ÿ

i“1

E
“

pvvJq2i,i

‰

“

d
ÿ

i“1

`

Erv4i s ` pd ´ 1q
˘

“

d
ÿ

i“1

Erv4i s ` dpd ´ 1q.

Lemma B.6. Let a P Rd and A be a positive semi-definite matrix. Then aJAa “ 0 if and only if
Aa “ 0.

Proof. Since A is positive semi-definite, we can represent A as A “ B2, where B is also a positive
semi-definite matrix. Then

aJAa “ paJBq2 “ }aJB}2 “ 0.

By the definition of vector norm, this equality holds if and only if aJB “ 0. We multiply B on both
sides and obtain Aa “ 0.

C CONVERGENCE ANALYSIS OF ZEROTH-ORDER SGD

Our proof is mainly adapted from Khaled & Richtárik (2022) and Mishchenko et al. (2020) with
additionally considering the variance introduced by gradient estimation.
Assumption C.1. In the optimization problem given by Eq. (1), the individual loss function fp¨; ξq :
Rd Ñ R satisfies the following two properties:

(a) L-Smoothness; for all x, y P Rd,

fpy; ξq ď fpx; ξq ` ∇fpx; ξqT py ´ xq `
L

2
}y ´ x}2.

(b) Lower boundedness; the infimum f˚
ξ :“ infxPRd fpx; ξq exists almost surely with ξ „ Ξ.

Though this assumption could be further weakened to the expected smoothness assumption on the
objective function (Khaled & Richtárik, 2022), the current version has covered a sufficiently broad
class of functions, including many neural network structures. By Rademacher’s theorem (Evans
& Gariepy, 2015), the L-smoothness implies the almost-everywhere differentiability of the gradient
∇fpx; ξq, which makes the standard Taylor theorem directly available for the individual loss fpx; ξq.

For strongly convex settings, a faster convergence rate is often guaranteed; it relies on an additional
assumption on the objective function fpxq :“ Eξ„Ξfpx; ξq:
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Assumption C.2. In the optimization problem given by Eq. (1), the objective loss function fpxq :“
Eξ„Ξfpx; ξq satisfies the c-strongly convexity property; that is, for all x, y P Rd,

fpyq ě fpxq ` ∇fpxqT py ´ xq `
c

2
}y ´ x}2.

We note that this assumption could be further relaxed to the Polyak-Łojasiewicz condition fpxq ´

f˚ ď cPL}∇fpxq}2 (Karimi et al., 2016).

C.1 PROOF OF THEOREM 3.1

In this subsection, we present the main proof for Theorem 3.1. Theorem C.3 gives the proof for Part
(a) and Theorem C.4 gives the proof for Part (b). First, we re-state these theorem as follows:
Theorem C.3. Suppose that Assumption C.1 and Assumption 2.1 are satisfied. Let txtu be
the SGD dynamic solving Eq. (1) generated by the update rule Eq. (4). If the learning rate
η ď mint 1

2L ,
1

L
?

2T p2δ2d`ρV `2δ`1q
u, then

min
1ďtďT

E}∇fpxtq}2 ď

`

fpx1q ´ f˚
˘

δηT
`

2η

δ

”

LB2p1 ` βV q ` µ2αV

ı

,

where ρV :“ E}v}4 ´ δ2d2, αV :“ L3E}v}4, βV :“ 2δ2d ` ρV ` 1 ´ 2δ, and B2 :“ 2L
`

f˚ ´

Eξ„Ξf
˚
ξ

˘

.

Proof. We start from Eq. (11) from Lemma C.8:

δη

2
E}∇fpxtq}2 ď

`

1 ` 4L2η2 ` 2L2βV η
2
˘`

Efpxtq ´ f˚
˘

´
`

Efpxt`1q ´ f˚
˘

` η2LB2p1 ` βV q ` η2µ2αV ,

For convenience, we define δt “ Efpxtq ´ f˚, Mt “ η2LB2p1 ` βV q ` η2µ2αV , and c “

1 ` 4L2η2 ` 2L2βV η
2. Then

δη

2
E}∇fpxT q}2 ď c ˆ δT ´ δT`1 ` MT

c ˆ
δη

2
E}∇fpxT´1q}2 ď c2 ˆ δT´1 ´ c ˆ δT ` c ˆ MT´1

...

cT´1 ˆ
δη

2
E}∇fpx1q}2 ď cT ˆ δ1 ´ cT ˆ δ1 ` cT´1 ˆ M1.

We sum all together. Then

`

T´1
ÿ

i“0

ci
˘δη

2
min

1ďtďT
E}∇fpxtq}2 ď cT ˆ δ0 `

`

T´1
ÿ

i“0

ci
˘

max
1ďtďT

Mt.

Putting back the shortcut notations (δt “ Efpxtq ´ f˚, Mt “ η2LB2p1 ` βV q ` η2µ2αV , and
c “ 1 ` 4L2η2 ` 2L2βV η

2), the above inequality solves the upper bound of mint E}∇fpxtq}2 as

min
1ďtďT

E}∇fpxtq}2 ď
2

δη

cT
řT´1

i“0 ci

`

fpx1q ´ f˚
˘

`
2

δη
max
1ďtďT

Mt

“
2

δη

´

1 ` 4L2η2 ` 2L2βV η
2
¯T

řT´1
i“0

´

1 ` 4L2η2 ` 2L2βV η2
¯i

`

fpx1q ´ f˚
˘

`
2

δη

”

η2LB2p1 ` βV q ` η2µ2αV

ı

“

2
´

4L2η2 ` 2L2βV η
2
¯

δη

´

1 ` 4L2η2 ` 2L2βV η
2
¯T

´

1 ` 4L2η2 ` 2L2βV η2
¯T

´ 1

`

fpx1q ´ f˚
˘
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`
2η

δ

”

LB2p1 ` βV q ` µ2αV

ı

piq
ď

4L2η
´

2 ` βV

¯

δ

e
T

´

4L2η2
`2L2βV η2

¯

T
´

4L2η2 ` 2L2βV η2
¯

`

fpx1q ´ f˚
˘

`
2η

δ

”

LB2p1 ` βV q ` µ2αV

ı

piiq
ď

`

fpx1q ´ f˚
˘

δηT
`

2η

δ

”

LB2p1 ` βV q ` µ2αV

ı

,

where (i) applies 1 ` x ď ex and p1 ` xqT ´ 1 ě Tx, (ii) applies the condition

η ď
1

c

T
´

4L2 ` 2L2βV

¯

on the learning rate η, B is given in Lemma C.6, and αV , βV are given in Lemma C.8.

Theorem C.4. Suppose that Assumption C.1, Assumption C.2, and Assumption 2.1 are satisfied.
Let txtu be the SGD dynamic solving Eq. (1) generated by the update rule Eq. (4). If the learning
rate η ď mint 1

2L ,
δc
4L2

1
2δ2d`2δ`1`ρV

u, then

EfpxT q ´ f˚ ď
`

1 ´
c

2
δη

˘T´1`

fpx1q ´ f˚
˘

`
2

cδ
η

`

LB2p1 ` βV q ` µ2αV

˘

,

where ρV :“ E}v}4 ´ δ2d2, αV :“ L3E}v}4, βV :“ 2δ2d ` ρV ` 1 ´ 2δ, and B2 :“ 2L
`

f˚ ´

Eξ„Ξf
˚
ξ

˘

.

Proof. We additionally apply the c-strong convexity assumption made on the objective function to
the left-hand-side of Lemma C.8:

δηc
`

Efpxtq ´ f˚
˘

ď
`

1 ` 4L2η2 ` 2L2βV η
2
˘`

Efpxtq ´ f˚
˘

´
`

Efpxt`1q ´ f˚
˘

` η2pLB2 ` βV q ` η2µ2αV

For convenience, we define δt “ Efpxtq ´ f˚, Mt “ η2LB2p1 ` βV q ` η2µ2αV , and r “

1 ´ cδη ` η2
`

4L2 ` 2L2βV

˘

. Then re-arranging this inequality leads to

δt`1 ď rδt ` Mt

...

ď rtδ1 `

t
ÿ

i“0

riMt´i.

Putting back the shortcut notations, the above inequality solves the upper bound of EfpxT q ´ f˚ as

EfpxT q ´ f˚ ď rT´1
`

fpx1q ´ f˚
˘

`
1

1 ´ r
M

piq
ď

`

1 ´
c

2
δη

˘T´1`

fpx1q ´ f˚
˘

`
η2LB2p1 ` βV q ` η2µ2αV

cδη ´ η2
`

4L2 ` 2L2βV

˘

ď
`

1 ´
c

2
δη

˘T´1`

fpx1q ´ f˚
˘

`
2

cδ
η

`

LB2p1 ` βV q ` µ2αV

˘

,

where (i) applies the condition η ď δc
4L2

1
2δ2d`2δ`1`ρV

.

C.2 SUPPORTING LEMMAS

The following two lemmas (Lemma C.5 and Lemma C.6) are directly taken from Proposition 2,
Mishchenko et al. (2020). We adapt the statement to our notations and give an explicit expression
for A and B in Lemma C.6.
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Lemma C.5. Suppose that Assumption C.1 is satisfied. Then the objective function fpxq :“
Eξ„Ξfpx; ξq is also L-smooth and lower bounded; that is,

(a) for all x, y P Rd,

fpyq ď fpxq ` ∇fpxqT py ´ xq `
L

2
}y ´ x}2.

(b) The infimum f˚ :“ infxPRd fpxq exists almost surely.

Lemma C.6. Suppose that Assumption C.1 is satisfied. Then for any x P Rd,

E}∇fpx; ξq ´ ∇fpxq}2 ď 2Apfpxq ´ f˚q ` B2, (8)

where the constants A “ 2L and B “

b

2L
`

f˚ ´ Eξ„Ξf
˚
ξ

˘

.

Proof. By Lemma 1 from Khaled & Richtárik (2022), Assumption C.1 (a) implies that

}∇fpx; ξq}2 ď 2L
`

fpx; ξq ´ f˚
ξ

˘

;

}∇fpxq}2 ď 2L
`

fpxq ´ f˚
˘

.

Summing them together leads to

E}∇fpx; ξq ´ ∇fpxq}2 “ E}∇fpx; ξq}2 ` E}∇fpxq}2

ď 4L
`

fpxq ´ f˚
˘

` 2L
`

f˚ ´ Eξ„Ξf
˚
ξ

˘

.

Defining A :“ 2L and B “

b

2L
`

f˚ ´ Eξ„Ξf
˚
ξ

˘

concludes the proof.

The following lemma (Lemma C.7) builds the per-iteration recursion.

Lemma C.7. Suppose that Assumption C.1 is satisfied. Let txtu be the SGD dynamic solving Eq. (1)
generated by the update rule Eq. (4). If the learning rate η ď 1

2L , then

δη

2
E}∇fpxtq}2 ď

`

1 ` 2ALη2
˘`

Efpxtq ´ f˚
˘

´
`

Efpxt`1q ´ f˚
˘

(9)

` η2LB2 ` η2LELt,

where A and B are given in Lemma C.6, and

Lt :“ }∇̂fpxt; ξt, vtq ´ ∇fpxt; ξtq}2 (10)

denote the accuracy of ∇̂fpxt; ξt, vtq for estimating ∇fpxt; ξtq.

Proof. Starting with L-smoothness of the objective function f (Lemma C.5), we obtain

fpxt`1q ď fpxtq ` x∇fpxtq, xt`1 ´ xty `
L

2
}xt`1 ´ xt}

2

“ fpxtq ´ ηx∇fpxtq, ∇̂fpxt; ξt, vtqy `
Lη2

2
}∇̂fpxt; ξt, vtq}2

piq
“ fpxtq ´

η

2

«

}∇fpxtq}2 ` }∇̂fpxt; ξt, vtq}2 ´ }∇fpxtq ´ ∇̂fpxt; ξt, vtq}2

ff

`
Lη2

2
}∇̂fpxt; ξt, vtq}2

“ fpxtq ´
η

2
}∇fpxtq}2 ´

η

2
p1 ´ Lηq}∇̂fpxt; ξt, vtq}2 `

η

2
}∇fpxtq ´ ∇̂fpxt; ξt, vtq}2

“ fpxtq ´
η

2
}∇fpxtq}2 ´

η

2
p1 ´ Lηq}∇̂fpxt; ξt, vtq ´ ∇fpxtq ` ∇fpxtq}2

`
η

2
}∇fpxtq ´ ∇̂fpxt; ξt, vtq}2
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piiq
“ fpxtq ´

η

2
}∇fpxtq}2 ´

η

2
p1 ´ Lηq

«

}∇̂fpxt; ξt, vtq ´ ∇fpxtq}2 ` }∇fpxtq}2

` 2x∇̂fpxt; ξtq ´ ∇fpxtq,∇fpxtqy

ff

`
η

2
}∇fpxtq ´ ∇̂fpxt; ξt, vtq}2

Eξtfpxt`1q
piiiq
ď Eξtfpxtq ´

`

η ´
η2L

2

˘

Eξt}∇fpxtq}2 ´ ηp1 ´ LηqEξtx∇̂fpxt; vq ´ ∇fpxtq,∇fpxtqy

`
η2L

2
Eξt}∇fpxtq ´ ∇̂fpxt; ξt, vtq}2

pivq

ď Eξtfpxtq ´
`

η ´
η2L

2

˘

Eξt}∇fpxtq}2 ´ ηp1 ´ LηqEξt∇fpxtq
J

´

vtv
J
t ´ I

¯

∇fpxtq

` µ
L

2
}vt}

2vJ
t ∇fpxtq `

η2L

2
Eξt}∇fpxtq ´ ∇̂fpxt; ξt, vtq}2

Efpxt`1q ď Efpxtq ´
`

η ´
η2L

2

˘

E}∇fpxtq}2 ´ ηp1 ´ Lηqpδ ´ 1qE}∇fpxtq}2

`
η2L

2
E}∇fpxtq ´ ∇̂fpxt; ξt, vtq}2

pvq

ď Efpxtq ´
`δη

2

˘

E}∇fpxtq}2 `
η2L

2
E}∇fpxtq ´ ∇̂fpxt; ξt, vtq}2,

where (i) applies the identity 2xa, by “ }a}2 ` }b}2 ´ }a ´ b}2, (ii) applies the identity }a ` b}2 “

}a}2 ` }b}2 ` 2xa, by, (iii) takes the expectation with respect to the data distribution ξt „ Ξ, (iv)
applies the Taylor theorem (Lemma C.9) to expand fpxt ` µvtq ´ fpxtq around xt, and (v) uses
δη `

η2L
2 ´ δLη2 ě

δη
2 when η ď 1

2L . We further notice that

E}∇fpxtq ´ ∇̂fpxt; ξt, vtq}2 “ E}∇fpxtq ´ ∇fpxt; ξtq ` ∇fpxt; ξtq ´ ∇̂fpxt; ξt, vtq}2

piq
ď 2E}∇fpxtq ´ ∇fpxt; ξtq}2 ` 2E}∇fpxt; ξtq ´ ∇̂fpxt; ξt, vtq}2

piiq
ď 4AEpfpxtq ´ f˚q ` 2B2 ` 2ELt,

where (i) applies }a` b}2 ď 2}a}2 ` 2}b}2 and (ii) applies Lemma C.6. Rearranging the inequality,
we obtain

δη

2
E}∇fpxtq}2 ď

`

1 ` 2ALη2
˘`

Efpxtq ´ f˚
˘

´
`

Efpxt`1q ´ f˚
˘

` η2LB2 ` η2LELt,

where A and B are given in Lemma C.6.

The following lemma (Lemma C.8) additionally handles the variance of two-point gradient estimator
Lt :“ }∇̂fpxt; ξt, vtq ´ ∇fpxt; ξtq}2 using the upper bound from Theorem 2.2 in the per-iteration
recursion.
Lemma C.8. Suppose Assumption 2.1 is satisfied. Under the same setting as Lemma C.7, if the
learning rate η ď 1

2L , then

δη

2
E}∇fpxtq}2 ď

`

1 ` 4L2η2 ` 2L2βV η
2
˘`

Efpxtq ´ f˚
˘

´
`

Efpxt`1q ´ f˚
˘

(11)

` η2LB2p1 ` βV q ` η2µ2αV ,

where ρV :“ E}v}4 ´ δ2d2, αV :“ L3E}v}4, βV :“ 2δ2d ` ρV ` 1 ´ 2δ, and B2 :“ 2L
`

f˚ ´

Eξ„Ξf
˚
ξ

˘

.

Proof. By Theorem 2.2, we have for any a P Rd,

Ev„V a
JpvvJq2a ď δ2d}a}2 `

}a}2

2
ρV `

}a}2

2

b

ρ2V ` 4δ2pd ´ 1qρV
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ď 2δ2d}a}2 ` ρV }a}2

“
`

2δ2d ` ρV
˘

}a}2,

where ρV :“ E}v}4 ´ δ2d2. Then

E}∇̂fpx; vq ´ ∇fpxq}2 ď ∇fpxqJ
`

vvJ
˘2∇fpxq ` p1 ´ 2δq}∇fpxq}2 ` L2µ2E}v}4

ď
`

2δ2d ` ρV ` 1 ´ 2δ
˘

}∇fpxq}2 ` L2µ2E}v}4.

Similarly, we obtain

E}∇̂fpx; v, ξq ´ ∇fpx, ξq}2 ď
`

2δ2d ` ρV ` 1 ´ 2δ
˘

}∇fpx, ξq}2 ` L2µ2E}v}4

ď 2L
`

2δ2d ` ρV ` 1 ´ 2δ
˘

E
`

fpx; ξq ´ f˚ ` f˚ ´ f˚
ξ

˘

` L2µ2E}v}4

“ 2L
`

2δ2d ` ρV ` 1 ´ 2δ
˘

E pfpxq ´ f˚q ` L2µ2E}v}4

` B2
`

2δ2d ` ρV ` 1 ´ 2δ
˘

.

By Lemma C.7, we have

δη

2
E}∇fpxtq}2 ď

`

1 ` 2ALη2
˘`

Efpxtq ´ f˚
˘

´
`

Efpxt`1q ´ f˚
˘

` η2LB2 ` η2LELt,

where A and B are given in Lemma C.6, and Lt :“ }∇̂fpxt; ξt, vtq ´ ∇fpxt; ξtq}2. For notional
convenience, we define βV :“ 2δ2d ` ρV ` 1 ´ 2δ. Combining both upper bounds, we obtain,

δη

2
E}∇fpxtq}2 ď

`

1 ` 2ALη2
˘`

Efpxtq ´ f˚
˘

´
`

Efpxt`1q ´ f˚
˘

` η2LB2 ` η2L
“

2LβV E pfpxq ´ f˚q ` L2µ2E}v}4 ` B2βV

‰

ď
`

1 ` 4L2η2 ` 2L2βV η
2
˘`

Efpxtq ´ f˚
˘

´
`

Efpxt`1q ´ f˚
˘

` η2LB2p1 ` βV q ` η2L3µ2E}v}4

It completes the proof.

Evaluating the bias of the two-point random smoothing estimator (Eq. (2)) only requires the gradient
∇fp¨; ξq : Rd Ñ R to be locally Lipschitz continuous. Then we will apply the following Taylor
theorem (Hiriart-Urruty et al., 1984; Luc, 1995):
Lemma C.9 (Taylor’s Theorem). If the function f : Rd Ñ R is continuously differentiable and has
locally Lipschitz gradient, then there exists c Psx, yrĂ Rd and Mc P D2fpcq such that

fpxq ´ fpyq “ x∇fpyq, x ´ yy `
1

2
xMcpx ´ yq, x ´ yy.

Here, sx, yr represents the open rectangular defined by x, y P Rd.
Remark. Using the L-smoothness of f , we can show that there exists the upper bound

fpx ` µvq ´ fpxq ď µvJ∇fpxq ` Lµ2}v}2.

It leads to the approximation of the zeroth-order gradient estimation for ∇fpxq:

∇̂fpx; vq «
v

µ

”

fpx ` µvq ´ fpxq

ı

“ vvJ∇fpxq ` Lµ}v}2v.

Therefore, the Mean-Squared Error (MSE) of ∇̂fpx; vq is bounded by

E}∇̂fpx; vq ´ ∇fpxq}2 ď ∇fpxqJ
`

vvJ
˘2∇fpxq ` p1 ´ 2δq}∇fpxq}2 ` L2µ2E}v}4.

D DETAILS ON EXPERIMENTS SETUP

This section outlines the information for replicating our experiments. All source codes, including
visualization scripts, are provided with our submission.
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Hardware and System Environment We conducted our experiments on a cluster running
RHEL8, equipped with Dual AMD EPYC 9124 processors and eight NVIDIA RTX 6000 Ada Gen-
eration graphics cards. Our code was tested using Python version 3.10.10. Additional dependencies
are specified in the supplementary ‘requirements.txt’ file.

Hyperparameters For the LLM fine-tuning task, we employed the following hyperparameters:

• Learning rate η: 10´4;
• Perturbation size µ: 10´5;
• Zeroth-order gradient estimation batch size b: 2;
• Stochastic gradient updates batch size: 16.

E ADDITIONAL EXPERIMENTS

In this section, we include additional experiments figures that are not presented in the main text.

E.1 COMPARISON WITH OTHER RANDOM PERTURBATIONS

In this subsection, we additionally consider the Rademacher perturbation and the random coordinate
perturbation in fine tuning the language model. To avoid the significant overlapping in their training
loss curves, we also present the boxplot of their training loss within the last 5000 steps for better
comparison.

Figure 5: Performance comparison of different optimization methods for fine-tuning OPT-1.3b on
SST-2. Compared to Figure 4, we additionally include other two constant magnitude perturbations:
Rademacher perturbation and Random coordinate perturbation. The left figure presents the boxplot
of training losses within the last 5000 steps.

E.2 THE ADDITIONAL PRACTICAL APPLICATION: MESH OPTIMIZATION

In this subsection, we consider the mesh optimization problem (Hoppe et al., 1993), which serves as
another application of the zeroth-order optimization with utilizing our proposed DAPs. To find the
solution of the partial differentiable equations (PDEs), it commonly applies the numerical method
such as the finite volume method (Eymard et al., 2000). Such method requires a pre-defined mesh to
describe the critical points on the solution surface and the boundary condition. The mesh optimiza-
tion problem is optimizing the pre-defined mesh to make the PDE solver have better performance
by adjusting vertex positions, element connectivity, and local mesh density to minimize numerical
errors and improve solution accuracy.
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In this experiment, we consider the mesh optimization problem of 2D Poisson’s equation (Evans,
2022):

∆φ “ f,

where φ : R2 Ñ R and f : R2 Ñ R are both twice differentiable continuous functions and ∆ is the
Laplace operator (i.e. ∆fpx1, x2, . . . , xnq “

řn
i“1

B
2f

Bx2
i

). It is commonly used to model the pressure
field of the incompressible Navier-Stokes equation (Acheson, 1990). Its solution is illustrated in
Figure 6; our goal is to optimize the coarse mesh to make the numerical solution over the given
coarse mesh closer to the solution over the the high-resolution fine mesh.

Figure 6: Numerical solutions of the Poisson equation ∆φ “ 1 with Dirichlet boundary conditions.
The left panel compares two numerical solutions: one computed on a fine mesh (20 ˆ 20) and
another on a coarse mesh (10 ˆ 10). The right panel shows the difference between these solutions.
The discrepancy is particularly pronounced at the corners, suggesting that denser vertices locating
may be necessary in these regions for better accuracy.

The following figure applies the zeroth-order optimization method to minimize the L8 distance
(i.e. the max absolute error) between the interpreted numerical solution over the coarse mesh and
the numerical solution over the fine mesh. The DAP method achieves better performance than the
baseline approaches (including the uniform perturbation and the Gaussian perturbation).

Figure 7: The training loss of the mesh optimization problem for minimizing the L8 distance (i.e.
the max absolute error) between the interpreted numerical solution over the coarse mesh and the
numerical solution over the fine mesh. We use the batch size b “ 512, the perturbation step µ “

10´5, and the learning rate η “ 0.1.

We also visualize the estimated gradient at the beginning of the training. We use the two-point
gradient estimator with the batch size b “ 100000 and µ “ 10´5 to obtain the estimated ground truth
gradient. As shown in Figure 8 (Left), only the four corners of the mesh have significant weights. In
this case, the anisotropy nature of the DAP leads to more accurate estimation on important vertices.
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Figure 8: The illustration of the estimated gradient using the uniform perturbation and the DAP with
the magnitude larger than 0.4. The batch size of obtaining the ground truth is b “ 100000. The
batch size for obtaining the estimated gradient is b “ 100.

F DISCUSSIONS ON THE ACCUMULATIVE ERRORS

When approximating the stochastic gradient ∇fpx; ξq, the two-point gradient estimation naturally
introduces additional approximation error. We have previously characterized this error term in the
one-step improvement analysis:

η2E}∇̂fpx; vq ´ ∇fpxq}2 ď η2
”

∇fpxqJ
`

vvJ
˘2∇fpxq ` p1 ´ 2δq}∇fpxq}2 ` L2µ2E}v}4

ı

ď η2
`

2δ2d ` ρV ` 1 ´ 2δ
˘

}∇fpxq}2 ` η2L2µ2E}v}4.

We note that the gradient term }∇fpxq}2 will be merged together in the convergence analysis
we have built in Theorem C.3 and Theorem C.4. Our main focus falls into the last error term
L2µ2E}v}4. When telescoping the one-step iteration from Eq. (11), we obtain

Accumulative Errors “
2

cδ
ηµ2αV

for the strongly convex objective functions, where c is the strongly convex constant, η is the learning
rate, and αV “ L3E}v}4; and

Accumulative Errors “
2η

δ
µ2αV

for the non-convex objective function, where η and αV are defined as above. Both error terms have
been reflected in the convergence upper bound and their dependence on µ2 is common in classical
zeroth-order optimization literature (Kozak et al., 2023).

G LIMITATIONS

While our theoretical and empirical results demonstrate the potential of DAPs, there are aspects that
warrant further investigation. First, when the dimension d is extremely large, the projection steps
in sampling DAPs requires storing the full gradient estimates, which introduces additional memory
overhead compared to simpler perturbation schemes like uniform or Gaussian perturbations. Sec-
ond, while DAPs show advantages in scenarios with sparse gradients, they may not perform as well
when dealing with dense gradients, as the error introduced by gradient estimation could potentially
outweigh the benefits of directional alignment. Finally, although our experiments demonstrate the
effectiveness of DAPs on both synthetic problems and language model fine-tuning, we have not
extensively tested the method across a broader range of applications and problem settings, and the
performance benefits may not generalize to all optimization scenarios.
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