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Abstract

We study indiscriminate poisoning for linear learners where an adversary injects a1

few crafted examples into the training data with the goal of forcing the induced2

model to incur higher test error. Inspired by the observation that linear learners on3

some datasets are able to resist the best known attacks even without any defenses,4

we further investigate whether datasets can be inherently robust to indiscriminate5

poisoning attacks for linear learners. For theoretical Gaussian distributions, we6

rigorously characterize the behavior of an optimal poisoning attack, defined as the7

poisoning strategy that attains the maximum risk of the induced model at a given8

poisoning budget. Our results prove that linear learners can indeed be robust to9

indiscriminate poisoning if the class-wise data distributions are well-separated with10

low variance and the size of the constraint set containing all permissible poisoning11

points is also small. These findings largely explain the drastic variation in empirical12

attack performance of the state-of-the-art poisoning attacks on linear learners across13

benchmark datasets, making an important initial step towards understanding the14

underlying reasons some learning tasks are vulnerable to data poisoning attacks.15

1 Introduction16

Machine learning models, especially current large-scale models, require large amounts of labeled17

training data, which are often collected from untrusted third parties [6]. Training models on these18

potentially malicious data poses security risks. A typical application is in spam filtering, where the19

spam detector is trained using data (i.e., emails) that are generated by users with labels provided often20

implicitly by user actions. In this setting, spammers can generate spam messages that inject benign21

words likely to occur in spam emails such that models trained on these spam messages will incur22

significant drops in filtering accuracy as benign and malicious messages become indistinguishable [37,23

20]. These kinds of attacks are known as poisoning attacks. In a poisoning attack, the attacker injects24

a relatively small number of crafted examples into the original training set such that the resulting25

trained model (known as the poisoned model) performs in a way that satisfies certain attacker goals.26

One commonly studied poisoning attacks in the literature are indiscriminate poisoning attacks [4, 51,27

35, 45, 5, 46, 25, 31, 10], in which the attackers aim to let induced models incur larger test errors28

compared to the model trained on a clean dataset. Other poisoning goals, including targeted [42, 53,29

24, 21, 18] and subpopulation [22, 46] attacks, are also worth studying and may correspond to more30

realistic attack goals. We focus on indiscriminate poisoning attacks as these attacks interfere with the31

fundamental statistical properties of the learning algorithm [45, 25], but include a summary of prior32

work on understanding limits of poisoning attacks in other settings in the related work section.33

Indiscriminate poisoning attack methods have been developed that achieve empirically strong poison-34

ing attacks in many settings [45, 46, 25, 31], but the reasons why attacks are sometimes ineffective35

have not been previously studied. In addition, the evaluations of these attacks can be deficient in36

some aspects [3, 4, 45, 5, 25, 31] (see Section 3) and hence, may not be able to provide an accurate37

picture on the current progress of indiscriminate poisoning attacks on linear models. The goal of our38

work is to understand the properties of the learning tasks that help render attack effectiveness under39

linear models. An attack is considered ineffective if the increased risk from poisoning is roughly40

equal to or smaller than the injected poisoning ratio [31, 25].41
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In this paper, we consider indiscriminate data poisoning attacks for linear models, the most commonly42

studied victim models in the literature [3, 4, 24, 45, 10]. Attacks on linear models are also studied43

very recently [46, 25, 5, 9] and we limit our scope to linear models because attacks on the simplest44

linear models are still not well understood, despite extensive prior empirical work in this setting.45

Linear models continue to garner significant interest due to their simplicity and high interpretability46

in explaining predictions [30, 39]. Linear models also achieve competitive performance in many47

security-critical applications for which poisoning is relevant, including training with differential48

privacy [47], recommendation systems [15] and malware detection [7, 8, 41, 11, 44, 2]. From a49

practical perspective, linear models continue to be relevant—for example, Amazon SageMaker [1], a50

scalable framework to train ML models intended for developers and business analysts, provides linear51

models for tabular data, and trains linear models (on top of pretrained feature extractors) for images.52

Contributions. We observe that several state-of-the-art poisoning strategies for linear models have53

similar attack effectiveness on the given dataset, whereas their performance varies significantly across54

different datasets (Section 3). All of the tested poisoning attacks are very effective on benchmark55

datasets such as Dogfish and Enron, while none of them are effective on other datasets, such as56

selected MNIST digit pairs (e.g., 6–9) and Adult, even when the victim does not employ any defenses57

(Figure 1). To understand whether this observation means there are datasets that are inherently robust58

to poisoning attacks or just that state-of-the-art attacks are suboptimal, we first introduce general59

definitions of optimal poisoning attacks for both finite-sample and distributional settings (Definitions60

4.1 and 4.2). We prove that under certain regularity conditions, the performance achieved by an61

optimal poisoning adversary with finite-samples converges asymptotically to the actual optimum with62

respect to the underlying distribution (Theorem 4.3), and the best poisoning performance is always63

achieved at the maximum allowable poisoning ratio under mild conditions (Theorem 4.5).64

Building upon these definitions, we rigorously characterize the behavior of optimal poisoning65

attacks under a theoretical Gaussian mixture model (Theorem 5.3), and derive upper bounds on their66

effectiveness for general data distributions (Theorem 5.7). In particular, we discover that a larger67

projected constraint size (Definition 5.5) is associated with a higher inherent vulnerability, whereas68

projected data distributions with a larger separability and smaller standard deviation (Definition 5.6)69

are fundamentally less vulnerable to poisoning attacks (Section 5.2). Empirically, we find the70

discovered learning task properties and the gained theoretical insights largely explain the drastic71

difference in attack performance observed for state-of-the-art indiscriminate poisoning attacks on72

linear models across benchmark datasets (Section 6). Finally, we discuss potential implications of our73

work by showing how one might improve robustness to poisoning via better feature transformations74

and defenses (e.g., data sanitization defenses) to limit the impact of poisoning points (Section 7).75

Related Work. Several prior works developed indiscriminate poisoning attacks by injecting small76

fraction of poisoning points. One line of research adopts iterative gradient-based methods to directly77

maximize the surrogate loss chosen by the victim [3, 35, 34, 24], leveraging the idea of influence78

functions [40]. Another approach bases attacks on convex optimization methods [45, 46, 25] which79

provide a more efficient way to generate poisoned data, often with an additional input of a target model.80

Most of these works focus on studying linear models, but recently there has been some progress on81

designing more effective attacks against neural networks with insights learned from attacks evaluated82

on linear models [31, 32]. All the aforementioned works focus on developing different indiscriminate83

poisoning algorithms and some also characterize the hardness of poisoning in the model-targeted84

setting [46, 32], but did not explain why certain datasets are seemingly harder to poison than others.85

Our work leverages these attacks to empirically estimate the inherent vulnerabilities of benchmark86

datasets to poisoning, but focuses on providing explanations for the disparate poisoning vulnerability87

across the datasets. Besides injection, some other works consider different poisoning setting from88

ours by modifying up to the whole training data, also known as unlearnable examples [19, 52, 16].89

Although much research focuses on indiscriminate poisoning, many realistic attack goals are better90

captured as targeted attacks [42, 53, 24, 21, 18], where the adversary’s goal is to induce a model that91

misclassifies a particular known instance, or subpopulation attacks [22, 46], where the adversary’s92

goal is to produce misclassifications for a defined subset of the distribution. A recent work that93

studies the inherent vulnerabilities of datasets to targeted data poisoning attacks proposed the Lethal94

Dose Conjecture (LDC) [48]: given a dataset of size N , the tolerable amount of poisoning points95

from any targeted poisoning attack generated through insertion, deletion or modifications is Θ(N/n),96

where n is the sample complexity of the most data-efficient learner trained on the clean data to97
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correctly predict a known test sample. Compared to our work, LDC is more general and applies to98

any dataset, any learning algorithm, and even different poisoning settings (e.g., deletion, insertion).99

In contrast, our work focuses on insertion-only indiscriminate attacks for linear models. However,100

the general setting for LDC can result in overly pessimistic estimates on the power of insertion-only101

indiscriminate poisoning attacks. In addition, the key factor of the sample complexity n in LDC102

is usually unknown and difficult to determine. Our work complements LDC by making an initial103

step towards finding factors (which could be related to n) under a particular attack scenario to better104

understand the power of indiscriminate data poisoning attacks. Appendix E provides more details.105

2 Preliminaries106

We consider binary classification tasks. Let X ⊆ Rn be the input space and Y = {−1,+1} be the107

label space. Let µc be the joint distribution of clean inputs and labels. For standard classification tasks,108

the goal is to learn a hypothesis h : X → Y that minimizes Risk(h;µc) = P(x,y)∼µc

[
h(x) ̸= y

]
.109

Instead of directly minimizing risk, typical machine learning methods find an approximately good110

hypothesis h by restricting the search space to a specific hypothesis class H, then optimizing h111

by minimizing some convex surrogate loss: minh∈H L(h;µc). In practical applications with only112

a finite number of samples, model training replaces the population measure µc with its empirical113

counterpart. The surrogate loss for h is defined as L(h;µ) = E(x,y)∼µ
[
ℓ(h;x, y)

]
, where ℓ(h;x, y)114

denotes the non-negative individual loss of h incurred at (x, y).115

We focus on the linear hypothesis class and hinge loss, which is a common setting considered in116

prior works [3, 4, 45, 25, 46]. Our results can be extended to other linear methods such as logistic117

regression (LR). A linear hypothesis parameterized by a weight parameter w ∈ Rn and a bias118

parameter b ∈ R is defined as: hw,b(x) = sgn(w⊤x+ b) for any x ∈ Rn, where sgn(·) denotes the119

sign function. For any x ∈ X and y ∈ Y , the hinge loss of a linear classifier hw,b is defined as:120

ℓ(hw,b;x, y) = max{0, 1− y(w⊤x+ b)}+ λ

2
∥w∥22, (1)

where λ ≥ 0 is the tuning parameter which penalizes the ℓ2-norm of the weight parameter w.121

Threat Model. We consider indiscriminate data poisoning attacks, which can be formulated as a122

theoretic game between an attacker and a victim in practice [45]:123

1. A clean training dataset Sc is produced, where each data point is i.i.d. sampled from µc.124

2. The attacker generates a poisoned dataset Sp using some poisoning strategy A, which aims125

to reduce the performance of the victim model by injecting Sp into the training dataset.126

3. The victim minimizes empirical surrogate loss L(·) on Sc ∪ Sp and produces a model ĥp.127

The attacker’s goal is to find a poisoning strategy A such that the risk of the final induced classifier128

Risk(ĥp;µc) is as high as possible, which is empirically estimated on a set of fresh testing data129

that are i.i.d. sampled from µc. We assume the attacker has full knowledge of the learning process,130

including the clean distribution µc or the clean training dataset Sc, the hypothesis class H, the131

surrogate loss function ℓ and the learning algorithm adopted by the victim.132

We impose two restrictions to the poisoning attack: |Sp| ≤ ϵ · |Sc| and Sp ⊆ C, where ϵ ∈ [0, 1] is133

the poisoning budget and C ⊆ X × Y is a bounded subset that captures the feasibility constraints134

for poisoned data. We assume that C is specified in advance with respect to different applications135

(e.g., normalized pixel values of images can only be in range [0, 1]) and possible defenses the victim136

may choose (e.g., points that have larger Euclidean distance from center will be removed) [45, 25].137

Here, we focus on undefended victim models, i.e., C is specified based on application constraints, so138

as to better assess the inherent dataset vulnerabilities without active protections. However, defense139

strategies such as data sanititation [12, 45, 25] may shrink the size of C so that the poisoned data are140

less extreme and harmful. We provide preliminary experimental results on this in Section 7.141

3 Disparate Poisoning Vulnerability of Benchmark Datasets142

Prior evaluations of poisoning attacks on convex models are inadequate in some aspects, either being143

tested on very small datasets (e.g., significantly subsampled MNIST 1–7 dataset) without competing144
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Figure 1: Performance of the best current indiscriminate poisoning attacks with ϵ = 3% across
different benchmark datasets. Datasets are sorted from lowest to highest base error rate.

baselines [3, 10, 34, 35], generating invalid poisoning points [45, 25] or lacking diversity in the145

evaluated convex models/datasets [31, 32]. This motivates us to carefully evaluate representative146

attacks for linear models on various benchmark datasets without considering additional defenses.147

Experimental Setup. We evaluate the state-of-the-art data poisoning attacks for linear models:148

Influence Attack [24, 25], KKT Attack [25], Min-Max Attack [45, 25], and Model-Targeted Attack149

(MTA) [46]. We consider both linear SVM and LR models and evaluate the models on benchmark150

datasets including different MNIST [28] digit pairs (MNIST 1–7, as used in prior evaluations [45, 25,151

3, 46], in addition to MNIST 4–9 and MNIST 6–9 which were picked to represent datasets that are152

relatively easier/harder to poison), and other benchmark datasets used in prior evaluations including153

Dogfish [24], Enron [36] and Adult [22, 46]. Filtered Enron is obtained by filtering out 3% of near154

boundary points from Enron. We choose 3% as maximum poisoning rate following previous works155

[45, 25, 31, 32]. Appendix D.1 provides details on the experimental setup.156

Results. Figure 1 shows the highest error from across the tested poisoning attacks (in most cases,157

all of the attacks perform similarly). At the 3% poisoning ratio, the increased test errors of datasets158

such as MNIST 6–9 and MNIST 1–7 are less than 4% for both SVM and LR while for other datasets159

such as Dogfish, Enron and Filtered Enron, the increased error is much higher than the injected160

poisoning ratio, indicating that these datasets are more vulnerable to poisoning. Dogfish is moderately161

vulnerable (≈ 8% increased error) while Enron and Filtered Enron are highly vulnerable with over162

30% of increased error. Consistent with prior work [45, 25, 32], throughout this paper, we measure the163

increased error to determine whether a dataset is vulnerable to poisoning attacks. However, in some164

security-critical applications, the ratio between the increased error and the initial error might matter165

more but leave its exploration as future work. These results reveal a drastic difference in robustness166

of benchmark datasets to state-of-the-art indiscriminate data poisoning attacks which has not been167

explained in prior works. A natural question to ask from the above observation is are datasets like168

MNIST digits inherently robust to poisoning attacks or just resilient to state-of-the-art attacks? Since169

directly estimating the performance of optimal poisoning attacks for benchmark datasets is very170

challenging, we first explore and characterize optimal poisoning attacks for theoretical distributions171

and then study their partial characteristics for general distributions in Section 5.172

4 Defining Optimal Poisoning Attacks173

In this section, we lay out formal definitions of optimal poisoning attacks and study their general174

implications. First, we introduce a notion of finite-sample optimal poisoning to formally define the175

optimal poisoning attack in the practical finite-sample setting with respect to our threat model:176

Definition 4.1 (Finite-Sample Optimal Poisoning). Consider input space X and label space Y . Let177

µc be the underlying data distribution of clean inputs and labels. Let Sc be a set of examples sampled178

i.i.d. from µc. Suppose H is the hypothesis class and ℓ is the surrogate loss function that are used179

for learning. For any ϵ ≥ 0 and C ⊆ X × Y , a finite-sample optimal poisoning adversary Âopt is180

defined to be able to generate some poisoned dataset S∗p such that:181

S∗p = argmax
Sp

Risk(ĥp;µc) s.t. Sp ⊆ C and |Sp| ≤ ϵ · |Sc|,

where ĥp = argminh∈H
∑

(x,y)∈Sc∪Sp ℓ(h;x, y) denotes the empirical loss minimizer.182
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Definition 4.1 suggests that no poisoning strategy can achieve a better attack performance than that183

achieved by Âopt. If we denote by ĥ∗p the hypothesis produced by minimizing the empirical loss on184

Sc ∪ S∗p , then Risk(ĥ∗p;µc) can be regarded as the maximum achievable attack performance.185

Next, we introduce a more theoretical notion of distributional optimal poisoning, which generalizes186

Definition 4.1 from finte-sample datasets to data distributions.187

Definition 4.2 (Distributional Optimal Poisoning). Consider the same setting as in Definition 4.1. A188

distributional optimal poisoning adversary Aopt is defined to be able to generate some poisoned data189

distribution µ∗p such that:190

(µ∗p, δ
∗) = argmax

(µp,δ)

Risk(hp;µc) s.t. supp(µp) ⊆ C and 0 ≤ δ ≤ ϵ,

where hp = argminh∈H {L(h;µc) + δ · L(h;µp)} denotes the population loss minimizer.191

Similar to the finite-sample case, Definition 4.2 implies that there is no feasible poisoned distribution192

µp such that the risk of its induced hypothesis is higher than that attained by µ∗p. Theorem 4.3, proven193

in Appendix A.1, connects Definition 4.1 and Definition 4.2. The formal definitions of uniform194

convergence, strong convexity and Lipschitz continuity are given in Appendix A.1.195

Theorem 4.3. Consider the same settings as in Definitions 4.1 and 4.2. Suppose H satisfies196

the uniform convergence property with function mH(·, ·). Assume ℓ is b-strongly convex and197

Risk(h;µc) is ρ-Lipschitz continuous with respect to model parameters for some b, ρ > 0. Let198

ĥ∗p = argminh∈H
∑

(x,y)∈Sc∪S∗
p
ℓ(h;x, y) and h∗p = argminh∈H{L(h;µc) + δ∗ · L(h;µ∗p)}. For199

any ϵ′, δ′ ∈ (0, 1), if |Sc| ≥ mH(ϵ
′, δ′), then with probability at least 1− δ′,200 ∣∣Risk(ĥ∗p;µc)− Risk(h∗p;µc)

∣∣ ≤ 2ρ

√
ϵ′

b
.

Remark 4.4. Theorem 4.3 assumes three regularity conditions to ensure the finite-sample optimal201

poisoning attack is a consistent estimator of the distributional optimal one (i.e., insights on poisoning202

from distributional settings can transfer to finite-sample settings): the uniform convergence property203

of H that guarantees empirical minimization of surrogate loss returns a good hypothesis, the strong204

convexity condition that ensures a unique loss minimizer, and the Lipschitz condition that translates205

the closeness of model parameters to the closeness of risk. These conditions hold for most (properly206

regularized) convex problems and input distributions with bounded densities. The asymptotic207

convergence rate is determined by the function mH, which depends on the complexity of the208

hypothesis class H and the surrogate loss ℓ. For instance, if we choose λ carefully, sample complexity209

of the linear hypothesis class for a bounded hinge loss is Ω(1/(ϵ′)2), where ϵ′ is the error bound210

parameter for specifying the uniform convergence property (see Definition A.3) and other problem-211

dependent parameters are hidden in the big-Ω notation (see Section 15 of [43] for details). We note the212

generalization of optimal poisoning attack for linear case is related to agnostic learning of halfspaces213

[23], which also imposes assumptions on the underlying distribution such as anti-concentration214

assumption [13, 17] similar to the Lipschitz continuity condition assumed in Theorem 4.3.215

Moreover, we note that δ∗ represents the ratio of injected poisoned data that achieves the optimal216

attack performance. In general, δ∗ can be any value in [0, ϵ], but we show in Theorem 4.5, proven in217

Appendix A.2, that optimal poisoning can always be achieved with ϵ-poisoning under mild conditions.218

Theorem 4.5. The optimal poisoning attack performance defined in Definition 4.2 can always be219

achieved by choosing ϵ as the poisoning ratio, if either of the following conditions is satisfied:220

1. The support of the clean distribution supp(µc) ⊆ C.221

2. H is a convex hypothesis class, and for any hθ ∈ H, there always exists a distribution µ222

such that supp(µ) ⊆ C and ∂
∂θ
L(hθ;µ) = 0.223

Remark 4.6. Theorem 4.5 characterizes the conditions under which the optimal performance is guar-224

anteed to be achieved with the maximum poisoning ratio ϵ. Note that the first condition supp(µc) ⊆ C225

is mild because it typically holds for poisoning attacks against undefended classifiers. When attacking226

classifiers that employ some defenses such as data sanitization, the condition supp(µc) ⊆ C might227

not hold, due to the fact that the proposed defense may falsely reject some clean data points as outliers228

(i.e., related to false positive rates). The second condition complements the first one in that it does229

not require the victim model to be undefended, however, it requires H to be convex. We prove in230
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Appendix A.3 that for any linear hypothesis with hinge loss, such a µ can be easily constructed.231

The theorem enables us to conveniently characterize the optimal poisoning attacks in Section 5.1232

by directly using ϵ. When the required conditions are satisfied, this theorem also provides a simple233

sanity check on whether a poisoning attack is optimal. In particular, if a candidate attack is optimal,234

the risk of the induced model is monotonically non-decreasing with respect to the poisoning ratio.235

5 Characterizing Optimal Poisoning Attacks236

This section characterizes the distributional optimal poisoning attacks with respect to linear hypothesis237

class. We first consider a theoretical 1-dimensional Gaussian mixture model and exactly characterize238

optimal poisoning attack and then discuss the implications on the underlying factors that potentially239

cause the inherent vulnerabilities to poisoning attacks for general high-dimensional distributions.240

5.1 One-Dimensional Gaussian Mixtures241

Consider binary classification tasks with one-dimensional inputs, where X = R and Y = {−1,+1}.242

Let µc be the underlying clean data distribution, where each example (x, y) is assumed to be i.i.d.243

sampled according to the following Gaussian mixture model:244 {
y = −1, x ∼ N (γ1, σ

2
1) with probability p,

y = +1, x ∼ N (γ2, σ
2
2) with probability 1− p,

(2)

where σ1, σ2 > 0 and p ∈ (0, 1). Without loss of generality, we assume γ1 ≤ γ2. Following our245

threat model, we let ϵ ≥ 0 be the maximum poisoning ratio and C = Q(u) := [−u, u]× Y for some246

u > 0 be the constraint set. Let HL = {hw,b : w ∈ {−1, 1}, b ∈ R} be the linear hypothesis class247

with normalized weights. Note that we consider a simplified setting where the weight parameter248

w ∈ {−1, 1}.1 Since ∥w∥2 is fixed, we also set λ = 0 in the hinge loss function (1). To begin, we249

introduce two definitions which will be used when characterizing the optimal poisoning attacks.250

Definition 5.1 (Two-point Distribution). For any α ∈ [0, 1], να is defined as a two-point distribution,251

if for any (x, y) sampled from να,252

(x, y) =

{
(−u,+1) with probability α,
(u,−1) with probability 1− α.

(3)

Definition 5.2 (Weight-Flipping Condition). Consider the assumed Gaussian mixture model (2) and
the linear hypothesis class HL. Let g be an auxiliary function such that for any b ∈ R,

g(b) =
1

2
Φ

(
b+ γ1 + 1

σ

)
− 1

2
Φ

(
−b− γ2 + 1

σ

)
,

where Φ is the cumulative distribution function (CDF) of standard Gaussian N (0, 1). Let ϵ > 0 be253

the poisoning budget and g−1 be the inverse of g, then the weight-flipping condition is defined as:254

max{∆(−ϵ),∆(g(0)),∆(ϵ)} ≥ 0, (4)

where ∆(s) = L(h1,g−1(s);µc)−minb∈R L(h−1,b;µc) + ϵ · (1 + u)− s · g−1(s).255

Now we are ready to present our main theoretical results. The following theorem rigorously char-256

acterizes the behavior of the distributional optimal poisoning adversary Aopt under the Gaussian257

mixture model (2) and the corresponding optimal attack performance:258

Theorem 5.3. Suppose the clean distribution µc follows the Gaussian mixture model (2) with p = 1/2,259

γ1 ≤ γ2, and σ1 = σ2 = σ. Assume u ≥ 1 and |γ1 + γ2| ≤ 2(u− 1). There always exists some α ∈260

[0, 1] such that the optimal attack performance defined in Definition 4.2 is achieved with δ = ϵ and261

µp = να, where να is defined by (3). More specifically, if h∗p = argminh∈HL
{L(h;µc)+ϵ·L(h; να)}262

denotes the induced hypothesis with optimal poisoning, then263

Risk(h∗p;µc) =

{
Φ
(
γ2−γ1

2σ

)
if condition (4) is satisfied,

1
2Φ

(
γ1−γ2+2s

2σ

)
+ 1

2Φ
(
γ1−γ2−2s

2σ

)
otherwise,

where s = max{g−1(ϵ)− g−1(0), g−1(0)− g−1(−ϵ)} and g(·) is defined in Definition 5.2.264

1Characterizing the optimal poisoning attack under the general setting of w ∈ R is more challenging, since
we need to consider the effect of any possible choice of w and its interplay with the dataset and constraint set
factors. We leave the theoretical analyses of w ∈ R to future work.
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The proof of Theorem 5.3 is given in Appendix B.1. Below, we provide a high-level proof sketch. We265

first prove that in order to understand the optimal poisoning attacks, it is sufficient to study the family266

of two-point distributions (Definition 5.1) as the poisoned data distribution. Based on this reduction267

and a specification of weight flipping condition (Definition 5.2), we then rigorously characterize the268

optimal attack performance with respect to different configurations of task-related parameters.269

Remark 5.4. Theorem 5.3 characterizes the exact behavior of Aopt for typical combinations of270

hyperparameters under the considered model, including distribution related parameters such as γ1, γ2,271

σ and poisoning related parameters such as ϵ, u. A larger u suggests the weight-flipping condition272

(4) is more likely to be satisfied, as an attacker can generate poisoned data with larger hinge loss273

to flip the weight parameter w. Class separability |γ1 − γ2| and within-class variance σ also play274

an important role in affecting the optimal attack performance. If the ratio |γ1 − γ2|/σ is large, then275

we know the initial risk Risk(hc;µc) = Φ(γ1−γ2

2σ ) will be small. Consider the case where condition276

(4) is satisfied. Note that Φ(γ2−γ1

2σ ) = 1− Φ(γ1−γ2

2σ ) implies an improved performance of optimal277

poisoning attack thus an higher inherent vulnerabilities to data poisoning attacks. However, it is worth278

noting that there is an implicit assumption in condition (4) that the weight parameter can be flipped279

from w = 1 to w = −1. A large value of |γ1 − γ2|/σ also implies that flipping the weight parameter280

becomes more difficult, since the gap between the hinge loss with respect to µc for a hypothesis with281

w = −1 and that with w = 1 becomes larger. Moreover, if condition (4) cannot be satisfied, then a282

larger ratio of |γ1 − γ2|/σ suggests that it is more difficult to move the decision boundary to incur283

an increase in test error, because of the number of correctly classified boundary points will increase284

at a faster rate. In summary, Theorem 5.3 suggests that a smaller value of u and a larger ratio of285

|γ1 − γ2|/σ increases the inherent robustness to indiscriminate poisoning for typical configurations286

under our model (2). Empirical verification of the above theoretical results is given in Appendix G.287

5.2 General Distributions288

Recall that we have identified several key factors (i.e., u, |γ1 − γ2| and σ) for 1-D Gaussian distribu-289

tions in Section 5.1 which are highly related to the performance of an optimal distributional poisoning290

adversary Aopt. In this section, we demonstrate how to generalize the definition of these factors291

to high-dimensional datasets and illustrate how they affect an inherent robustness upper bound to292

indiscriminate poisoning attacks for linear learners. In particular, we project the clean distribution µc293

and the constraint set C onto some vector w, then compute those factors based on the projections.294

Definition 5.5 (Projected Constraint Size). Let C ⊆ X × Y be the constraint set for poisoning. For295

any w ∈ Rn, the projected constraint size of C with respect to w is defined as:296

Sizew(C) = max
(x,y)∈C

w⊤x− min
(x,y)∈C

w⊤x

According to Definition 5.5, Sizew(C) characterizes the size of the constraint set C when projected297

onto the (normalized) projection vector w/∥w∥2 then scaled by ∥w∥2, the ℓ2-norm of w. In theory,298

the constraint sets conditioned on y = −1 and y = +1 can be different, but for simplicity and299

practical considerations, we simply assume they are the same in the following discussions.300

Definition 5.6 (Projected Separability and Standard Deviation). Let X ⊆ Rn, Y = {−1,+1}, and301

µc be the underlying distribution. Let µ− and µ+ be the input distributions with labels of −1 and +1302

respectively. For any w ∈ Rn, the projected separability of µc with respect to w is defined as:303

Sepw(µc) =
∣∣Ex∼µ− [w

⊤x]− Ex∼µ+ [w
⊤x]

∣∣.
In addition, the projected standard deviation of µc with respect to w is defined as:304

SDw(µc) =
√
Varw(µc), Varw(µc) = p− ·Varx∼µ− [w

⊤x] + p+ ·Varx∼µ+
[w⊤x],

where p− = Pr(x,y)∼µc
[y = −1], p+ = Pr(x,y)∼µc

[y = +1] denote the sampling probabilities.305

For finite-sample settings, we simply replace the input distributions with their empirical counterparts306

to compute the sample statistics of Sepw(µc) and SDw(µc). Note that the above definitions are307

specifically for linear models, but out of curiosity, we also provide initial thoughts on how to extend308

these metrics to neural networks (see Appendix F for preliminary results). Below, we provide309

justifications on how the three factors are related to the optimal poisoning attacks. Theorem 5.7 and310

the techniques used in its proof in Appendix B.2 are inspired by the design of Min-Max Attack [45].311
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Robust Moderately Vulnerable Highly Vulnerable
Metric MNIST 6–9 MNIST 1–7 Adult Dogfish MNIST 4–9 F. Enron Enron

SVM

Error Increase 2.7 2.4 3.2 7.9 6.6 33.1 31.9
Base Error 0.3 1.2 21.5 0.8 4.3 0.2 2.9

Sep/SD 6.92 6.25 9.65 5.14 4.44 1.18 1.18
Sep/Size 0.24 0.23 0.33 0.05 0.14 0.01 0.01

LR

Error Increase 2.3 1.8 2.5 6.8 5.8 33.0 33.1
Base Error 0.6 2.2 20.1 1.7 5.1 0.3 2.5

Sep/SD 6.28 6.13 4.62 5.03 4.31 1.11 1.10
Sep/Size 0.27 0.27 0.27 0.09 0.16 0.01 0.01

Table 1: Explaining disparate poisoning vulnerability under linear models. The top row for each
model gives the increase in error rate due to the poisoning, over the base error rate in the second row.
The explanatory metrics are the scaled (projected) separability, standard deviation and constraint size.

Theorem 5.7. Consider input space X ⊆ Rn, label space Y , clean distribution µc and linear312

hypothesis class H. For any hw,b ∈ H, x ∈ X and y ∈ Y , let ℓ(hw,b;x, y) = ℓM(−y(w⊤x+b)) be313

a margin-based loss adopted by the victim, where ℓM is convex and non-decreasing. Let C ⊆ X × Y314

be the constraint set and ϵ > 0 be the poisoning budget. Suppose hc = argminh∈H L(h;µc) has315

weight wc and h∗p is the poisoned model induced by optimal adversary Aopt, then we have316

Risk(h∗p;µc) ≤ min
h∈H

[
L(h;µc) + ϵ · L(h;µ∗p)

]
≤ L(hc;µc) + ϵ · ℓM(Sizewc(C)). (5)

Remark 5.8. Theorem 5.7 proves an upper bound on the inherent vulnerability to indiscriminate317

poisoning for linear learners, which can be regarded as a necessary condition for the optimal poisoning318

attack. A smaller upper bound likely suggests a higher inherent robustness to poisoning attacks. In319

particular, the right hand side of (5) consists of two terms: the clean population loss of hc and a term320

related to the projected constraint size. Intuitively, the projected separability and standard deviation321

metrics highly affect the first term, since data distribution with a higher Sepwc
(µc) and a lower322

SDwc
(µc) implies a larger averaged margin with respect to hc, which further suggests a smaller323

L(hc;µc). The second term is determined by the poisoning budget ϵ and the projected constraint size,324

or more precisely, a larger ϵ and a larger Sizewc(C) indicate a higher upper bound on Risk(h∗p;µc).325

In addition, we set h = hc and the projection vector as wc for the last inequality of (5), because hc326

achieves the smallest population surrogate loss with respect to the clean data distribution µc. However,327

choosing h = hc may not always produce a tighter upper bound on Risk(h∗p;µc) since there is no328

guarantee that the projected constraint size Sizewc(C) will be small. An interesting future direction is329

to select a more appropriate projection vector that returns a tight, if not the tightest, upper bound on330

Risk(h∗p;µc) for any clean distribution µc and see Appendix D.2 for preliminary experiments on this.331

6 Experiments332

Recall from Theorem 4.3 and Remark 4.4 that the finite-sample optimal poisoning attack is a333

consistent estimator of the distributional one for linear learners. In this section, we demonstrate the334

theoretical insights gained from Section 5, despite proven only for the distributional optimal attacks,335

still appear to largely explain the empirical performance of best attacks across benchmark datasets.336

Given a clean training data Sc, we empirically estimate the three distributional metrics defined in337

Section 5.2 on the clean test data with respect to the weight wc. Since ∥wc∥2 may vary across338

different datasets while the predictions of linear models (i.e., the classification error) are invariant339

to the scaling of ∥wc∥2, we use ratios to make their metrics comparable: Sepwc
(µc)/SDwc(µc)340

(denoted as Sep/SD in Table 1) and Sepwc
(µc)/Sizewc(C) (Sep/Size). According to our theoretical341

results, we expect datasets that are less vulnerable to poisoning have higher values for both metrics.342

Table 1 summarizes the results, showing that the Sep/SD and Sep/Size metrics can largely explain343

why datasets such as MNIST 1–7 and MNIST 6–9 are harder to poison than others. These datasets344

are more separable and impacted less by the poisoning points. In contrast, datasets such as Enron345

and Filtered Enron are highly vulnerable because they are the least separable and also impacted the346

most by poisoning points. The empirical metrics are indeed highly correlated to the error increase347

(and also the final poisoned error) when the base error is small, which is the case for all tested348

benchmark datasets except Adult. The results of Filtered Enron (low base error, high increased error)349

and Adult (high base error, low increased error) demonstrate the poisoning vulnerability cannot be350
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trivially inferred from the initial base error. When the base error becomes high as it is for Adult, the351

empirical metrics are highly correlated to the final poisoned error, but not the error increase. For352

the error increase, computing the metrics on clean test points that are correctly classified by wc is353

more informative. Therefore, we report metrics based on correctly-classified test points in Table 1354

and provide results of the whole test data in Appendix D.2. For datasets except Adult, both ways of355

computing the metrics produce similar results. The Adult dataset is very interesting in that it is robust356

to poisoning (i.e., small error increase) despite having a very high base error.357

7 Discussion358

Our results imply future defenses by explaining why candidate defenses work and motivating defenses359

to improve separability and reduce projected constraint size. We present two ideas—using better360

features might improve separability and using data filtering might reduce projected constraint size.361

Better feature representation. We consider a transfer learning scenario where the victim trains a362

linear model on a clean pretrained model. As a preliminary experiment, we train LeNet and ResNet18363

models on the CIFAR10 dataset till convergence, but record the intermediate models of ResNet18 to364

produce models with different feature extractors (R-X denotes ResNet18 trained for X epochs). We365

then use the feature extraction layers of these models (including LeNet) as the pretrained models and366

obtain features of CIFAR10 images with labels “Truck” and “Ship”, and train linear models on them.367
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Figure 2: Impact of features on poisoning.

We evaluate the robustness of this dataset against368

poisoning attacks and set C as dimension-wise369

box-constraints, whose values are the minimum370

and maximum values of the clean data points for371

each dimension when fed to the feature extrac-372

tors. This approach corresponds to the practical373

scenario where the victim has access to some374

small number of clean samples so that they can375

deploy a simple defense of filtering out inputs376

that do not fall into a dimension-wise box con-377

straint that is computed from the available clean378

samples of the victim. Figure 2 shows that as379

the feature extractor becomes better (either using380

deep architecture or training it for more epochs),381

both the Sep/SD and Sep/Size metrics increase,382

leading to reduced error increase. This indicates383

that better feature representations (trained on clean data) might help in resisting poisoning attacks.384

Reduced projected constraint size. The commonly used data sanitization defense works by filtering385

out bad points. We speculate it works because it effectively limits the projected constraint size of386

C. To test this, we picked the combination of Sphere and Slab defenses considered in prior works387

[25, 45] to protect the vulnerable Enron dataset. We find that, with defense, the test error is increased388

from 3.2% to 28.8% while without defense, the error can be increased from 2.9% to 34.8%. Although389

limited in effectiveness, the defense still mitigates the poisoning to some degree mostly by shrinking390

the projected constraint size Sizewc
(C) that leads to higher value of the Sep/Size metric: 0.11 with391

defense and 0.01 without defense. Similar conclusion can also be drawn for MNIST 1-7 at high392

poisoning ratio and more details about the experimental results can be found in Appendix D.2.393

8 Conclusion394

Motivated by the empirical observation that different datasets show disparate vulnerabilities to state-395

of-the-art poisoning attacks for linear learners, we rigorously characterized the optimal poisoning396

attacks for Gaussian distributions. The insights from the theoretical analysis can be used to explain the397

vulnerabilities of benchmark datasets. We made an initial but important step towards understanding398

the inherent dataset and learning task properties that correlate with vulnerability to poisoning attacks.399

Our results also provide suggestions for building more robust systems. One limitation of our work is400

we only characterize the optimal poisoning attacks for theoretical distributions under linear models,401

but plan to extend to general distributions in high-dimensions and non-linear models in future.402
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A Proofs of Main Results in Section 4535

A.1 Proof of Theorem 4.3536

We first introduce the formal definitions of strong convexity and Lipschitz continuity conditions with537

respect to a function, and the uniform convergence property respect to a hypothesis class. These538

definitions are necessary for the proof of Theorem 4.3.539

Definition A.1 (Strong Convexity). A function f : Rn → R is b-strongly convex for some b > 0, if540

f(x1) ≥ f(x2) +∇f(x2)
⊤(x1 − x2) +

b
2∥x1 − x2∥22 for any x1,x2 ∈ Rn.541

Definition A.2 (Lipschitz Continuity). A function f : Rn → R is ρ-Lipschitz for some ρ > 0, if542

|f(x1)− f(x2)| ≤ ρ∥x1 − x2∥2 for any x1,x2 ∈ Rn.543

Definition A.3 (Uniform Convergence). Let H be a hypothesis class. We say that H satisfies the
uniform convergence property with a loss function ℓ, if there exists a function mH : (0, 1)2 → N
such that for every ϵ′, δ′ ∈ (0, 1) and for every probability distribution µ, if S is a set of examples
with m ≥ mH(ϵ

′, δ′) samples drawn i.i.d. from µ, then

PS←µm

[
sup
h∈H

∣∣L(h; µ̂S)− L(h;µ)
∣∣ ≤ ϵ′

]
≥ 1− δ′.

Such a uniform convergence property, which can be achieved using the VC dimension or the544

Rademacher complexity of H, guarantees that the learning rule specified by empirical risk minimiza-545

tion always returns a good hypothesis with high probability [43]. Similar to PAC learning, the function546

mH measures the minimal sample complexity requirement that ensures uniform convergence.547

Now, we are ready to prove Theorem 4.3548

Proof of Theorem 4.3. First, we introduce the following notations to simplify the proof. For any Sp,549

µp and δ ≥ 0, let550

ĝ(Sp,Sc) = argmin
h∈H

∑
(x,y)∈Sc∪Sp

ℓ(h;x, y),

g(δ, µp, µc) = argmin
h∈H

{L(h;µc) + δ · L(h;µp)}.

According to the definitions of ĥ∗p and h∗p, we know ĥ∗p = ĝ(S∗p ,Sc) and h∗p = g(δ∗, µ∗p, µc).551

Now we are ready to prove Theorem 4.3. For any Sc sampled from µc, consider the empirical552

loss minimizer ĥ∗p = ĝ(S∗p ,Sc) and the population loss minimizer g(δS∗
p
, µ̂S∗

p
, µc), where δS∗

p
=553

|S∗p |/|Sc|. Then S∗p ∪ Sc can be regarded as the i.i.d. sample set from (µc + δS∗
p
· µ̂S∗

p
)/(1 + δS∗

p
).554

According to Definition A.3, since H satisfies the uniform convergence property with respect to ℓ, we555

immediately know that the empirical loss minimization is close to the population loss minimization if556

the sample size is large enough (see Lemma 4.2 in [43]). To be more specific, for any ϵ′, δ′ ∈ (0, 1),557

if |Sc| ≥ mH(ϵ
′, δ′), then with probability at least 1− δ′, we have558

L
(
ĝ(S∗p ,Sc);µc

)
+ δS∗

p
· L

(
ĝ(S∗p ,Sc); µ̂S∗

p

)
≤ argmin

h∈H
{L(h;µc) + δS∗

p
· L(h; µ̂S∗

p
)}+ 2ϵ′

= L
(
g(δS∗

p
, µ̂S∗

p
, µc);µc

)
+ δS∗

p
· L

(
g(δS∗

p
, µ̂S∗

p
, µc); µ̂S∗

p

)
+ 2ϵ′.

In addition, since the surrogate loss ℓ is b-strongly convex and the population risk is ρ-Lipschitz, we559

further know the clean risk of ĝ(S∗p ,Sc) and g(δS∗
p
, µ̂S∗

p
, µc) is guaranteed to be close. Namely, with560

probability at least 1− δ′, we have561 ∣∣Risk(ĝ(S∗p ,Sc);µc

)
− Risk

(
g(δS∗

p
, µ̂S∗

p
, µc);µc

)∣∣ ≤ ρ ·
∥∥ĝ(S∗p ,Sc)− g(δS∗

p
, µ̂S∗

p
, µc)

∥∥
2

≤ 2ρ

√
ϵ′

b
.

Note that δS∗
p
∈ [0, ϵ] and supp(µ̂S∗

p
) ⊆ C. Thus, according to the definition of h∗p = g(δ∗, µ∗p, µc),562

we further have563

Risk(h∗p;µc) ≥ Risk
(
g(δS∗

p
, µ̂S∗

p
, µc);µc

)
≥ Risk

(
ĝ(S∗p ,Sc);µc

)
− 2ρ

√
ϵ′

b

= Risk(ĥ∗p;µc)− 2ρ

√
ϵ′

b
. (6)
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So far, we have proven one direction of the asymptotic for results Theorem 4.3.564

On the other hand, we can always construct a subset S̃p with size |S̃p| = δ∗ · |Sc| by i.i.d. sampling565

from µ∗p. Consider the empirical risk minimizer ĝ(S̃p,Sc) and the population risk minimizer h∗p =566

g(δ∗, µ∗p, µc). Similarly, since H satisfies the uniform convergence property, if |Sc| ≥ mH(ϵ
′, δ′),567

then with probability at least 1− δ′,we have568

L
(
ĝ(S̃p,Sc);µc

)
+ δ∗ · L

(
ĝ(S̃p,Sc);µ

∗
p

)
≤ argmin

h∈H
{L(h;µc) + δ∗ · L(h;µ∗p)}+ 2ϵ′

= L
(
g(δ∗, µ∗p, µc);µc

)
+ δ∗ · L

(
g(δ∗, µ∗p, µc);µ

∗
p

)
+ 2ϵ′.

According to the strong convexity of ℓ and the Lipschitz continuity of the population risk, we further569

have570 ∣∣Risk(ĝ(S̃p,Sc);µc

)
− Risk

(
g(δ∗, µ∗p, µc);µc

)∣∣ ≤ ρ ·
∥∥ĝ(S̃p,Sc)− g(δ∗, µ∗p, µc)

∥∥
2

≤ 2ρ

√
ϵ′

b
.

Note that S̃p ⊆ C and |S̃p| = δ∗ · |Sc| ≤ ϵ · |Sc|. Thus according to the definition of ĥ∗p = ĝ(S∗p ,Sc),571

we have572

Risk(ĥ∗p;µc) ≥ Risk
(
ĝ(S̃p,Sc);µc

)
≥ Risk

(
g(δ∗, µ∗p, µc);µc

)
− 2ρ

√
ϵ′

b

= Risk(h∗p;µc)− 2ρ

√
ϵ′

b
. (7)

Combining (6) and (7), we complete the proof of Theorem 4.3.573

A.2 Proof of Theorem 4.5574

Proof of Theorem 4.5. We prove Theorem 4.5 by construction.575

We start with the first condition supp(µc) ⊆ C. Suppose δ∗ < ϵ, since the theorem trivially holds if576

δ∗ = ϵ. To simplify notations, define hp(δ, µp) = argminh∈H {L(h;µc) + δ · L(h;µp)} for any δ577

and µp. To prove the statement in Theorem 4.5, it is sufficient to show that there exists some µ
(ϵ)
p578

based on the first condition such that579

Risk
(
hp(ϵ, µ

(ϵ)
p );µc

)
≥ Risk

(
hp(δ

∗, µ∗p);µc

)
, and supp(µ(ϵ)

p ) ⊆ C. (8)

We construct µ(ϵ)
p based on µc and µ∗p as follows:580

µ(ϵ)
p =

δ∗

ϵ
· µ∗p +

ϵ− δ∗

ϵ(1 + δ∗)
· (µc + δ∗ · µ∗p)

=
ϵ− δ∗

ϵ(1 + δ∗)
· µc +

δ∗(1 + ϵ)

ϵ(1 + δ∗)
· µ∗p.

We can easily check that µ(ϵ)
p is a valid probability distribution and supp(µ

(ϵ)
p ) ⊆ C. In addition, we581

can show that582

hp(ϵ, µ
(ϵ)
p ) = argmin

h∈H
{L(h;µc) + ϵ · L(h;µ(ϵ)

p )}

= argmin
h∈H

{
E(x,y)∼µc

ℓ(h;x, y) + ϵ · E
(x,y)∼µ(ϵ)

p
ℓ(h;x, y)

}
=

1 + ϵ

1 + δ∗
· argmin

h∈H

{
E(x,y)∼µc

ℓ(h;x, y) + δ∗ · E(x,y)∼µ∗
p
ℓ(h;x, y)

}
=

1 + ϵ

1 + δ∗
· hp(δ

∗, µ∗p)

> hp(δ
∗, µ∗p),
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where the third equality holds because of the construction of µ(ϵ)
p . Therefore, we have proven (8),583

which further implies the optimal attack performance can always be achieved with ϵ-poisoning as584

long as the first condition is satisfied.585

Next, we turn to the second condition of Theorem 4.5. Similarly, it is sufficient to construct some586

µ
(ϵ)
p for the setting where δ∗ < ϵ such that587

Risk
(
hp(ϵ, µ

(ϵ)
p );µc

)
≥ Risk

(
hp(δ

∗, µ∗p);µc

)
, and supp(µ(ϵ)

p ) ⊆ C.

We construct µ(ϵ)
p based on µ∗p and the assumed data distribution µ. More specifically, we construct588

µ(ϵ)
p =

δ∗

ϵ
· µ∗p +

ϵ− δ∗

ϵ
· µ. (9)

By construction, we know µ
(ϵ)
p is a valid probability distribution. In addition, according to the589

assumption of supp(µ) ⊆ C, we have supp(µ
(ϵ)
p ) ⊆ C. According to the assumption that590

∂
∂θ
L(hθ;µ) = 0 holds for any θ and the first-order optimality condition for convex loss, we591

know hp(ϵ, µ
(ϵ)
p ) = hp(δ

∗, µ∗p) holds for any possible hp(δ
∗, µ∗p), which suggests (9). Therefore, we592

complete the proof of Theorem 4.5.593

A.3 Proofs of the Statement about Linear Models in Remark 4.6594

Proof. We provide the construction of µ with respect to the second condition of Theorem 4.5 for
linear models and hinge loss. Since for any hw,b ∈ HL and any (x, y) ∈ X × Y , we have

ℓ(hw,b;x, y) = max{0, 1− y(w⊤x+ b)}+ λ

2
∥w∥22.

Let θ = (w, b), then the gradient with respect to w can be written as:595

∂

∂w
ℓ(hw,b;x, y) =

{
−y · x+ λw if y(w⊤x+ b) ≤ 1,
0 otherwise.

Similarly, the gradient with respect to b can be written as:596

∂

∂b
ℓ(hw,b;x, y) =

{
−y if y(w⊤x+ b) ≤ 1,
0 otherwise.

Therefore, we can simply construct µ by placing all the probability mass of µ at (x, y) such that597

y(w⊤x+ b) > 1. If no such (x, y) exists, we can construct µ as a two-point distribution based on w598

such that the derivatives of ℓ with respect to w and b are all zero, which completes the proof.599

B Proofs of Main Results in Section 5600

B.1 Proof of Theorem 5.3601

To prove Theorem 5.3, we need to make use of the following three auxiliary lemmas, which are related602

to the maximum population hinge loss with w = 1 (Lemma B.1), the weight-flipping condition603

(Lemma B.2) and the risk behaviour of any linear hypothesis under (2) (Lemma B.3). For the sake of604

completeness, we present the full statements of Lemma B.1 and Lemma B.2 as follows. In particular,605

Lemma B.1, proven in Appendix C.1, characterizes the maximum achievable hinge loss with respect606

to the underlying clean distribution µc and some poisoned distribution µp conditioned on w = 1.607

Lemma B.1. Suppose the underlying clean distribution µc follows the Gaussian mixture model (2)608

with p = 1/2 and σ1 = σ2 = σ. Assume |γ1 + γ2| ≤ 2u. For any ϵ ≥ 0, consider the following609

maximization problem:610

max
µp∈Q(u)

[
L(h1,bp ;µc) + ϵ · L(h1,bp ;µp)

]
, (10)

where bp = argminb∈R[L(h1,b;µc) + ϵ · L(h1,b;µp)]. There exists some α ∈ [0, 1] such that the611

optimal value of (10) is achieved with µp = να, where να is a two-point distribution with some612

parameter α ∈ [0, 1] defined according to (3).613
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Lemma B.1 suggests that it is sufficient to study the extreme two-point distributions να with α ∈ [0, 1]614

to understand the maximum achievable population hinge loss conditioned on w = 1. Lemma B.2,615

proven in Appendix C.2, characterizes the sufficient and necessary conditions in terms of ϵ, u and616

µc, under which there exists a linear hypothesis with w = −1 that achieves the minimal value of617

population hinge loss with respect to µc and some µp.618

Lemma B.2. Suppose the underlying clean distribution µc follows the Gaussian mixture model (2)
with p = 1/2 and σ1 = σ2 = σ. Assume |γ1 + γ2| ≤ 2(u− 1) for some u ≥ 1. Let g be an auxiliary
function such that for any b ∈ R,

g(b) =
1

2
Φ

(
b+ γ1 + 1

σ

)
− 1

2
Φ

(
−b− γ2 + 1

σ

)
,

where Φ is the CDF of standard Gaussian. For any ϵ > 0, there exists some µp ∈ Q(u) such that619

argminhw,b∈HL
[L(hw,b;µc) + ϵ · L(hw,b;µp)] outputs a hypothesis with w = −1, if and only if620

max{∆(−ϵ),∆(g(0)),∆(ϵ)} ≥ 0,

where ∆(s) = L(h1,g−1(s);µc) −minb∈R L(h−1,b;µc) + ϵ(1 + u) − s · g−1(s), and g−1 denotes621

the inverse of g.622

Lemma B.2 identifies sufficient and necessary conditions when a linear hypothesis with flipped623

weight parameter is possible. Note that we assume γ1 ≤ γ2, thus flipping the weight parameter of624

the induced model from w = 1 to w = −1 is always favorable from an attacker’s perspective. In625

particular, if the population hinge loss with respect to µc and some µp achieved by the loss minimizer626

conditioned on w = 1 is higher than that achieved by the loss minimizer with w = −1, then we627

immediately know that flipping the weight parameter is possible, which further suggests the optimal628

poisoning attack performance must be achieved by some poisoned victim model with w = −1.629

Finally, we introduce Lemma B.3, proven in Appendix C.3, which characterizes the risk behavior of630

any linear hypothesis with respect to the assumed Gaussian mixture model (2).631

Lemma B.3. Let µc be the clean data distribution, where each example is sampled i.i.d. according632

to the data generating process specified in (2). For any linear hypothesis hw,b ∈ HL, we have633

Risk(hw,b;µc) = p · Φ
(
b+ w · γ1

σ1

)
+ (1− p) · Φ

(
−b− w · γ2

σ2

)
,

where Φ denotes the CDF of standard Gaussian distribution N (0, 1).634

Now we are ready to prove Theorem 5.3 using Lemmas B.1, B.2 and B.3.635

Proof of Theorem 5.3. According to Theorem 4.5 and Remark 4.6, we note that the optimal poisoning636

performance in Definition 4.2 is always achieved with δ = ϵ. Therefore, we will only consider δ = ϵ637

in the following discussions.638

Since the optimal poisoning performance is defined with respect to clean risk, it will be useful to639

understand the properties of Risk(hw,b;µc) such as monotonicity and range. According to Lemma640

B.3, for any hw,b ∈ HL, we have641

Risk(hw,b;µc) =
1

2
Φ

(
b+ w · γ1

σ

)
+

1

2
Φ

(
−b− w · γ2

σ

)
.

To understand the monotonicity of risk, we compute its derivative with respect to b:642

∂

∂b
Risk(hw,b;µc) =

1

2σ
√
2π

[
exp

(
− (b+ w · γ1)2

2σ2

)
− exp

(
− (b+ w · γ2)2

2σ2

)]
.

If w = 1, then Risk(hw,b;µc) is monotonically decreasing when b ∈ (−∞,−γ1+γ2

2 ) and monotoni-643

cally increasing when b ∈ (−γ1+γ2

2 ,∞), suggesting that minimum is achieved at b = −γ1+γ2

2644

and maximum is achieved when b goes to infinity. To be more specific, Risk(h1,b;µc) ∈645

[Φ(γ1−γ2

2σ ), 1
2 ]. On the other hand, if w = −1, then Risk(hw,b;µc) is monotonically increasing646

when b ∈ (−∞, γ1+γ2

2 ) and monotonically decreasing when b ∈ (γ1+γ2

2 ,∞), suggesting that647

maximum is achieved at b = γ1+γ2

2 and minimum is achieved when b goes to infinity. Thus,648

Risk(h−1,b;µc) ∈ [ 12 ,Φ(
γ2−γ1

2σ )].649

Based on the monotonicity analysis of Risk(hw,b;µc), we have the following two observations:650
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1. If there exists some feasible µp such that h−1,bp = argminh∈HL
{L(h;µc) + ϵL(h;µp)}651

can be achieved, then the optimal poisoning performance is achieved with w = −1 and b652

close to γ1+γ2

2 as much as possible.653

2. If there does not exist any feasible µp that induces h−1,bp by minimizing the population654

hinge loss, then the optimal poisoning performance is achieved with w = 1 and b far from655

−γ1+γ2

2 as much as possible (conditioned that the variance σ is the same for the two classes).656

Recall that we prove in Lemma B.2 specifies a sufficient and necessary condition for the existence of657

such h−1,bp , which is equivalent to the condition (4) presented in Lemma B.2. Note that according to658

Lemma C.1, b = γ1+γ2

2 also yields the population loss minimizer with respect to µc conditioned on659

w = −1. Thus, if condition (4) is satisfied, then we know there exists some α ∈ [0, 1] such that the660

optimal poisoning performance can be achieved with µp = να. This follows from the assumption661

|γ1 + γ2| ≤ 2(u − 1), which suggests that for any (x, y) ∼ να, the individual hinge loss at (x, y)662

will be zero. In addition, we know that the poisoned hypothesis induced by Aopt is h−1, γ1+γ2
2

, which663

maximizes risk with respect to µc.664

On the other hand, if condition (4) is not satisfied, we know that the poisoned hypothesis induced by665

any feasible µp has weight parameter w = 1. Based on our second observation, this further suggests666

that the optimal poisoning performance will always be achieved with either µp = ν0 or µp = ν1.667

According to the first-order optimality condition and Lemma C.1, we can compute the closed-form668

solution regarding the optimal poisoning performance. Thus, we complete the proof.669

B.2 Proof of Theorem 5.7670

Proof of Theorem 5.7. Consider linear hypothesis class H and the poisoned distribution µ∗p generated671

by the optimal poisoning adversary Aopt in Definition 4.1. Given clean distribution µc, poisoning672

ratio ϵ and constraint set C, the inherent vulnerability to indiscriminate poisoning is captured by the673

optimal attack performance Risk(h∗p;µc), where h∗p denotes the poisoned linear model induced by674

µ∗p. For any h ∈ H, we have675

Risk(h∗p;µc) ≤ L(h∗p;µc) ≤ L(h∗p;µc) + ϵ · L(h∗p;µ∗p) ≤ L(h;µc) + ϵ · L(h;µ∗p) (11)

where the first inequality holds because the surrogate loss is defined to be not smaller than the 0-1676

loss, the second inequality holds because the surrogate loss is always non-negative, and the third677

inequality holds because h∗p minimizes the population loss with respect to both clean distribution678

µ and optimally generated poisoned distribution µ∗p. Consider hc = argminh∈H L(h;µc) (with679

weight parameter wc and bias parameter bc), which is the linear model learned from the clean data.680

Therefore, plugging h = hc into the right hand side of (11), we further obtain681

Risk(h∗p;µc) ≤ L(hc;µc) + ϵ · L(hc;µ
∗
p) ≤ L(hc;µc) + ϵ · ℓM(Sizewc(C)), (12)

where the last inequality holds because for any poisoned data point (x, y) ∼ µ∗p, the surrogate loss682

at (x, y) with respect to hc is ℓM
(
y · (w⊤c x+ bc)

)
, and y · (w⊤c x+ bc) ≤ max(x,y)∈C |w⊤c x+ bc|.683

Under the condition that min(x,y)∈C w
⊤
c x ≤ −bc ≤ max(x,y)∈C w

⊤
c x which means the decision684

boundary of hc falls into the constraint set C when projected on to the direction of wc, we further685

have max(x,y)∈C |w⊤c x+ bc| ≤ Sizewc(C), which implies the validity of (12). We remark that the686

condition min(x,y)∈C w
⊤
c x ≤ −bc ≤ max(x,y)∈C w

⊤
c x typically holds for margin-based loss in687

practice, since the support of the clean training data belongs to the constraint set for poisoning inputs688

(for either undefended victim models or models that employ some unsupervised data sanitization689

defense). Therefore, we leave this condition out in the statement of Theorem 5.7 for simplicity.690

C Proofs of Technical Lemmas used in Appendix B.1691

C.1 Proof of Lemma B.1692

To prove Lemma B.1, we need to make use of the following general lemma which characterizes the693

population hinge loss and its derivative with respect to clean data distribution µc. For the sake of694

completeness, we provide the proof of Lemma C.1 in Appendix C.4.695
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Lemma C.1. Let µc be data distribution generated according to (2). For any hw,b ∈ HL, the696

population hinge loss is:697

L(hw,b;µc) = p

∫ ∞
−b−w·γ1−1

σ1

(b+ w · γ1 + 1 + σ1z) · φ(z)dz

+ (1− p)

∫ −b−w·γ2+1
σ2

−∞
(−b− w · γ2 + 1− σ2z) · φ(z)dz,

and its gradient with respect to b is:698

∂

∂b
L(hw,b;µc) = p · Φ

(
b+ w · γ1 + 1

σ1

)
− (1− p) · Φ

(
−b− w · γ2 + 1

σ2

)
,

where φ and Φ denote the PDF and CDF of standard Gaussian distribution N (0, 1), respectively.699

Next, let us summarize several key observations based on Lemma C.1 (specifically for the setting700

considered in Lemma B.1). For any w ∈ {−1, 1}, ∂
∂bL(hw,b;µc) is a monotonically increasing with701

b, which achieves minimum − 1
2 when b goes to −∞ and achieves maximum 1

2 when b goes to ∞. If702

w = +1, then L(hw,b;µc) is monotonically decreasing when b ∈ (−∞,−γ1+γ2

2 ) and monotonically703

increasing when b ∈ (−γ1+γ2

2 ,∞), reaching the minimum at b = b∗c(1) := −γ1+γ2

2 . On the704

other hand, if w = −1, then L(hw,b;µc) is monotonically decreasing when b ∈ (−∞, γ1+γ2

2 ) and705

monotonically increasing when b ∈ (γ1+γ2

2 ,∞), reaching the minimum at b = b∗c(−1) := γ1+γ2

2 .706

As for the clean loss minimizer conditioned on w = 1, we have707

L(h1,b∗c(1)
;µc) =

1

2

∫ ∞
γ2−γ1−2

2σ

(
γ1 − γ2

2
+ 1 + σz

)
· φ(z)dz

+
1

2

∫ γ1−γ2+2
2σ

−∞

(
γ1 − γ2

2
+ 1− σz

)
· φ(z)dz

=
(γ1 − γ2 + 2)

2
· Φ

(
γ1 − γ2 + 2

2σ

)
+

σ√
2π

· exp
(
− (γ1 − γ2 + 2)2

8σ2

)
,

whereas as for the clean loss minimizer conditioned on w = −1, we have708

L(h−1,b∗c(−1);µc) =
1

2

∫ ∞
γ1−γ2−2

2σ

(
γ2 − γ1

2
+ 1 + σz

)
· φ(z)dz

+
1

2

∫ γ2−γ1+2
2σ

−∞

(
γ2 − γ1

2
+ 1− σz

)
· φ(z)dz

=
(γ2 − γ1 + 2)

2
· Φ

(
γ2 − γ1 + 2

2σ

)
+

σ√
2π

· exp
(
− (γ2 − γ1 + 2)2

8σ2

)
.

Let f(t) = t · Φ( t
σ ) + σ√

2π
· exp(− t2

2σ2 ), we know L(h1,b∗c(1)
;µc) = f(γ1−γ2+2

2 ) and709

L(h−1,b∗c(−1);µc) = f(γ2−γ1+2
2 ). We can compute the derivative of f(t): f ′(t) = Φ( t

σ ) ≥ 0,710

which suggests that L(h1,b∗c(1)
;µc) ≤ L(h−1,b∗c(−1);µc).711

Now we are ready to prove Lemma B.1.712

Proof of Lemma B.1. First, we prove the following claim: for any possible bp, linear hypothesis h1,bp713

can always be achieved by minimizing the population hinge loss with respect to µc and µp = να with714

some carefully-chosen α ∈ [0, 1] based on bp.715

For any µp ∈ Q(u), according to the first-order optimality condition with respect to bp, we have716

∂

∂b
L(h1,bp ;µc) = −ϵ · ∂

∂b
L(h1,bp ;µp) = −ϵ · ∂

∂b
E(x,y)∼µp

[
ℓ(h1,bp ;µp)

]
∈ [−ϵ, ϵ], (13)
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where the last inequality follows from ∂
∂bℓ(hw,b;x, y) ∈ [−1, 1] for any (x, y). Let Bp be the set of717

any possible bias parameters bp. According to (13), we have718

Bp =

{
b ∈ R :

∂

∂b
L(h1,b;µc) ∈ [−ϵ, ϵ]

}
.

Let b∗c(1) = argminb∈R L(h1,b;µc) be the clean loss minimizer conditioned on w = 1. According719

to Lemma C.1 and the assumption |γ1 + γ2| ≤ 2u, we know b∗c(1) = γ1+γ2

2 ∈ [−u, u]. For any720

bp ∈ Bp, we can always choose721

α =
1

2
+

1

2ϵ
· ∂

∂b
L(h1,bp ;µc) ∈ [0, 1], (14)

such that
h1,bp = argmin

b∈R
[L(h1,b;µc) + ϵ · L(h1,b; να)],

where να is defined according to (3). This follows from the first-order optimality condition for convex722

function and the closed-form solution for the derivative of hinge loss with respect to να:723

∂

∂b
L(h1,bp ; να) = α · ∂

∂b
ℓ(h+1,bp ;−u,+1) + (1− α) · ∂

∂b
ℓ(h+1,bp ;u,−1) = 1− 2α.

Thus, we have proven the claimed presented at the beginning of the proof of Lemma B.1.724

Next, we show that for any bp ∈ Bp, among all the possible choices of poisoned distribution µp that
induces bp, choosing µp = να with α defined according to (14) is the optimal choice in terms of
the maximization objective in (10). Let µp ∈ Q(u) be any poisoned distribution that satisfies the
following condition:

bp = argmin
b∈R

[L(h1,b;µc) + ϵ · L(h1,b;µp)].

According to the aforementioned analysis, we know that by setting α according to (14), να also yields
bp. Namely,

bp = argmin
b∈R

[L(h1,b;µc) + ϵ · L(h1,b; να)].

Since the population losses with respect to µc are the same at the induced bias b = bp, it remains to725

prove να achieves a larger population loss with respect to the poisoned distribution than that of µp,726

i.e., L(h1,bp ; να) ≥ L(h1,bp ;µp).727

Consider the following two probabilities with respect to bp and µp:

p1 = P(x,y)∼µp

[
∂

∂b
ℓ(h1,bp ;x, y) = −1

]
, p2 = P(x,y)∼µp

[
∂

∂b
ℓ(h1,bp ;x, y) = 1

]
.

Note that the derivative of hinge loss with respect to the bias parameter is ∂
∂bℓ(hw,b;x, y) ∈

{−1, 0, 1}, thus we have

P(x,y)∼µp

[
∂

∂b
ℓ(h1,bp ;x, y) = 0

]
= 1− (p1 + p2).

Moreover, according to the first-order optimality of bp with respect to µp, we have
∂

∂b
L(h1,bp ;µc) = −ϵ · ∂

∂b
L(h1,bp ;µp) = ϵ · (p1 − p2),

If we measure the sum of the probability of input having negative gradient and half of the probability
of having zero gradient, we have:

p1 +
1− (p1 + p2)

2
=

1

2
+

p1 − p2
2

=
1

2
+

1

2ϵ
· ∂

∂b
L(h1,bp ;µc) = α.

Therefore, we can construct a mapping g that maps µp to να: by moving any (x, y) ∼ µp that728

contributes p1 (negative derivative) and any (x, y) ∼ µp that contributes p2 (positive derivative) to729

extreme locations (−u,+1) and (u,−1), respectively, and move the remaining (x, y) that has zero730

derivative to (−u,+1) and (u,−1) with equal probabilities (i.e., 1−p1−p2

2 ), and we can easily verify731

that the gradient of bp with respect to µp is the same as να.732

In addition, note that hinge loss is monotonically increasing with respect to the ℓ2 distance of733

misclassified examples to the decision hyperplane, and the initial clean loss minimizer b∗c(1) ∈734

[−u, u], we can verify that the constructed mapping g will not reduce the individual hinge loss.735

Namely, ℓ(h1,bp ;x, y) ≤ ℓ(h1,bp ; g(x, y)) holds for any (x, y) ∼ µp. Therefore, we have proven736

Lemma B.1.737
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C.2 Proof of Lemma B.2738

Proof of Lemma B.2. First, we introduce the following notations. For any µp ∈ Q(u) and any739

w ∈ {−1, 1}, let740

b∗c(w) = argmin
b∈R

L(hw,b;µc), bp(w;µp) = argmin
b∈R

[L(hw,b;µc) + ϵ · L(hw,b;µp)].

According to Lemma B.1, we know that the maximum population hinge loss conditioned on w = 1741

is achieved when µp = να for some α ∈ [0, 1]. To prove the sufficient and necessary condition742

specified in Lemma B.2, we also need to consider w = −1. Note that different from w = 1, we want743

to specify the minimum loss that can be achieved with some µp for w = −1. For any µp ∈ Q(u), we744

have745

L(h−1,bp(−1;µp);µc) + ϵ · L(h−1,bp(−1;µp);µp) ≥ min
b∈R

L(h−1,b;µc) = L(h−1,b∗c(−1);µc). (15)

According to Lemma C.1, we know b∗c(−1) = γ1+γ2

2 , which achieves the minimum clean loss746

conditioned on w = −1. Since we assume γ1+γ2

2 ∈ [−u + 1, u − 1], according to the first-order747

optimality condition, the equality in (15) can be attained as long as µp only consists of correctly748

classified data that also incurs zero hinge loss with respect to b∗c(−1) (not all correctly classified749

instances incur zero hinge loss). It can be easily checked that choosing µp = να based on (3) with750

any α ∈ [0, 1] satisfies this condition, which suggests that as long as the poisoned distribution µp is751

given in the form of να and if the w = −1 is achievable (conditions on when this can be achieved752

will be discussed shortly), then the bias term that minimizes the distributional loss is equal to b∗c(−1),753

and is the minimum compared to other choices of bp(−1;µp). According to Lemma B.1, it further754

implies the following statement: there exists some α ∈ [0, 1] such that755

να ∈ argmax
µp∈Q(u)

{
[L(h1,bp(1;µp);µc) + ϵ · L(h1,bp(1;µp);µp)]

− [L(h−1,bp(−1;µp);µc) + ϵ · L(h−1,bp(−1;µp);µp)]

}
.

For simplicity, let us denote by ∆L(µp; ϵ, u, µc) the maximization objective regarding the population756

loss difference between w = 1 and w = −1. Thus, a necessary and sufficient condition such that757

there exists a h−1,bp(−1;µp) as the loss minimizer is that maxα∈[0,1] ∆L(να; ϵ, u, µc) ≥ 0. This758

requires us to characterize the maximal value of loss difference for any possible configurations of ϵ, u759

and µc. According to Lemma C.1 and the definition of να, for any α ∈ [0, 1], we denote the above760

loss difference as761

∆L(να; ϵ, u, µc) = L(h1,bp(1;να);µc) + ϵ · L(h1,bp(1;να); να)︸ ︷︷ ︸
I1

−L(h−1,b∗c(−1);µc)︸ ︷︷ ︸
I2

.

The second term I2 is fixed (and the loss on να is zero conditioned on w = −1), thus it remains
to characterize the maximum value of I1 with respect to α for different configurations. Consider
auxiliary function

g(b) =
1

2
Φ
(b+ γ1 + 1

σ

)
− 1

2
Φ
(−b− γ2 + 1

σ

)
.

We know g(b) ∈ [− 1
2 ,

1
2 ] is a monotonically increasing function by checking with derivative to b. Let762

g−1 be the inverse function of g. Note that according to Lemma C.1 and the first-order optimality763

condition of bp(1; να), we have764

∂

∂b
L(h+1,b;µc)

∣∣
b=bp(1;να)

= g
(
bp(+1; να)

)
= −ϵ · ∂

∂b
L(h+1,bp(1;να); να) = ϵ · (2α− 1), (16)

where the first equality follows from Lemma C.1, the second equality follows from the first-order765

optimality condition and the last equality is based on the definition of να. This suggests that766

bp(1; να) = g−1
(
ϵ · (2α− 1)

)
for any α ∈ [0, 1].767

Consider the following two configurations for the term I1: 0 ̸∈ [g−1(−ϵ), g−1(ϵ)] and 0 ∈768

[g−1(−ϵ), g−1(ϵ)]. Consider the first configuration, which is also equivalent to g(0) /∈ [−ϵ, ϵ].769

We can prove that if γ1 + γ2 < 0 meaning that b∗c(1) > 0, choosing α = 0 achieves the maximal770
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value of I1; whereas if γ1 + γ2 > 0, choosing α = 1 achieves the maximum. Note that it is not771

possible for γ1 + γ2 = 0 under this scenario. The proof is straightforward, since we have772

I1 = L(h1,g−1(2ϵα−ϵ);µc) + ϵ · L(h1,g−1(2ϵα−ϵ); να)

= L(h1,g−1(2ϵα−ϵ);µc) + ϵ ·
[
1 + u+ (1− 2α) · g−1(2ϵα− ϵ)

]
= L(h1,t;µc) + ϵ · (1 + u)− t · g(t),

where t = g−1(2ϵα− ϵ) ∈ [g−1(ϵ), g−1(ϵ)]. In addition, we can compute the derivative of I1 with
respect to t:

∂

∂t
I1 = g(t)− g(t)− t · g′(t) = −t · g′(t),

which suggests that I1 is a concave function with respect to t. If 0 ∈ [g−1(−ϵ), g−1(ϵ)], we achieve773

the global maximum of I1 at t = 0 by carefully picking α0 = 1
2 +

1
2ϵ · g(0). If not (i.e., g−1(−ϵ) > 0774

or g−1(ϵ) < 0), then we pick t that is closer to 0, which is either g(−ϵ) or g(ϵ) by setting α = 0775

or α = 1 respectively. Therefore, we can specify the sufficient and necessary conditions when the776

weight vector w can be flipped from 1 to −1:777

1. When g(0) ̸∈ [−ϵ, ϵ], the condition is

max{∆L(ν0; ϵ, u, µc),∆L(ν1; ϵ, u, µc)} ≥ 0.

2. When g(0) ∈ [−ϵ, ϵ], the condition is

∆L(να0
; ϵ, u, µc) ≥ 0, where α0 =

1

2
+

1

2ϵ
· g(0).

Plugging in the definition of g and ∆L, we complete the proof of Lemma B.2.778

C.3 Proof of Lemma B.3779

Proof of Lemma B.3. Let µ1, µ2 be the probability measures of the positive and negative examples780

assumed in (2), respectively. Let φ(z; γ, σ) be the PDF of Gaussian distribution N (γ, σ2). For781

simplicity, we simply write φ(z) = φ(z; 0, 1) for standard Gaussian. For any hw,b ∈ HL, we know782

w can be either 1 or −1. First, let’s consider the case where w = 1. According to the definition of783

risk and the data generating process of µc, we have784

Risk(hw,b;µc) = p · Risk(hw,b;µ1) + (1− p) · Risk(hw,b;µ2)

= p ·
∫ ∞
−b

φ(z; γ1, σ1)dz + (1− p) ·
∫ −b
−∞

φ(z; γ2, σ2)dz

= p ·
∫ ∞

−b−γ1
σ1

φ(z)dz + (1− p) ·
∫ −b−γ2

σ2

−∞
φ(z)dz

= p · Φ
(
b+ γ1
σ1

)
+ (1− p) · Φ

(
−b− γ2

σ2

)
.

Similarly, when w = −1, we have785

Risk(hw,b;µc) = p ·
∫ b

−∞
φ(z; γ1, σ1)dz + (1− p) ·

∫ ∞
b

φ(z; γ2, σ2)dz

= p ·
∫ b−γ1

σ1

−∞
φ(z)dz + (1− p) ·

∫ ∞
b−γ2
σ2

φ(z)dz

= p · Φ
(
b− γ1
σ1

)
+ (1− p) · Φ

(
−b+ γ2

σ2

)
.

Combining the two cases, we complete the proof.786
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C.4 Proof of Lemma C.1787

Proof of Lemma C.1. We use similar notations such as µ1, µ2 and φ as in Lemma B.3. For any788

hw,b ∈ HL with w = 1, then according to the definition of population hinge loss, we have789

L(hw,b;µc)

= E(x,y)∼µc

[
max{0, 1− y(x+ b)}

]
= p

∫ ∞
−b−1

(1 + b+ z)φ(z; γ1, σ1)dz + (1− p)

∫ −b+1

−∞
(1− b− z)φ(z; γ2, σ2)dz

= p

∫ ∞
−b−1−γ1

σ1

(1 + b+ γ1 + σ1z)φ(z)dz + (1− p)

∫ −b+1−γ2
σ2

−∞
(1− b− γ2 − σ2z)φ(z)dz

= p(b+ γ1 + 1)Φ

(
b+ γ1 + 1

σ1

)
+ pσ1

1√
2π

exp

(
− (b+ γ1 + 1)2

2σ2
1

)
+ (1− p)(−b− γ2 + 1)Φ

(
−b− γ2 + 1

σ2

)
+ (1− p)σ2

1√
2π

exp

(
− (−b− γ2 + 1)2

2σ2
2

)
.

Taking the derivative with respect to parameter b and using simple algebra, we have790

∂

∂b
L(hw,b;µc) = p · Φ

(
b+ γ1 + 1

σ1

)
− (1− p) · Φ

(
−b− γ2 + 1

σ2

)
.

Similarly, for any hw,b ∈ HL with w = −1, we have791

L(hw,b;µc)

= E(x,y)∼µc

[
max{0, 1− y(−x+ b)}

]
= p ·

∫ b+1

−∞
(1 + b− z)φ(z; γ1, σ1)dz + (1− p) ·

∫ ∞
b−1

(1− b+ z)φ(z; γ2, σ2)dz

= p ·
∫ b+1−γ1

σ1

−∞
(1 + b− γ1 − σ1z)φ(z)dz + (1− p) ·

∫ ∞
b−1−γ2

σ2

(1− b+ γ2 + σ2z)φ(z)dz

= p(b− γ1 + 1)Φ

(
b− γ1 + 1

σ1

)
+ pσ1

1√
2π

exp

(
− (b− γ1 + 1)2

2σ2
1

)
+ (1− p)(−b+ γ2 + 1)Φ

(
−b+ γ2 + 1

σ2

)
+ (1− p)σ2

1√
2π

exp

(
− (−b+ γ2 + 1)2

2σ2
2

)
.

Taking the derivative, we have792

∂

∂b
L(hw,b;µc) = p · Φ

(
b− γ1 + 1

σ1

)
− (1− p) · Φ

(
−b+ γ2 + 1

σ2

)
.

Combining the two scenarios, we complete the proof.793

D Additional Experimental Results and Details794

In this section, we provide details on our experimental setup (Appendix D.1) and then provide795

additional results (Appendix D.2).796

D.1 Details on Experimental Setup in Section 3797

Details on datasets and training configurations. In the main paper, we used different public798

benchmark datasets including MNIST [27] digit pairs (i.e., 1–7. 6–9, 4–9) and also the Enron799

dataset, which is created by Metsis et al. [36], Dogfish [24] and Adult [14], which are all used in the800

evaluations of prior works except MNIST 6–9 and MNIST 4–9. In the appendix, we additionally801

present the results of the IMDB dataset [33], which has also been used in prior evaluations [24, 25].802
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(a) Test Data (b) Train Data

Figure 3: Comparisons of training and test errors of existing data poisoning attacks on Dogfish.
Poisoning ratios are 0.1%, 0.2%, 0.3%, 0.5%, 0.7%, 0.9%, 1%, 2%, 3%.

We did not include the IMDB results in the main paper because we could not run the existing803

state-of-the-art poisoning attacks on IMDB because the computation time is extremely slow. Instead,804

we directly quote the poisoned error of SVM from Koh et al. [25] and then present the computed805

metrics. For the Dogfish and Enron dataset, we construct the constraint set C in the no defense setting806

by finding the minimum (ui
min) and maximum (ui

max) values occurred in each feature dimension i for807

both the training and test data, which then forms a box constraint [ui
min, u

i
max] for each dimension.808

This way of construction is also used in the prior work [25]. Because we consider linear models, the809

training [38] of linear models and the attacks on them are stable (i.e., less randomness involved in the810

process) and so, we get almost identical results when feeding different random seeds. Therefore, we811

did not report error bars in the results. The regularization parameter λ for training the linear models812

(SVM and LR) are configured as follows: λ = 0.09 for MNIST digit pairs, Adult, Dogfish, SVM813

for Enron; λ = 0.01 for IMDB, LR for Enron. Overall, the results and conclusions in this paper are814

insensitive to the choice of λ. The computation of the metrics in this paper are extremely fast and815

can be done on any laptop. The poisoning attacks can also be done on a laptop, except the Influence816

Attack [25], whose computation can be accelerated using GPUs.817

Attack details. The KKT, MTA and Min-Max attacks evaluated in Section 3 require a target model818

as input. This target model is typically generated using some label-flipping heuristics [25, 46]. In819

practice, these attacks are first run on a set of carefully-chosen target models, then the best attack820

performance achieved by these target models is reported. We generate target models using the821

improved procedure described in Suya et al. [46] because their method is able to generate better target822

models that induce victim models with a higher test error compared with the method proposed in823

Koh et al. [25]. We generate target models with different error rates, ranging from 5% to 70% using824

the label-flipping heuristics, and then pick the best performing attack induced by these target models.825

Following the prior practice [25], we consider adversaries that have access to both the clean training826

and test data, and therefore, adversaries can design attacks that can perform better on the test data.827

This generally holds true for the Enron and MNIST 1–7 datasets, but for Dogfish, we find in our828

experiments that the attack “overfits” to the test data heavily due to the small number of training and829

test data and also the high dimensionality. More specifically, we find that the poisoned model tends to830

incur significantly higher error rates on the clean test data compared to the clean training data. Since831

this high error cannot fully reflect the distributional risk, when we report the results in Section 3 we832

report the errors on both the training and the testing data to give a better empirical sense of what833

the distributional risk may look like. This also emphasizes the need to be cautious on the potential834

for “overfitting” behavior when designing poisoning attacks. Figure 3 shows the drastic differences835

between the errors of the clean training and test data after poisoning.836

D.2 Supplemental Results837

In this section, we provide additional results results that did not fit into the main paper, but further838

support the observations and claims made in the main paper. We first show the results of IMDB and the839
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Robust Moderately Vulnerable Highly Vulnerable
Metric MNIST 6–9 MNIST 1–7 Adult Dogfish MNIST 4–9 F. Enron Enron IMDB

SVM

Error Increase 2.7 2.4 3.2 7.9 6.6 33.1 31.9 19.1†
Base Error 0.3 1.2 21.5 0.8 4.3 0.2 2.9 11.9

Sep/SD 6.92 6.25 9.65 5.14 4.44 1.18 1.18 2.57
Sep/Size 0.24 0.23 0.33 0.05 0.14 0.01 0.01 0.002

LR

Error Increase 2.3 1.8 2.5 6.8 5.8 33.0 33.1 -
Base Error 0.6 2.2 20.1 1.7 5.1 0.3 2.5 -

Sep/SD 6.28 6.13 4.62 5.03 4.31 1.11 1.10 2.52
Sep/Size 0.27 0.27 0.27 0.09 0.16 0.01 0.01 0.003

Table 2: Explaining disparate poisoning vulnerability under linear models by computing the metrics
on the correctly classified clean test points. The top row for each model gives the increase in error
rate due to the poisoning, over the base error rate in the second row. The error increase of IMDB
(marked with †) is directly quoted from Koh et al. [25] as running the existing poisoning attacks on
IMDB is extremely slow. LR results are missing as they are not contained in the original paper. The
explanatory metrics are the scaled (projected) separability, standard deviation and constraint size.

Models Metrics Robust Moderately Vulnerable Highly Vulnerable
MNIST 6-9 MNIST 1–7 Adult Dogfish MNIST 4–9 F. Enron Enron IMDB

SVM

Error Increase 2.7 2.4 3.2 7.9 6.6 33.1 31.9 19.1†
Base Error 0.3 1.2 21.5 0.8 4.3 0.2 2.9 11.9

Sep/SD 6.70 5.58 1.45 4.94 3.71 1.18 1.15 1.95
Sep/Size 0.23 0.23 0.18 0.05 0.13 0.01 0.01 0.001

LR

Error Increase 2.3 1.8 2.5 6.8 5.8 33.0 33.1 -
Base Error 0.6 2.2 20.1 1.7 5.1 0.3 2.5 -

Sep/SD 5.97 5.17 1.64 4.67 3.51 1.06 1.01 1.88
Sep/Size 0.26 0.26 0.16 0.08 0.15 0.01 0.01 0.002

Table 3: Explaining the different vulnerabilities of benchmark datasets under linear models by
computing metrics on the whole data. The error increase of IMDB (marked with †) is directly quoted
from Koh et al. [25].

metrics computed on the whole clean test data in Appendix D.2.2 to complement Table 1 in the main840

paper, then include the complete results of the impact of data sanitization defenses in Appendix D.2.3841

to complement the last paragraph in Section 7. Next, we provide the metrics computed on selective842

benchmark datasets using a different projection vector from the clean model weight in Appendix D.2.4843

to support the results in Table 1 in the main paper. Lastly, we show the performance of different844

poisoning attacks at various poisoning ratios in Appendix D.2.5, complementing Figure 1 in the main845

paper.846

D.2.1 IMDB results847

Table 1 in the main paper presents the metrics that are computed on the correctly classified test848

samples by the clean model wc. In Table 2, we additionally include the IMDB results to the Table849

1 in the main paper. From the table, we can see that IMDB is still highly vulnerable to poisoning850

because its separability is low compared to datasets that are moderately vulnerable or robust, and851

impacted the most by the poisoning points compared to all other benchmark datasets. Note that, the852

increased error from IMDB is directly quoted from Koh et al. [25], which considers data sanitization853

defenses. Therefore, we expect the attack effectiveness might be further improved when we do not854

consider any defenses, as in our paper.855

D.2.2 Metrics computed using all test data856

Table 3 shows the results when the metrics are computed on the full test data set (including misclassi-857

fied ones), rather than just on examples that were classified correctly by the clean model. The metrics858

are mostly similar to Table 2 when the initial errors are not high. For datasets with high initial error859

such as Adult, the computed metrics are more aligned with the final poisoned error, not the error860

increase.861
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Dataset Error Increase Base Error Sep/SD Sep/Size
w/o w/ w/o w/ w/o w/ w/o w/

MNIST 1–7 (10%) 7.7 1.0 1.2 2.4 6.25 6.25 0.23 0.43
Enron (3%) 31.9 25.6 2.9 3.2 1.18 1.18 0.01 0.11

Table 4: Understanding impact of data sanitization defenses on poisoning attacks. w/o and w/ denote
without defense and with defense respectively. MNIST 1–7 is evaluated at 10% poisoning ratio due to
its strong robustness at ϵ = 3% and Enron is still evaluated at ϵ = 3% because it is highly vulnerable.

Base Error (%) Error Increase (%) Sep/SD Sep/Size
wc wU wc wU

MNIST 1–7 1.2 2.4 6.25 6.51 0.23 0.52
Dogfish 0.8 7.9 5.14 4.43 0.05 0.19

Table 5: Using the projection vector that minimizes the upper bound on the risk of optimal poisoning
attacks for general distributions. wc denotes the clean weight vector and wU denotes weight vector
obtained from minimizing the upper bound.

D.2.3 Explaining the impact of data sanitization defenses862

We then provide additional results for explaining the effectiveness of the data sanitization defenses in863

improving dataset robustness, which is discussed in section 7. On top of the Enron result shown in the864

paper, which is attacked at 3% poisoning ratio, we also provide attack results of MNIST 1-7 dataset.865

We report the attack results when ϵ = 10% and we considered a significantly higher poisoning ratio866

because at the original 3% poisoning, the dataset can well resist existing attacks and hence there is no867

point in protecting the dataset with sanitization defenses. This attack setting is just for illustration868

purpose and attackers in practice may be able to manipulate such a high number of poisoning points.869

Following the main result in the paper, we still compute the metrics based on the correctly classified870

samples in Sc, so as to better depict the relationship between the increased errors and the computed871

metrics. The results are summarized in Table 4 and we can see that existing data sanitization defenses872

improve the robustness to poisoning by majorly limiting Sizewc(C). For MNIST 1-7, equipping873

with data sanitization defense will make the dataset even more robust (robust even at the high 10%874

poisoning rate), which is consistent with the findings in prior work [45].875

D.2.4 Using different projection vectors876

In the main paper, we used the weight of the clean model as the projection vector and found that877

the computed metrics are highly correlated with the empirical attack effectiveness observed for878

different benchmark datasets. However, there can also be other projection vectors that can be used879

for explaining the different vulnerabilities, as mentioned in Remark 5.8.880

We conducted experiments that use the projection vector that minimizes the upper bound on optimal881

poisoning attacks, given in Equation 5. The upper-bound minimization corresponds to a min-max882

optimization problem. We solve it using the online gradient descent algorithm (alternatively updating883

the poisoning points and model weight), adopting an approach similar to the one used by Koh et al.884

for the i-Min-Max attack [25]. We run the min-max optimization for 30,000 iterations with learning885

rate of 0.03 for the weight vector update, and pick the weight vector that results in the lowest upper886

bound in Equation 5.887

The results on two of the benchmark datasets, MNIST 1–7 and Dogfish, are summarized in Table 5.888

From the table, we can see that, compared to the clean model, the new projection vector reduces the889

projected constraint size (increases Sep/Size), which probably indicates the weight vector obtained890

from minimizing the upper bound focuses more on minimizing the term ℓM(Sizewc(C)) in Equation 5.891

Nevertheless, projecting onto the new weight vector can still well explain the difference between the892

benchmark datasets.893
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(a) MNIST 1-7 (b) Dogfish (c) Enron

Figure 4: Comparisons of the attack performance of existing data poisoning attacks on different
benchmark datasets. Poisoning ratios are 0.1%, 0.2%, 0.3%, 0.5%, 0.7%, 0.9%, 1%, 2%, 3%.

D.2.5 Performance of different attacks are similar894

Last, we show the attack performance of different attacks on the selected benchmark datasets of895

MNIST 1–7, Dogfish, and Enron. Figure 4 summarizes the results. The main observation is that896

different attacks perform mostly similarly for a given dataset, but their performance varies a lot across897

datasets. Also, from the attack results on Enron (Figure 4c), we can see that several of the attacks898

perform worse at higher poisoning ratios. Although there is a chance that the attack performance899

can be improved by careful hyperparameter tuning, it also suggests that these attacks are suboptimal.900

Optimal poisoning attacks should never get less effective as the poisoning ratio increases, according901

to Theorem 4.5.902

E Comparison to LDC and Aggregation Defenses903

We first provide a more thorough discussion on the differences between our work and the Lethal Dose904

Conjecture (LDC) [48] from NeurIPS 2022, which had similar goals in understanding the inherent905

vulnerabilities of datasets but focused on targeted poisoning attacks (Appendix E.1). Then, we discuss906

how our results can also be related to aggregation based defenses whose asymptotic optimality on907

robustness against targeted poisoning attacks is implied by the LDC conjecture (Appendix E.2).908

E.1 Relation to LDC909

As discussed in Section 1, LDC is a more general result and covers broader poisoning attack goals910

(including indiscriminate poisoning) and is agnostic to the learning algorithm, dataset and also the911

poisoning generation setup. However, this general result may give overly pessimistic estimates on the912

power of optimal injection-only poisoning attacks in the indiscriminate setting we consider. We first913

briefly mention the main conjecture in LDC and then explain why the LDC conjecture overestimated914

the power of indiscriminate poisoning attacks, followed by a discussion on the relations of the915

identified vulnerability factors in this paper and the key quantity in LDC.916

The main conjecture in LDC. LDC conjectures that, given a (potentially poisoned) dataset of size917

N , the tolerable sample size for targeted poisoning attacks (through insertion and/or deletion) by918

any defenses and learners, while still predicting a known test sample correctly, is an asymptotic919

guarantee of Θ(N/n), where n < N is the sample complexity of the most data-efficient learner (i.e.,920

a learner that uses smallest number of clean training samples to make correct prediction). Although it921

is a conjecture on the asymptotic robustness guarantee, it is rigorously proven for cases of bijection922

uncovering and instance memorization, and the general implication of LDC is leveraged to improve923

existing aggregation based certified defenses against targeted poisoning attacks.924

Overestimating the power of indiscriminate poisoning. LDC conjectures the robustness against925

targeted poisoning attacks, but the same conjecture can also be used in indiscriminate setting straight-926

forwardly by taking the expectation over the tolerable samples for each of the test samples to get the927

expected tolerable poisoning size for the entire distribution (as mentioned in the original LDC paper)928

or by choosing the lowest value to give a worst case certified robustness for the entire distribution. The929

underlying assumption in the reasoning above is that individual samples are independently impacted930

by their corresponding poisoning points while in the indiscriminate setting, the entire distribution931
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is impacted simultaneously by the same poisoning set. The assumption on the independence of the932

poisoning sets corresponding to different test samples might overestimate the power of indiscriminate933

poisoning attacks as it might be impossible to simultaneously impact different test samples (e.g.,934

test samples with disjoint poisoning sets) using the same poisoning set. In addition, the poisoning935

generation setup also greatly impacts the attack effectiveness—injection only attacks can be much936

weaker than attacks that modify existing points, but LDC provides guarantees against this worst case937

poisoning generation of modifying points. These general and worst-case assumptions mean that LDC938

might overestimate the power of injection-only indiscriminate poisoning attacks considered in this939

paper.940

In practice, insights from LDC can be used to enhance existing aggregation based defenses. If we941

treat the fraction of (independently) certifiable test samples by the enhanced DPA [29] in Figure942

2(d) (using k = 500 partitions) in the LDC paper as the certified accuracy (CA) for the entire943

test set in the indiscriminate setting, the CA against indiscriminate poisoning attack is 0% at the944

poisoning ratio of ϵ = 0.5% (250/50000). In contrast, the best indiscriminate poisoning attacks945

[32] on CIFAR10 dataset reduces the model accuracy from 95% to 81% at the much higher ϵ = 3%946

poisoning ratio using standard training (i.e., using k = 1 partition). Note that using k = 1 partition is947

a far less optimal choice than k = 500 as k = 1 will always result in 0% CA for aggregation based948

defenses. Our work explicitly considers injection only indiscriminate poisoning attacks so as to better949

understand its effectiveness.950

While it is possible that current indiscriminate attacks for neural networks are far from optimal and951

there may exist a very strong (but currently unknown) poisoning attack that can reduce the neural952

network accuracy on CIFAR10 to 0% at a 0.5% poisoning ratio, we speculate such likelihood might953

be low. This is because, neural networks are found to be harder to poison than linear models [31, 32]954

while our empirical findings in the most extensively studied linear models in Section 3 indicate some955

datasets might be inherently more robust to poisoning attacks.956

Providing finer analysis on the vulnerability factors. As mentioned above, LDC might overestimate957

the power of indiscriminate poisoning attacks. In addition, the key quantity n is usually unknown and958

hard to estimate accurately in practice and the robustness guarantee is asymptotic while the constants959

in asymptotic guarantees can make a big difference in practice. However, the generic metric n still960

offers critical insights in understanding the robustness against indiscriminate poisoning attacks. In961

particular, our findings on projected separability and standard deviation can be interpreted as the first962

step towards understanding the dataset properties that can be related to the (more general) metric n963

(and maybe also the constant in Θ(1/n)) in LDC for linear learners. Indeed, it is an interesting future964

work to identify the learning task properties that impact n at the finer-granularity.965

As for the projected constraint size (Definition 5.5), we believe there can be situations where it may966

be independent from n. The main idea is that in cases where changing C arbitrarily will not impact the967

clean distribution (e.g., when the support set of the clean distribution is a strict subset of C, arbitrarily968

enlarging C will still not impact the clean distribution), the outcomes of learners trained on clean969

samples from the distribution will not change (including the most data-efficient learner) and hence970

n will remain the same for different permissible choices of C, indicating that the vulnerability of971

the same dataset remains the same even when C changes drastically without impacting the clean972

distribution. However, changes in C (and subsequently changes in the projected constraint size) will973

directly impact the attack effectiveness, as a larger C is likely to admit stronger poisoning attacks.974

To illustrate how much the attack power can change as C changes, we conduct experiments on MNIST975

1–7 and show that scaling up the original dimension-wise box-constraint from [0, 1] to [0, c] (where976

c > 1 is the scale factor) can significantly boost attack effectiveness. Table 6 summarizes the results977

and we can observe that, as the scale factor c increases (enlarged C, increased projected constraint size978

and reduced Sep/Size), the attack effectiveness also increases significantly. Note that this experiment979

is an existence proof and MNIST 1–7 is used as a hypothetical example. In practice, for normalized980

images, the box constraint cannot be scaled beyond [0,1] as it will result in invalid images.981

E.2 Relation to Aggregation-based Defenses982

Aggregation-based (provable) defenses, whose asymptotic optimality is implied by the LDC, work by983

partitioning the potentially poisoned data into k partitions, training a base learner on each partition984

and using majority voting to obtain the final predictions. These defenses provide certified robustness985
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Scale Factor c Error Increase (%) Sep/Size
1.0 2.2 0.27
2.0 3.1 0.15
3.0 4.4 0.10

Table 6: Impact of scale factor c on poisoning effectiveness for C in the form of dimension-wise
box-constraint as [0, c]. Base Error is 1.2%. Base Error and Sep/SD will be the same for all settings
because support set of the clean distribution is the strict subset of C.

to poisoning attacks by giving the maximum number of poisoning points that can be tolerated to986

correctly predict a known test point, which can also be straightforwardly applied to indiscriminate987

setting by treating different test samples independently, as mentioned in the discussion of LDC.988

Because no data filtering is used for each partition of the defenses, at the partition level, our results989

(i.e., the computed metrics) obtained in each poisoned partition may still be similar to the results990

obtained on the whole data without partition (i.e., standard training, as in this paper), as the clean991

data and C (reflected through the poisoning points assigned in each partition) may be more or less992

the same. At the aggregation level, similar to the discussion on LDC, these aggregation defenses993

may still result in overly pessimistic estimates on the effectiveness of injection only indiscriminate994

poisoning attacks as the certified accuracy at a particular poisoning ratio can be very loose, and the995

two possible reasons are: 1) straightforwardly applying results in targeted poisoning to indiscriminate996

poisoning might lead to overestimation and 2) considering the worst case adversary of modifying997

points might overestimate the power of injection only attacks in each poisoned partition. Therefore,998

our work can be related to aggregation defenses via reason 2), as it might be interpreted as the first999

step towards identifying factors that impact the attack effectiveness of injection only indiscriminate1000

attacks in each poisoned partition, which may not always be highly detrimental depending on the1001

learning task properties in each partition, while these aggregation defenses assume the existence of a1002

single poisoning point in a partition can make the model in that partition successfully poisoned.1003

Loose certified accuracy in indiscriminate setting. Given a poisoning budget ϵ, aggregation based1004

defenses give a certified accuracy against indiscriminate poisoning attacks by first computing the1005

tolerable fraction of poisoning points for each test sample and all the test samples with tolerable1006

fraction smaller than or equal to ϵ are certifiably robust. Then, the fraction of those test samples to the1007

total test samples gives the certified accuracy for the test set. Similar to the result of CIFAR10 shown1008

in LDC, here, we provide an additional result of certified accuracy for neural networks trained on the1009

MNIST dataset: the state-of-the-art finite aggregation (FA) method [49] gives a certified accuracy1010

of 0% at 1% poisoning ratio (600/60,000) using k = 1200 partitions while at the much higher 3%1011

poisoning ratio, the current state-of-the-art indiscriminate poisoning attack [32] can only reduce the1012

accuracy of the neural network trained on MNIST without partitioning (i.e., k = 1, a far less optimal1013

choice from the perspective of aggregation defenses) from over 99% to only around 90%.1014

F Extension to Multi-class Settings and Non-linear Learners1015

In this section, we first provide the high-level idea of extending the metric computation from binary1016

setting to multi-class setting and then provide empirical results on multi-class linear models and show1017

that these metrics can still well-explain the observations in multi-class linear classifiers (Appendix F.1).1018

Then, we provide the idea of extending the metrics from linear models to neural networks (NNs)1019

and also the accompanying experimental results (Appendix F.2). In particular, we find that, for the1020

same learner (e.g., same or similar NN architecture), our metrics may still be able to explain the1021

different dataset vulnerabilities. However, the extended metrics cannot explain the vulnerabilities of1022

datasets that are under different learners (e.g., NN with significantly different architectures), whose1023

investigation is a very interesting future work, but is out of the scope of this paper.1024
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Datasets Base Error (%) Poisoned Error (%) Increased Error (%) Sep/SD Sep/Size

SVM 7.4% 15.4% 8.0% 2.23/2.73 0.06/0.03
LR 7.7% 30.6% 22.9% 1.15 0.02

Table 7: Results of Linear Models on MNIST using 3% poisoning ratio. The “Poisoned Error" is
directly quoted from Lu et al. [31] and SVM one is quoted from Koh et al. [25]. SVM contains two
values for Sep/SD and Sep/Size because there are two binary pairs with the lowest value for each of
the two metrics (lowest value is made bold).

F.1 Extension to Multi-class Linear Learners1025

Multi-class classifications are very common in practice and therefore, it is important to extend the1026

computation of the metrics from binary classification to multi-class classification. For linear models,1027

k-class classification (k > 2) is handled by treating it as binary classifications in the "one vs one"1028

mode that results k(k − 1)/2 binary problems by enumerating over every pair of classes or in the1029

"one vs rest" mode that results in k binary problems by picking one class as the positive class and the1030

rest as the negative class. In practice, the "one vs rest" mode is preferred because it requires training1031

smaller number of classifiers. In addition, the last classification layer of neural networks may also be1032

roughly viewed as performing multi-class classification in “one vs rest" mode. Therefore, we only1033

discuss and experiment with multi-class linear models trained in “one vs rest" mode in this section,1034

consistent with the models in prior poisoning attacks [25, 32], but classifiers trained in “one vs one"1035

mode can also be handled similarly.1036

Computation of the metrics. Although we consider linear models in “one vs rest" mode, when1037

computing the metrics, we handle it in a way similar to the “one vs one" mode – when computing the1038

metrics, given a positive class, we do not treat all the remaining k-1 classes (constitute the negative1039

class) as a whole, instead, for each class in the remaining classes, we treat it as a “fake" negative1040

class and compute the metrics as in the binary classification setting. Then from the k − 1 metrics1041

computed, we pick the positive and “fake" negative pair with smallest separability metric and use1042

it as the metric for the current positive and negative class (includes all remaining k − 1 classes)2.1043

Once we compute the metrics for all the k binary pairs, we report the lowest metrics obtained. The1044

reasoning behind computing the metrics in (similar to) “one vs one" mode is, for a given positive1045

class, adversaries may target the most vulnerable pair from the total k − 1 (positive, negative) pairs1046

to cause more damage using the poisoning budget. Therefore, treating the remaining k − 1 pairs as1047

a whole when computing the metrics will obfuscate this observation and may not fully reflect the1048

poisoning vulnerabilities of a dataset.1049

We provide a concrete example on how treating the remaining classes as a whole can lead to wrong1050

estimates on the dataset separability: we first train simple CNN models on the full CIFAR-10 [26] and1051

MNIST datasets and achieve models with test accuracies of ≈ 70% and > 99% respectively. When1052

we feed the MNIST and CIFAR-10 test data through the model and inspect the feature representations,1053

the t-SNE graph indicate that the CIFAR-10 dataset is far less separable than the MNIST, which1054

is expected as CIFAR-10 has much lower test accuracy compared to MNIST. However, when we1055

compute the separability metrics in our paper by considering all k−1 classes in the negative class, the1056

separability of CIFAR-10 is similar to the separability of MNIST, which is inconsistent with drastic1057

differences in the test accuracies of the respective CNN models. In contrast, if we treat each class in1058

the remaining k − 1 classes separately and pick the smallest value, we will again see the expected1059

result that CIFAR-10 is far less separable than MNIST. Therefore, for the following experiments, we1060

will compute the metrics by treating the remaining k − 1 classes individually. We first provide the1061

results of multi-class linear models for MNIST dataset below and then discuss our initial findings on1062

the neural networks for CIFAR-10 and MNIST in Appendix F.2.1063

Results on multi-class linear learners. As explained above, when checking the k-binary pairs for1064

a k-class problem, we report the lowest values for the Sep/SD and Sep/Size metrics. However, in1065

some cases, the lowest values for the two metrics might be in two different pairs and in this case, we1066

2We still use the same projected constraint size for the k − 1 positive and “fake" negative pairs because, the
projected constraint size measures how much the decision boundary can be moved in presence of clean data
points, which do not distinguish the points in the “fake" netgative class and the remaining k − 1 classes.
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Datasets Base Error (%) Poisoned Error (%) Increased Error (%) Sep/SD Sep/Size

MNIST 0.8% 1.9% 1.1% 4.58 0.10
CIFAR-10 31.0% 35.3% 4.3% 0.24 0.01

Table 8: Results on Simple CNN Models for MNIST and CIFAR-10 datasets using 3% poisoning
ratio. The “Poisoned Error" of both datasets are directly quoted from Lu et al. [31]

Datasets Base Error (%) Increased Error (%) Sep/SD Sep/Size

MNIST 0.8% 9.6% 4.58 0.10
CIFAR-10 4.8% 13.7% 6.36 0.24

Table 9: Results on Simple CNN Model for MNIST and ResNet18 model for CIFAR-10 datasets
using 3% poisoning ratio. The “Poisoned Error" of both datasets are directly quoted from Lu et
al. [32].

will report the results of both pairs. Table 7 summarizes the results, where the poisoned errors are1067

directly quoted from the prior works—LR error is from Lu et al. [31] and the SVM error is from Koh1068

et al. [25]. We can see that MNIST dataset is indeed more vulnerable than the selected MNIST 1–71069

and MNIST 6–9 pairs because it is less separable and also impacted more by the poisoning points.1070

We also note that the poisoned error of SVM is obtained in the presence of data sanitization defenses1071

and hence, the poisoned error may be further increased when there are no additional defenses. We1072

also see that, for SVM, although the lowest values for Sep/SD and Sep/Size are in two different pairs,1073

their results do not differ much, indicating that either of them can be used to represent the overall1074

vulnerability of MNIST.1075

F.2 Extension to Multi-class Neural Networks1076

We first note that the insights regarding the separability and constraints set C can be general, as the1077

the first metric measures the sensitivity of the dataset against misclassification when the decision1078

boundary is perturbed slightly. The latter captures how much the decision boundary can be moved by1079

the poisoning points once injected into the clean training data. The Sep/SD and Sep/Size metrics1080

used in this paper are the concrete substantiations of the two metrics under linear models. Specific1081

ways to compute the metrics in non-linear settings should still (approximately) reflect the high level1082

idea above. Below, we use neural network (NN) as an example.1083

High level idea. We may partition the neural network into two parts of feature extractor and linear1084

classification module and we may view the feature representations of the input data as a "new" data1085

in the corresponding feature space, and so that we can convert the metric computations for non-linear1086

neural network into metric computations (on feature space) for linear models. To be more concrete,1087

we propose to use a fixed feature extractor, which can be extractors inherited from pretrained models1088

(e.g., in transfer learning setting) or trained from scratch on the clean data, to map the input data to1089

the feature space. Here, if the victim also uses the same pretrained feature extractor (as in the transfer1090

learning setting), then our metrics can have higher correlation with the poisoned errors from existing1091

attacks because the non-linear feature extractor is now independent from the poisoned points used in1092

the victim’s training. Below, we consider the from-scratch training case as it is more challenging.1093

Computation of the metrics. Although the feature extractor will also be impacted by the poisoning1094

points now, in our preliminary experiment, we will still use the extractor trained on the clean data1095

and leave the exploration of other better feature extractors as future work. Using the transformation1096

from the clean feature extractor, the projected separability and standard deviation can be easily1097

computed. But the computation of the projected constraint size can be tricky, because the set C after1098

transforming through the feature extractor can be non-convex and sometimes, for complicated C,1099

computing such transformation can be very challenging (can be a case even for linear models), but is1100

a very interesting direction to explore. For the simple forms of C such as the dimension-wise box1101

constraints considered in this paper, we may leverage the convex outer polytope method [50] to bound1102

the activation in each layer till the final feature layer so that we can obtain a final transformed convex1103
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set C′
using the feature extractor, which is a set that contains the original C. However, due to time1104

limitation, when computing the projected constraint size in the following experiments, we simply1105

set C as the dimension-wise box-constraints, whose minimum and maximum values are computed1106

from the feature representations of the clean data points, similar to the transfer-learning experiment1107

in Section 7.1108

Results under similar learners. For the experiments, we use the simple CNN models presented1109

in Lu et al. [31] for MNIST and CIFAR-10 datasets (similar architecture). We directly quote the1110

attack results of TGDA attack by Lu et al. [31] for both the CIFAR-10 and MNIST datasets. Note1111

that, very recently, a stronger GC attack is also proposed by Lu et al. [32] and outperforms the TGDA1112

attack. However, we could not include the newer result because the code is not published and the1113

evaluation in the original paper also did not include the simple CNN for CIFAR-10 dataset. The1114

results are shown in Table 8. From the table, we can see that CIFAR-10 tends to be more vulnerable1115

than MNIST as the Sep/SD and Sep/Size metrics (in neural networks) are all much lower than those1116

of MNIST. These significantly lower values of CIFAR-10 may also suggest that the poisoned error1117

for CIFAR-10 with simple CNN maybe increased further (e.g., using the stronger attack in Lu et1118

al. [32]).1119

Results under different learners. Above, we only showed results when the MNIST and CIFAR-101120

datasets are compared under similar learners. However, in practical applications, one might use1121

deeper architecture for CIFAR-10 and so, we computed the metrics for CIFAR-10 using ResNet181122

model. Then we compare the metrics of MNIST under simple CNN and the metrics of CIFAR-101123

under ResNet18 in Table 9, where the poisoned errors are quoted from the more recent GC attack1124

[32] because the attack results are all available in the original paper. However, from the table we1125

can see that, although MNIST is less separable and impacted more by the poisoning points, the1126

error increase is still slightly smaller than CIFAR-10, which is not consistent with our metrics. If1127

the current attacks are already performing well and the empirical poisoned errors are indeed good1128

approximations to the inherent vulnerabilities, then we might have to systematically investigate the1129

comparison of vulnerabilities of different datasets under different learners.1130

G Evaluation on Synthetic Datasets1131

In this section, we empirically test our theory on synthetic datasets that are sampled from the1132

considered theoretical distributions in Section 5.1.1133

G.1 Synthetic Datasets1134

According to Remark 5.4, there are two important factors to be considered: (1) the ratio between1135

class separability and within-class variance |γ1 − γ2|/σ, denoted by β for simplicity; (2) the size of1136

constraint set u. We conduct synthetic experiments in this section to study the effect of these factors1137

on the performance of (optimal) data poisoning attacks.1138

More specifically, we generate 10,000 training and 10,000 testing data points according to the1139

Gaussian mixture model (2) with negative center γ1 = −10 and positive center γ2 = 0. Throughout1140

our experiments, γ1 and γ2 are kept fixed, whereas we vary the variance parameter σ and the value1141

of u. The default value of u is set as 20 if not specified. Evaluations of empirical poisoning attacks1142

require training linear SVM models, where we choose λ = 0.01. The poisoning ratio is still set as1143

3%, consistent with evaluations on the benchmark datasets.1144

Impact of β. First, we show how the optimal attack performance changes as we increase the value1145

of β. We report the risk achieved by the OPT attack based on Theorem 5.3. Note that we can only1146

obtain approximations of the inverse function g−1 using numerical methods, which may induce1147

a small approximation error for evaluating the optimal attack performance. For the finite-sample1148

setting, we also report the empirical test error of the poisoned models induced by the empirical OPT1149

attack and the best current poisoning attack discussed in Section 3, where the latter is termed as Best1150

Heuristic for simplicity. Since the poisoned models induced by these empirical attacks do not restrict1151

w ∈ {−1, 1}, we normalize w to make the empirical results comparable with our theoretical results.1152
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(a) Separability Ratio β (b) Constraint Size u

Figure 5: Measuring the performance of optimal poisoning attacks with (a) different values of β; (b)
different values of u and β. Here, u = 0 means the test error before poisoning.

Figure 5a summarizes the attack performance when we vary β. As the ratio between class separability1153

and within-class variance increases, the risk of the OPT attack and empirical test errors of empirical1154

OPT and best heuristic attacks gradually decrease. This is consistent with our theoretical results1155

discussed in Section 5.1. Note that there exists a minor difference between these attacks when the1156

value of β is small, where the test error attained by the best current heuristic poisoning attack is1157

slightly higher than that achieved by the empirical OPT attack. This is due to the small numerical1158

error induced by approximating the inverse function g−1.1159

Impact of u. Our theoretical results assume the setting where w ∈ {−1, 1}. However, this restriction1160

makes the impact of the constraint set size u less significant, as it is only helpful in judging whether1161

flipping the sign of w is feasible and becomes irrelevant to the maximum risk after poisoning when1162

flipping is infeasible. In contrast, if w is not restricted, the impact of u will be more significant as1163

larger u tends to reduce the value of w, which in turn makes the original clean data even closer to1164

each other and slight changes in the decision boundary can induce higher risks (further discussions1165

on this are found in Appendix G.2).1166

To illustrate the impact of u in a continuous way, we allow w to take real numbers. Since this1167

relaxation violates the assumption of our theory, the maximum risk after poisoning can no longer1168

be characterized based on Theorem 5.3. Instead, we use the poisoning attack inspired by our theory1169

to get an empirical lower bound on the maximum risk. Since γ1 + γ2 < 0, Theorem 5.3 suggests1170

that optimal poisoning should place all poisoning points on u with label −1 when w ∈ {1,−1}.1171

We simply use this approach even when w can now take arbitrary values. We vary the value of u1172

gradually and record the test error of the induced hypothesis, We repeat this procedure for different1173

dataset configurations (i.e., fixing γ1, γ2 and varying σ).1174

The results are summarized in Figure 5b. There are two key observations: (1) once w is no longer1175

constrained, if u is large enough, the vulnerability of all the considered distributions gradually1176

increases as we increase the value of u, and (2) datasets with smaller β are more vulnerable with the1177

increased value of u compared to ones with larger β, which has larger increased test error under the1178

same class separability and box constraint (choosing other values of β also reveals a similar trend).1179

Although not backed by our theory, it makes sense as smaller β also means more points might be1180

closer to the boundary (small margin) and hence small changes in the decision boundary can have1181

significantly increased test errors.1182

G.2 Relationship Between Box Constraint Size and Model Weight1183

Our theory assumes that the weight vector of w can only take normalized value from {−1, 1} for1184

one-dimensional case, while in practical machine learning applications, convex models are trained by1185

optimizing the hinge loss with respect to both parameters w and b, which can result in w as a real1186

number. And when w takes real numbers, the impact of u becomes smoother: when poisoning with1187

larger u, the poisoning points generated can be very extreme and forces the poisoned model to have1188

reduced w (compared to clean model wc) in the norm so as to minimize the large loss introduced1189
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Figure 6: Impact of box constraint u on the value of w after poisoning.

by the extreme points. Figure 6 plots the relationship between u and w of poisoned model, and1190

supports the statement above. When the norm of w becomes smaller, the original clean data that are1191

well-separated also becomes less separable so that slight movement in the decision boundary can1192

cause significantly increased test errors. This makes the existence of datasets that have large risk gap1193

before and after poisoning more likely, which is demonstrated in Figure 5b.1194

H Broader Impact and More Discussions1195

In this section, we provide discussions on broader impact and other more limitations to cover the1196

requirements in NeurIPS paper checklist more thoroughly.1197

Broader impact. Our work analyzes the impact of learning task properties on the effectiveness1198

of indiscriminate poisoning attacks. Therefore, on the negative side, active poisoning attackers1199

may leverage this insights to target more vulnerable datasets and models in some applications. On1200

the positive side, we also provide some potential ways to improve the robustness to poisoning by1201

leveraging better feature transformations.1202

Extension to other poisoning settings. Although we focus on indiscriminate data poisoning attacks1203

in this paper, we believe our results can also generalize to subpopulation or targeted poisoning1204

settings. In particular, the specific learning task properties identified in this paper may still be highly1205

correlated, but now additional factors of the relative distance between subpopulation/individual test1206

samples to the decision boundary will also play an important role. Interesting future works include1207

characterizing the properties of known test samples/subpopulations and the learning task that impact1208

the effectiveness of the optimal attacks under the targeted or subpopulation settings.1209

Limitation and future work. Besides what are mentioned in Section 8, we provide additional1210

discussions on the limitations of our work and future directions. (1) Even for the linear models, the1211

identified metrics cannot quantify the actual increased errors from optimal poisoning attacks, which1212

itself is an interesting future work and one possible approach might be to tighten the upper bound in1213

Theorem 5.7 using better optimization methods. (2) The metrics identified in this paper are learner1214

dependent, depending on the properties of the learning algorithm, dataset and domain constraints1215

(mainly reflected through C). In certain applications, one might be interested in understanding the1216

impact of learner agnostic dataset properties on poisoning effectiveness—a desired dataset has such1217

properties that any reasonable learners trained on the dataset can be robust to poisoning attacks.1218

One likely application scenario is, the released data from the owner will be used in many different1219

learners in various applications and these applications can be prone to poisoning. (3) We did not1220

systematically investigate how to compare the vulnerabilities of different datasets under different1221

learning algorithms. Identifying the underlying learner-specific properties that affect the performance1222

of (optimal) data poisoning attacks is a challenging but interesting future work.1223

33


	Introduction
	Preliminaries
	Disparate Poisoning Vulnerability of Benchmark Datasets
	Defining Optimal Poisoning Attacks
	Characterizing Optimal Poisoning Attacks
	One-Dimensional Gaussian Mixtures
	General Distributions

	Experiments
	Discussion
	Conclusion
	Proofs of Main Results in Section 4
	Proof of Theorem 4.3
	Proof of Theorem 4.5
	Proofs of the Statement about Linear Models in Remark 4.6

	Proofs of Main Results in Section 5
	Proof of Theorem 5.3
	Proof of Theorem 5.7

	Proofs of Technical Lemmas used in Appendix B.1
	Proof of Lemma B.1
	Proof of Lemma B.2
	Proof of Lemma B.3
	Proof of Lemma C.1

	Additional Experimental Results and Details
	Details on Experimental Setup in sec:sotaattackeval
	Supplemental Results
	IMDB results
	Metrics computed using all test data
	Explaining the impact of data sanitization defenses
	Using different projection vectors
	Performance of different attacks are similar


	Comparison to LDC and Aggregation Defenses
	Relation to LDC
	Relation to Aggregation-based Defenses

	Extension to Multi-class Settings and Non-linear Learners 
	Extension to Multi-class Linear Learners
	Extension to Multi-class Neural Networks

	Evaluation on Synthetic Datasets
	Synthetic Datasets
	Relationship Between Box Constraint Size and Model Weight

	Broader Impact and More Discussions

