
A Additional Analysis

A.1 Additional Ablations

A.1.1 1-Nearest Neighbor captures a lot of the gains

We now show that using 1 Nearest Neighbour Information for the SUM-PRODUCT-BP is empirically
close enough to the best performance we get on the best k chosen for k-nearest neighbors used in
SUM-PRODUCT-BP by hyperparameter search. From Figure 4, we see that across multiple datasets
test metrics are very close for the two settings. This shows lower k which reduces time complexity of
the BP step (see section 6.1) does not affect the performance greatly.

8 32 128
Bag Size

70

72

74

A
U

R
O

C
%

Criteo

1-NN
k-NN

8 32 128 512
Bag Size

80

85

90

95

A
U

R
O

C
%

CIFAR-B

1-NN
k-NN

8 32 128 512
Bag Size

80

85

90

A
U

R
O

C
%

CIFAR-S

1-NN
k-NN

8 32 128 512
Bag Size

82

84

86

88

A
U

R
O

C
%

Adult

1-NN
k-NN

8 32 128 512
Bag Size

75.0

77.5

80.0

82.5

85.0

A
U

R
O

C
%

Marketing

1-NN
k-NN

Figure 4: Change in values of Test AUROC when using only 1 nearest neighbour for the covariate
factor creation, v/s when using an optimal higher k for the covariate factor creation.

A.1.2 Noisy Embeddings as Input

We add noise variables sampled from N(0,�2
Id) to our features input to the first iteration and report

the numbers obtained in 2nd-Iteration supervised learning step in figure 5. Medium Noise regime
corresponds to � = 0.05 and High Noise regime corresponds to � = 0.1. As is clearly visible our
method is able to recover performance even when using noisy inputs. We would like to note that
there is some degradation at bag size level 512. We point out that this is case where there about
⇠ 100 bag level labels in total. Covariate information is rather crucial to make any progress. Hence
noise addition has the most impact in this regime. This also suggests importance of using covariate
information for large bag sizes due to very weak supervision available. The drop in performance due
to noisy embeddings is significantly higher for the Marketing dataset than the Adult dataset. This
shows that the coariates are very important for the Marketing datasets and our method exploits it
very well. We posit thatt his could be the reason our method significantly outperforms others on the
Marketing dataset (See Table 1).

8 32 128 512
Bag Size

80

82

84

86

88

A
U

C
%

Adult

No Noise
Medium Noise
High Noise

8 32 128 512
Bag Size

65

70

75

80

85

A
U

C
%

Marketing

No Noise
Medium Noise
High Noise

Figure 5: Recovered performance on adding noise to the initial embeddings.

A.1.3 Soft Weighted Hard Threshold v/s Vanilla Hard Threshold

In figure 6 we report the numbers obtained on using the soft-labels from the BP-Marginals as opposed
to hard thresholding them. We use the soft labels in two ways, directly to train the MLP using a
sigmoid cross entropy loss formulation as opposed to the usual binary cross entropy loss, and the
other for weighing the hard-labels by |p� ⌧ | where p is the soft label and ⌧ the threshold for creating
the hard labels. We do not notice any consistent improvements on using the soft labels in either form
across datasets and bag sizes and thus stick to hard labels for our setup.

A.1.4 Distance Metric: Cosine v/s L2

As mentioned earlier, we experiment with using Cosine and L2 distance, d(·, ·) for the construction
of our neighbour graph. While we don’t find significant differences on using the two methods, using

13

8 32 128 512
Bag Size

75

80

85

90

A
U

C
%

Hard Thresholded Marginal
Direct Soft Marginal
Soft Weighted Hard Thresholding

Figure 6: Change in values of MLP AUROC when using Soft Weighted Hard Thresholding for the
conversion of BP-Marginals to pseudolabels v/s Directly using the soft marginals v/s using Hard
Thresholding on Adult Dataset for 2nd Iteration.

Cosine led to better downstream performance across datasets and bag sizes. This can be interpreted
to be due to the better neighbour graph construction as depicted in Figure 7 for Adult, by better
Test Score (Accuracy) of the kNN constructed by the two distance metrics for varying number of
neighbours (k) for the construction of the neighbour graph.

3 5 7 9
k

80

81

82

83

84

85

T
es

t
S
co

re
%

Adult

Cosine
L2

Figure 7: Variation in the kNN Score across bag sizes compared for the two popular distance metrics,
Cosine and L2 on Adult Dataset as d(·, ·) for the neighbour graph creation.

A.1.5 Similarity Kernel: RBF v/s Matern

As discussed earlier, we tried both the RBF Kernel and Matern Kernel for our experiments and note
as in Figure 8 for Criteo, that the Matern Kernel resulted in slightly better Test AUROC % Scores
across various datasets and bag sizes. While there is no substantial increase in our performance the
marginally better numbers can be attributed to the fact that the Matern Kernel is a generalization of
the RBF Kernel and might capture the similarity information between the embeddings more aptly.

A.1.6 Optimal Values of �a

As observed in Figure 9, it is clear that the bag-loss head plays a more important role when the bag
sizes are smaller. The optimal value of �a is dependent on the requirement of the reinforcement of the
bag constraint via the bag-loss head. For small bags, the bag constraints hold much more information
than that for large bags, and hence are more useful. In the case of small bags, during aggregation
of embeddings, more information is retained and utilized downstream since fewer embeddings are
pooled. We pool 8 embeddings per bag for bag size 8 and 512 embeddings are pooled for bag

14

8 32 128
Bag Size

65

70

75

80

A
U

C
%

Criteo

Matern
RBF

Figure 8: Variation in the Test AUROC % of the MLP after 1st Iteration on using RBF Kernel v/s
on using Matern Kernel as k(·, ·) for similarity calculation during formation of pairwise factors on
Criteo.

size 512, clearly there is a stark divide in the information summarized across bag sizes. This trend
is consistently noticed across multiple datasets. We also notice that the optimal values of �a are
comparatively lower for the 2nd Iteration of our method. We think this might be due to the refined
embeddings and neighbour graph in the 2nd iteration of Belief Propagation.

8 32 128
Bag Size

0.0

2.5

5.0

7.5

10.0

O
pt

im
al

V
al

ue
fo

r
�

a

Criteo

Iteration 1
Iteration 2

8 32 128 512
Bag Size

0.0

2.5

5.0

7.5

10.0

O
pt

im
al

V
al

ue
fo

r
�

a

CIFAR-S

Iteration 1
Iteration 2

Figure 9: Variation in the Test AUROC % of the MLP after 1st Iteration on using RBF Kernel v/s
on using Matern Kernel as k(·, ·) for similarity calculation during formation of pairwise factors on
Criteo.

A.2 Extended Experimentation

A.2.1 Wall Clock Times on Adult Dataset

We have wall clock time reported in Table 4 (main paper) and Table 5 for Criteo and Adult respectively.
Criteo has 1 million samples in total in the training. For bag size 32, the wall clock time of the
entire BP stage is only 1279s for millions of factors in the factor graph inclusive of the creation and
iteration. For smaller datasets like Adult with 50k samples, even on bag size as large as 2048, the BP
stage takes only 1054s on a NVIDIA P100 GPU, which is a minimal computational overhead above
standard supervised learning. It is also conventionally known that BP on sparse graphs is very fast
and our sparsity is controlled by using K-NN instead of all pairs in imposing nearness constraints.
We reiterate that the number of factors in the factor graph is thus only linear in the number of samples
allowing for faster iterations. The time taken in the entire BP section, right from creation of the factor
graph to message passing for 100 iterations happens in the order of O(bag_size) seconds for the
Adult dataset which is exceptionally fast as simple MLP training itself takes O(102) seconds.

15

Table 5: Time for various parts of our algorithm compared to time taken by DLLP on Adult Dataset.
All time values are in seconds.

Adult ⇠50k Samples
Bag Size DLLP Training Ours - Data Setup Ours - BP Ours - MLP Ours - Total

8 52.23 (51.38) 630.88 (827.63) 12.34 (8.57) 85.00 (145.57) 728.21 (863.69)
32 45.4 (69.04) 523.59 (449.32) 21.11 (14.65) 54.38 (77.15) 599.08 (458.12)

128 73.79 (125.96) 623.20 (458.23) 71.16 (8.89) 54.34 (63.55) 748.71 (459.86)
512 25.11 (40.15) 767.58 (431.50) 269.88 (32.52) 65.07 (158.34) 1102.53 (459.12)
1024 26.39 (38.06) 645.04 (674.94) 550.32 (113.28) 32.42 (25.76) 1227.78 (756.34)
2048 24.34 (28.32) 612.87 (539.07) 1054.47 (73.71) 49.93 (78.34) 1717.27 (534.88)

A.2.2 Convergence of the two step method

In Table 6 empirically we demonstrate that our method converges in two iterations by looking at
relative improvements between iterations 2 and 3. We demonstrate that two iterations of our algorithm
suffice empirically.

Table 6: Empirical Convergence: The % AUROC scores for varying bag sizes for 2 Iterations and 3
Iterations of our algorithm.

Adult Marketing
Bag Size 8 32 128 512 8 32 128 512

Itr-2 89.47 87.82 86.87 84.01 86.26 84.33 82.46 81.68
Delta -0.29 -1.26 0.49 0.71 -0.26 -0.94 -0.13 -1.05
Itr-3 89.18 86.56 87.36 84.72 86.00 83.39 82.33 80.63

As visible, performance gains from 2nd to 3rd iterations are not consistently better. Thus there is no
clear reason to run higher iterations of the algorithm, as a maximum of 2 iterations suffice to achieve
significantly consistent performance.

A.2.3 Goodness of Pseudo Label of BP

We report the AUROC of BP after the first iteration with respect to the true labels in Table 7. It is
considerable indicating that it has good ordering information (ranking of samples belonging to class 1
above class 0). The effect of high quality pseudo labels is reflected in the downstream performance.

Table 7: The % AUROC scores of the pseudo labels obtained from the Belief Propagation algorithm
when compared to the ground truth labels for iteration 1 of the algorithm

Bag Size 8 32 128 512 1024 2048
Adult 86.34 79.63 75.25 75.02 67.88 63.54

Marketing 88.53 78.26 75.5 75.66 74.9 74.64

While Table 7 only reports after Step 1 of iteration 1 to showcase value of the BP step, the second
aggregate embedding loss based MLP training Step 2 boosts performance of Step 1 further and we do
see it as expected in Table 1. Refer to Section 4, subsection 4.1 for Step 1, and subsection 4.2 for
description of these steps in our algorithm.

Step 2 is necessary because information from pseudo labels may not satisfy bag constraints exactly.
So we have a composite loss that again imposes the bag constraint through an aggregate embedding
loss (see Equation 8 and Equation 9 in the paper in Section 4.2)

A.2.4 Noisy Labels and Privacy

Note: We will update the citations in the main paper to include the updated citations mentioned as
footnote in the supplementary section.

In this section we explore utility-privacy tradeoff of our algorithm when we add noise to label
proportions for every bag by Gaussian Mechanism to achieve a target label differential privacy of
(✏, �) by using the following result:

16

Theorem A.1 (Theorem 2 in [8]). Let f : A ! R be a real-valued function. Let ⌧ =
�f
p

2 ln(1.25/�)/✏. The Gaussian Mechanism, which adds independently drawn random noise
distributed as N(0, ⌧2) to output of f(A), ensures (✏, �)-differential privacy.

We take A to the set of true labels of instances in bag S 2 B, f(·) = y(S)
B , the label proportion.

We observe that sensitivity of the label proportion to change in a single label is �f = 1
B , where B

denotes the bag size. Standard deviation of the noise added is proportional to 1/B for a fixed ✏, �.

We demonstrate the following interesting privacy-utility tradeoff: utility degradation, as measured
by Test AUROC, due to Gaussian Mechanism is much more in smaller bags as compared to larger
bags for a target privacy level. Through this, we empirically verify the intuition that points to the fact
that larger bags offer better privacy. We note that our algorithm performs much better in large bags
regime compared to baseline and we conjecture that this is crucial to utilize the better privacy utility
degradation tradeoffs at larger bag sizes.

We experiment with 2 sets of differential privacy parameters, Medium Noise: (�, ✏) = (10�5
, 10) and

High Noise: (�, ✏) = (10�5
, 1), both popular choices in literature [22] Note that, bag size B takes

values in {8, 32, 128, 512}. Our results are reported in Table 8.

Table 8: Test AUROC scores after Iteration-1 of our method across different bag sizes for varying
levels of label-noise.

Dataset: Criteo CIFAR-B CIFAR-S
Noise: Noiseless Medium High Noiseless Medium High Noiseless Medium High

8 74.96 (0.01) 74.83 (0.07) 71.06 (0.15) 95.39 (0.01) 94.80 (0.04) 90.99 (0.1) 93.53 (0.03) 93.28 (0.28) 87.07 (0.46)

32 73.36 (0.03) 72.43 (0.02) 70.40 (0.03) 93.89 (0.02) 93.36 (0.05) 90.25 (0.06) 91.17 (0.03) 91.07 (0.21) 86.08 (0.07)

128 70.45 (0.05) 69.45 (0.20) 69.53 (0.21) 89.28 (0.05) 88.92 (0.13) 87.79 (0.09) 88.17 (0.19) 87.39 (0.10) 85.17 (0.23)

512 - - - 85.55 (0.75) 83.29 (0.32) 84.65 (0.21) 82.97 (0.33) 81.32 (0.37) 79.39 (0.58)

We also want to highlight that under the effect of both medium and high noise our method recovers
performance up to a reasonable degree, especially for larger bag sizes which as stated earlier are more
important from a privacy perspective.

A.3 Analysis of 1-NN Graphs

Section A.1.1 shows that running our algorithm with 1-NN for the BP step captures most of the
performance in terms of the final Test AUROC score. We show that many parts of the factor graph in
the case of 1-NN are cycle free.

Consider the bi-partite factor graph K(V,B [F, E) where variable nodes V = [1 : N] representing
{xi} form one partition and bag factor nodes B and 1-NN factor nodes F = {f : (f, i), (f, j) 2
E, xi 2 N1(xj) _ xj 2 N1(xi)} are on the other partition. Edges between a bag factor node S and
variable node i exists if i 2 S (xi belong to bag S).

In our setup (experiments), all bag factor nodes have disjoint neighbors since bags are formed
randomly without replacement. Therefore, the bi-partite factor graph between B and V is a forest.
Now, consider the bi-partite factor graph between F and V . We now show that this is also a forest.
Since every factor node connects only a pair of distinct nodes it is enough to show that the undirected
1-NN graph does not have any cycles.

We now show that the 1-NN graph does not have any undirected cycles. Recall that N1(x) is the
nearest neighbor of point x.
Lemma A.2. For a set of points {xi}Ni=1, consider the following undirected graph G(V,E) where
V = [1 : N] and E = {(i, j) : xi 2 N1(xj) _ xj 2 N1(xi)}. For every node i, if the edge set is
formed by choosing one amongst many equivalent nearest neighbors of i appropriately (i.e. N1(xi)
is chosen to be a singleton), then G does not have any cycles.

Proof. Let us define a directed graph Gd, where the outgoing edge (i ! j) exists if xj is the closest
neighbour of xi where ties are broken arbitrarily. Thus every node i has out-degree of at-most 1.
However, note that the in-degree of any node can be > 1. Note that, G can be obtained by replacing
oriented edges in Gd by undirected edges. Further, if (i ! j), (j ! i) both exists, we replace it by
one undirected edges (i, j) 2 G.

17

There are 3 types of cycles in Gd:

1. Directed cycle with at least 3 distinct elements (except end point which is repeated). An
example of this kind (of length 3) is illustrated in Figure 11.

2. Cycle with a collider whose undirected skeleton forms a cycle in G of length at least 3 with
distinct elements. This is illustrated in Fig. 12.

3. Directed cycle i ! j ! i. This is illustrated in Figure 10.

Now, we proceed to show that the first two cycles are not possible. Since a bi-directed edge in Gd

(Figure 10) will get replaced by a single un-directed edge in G, this proves the Lemma.
b1

b2

b3

d1

d2

d3

b1

b2

d1
d2

c1

c2

c4

d1

d5

d2

c3

d4

Figure 10: Cycle of Type 3

Case 1: We deal with the directed cycle by first proving a claim about a directed path in Gd.

Claim A.3. Consider a directed path in Gd of the form a1
d1�! a2

d2�! a3
d3�! a4 . . . an with distinct

elements. Here, di notes the distance d(xai , xai+1). Then, d1 � d2 � d3 . . . dn�1.

Proof. Let us prove this by contradiction. Say this was not true, then without loss of generality
suppose di < di+1. We know that the outgoing edge represents the nearest neighbour of a node. If
di < di+1 was indeed true, then the nearest neighbour of ai+1 would have been ai and not ai+2

which is clearly not the case since the edge ai+1
di+1���! ai+2 exists in Gd. We get a contradiction and

therefore the claim is proven.

Now, we consider the directed cycle a1
d1�! a2

d1�! a3 . . . an
dn�! a1 where all elements ai are

distinct.

b1

b2

b3

d1

d2

d3

b1

b2

d1
d2

c1

c2

c4

d1

d5

d2

c3

d4

Figure 11: Cycle of Type 1

From, Claim A.3 we have d1 � d2 � d3 � dn � d1 applying it on two directed paths an, a1, a2 and
a1, a2 . . . an. This is only possible if d1 = d2 . . . = dn. In this case, one can form an alternate Gd by
breaking the cycle where one can have a2 ! a1 instead of a2 ! a3.

Therefore, this type of a cycle cannot exist. If it exists, it can be broken by re-assigning an equivalent
nearest neighbor.

Case 2: Consider a configuration that is a undirected cycle in G but not a directed cycle in Gd. Then,
it is a cycle consists of paths a1, a2 . . . ! an, a1, b2, bn�1 ! an where they collide at an. Here
all nodes ai, bi are distinct. An Example is the collider c3 in Fig. 12. Other orientations are left
unspecified in this cycle. For this to there must exist ai 6= an or bi that has 2 outward edges in this

18

cycle. However, out � degree � 2 is clearly cannot be possible as we are only dealing with 1-NNs
and each node can have at-most one outward edge. Therefore such a cycle is not possible. In the
Figure 12, the edge c1 ! c4 or c1 ! c2 cannot exist as Gd is a directed 1-NN graph and thus such a
cycle cannot exist.

b1

b2

b3

d1

d2

d3

b1

b2

d1
d2

c1

c2

c4

d1

d5

d2

c3

d4

Figure 12: Cycle of Type 2

Thus, we have shown that no cycle can exist in the neighbour graph G.

A.4 Baselines

We compare our methods with the following baselines.

1. DLLP: We use the DLLP method from Ardehaly and Culotta [3] as a baseline for both Tabular
and Image Datasets. This method fits the prediction score averaged over a bag of a deep classifer to
bag level proportions.

2. EasyLLP: This was proposed in Busa-Fekete et al. [5] and we use this as a competitive baseline
on all our datasets. They define a surrogate loss function based on the global label proportion.

3. GenBags: Introduced in Saket et al. [30] is another popular algorithm for tabular datasets. The
algorithm combines bag distributions, if possible, into good generalized bag distributions, which are
then trained on by using standard proportion loss.

4. LLP-FC: This methods was introduced in Zhang et al. [39] where LLP problem was reduced to
learning from label noise problem. We use this for image datasets on which it was applied in Zhang
et al. [39].

5. LLP-VAT: Method from Tsai and Lin [34] that we use on Image Datasets. This method is inspired
by consistency regularization to produce a decision and approach LLP from a semi-supervised angle.
boundary that better describes the data manifold

A.5 Implementation Details

In most of our experiments, we fix d(x, x0) to be Cosine Distance: 1 � x·x0

kxk2kx0k2
or Euclidean

Distance: (Minkowski Distance with p=2) (
Pn

i=1 |xi � x
0
i|p)

1
p and we choose k(x, x0) to be one of

RBF Kernel: exp(�� · d(x, x0)2) or Matern Kernel with default parameters from their tensorflow

implementation: (a generalization of the RBF kernel) 1
�(⌫)2⌫�1

p
2⌫
l d(x, x0)

!⌫

K⌫

p
2⌫
l d(x, x0)

!

where d(·, ·) is the Euclidean distance, Kv(·) is a modified Bessel function and �(·) is the gamma
function. We justify our choice via the slightly superior performance observed on using Cosine
Distance and Matern Kernel as discussed in ablations in A.1.4 and A.1.5 respectively.

The bags are batched into batches of size max(BatchSizetrain, TotalBags). We always run the
second step, the MLP training for max 100 epochs, using Adam Optimizer with MLPLR,MLPWD

learning rate and weight decay respectively. We use the Early Stopping criterion to decide when to
stop training. According to this, we stop training if the validation AUROC does not increase for 20
consecutive epochs, and then restore the model with the best validation AUROC. Such a validation-
based early stopping technique is quite popular in literature and well described in Prechelt [27].
Attached is the tensorflow callback code that we implement for the same, based on documentation
provided in ker [2]:

19

tf.keras.callbacks.EarlyStopping(
monitor=’val_auc ’,
patience =20,
restore_best_weights=True ,
min_delta=0,
verbose=1,
mode=’max’,

)

We use the official GitHub Implementations of Saket et al. [30], Zhang et al. [39] and Tsai and
Lin [34] and perform a grid search over relevant mentioned parameters in their readme. We use
WideResNet-16-4 [38] as the backbone for LLP-VAT and LLP-FC methods as it provides the best
performance. For methods described in Busa-Fekete et al. [5], Ardehaly and Culotta [3] we implement
the algorithm described in the paper with the same MLP as described in 5.1 and sweep the appropriate
hyperparams as described in the respective papers.

For Pooling with MultiHeadAttention we use the standard MultiHeadAttention framework from Set
Transformers [17] using d = 128 dimensional embeddings as input (the 2nd last hidden layer of our
MLP), 2 heads, 1 seed vector, and 2 row-wise feedforward layers each of size d.

A.6 Illustrative Best Hyper-parameter values

Here we provide the set of hyperparameters to reproduce the numbers obtained for the first iteration
of our algorithm across all datasets and bag sizes in Table 9, Table 10, Table 11, Table 12 and Table
13.

Table 9: The set of hyperparameters for various bag sizes for Adult Dataset for the first iteration.
Bag Size �s �b �a MLPLR MLPWD k ⌧ �d T
2048 0.0001 0.0184 0.0001 0.0007 1.00E-12 1 0.03558 1 100
1028 0.0001 0.0576 0.0001 0.0012 1.00E-12 1 0.01 1 100
512 0.003 0.0796 0.0001 0.00033 0.00025 1 0.03 1 100
125 0.0001 0.3422 10 0.00028 0.1 1 0.0216 0.01 100
32 186 0.1659 7.5 0.00014 2.12E-11 17 0.3327 0.6 100
8 0.0001 0.4427 10 0.001 1.00E-12 1 0.3515 1 100

Table 10: The set of hyperparameters for various bag sizes for Marketing Dataset for the first iteration.
Bag Size �s �b �a MLPLR MLPWD k ⌧ �d T
2048 1.928 7.6986 0.0136 0.0002 3.70E-07 15 0.5311 0.1489 100
1028 0.0001 0.02227 0.000167 0.00005 0.06129 28 0.03077 0.4963 100
512 0.00287 0.2676 0 0.00053 0.0825 7 0.0815 1 100
125 200 26.058 10 0.0027 0.0007735 28 0.03357 0.01 100
32 200 200 9.661 0.00058 4.54E-12 29 0.0111 1 100
8 4.146 2 0.0001 0.00085 9.20E-11 2 0.2023 1 100

B Extended Related Work

Belief Propagation: Belief Propagation (BP) has been used to compute marginals and find MAP
estimates in standard sparse graphical models, like Bayesian networks and Markov random fields
[25] by message passing across edges on an appropriate graph. Sum-product BP algorithm is used for

Table 11: The set of hyperparameters for various bag sizes for Criteo Dataset for the first iteration.
Bag Size �s �b �a MLPLR MLPWD k ⌧ �d T
128 0.4359 0.2265 0 0.000001 0.0000078 11 0.14294 0.00288 200
32 0.0003 0.2502 9.9885 0.00002368 0.000547 23 0.5335 0.1326 200
8 0.00015 0.1884 9.716 0.00006 0.0009567 29 0.4104 0.9996 200

20

Table 12: The set of hyperparameters for various bag sizes for CIFAR-S Dataset for the first iteration.
Bag Size �s �b �a MLPLR MLPWD k ⌧ �d T
2048 0.057 0.02646 0.000156 0.000589 0.0000018 3 0.02687 0.6339 200
1024 0.00015 0.0175 0.00169 0.0006 0.000025 15 0.1214 0.9697 200
512 34.32 0.0338 0 0.00038 0.000014 1 0.267 0.2614 200
128 0.3674 0.105 0 0.0016 0.00476 9 0.31 0.01823 200
32 12.43 1.2541 10 0.000068 0.000336 4 0.4934 0.3727 200
8 0.0001 0.8555 10 0.0002 0.00001 28 0.1961 0.4421 200

Table 13: The set of hyperparameters for various bag sizes for CIFAR-B Dataset for the first iteration.
Bag Size �s �b �a MLPLR MLPWD k ⌧ �d T
2048 0.00043 0.8279 0.0002 0.000001 0.000001 2 0.5936 0.2771 200
1024 0.0001 0.003556 0.00695 0.00032 0.000001 4 0.435 0.6544 200
512 0.1289 0.00754 0 0.0116 0.0011 14 0.4337 0.407 200
128 0.0001 0.016 0 0.00214 0.00002 25 0.4508 0.0001 200
32 0.000192 0.0968 8.8918 0.000096 0.000723 1 0.4294 0.00385 200
8 0.0008 0.099 10 0.0000013 0.000009 1 0.4856 0.2427 200

computing marginals and it is known to converge on trees. It was also extended to polytrees [12]. It is
also an effective approximate algorithm on general graphical models [24]. More relevant to our work
is the fact that sum product Belief Propagation has found widespread in communication system, where
it is used to soft-decode a binary string message from their parity checks as in LDPC (low-density
parity-check) codes [29, 10], iterative decoding of turbo codes [19, 16]. In communication codes,
parity checks are designed so as to have nice properties on the graphical models they induce. In
our problem, the bag levels constraints can be thought of as parity checks but are given and we add
additional constraints from covariate information that is also given. We use a public scalabale and
efficient implementation PGMax [40] of the sum-product message passing algorithm.

Decoding from Pooled Data: Another very relevant area of work learning from pooled data paradigm
Scarlett and Cevher [31], El Alaoui et al. [9] where the aim to identify the categorical labels of a
large collection of items from histogram information at the bag level. El Alaoui et al. [9] present an
approximate message passing algorithm for decoding a discrete signal of categorical variables from
several histograms of pooled subsets of data. This line of work is also largely aimed at the regime of
very large bags [31] (⇠ O(n

logn)) and there is no covariate information available. In our problem,
bags are constant in size and they are disjoint.

C Limitations and Future Work

There are several unexplored interesting directions that we wish to pick up as future work. Notably,
one of the primary ones is to explore alternate energy potentials for the Gibbs distribution other
than quadratic terms we use now. Further, it might be of independent interest to further investigate
why such a simple proposition like BP works on such a scale efficiently converging to marginals
proving highly useful in supervised learning even with 1-NN based covariate information. A complete
theoretical understanding behind the success of BP for the target task would be an interesting direction
building on the theoretical pointers in the supplement.

21

	Introduction
	Related Work
	Problem Setting and Overview of Our Solution
	Details of our Algorithm
	Step 1: Obtaining Pseudo-Labels through Belief Propagation (BP)
	Step 2: Embedding Refinement Leveraging Pseudo Labels
	Iterative Refinement

	Experiments
	Experimental Setup
	Performance Analysis

	Ablations
	Time Complexity
	Importance of Nearest Neighbor constraints for BP
	Learning Aggregate Embeddings Helps

	Conclusion
	Additional Analysis
	Additional Ablations
	1-Nearest Neighbor captures a lot of the gains
	Noisy Embeddings as Input
	Soft Weighted Hard Threshold v/s Vanilla Hard Threshold
	Distance Metric: Cosine v/s L2
	Similarity Kernel: RBF v/s Matern
	Optimal Values of a

	Extended Experimentation
	Wall Clock Times on Adult Dataset
	Convergence of the two step method
	Goodness of Pseudo Label of BP
	Noisy Labels and Privacy

	Analysis of 1-NN Graphs
	Baselines
	Implementation Details
	Illustrative Best Hyper-parameter values

	Extended Related Work
	Limitations and Future Work

