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Abstract
In this work, we analyze both theoretically
and empirically the effect of tied input-output
embeddings—a popular technique that reduces
the model size while often improving train-
ing. Interestingly, we found that this technique
is connected to Harris (1954)’s distributional
hypothesis—often portrayed by the famous Firth
(1957)’s quote “a word is characterized by the
company it keeps”. Specifically, our findings indi-
cate that words (or, more broadly, symbols) with
similar semantics tend to be encoded in similar
input embeddings, while words that appear in
similar contexts are encoded in similar output
embeddings (thus explaining the semantic space
arising in input and output embedding of foun-
dational language models). As a consequence of
these findings, the tying of the input and output
embeddings is encouraged only when the distri-
butional hypothesis holds for the underlying data.
These results also provide insight into the embed-
dings of foundation language models (which are
known to be semantically organized). Further, we
complement the theoretical findings with several
experiments supporting the claims.

1. Introduction
Masked Language Modeling (MLM) (Devlin et al., 2019)
and Causal Language Modeling (CLM) (Radford et al.,
2019) have become one of the most influential training
techniques for foundation models (Touvron et al., 2023; Gu-
nasekar et al., 2023; Chowdhery et al., 2023; Raffel et al.,
2020; Zhao et al., 2023) in the context of Natural Language
Processing (NLP).

One of the core components of these models are
embeddings—tables mapping words to trainable parameter
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vectors. It has been shown that foundation models, dur-
ing training, organize word embeddings into a semantic
space (Wu et al., 2020; Wang et al., 2020) similarly to word
models such as Word2Vec (Mikolov et al., 2013). While
word models have been extensively studied (Levy & Gold-
berg, 2014; Li et al., 2015; Yin & Shen, 2018), To the best of
our knowledge, the process responsible for the emergence
of a semantic structure, although well documented (Turian
et al., 2010) lacks a formal treatment.

In this work, we aim to address this issue by introducing
a concept already well-known in the context of program-
ming languages—semantic equivalence. Briefly, two pro-
grams, p1 and p2, are semantically equivalent if they pro-
duce the same output when given the same initial state ρ
(∀ρ : Jp1K(ρ) = Jp2K(ρ)) (Scott & Strachey, 1971). From
this definition, we can derive the notion of semantic equiva-
lence for words, or more in general for symbols. Equipped
with this notion, we will be able to study and formally in-
vestigate why foundation models organize their embeddings
into a semantic space.

Remarkably, our findings indicate that under optimality and
distributional assumptions, both input and output embed-
dings must encode the same semantic information. We
believe that this result explains the effectiveness and popu-
larity (Nguyen & Salazar, 2019; Levine et al., 2020; Cho
et al., 2021) of weight tying (also known as shared input-
output embeddings) (Inan et al., 2016; Press & Wolf, 2017).

Research Questions In this work, we aim to answer the
following research questions:

• RQ1 Why the input embeddings in foundation mod-
els encode semantic information?

• RQ2 Why the output embeddings in foundation
models encode semantic information?

• RQ3 Why input-output embeddings weight tying is
effective?

2. Background
Input Embeddings. The input embedding layer is the
first layer found in language models. It maps symbols to
vectors of trainable parameters. The embedding layer is
usually represented with a parameter matrix EI ∈ RV×d.
Where V is the vocabulary size and d is the size of each
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embedding. Here, the embedding representing the j-th sym-
bol corresponds to the j-th row of the matrix EI—denoted
EI(j).

Output Embeddings. The output embedding layer coin-
cides with the last linear layer of language models. It maps
the last encoding vector to the logit vector on the target
vocabulary. In some cases, the last linear layer is substituted
with an affine layer which includes the presence of a bias
term. In this work, we assume that the last layer of the
network is linear. In this case, the layer can be represented
with a single parameter matrix EO ∈ Rd×V . Here, the
embedding representing the j-th symbol corresponds to the
j-th column of the matrix EO—denoted EO(j).

Weight Tying. Weight tying, in general, is the technique
of sharing trainable parameters from different layers (as
in (Lan et al., 2019)). Weight Tying has the beneficial
effect of reducing the memory footprint of the network
without heavily compromising performance. Surprisingly,
the input-output embeddings weight tying (meaning that
EI = (EO)

T ) (Inan et al., 2016; Press & Wolf, 2017) is
often found to lead to faster training and better generaliza-
tions (Pappas et al., 2018).

3. Semantic & Conditional Equivalence

Let us formalize the learning problem. Consider a dataset
of input-output pairs D = {(xi, yi)}Ni=1, where yi ∈ Y
represents the possible output and xi ∈ X denotes the pos-
sible inputs. In the supervised and self-supervised setting,
the objective is to learn a predictor mapping inputs to the
respective outputs. Further, we define an input as a sequence
of symbols from an alphabet Σ (X ⊆ Σ∗) and an output
as a single symbol from another alphabet ∆ (Y = ∆). For
example,

(xi = σ1 σ2 σ3 σ4 σ5 σ6, yi = δ1)

denotes a possible sample from the dataset D.

Two popular techniques devised in the field of NLP are
MLM and CLM. Here, the set of input symbols (Σ) cor-
responds to a vocabulary of tokens augmented with a few
special tokens. We are concerned only with the mask to-
ken denoted with a question mark symbol (? ∈ Σ). The
set of output symbols is equal to the set of input symbols
(Σ = ∆). Further, from each naturally occurring sentence,
we replace one token with a mask token, and the replaced
token becomes the output label. For example,

(xi = σ1 σ2 σ3 ? σ5 σ6, yi = σ4)

denotes a possible sample from a self-supervised dataset. In
other words, the goal is to recover the masked symbol using

only the surrounding symbols. If the masked symbol can
appear only at the end of the input sequence, we speak of
CLM, otherwise, we speak of MLM. In the context of NLP,
these symbols usually take the form of words. However,
similar modeling can be applied to other data modalities
such as audio (Chen et al., 2020), time series (Rosin et al.,
2022), and even images (He et al., 2022; Li et al., 2023a).
For simplicity, we make the assumption that only a single
token is masked in any given input. However, it is worth
noting that in practice, many language models mask and
retrieve several tokens simultaneously.

Given this context, a natural question arises: when two
symbols can be regarded as having the same, or similar,
meaning? To answer this question, we can turn to the notion
of semantic equivalence in programming languages. Using
denotational semantics, two programs, p1 and p2, are se-
mantically equivalent iff ∀ρ : Jp1K(ρ) = Jp2K(ρ). Meaning
that both p1 and p2 produce the same output state when
executed in the same initial state ρ. Now, let us replace the
output state with a probability distribution over the alphabet
and the programs with symbols. This yields the following
definition:

Definition 3.1 (Semantically Equivalent Symbols). Sym-
bols u, v ∈ Σ are said semantically equivalent (denoted
u ⊜ v) iff

∀y ∈ ∆, ρ ∈ P : p(y|ρ, u) = p(y|ρ, v)

Here, We will use the symbol ρ and P to denote the context
of another symbol and the set of possible context respec-
tively. On the left side, the symbol u is inside context ρ.
On the right side, the symbol v is inside ρ. Intuitively, this
means that replacing a symbol with a semantically equiva-
lent one has no effect on the output distribution. Similarly,
we can define the notion of semantically similar symbols:

Definition 3.2 (Semantically Similar Symbols). Symbols
u, v ∈ Σ are said semantically similar iff

d([p(y|ρ, u)]y∈Y,ρ∈P, [p(y|ρ, v)]y∈Y,ρ∈P) ≤ ϵ

Here, d denotes a distance measure (e.g. Euclidean distance).
Intuitively, this means that a symbol can be replaced with
a semantically similar one without heavily affecting the
output distribution in most contexts.

In the context of NLP, semantically equivalent/similar sym-
bols are, for example, synonyms and antonyms. Swapping
a word with one of its synonyms should not have much of
an impact on the distribution of masked tokens. To a lesser
extent the principle holds also for antonyms. Consider the
example:

the ? of water is half empty/full
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Regardless of using the word empty or full in this sen-
tence, it will not change the outcome distribution of the
masked symbol. In this case, we would see words such as
glass or cup to be those with higher probability. If we
could generalize this reasoning for any/most context, we
would say that empty and full are semantically equiva-
lent/similar.

Next, we focus on different kind of equivalence:

Definition 3.3 (Conditionally Equivalent Symbols). Sym-
bols u, v ∈ Σ are said conditionally equivalent (denoted
u ≜ v) iff

∀ρ ∈ Σ∗ : p(u|ρ, ?) = p(v|ρ, ?)

Here, the pair (ρ, ?) denotes a masked symbol surrounded
by the context ρ.

Definition 3.4 (Conditionally Similar Symbols). Symbols
u, v ∈ Σ are said conditionally similar iff

d([p(u|ρ, ?)]ρ∈P, [p(v|ρ, ?)]ρ∈P) < ϵ

In other words, two conditionally equivalent/similar sym-
bols, given any context ρ, have the same/similar probability
of appearing in that context. For example, in the context

the glass of water is half ?

both words empty and full have the same/similar prob-
ability to appear. If this can be extended to all/most other
contexts, then we would say that empty and full are
conditionally equivalent/similar.

One of the most important hypotheses that shaped modern
language models (Mikolov et al., 2013; Peters et al., 2018)
is the distributional hypothesis (Harris, 1954) which roughly
states that similar words in meaning have similar context.
To the best of our knowledge, the distributional hypothesis
is always reported informally. Here we attempt to formalize
this concept:

Definition 3.5 (Strong Distributional Hypothesis).

u ⊜ v ⇐⇒ u ≜ v

Definition 3.6 (Weak Distributional Hypothesis).

d([p(y|ρ, u)]y∈Y,ρ∈P, [p(y|ρ, v)]y∈Y,ρ∈P) ≤ ϵ ⇐⇒
d([p(u|ρ, ?)]ρ∈P, [p(v|ρ, ?)]ρ∈P) ≤ ϵ

When the distributional hypothesis holds, two symbols u
and v are semantically equivalent/similar if and only if u
and v are conditionally equivalent/similar. In other words,
one can be replaced with the other without affecting the
outcome distribution iff given any context both have the
same probability of being found in that context.

While we adopt the Def. 3.5 and Def. 3.6 for the distribu-
tional hypothesis, it is important to note that other interpre-
tations exist. For example, one could weaken Def. 3.3 to
account for symbols that have consistently different condi-
tional probabilities (i.e. u ⊜ v ⇐⇒ ∀ρ ∈ P : p(u|ρ) ∝
p(v|ρ)). Ultimately, our interpretation is motivated by its
simplicity.

It is also important to note that, for most applications, de-
lineating the degree to which Def. 3.5 holds true for a given
dataset may prove difficult, if not infeasible. Consequently,
determining whether the results discussed in this work apply
to the chosen scenario may not be possible.

As we will show, when the strong distributional hypothesis
(Def. 3.5) holds, then the input and output embeddings
of language models, in order to be optimal, must encode
the same semantic relationships, thus justifying the weight-
tying technique.

4. Language Modeling
4.1. output embeddings & conditional equivalence

It is already well known that language models organize both
input and output embeddings in a semantic space (Derby
et al., 2020) according to intrinsic and extrinsic evaluation
benchmarks (Bakarov, 2018). However, the reason why
such an organization appears is still obscure.

Let us consider output embeddings. These embeddings are
usually used in the following manner:

f(x; θ) = softmax(g(x; θ) · EO) (1)

Where f(x; θ) ∈ ∆V−1 represents the Neural Network
(NN) parametrized by θ.1 Given a sequence of symbols x,
f(x; θ) outputs a probability distribution over the possible
symbols. g(x; θ) ∈ Rd is a NN component that outputs
an encoding vector of the input sequence. Let us use the
notation f(w|x; θ) to denote the probability given to the
symbol w by the model f parametrized by θ. Whenever θ
is omitted, we intend the optimal model—∀ρ ∈ P, w ∈ Σ :
f(w|ρ) = p(w|ρ).
Let u and v be conditionally equivalent symbols (u ≜ v).
Then, for any input sequence x, we have that p(u|x) =
p(v|x). Thus, an optimal model will need to give the
same conditional probability to u and v (f(u|x) = f(v|x)).
To achieve this, the most natural way using Eq. 1 is to
set EO(u) = EO(v). Since f is generally not bijective
there could be other values of EO(u) and EO(v) that yield
f(u|x) = f(v|x). However, it can be shown that there is a
simple condition that yields the desired result. This is the
subject of the next theorem:
Theorem 4.1 (Output Embeddings Equivalence).

1here, ∆k denotes the probability simplex of dimension k
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1. If there are x1, . . . , xd such that matrix B =
[g(x1), . . . , g(xd)] form a basis of Rd, and

2. there are u, v ∈ Σ such that u ≜ v

then EO(u) = EO(v).

Refer to Appendix A for the proof. It is important to ac-
knowledge that if the first hypothesis, concerning the basis
B, were absent, then EO(u) = EO(v) would be just one
of several potential solutions, resulting in f(u|x) = f(v|x).
Additionally, it is worth noting that the existence of the
basis B is only possible if there exist x1, . . . , xd such
that g(x1), . . . , g(xd) are linearly independent, equivalently,
det[g(x1), . . . , g(xd)] ̸= 0. However, the determinant
is a polynomial of the entries g(x1), . . . , g(xd) and has
zero Lebesgue measure. Thus, a slight perturbation of
g(x1), . . . , g(x2) would establish a basis. As a consequence,
the event not having a basis becomes extremely unlikely.
A similar assumption is made in the context of invertible
neural network, where weights matrices need to form a basis
in order to be invertible (Finzi et al., 2019).

Recent works have shown that during training, embedding
matrices may organize themselves into a lower-dimensional
manifold (Cai et al., 2020). Importantly, this behavior does
not necessarily disrupt the basis hypothesis, as the vectors in
the manifold can still form a basis of Rd, unless the manifold
is entirely contained within a d− 1-dimensional hyperplane
passing through the origin.

This theorem shows that the output embeddings of an opti-
mal language model (under Th. 4.1 hypothesis) need to have
the following property: if two symbols are conditional equiv-
alent they must have the same output embeddings. There-
fore, under the strong distributional assumption (Def. 3.5)
and Th. 4.1 hypothesis, the output embeddings of an optimal
language model encode semantic equivalence relationships.
This behavior was already empirically observed in Inan et al.
(2016), Press & Wolf (2017), and Derby et al. (2020).

4.2. input embeddings & semantic equivalence

Similarly to output embeddings, during training also input
embeddings organize themselves in a semantic space.

Intuitively, encoding semantically equivalent symbols with
the same input embeddings seems reasonable. This ap-
proach ensures that the output of the network remains un-
changed when replacing a symbol with its semantically
equivalent counterpart. Recall the previous example:

the ? of water is half empty/full

Since we want the network to have the same output distri-
bution for the masked token regardless of having empty
or full, then a natural way to achieve this is to encode

symbols empty and full with the same vector.

While intuitive, this condition is much more difficult to
show as it is architecture-dependent. Therefore, we will
need to make architectural assumptions on the NN. Our
assumptions are similar to those found in Tian et al. (2023).
In particular, we will assume a NN made of an input em-
bedding layer, a single self-attention layer (Vaswani et al.,
2017), and an output embedding layer:

f(X; θ) = softmax(g(X; θ)EO)

g(X; θ) = softmax(XXT )X

X = EI(ρ, w; θ)

where the notation EI(ρ, w; θ) denotes the application of
the input embedding layer, parametrized by θ, to every
symbol in the context-symbol pair (ρ, w). The result of this
application is a matrix n× d, where the i-th row represents
the embedding of the i-th symbol.

When such a model is optimal we can prove the following
result:

Theorem 4.2 (Input Embeddings Equivalence).

1. There are symbols σ1, . . . , σd such that B =
EO(σ1, . . . , σd) is a basis of Rd, and

2. there is a symbol s such that the coefficients ai of the
linear combination EO(s) =

∑
i aiE

O(σi) (such ai
always exists for B is a basis) do not add up to one, i.e.,∑

i ai ̸= 1, and

3. there are u, v ∈ Σ such that u ⊜ v

then

||EI(u)− EI(v)|| ≤ 2minρ
{
max

{
||EI(ρ, u)||, ||EI(ρ, v)||

}}
The proof can be found in Appendix B. This result suggests
that when two symbols are semantically equivalent, and
under suitable conditions, an optimal model must encode
these symbols with embeddings that are close to each other.
Similarly to Th. 4.1 the basis hypothesis should not pose
significant challenge. Finally, while we consider a simplified
case, works such of Haider et al. (2023) (characterizing the
injectivity profile of the ReLU activation) and of Morris
et al. (2023) (successfully inverting a foundational language
model with high accuracy) suggest that this theorem may
hold for more general architectures.

4.3. Weight Tying

Both Theorems 4.1 and 4.2 demonstrate that, under the
respective conditions, an optimal model must encode con-
ditional equivalence relationships in the output embedding
matrix and semantic equivalence relationships in the input
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embedding matrix. However, assuming the distributional
hypothesis (Def. 3.5), we observe that conditional equiva-
lence encoded in the output matrix is equivalent to semantic
equivalence encoded in the input matrix. Consequently,
tying the weights of input and output embeddings results
in encoding the same information through both semantic
equivalence and conditional equivalence of the underlying
data.

In summary, when the distributional hypothesis holds, both
input and output embeddings need to exhibit similar relation-
ships. Therefore, tying their weights should enhance train-
ing. However, when the distributional hypothesis does not
hold, input and output embeddings may attempt to encode
different relationships. In such cases, tying their weights
could have a disruptive impact, as the relationships between
output and input embeddings need to differ.

To see this, Let u and v be semantically equivalent symbols.
Therefore, by Theorem 4.2, we know that EI(u) will be
close to EI(v). Now, suppose also that u and v are not to be
conditionally equivalent, but rather conditionally different.
For example, we have that ∀ρ : |p(u|ρ, ?) − p(y|ρ, ?)| >
1− ϵ. This means that an optimal model will have EO(u)
far apart from EO(v). As you can see, if we are to tie the
embedding layers (EI = EO) we could run easily into a
problem as the same embeddings need to be close and far
apart at the same time.

Finally, we note that weight tying may offer different prop-
erties than those highlighted in this work. Consequently, the
technique may prove helpful or detrimental even under the
conditions discussed here.

To summarize Theorems 4.1 and 4.2 suggest the following
behaviors:

• semantically equivalent symbols should have input em-
beddings close to each other,

• conditionally equivalent symbols should have output
embedding close to each other,

• and input and output embedding weight tying is bene-
ficial under distributional hypothesis and detrimental
otherwise.

5. Experiments
Overview. As previously mentioned, the fact that founda-
tional language models organize both their input and output
embeddings in a semantically relevant space has already
been observed (Derby et al., 2020). Instead, we aim to test
the behaviors predicted by Theorems 4.1, and 4.2 in a small
and controlled scenario where these behaviors can be clearly
observed.

EXor Problem. To test the NN behaviors, we will use an
extended version of the Xor problem—denoted EXor. In

the traditional Xor problem, we are given a binary string,
and the model is required to predict whether the sum of its
digits is even or not. For example, the string 010011 is
odd, while the string 011101 is even. In our extension,
we formalize this problem as a language modeling problem.
The model is given strings in the form of 0011?01E and
it is asked to fill the masked token. Here, symbol E means
that the binary string is even, therefore we know that the
masked symbol was a 1 symbol. On the other hand, the
symbol D denotes an odd binary string. Therefore given an
input-output example 011?01D, we know that the masked
token is 0. Note that the last symbol cannot be subject to
masking so examples such as 110011? cannot happen.

Semantically Equivalent Symbols in EXor. Further, to
simulate semantically equivalent symbols, we use two dif-
ferent symbols to represent 0—0A and 0B; and two different
symbols to represent 1—1A and 1B. Therefore, samples
like 1A1B0A0A1B?E should always result in either 1B or
1A. Meanwhile, samples like 1A1B?0A1B1BE may result in
both 0A and 0B.

Conditionally Equivalent Symbols in EXor. To sim-
ulate conditionally equivalent symbols, we use the same
probability for the symbols 1A and 1B. Therefore, the
probability p(? = 1A|1A1B0A0A?1BE) = p(? =
1B|1A1B0A0A?1BE) = 1/2. Since 1A and 1B are both con-
ditionally (1A ≜ 1B) and semantically equivalent (1A ⊜ 1B),
we have that the distributional hypothesis holds for this spe-
cific pair. Therefore, during training their input and output
embeddings should become close to each other.

Conditionally Different Symbols in EXor. Instead, to
simulate conditionally different symbols, we can use dif-
ferent probabilities for the symbols 0A and 0B. Therefore,
the probability p(?=0A|1A1B0A?1B1BE) = ϵ << 1− ϵ =
p(? = 0B|1A1B0A?1B1BE). Since 0A and 0B are not con-
ditionally equivalent (0A ̸≜ 0B) while being semantically
equivalent (0A ⊜ 0B), we have that the distributional hy-
pothesis does not hold. Therefore, during training, only
their input embeddings should become close to each other.

Instead, note that pairs such as 0A and 1B are neither se-
mantic equivalent (0A ̸⊜ 1B) nor conditionally equivalent
(0A ̸≜ 1B). A few examples of input and outputs are pro-
vided in Table 1

Dataset. The training split of the EXor problem is gener-
ated by considering 90% of all possible binary strings of
size N . Then, even binary strings are concatenated with the
symbol E, while odd strings are concatenated with the sym-
bol D. Further, 1 symbols are replaced with either 1A or 1B
with probability 1/2 respectively. 0 symbols are replaced
with 0A with probability 1/10 or with 0B with probability
9/10. The test set is generated similarly using the remaining
10% of the binary string of size N . In our experiments, we
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x p(?|x)
0B0A0A0B?0AE p(0A|x) = ϵ, p(0B|x) = 1− ϵ
1A?0A0A0B1AD p(1A|x) = 1

2 , p(1B|x) = 1
2

1A1B?0A0B1AD p(0A|x) = ϵ, p(0B|x) = 1− ϵ
0B0A0A0B?0AD p(1A|x) = 1

2 , p(1B|x) = 1
2

Table 1. Input examples and resulting output distribution.

set N = 7.

Architecture. The model architecture is similar to the one
assumed in Theorem 4.2. We used a single layer, single
head, with gelu (Hendrycks & Gimpel, 2016) activation,
Transformer Encoder (Vaswani et al., 2017) architecture
from the PyTorch API2. The input embedding layers has
vocabulary size 7 (1A, 1B, 0A, 0B, E, D, ?) where each
embedding size is 4 (i.e., EI ∈ R7×4, EO ∈ R4×7). Ex-
cluded the masked token, among the 7 symbols only 4 have
a semantically distinct meaning (1A ⊜ 1B, 0A ⊜ 0B, E,
D). Since, from hypotheses of Theorems 4.1 and 4.2, we
want the input and output embedding matrix to be a basis
for Rd, it is necessary to keep d ≤ 4. We choose d = 4.
However, in Appendix C we experiment with larger architec-
tures. Finally, the model with tied/untied input and output
embeddings is referred to as tied/untied model.

Hyperpameters. We used AdamW (Loshchilov & Hut-
ter, 2018) (PyTorch implementation3) optimizer with 5e−4
learning rate, 1e−1 weight decay. Further, we employ a
cosine learning rate scheduler (PyTorch implementation4)
with 1e−5 minimum learning rate and 1e4 iteration cycle.
The batch size is 114 (size of the training split). We train
for 1.5e5 iterations.

5.1. Results

Results are displayed in Fig. 1 and 2. We show the mean
and the 95% confidence interval of 5 repetitions of the same
experiment.

Untied Input Embeddings. Let us consider Fig. 1a which
displays the input embedding distances between 1A vs. 1B
(✓ distributional hyp.) and 0A vs. 0B (✗ distributional
hyp.) for the untied model. Note that, 1A is semantically
equivalent to 1B and 0A is semantically equivalent to 0B.
Therefore, from Theorem 4.2, we expect the input embed-
dings of 1A and 1B to become close to each other. The same
goes for 0A and 0B. Fig. 1a confirms the tendency to en-

2https://pytorch.org/docs/2.1/generated/
torch.nn.TransformerEncoderLayer.html

3https://pytorch.org/docs/2.1/generated/
torch.optim.AdamW.html

4https://pytorch.org/docs/2.1/generated/
torch.optim.lr_scheduler.CosineAnnealingLR.
html
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(a) Input embeddings distances for the EXor problem with untied
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(b) Output embeddings distances for the EXor problem with untied
weights
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(c) Embeddings distances for the EXor problem with tied weights

Figure 1. Embedding distances between symbols when the distri-
butional hypothesis holds and does not hold. The distance used is
the Euclidean. The line plot is the result of the average of 5 runs.
With lower opacity, we display the 95% confidence interval6

https://pytorch.org/docs/2.1/generated/torch.nn.TransformerEncoderLayer.html
https://pytorch.org/docs/2.1/generated/torch.nn.TransformerEncoderLayer.html
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Figure 2. Test accuracies for the EXor problem with and without
tied embedding weights. The dashed line denotes the optimal
accuracy achievable. The line plot displays the mean and 95%
confidence interval of 5 runs

code semantically equivalent symbols with close embedding
representations.

Untied Output Embeddings. Let us consider Fig. 1b
which displays the output embedding distances of 1A vs.
1B (✓ distributional hyp.) and 0A vs. 0B (✗ distributional
hyp.) for the untied model. Here, only 1A and 1B are
conditionally equivalent. From Theorem 4.1, we expect
only output embeddings of 1A and 1B to be close to each
other. Fig. 1b confirms this trend as only the pair 1A-1B (✓
distributional hyp.) approaches distance 0.

Tied Embeddings. Instead, Fig. 1c displays the in-
put/output embedding distances of 1A vs. 1B (✓ distri-
butional hyp.) and 0A vs. 0B (✗ distributional hyp.) for the
tied model. Since 1A and 1B are both semantically and con-
ditionally equivalent, then the distributional hypothesis 3.5
hold. In this case, by combining Theorems 4.1 and 4.2, we
expect that 1A and 1B embeddings will converge to the same
vector faster compared to the untied model. This can be ver-
ified by considering Fig. 1c in which 1A and 1B embeddings
become extremely close faster compared to Fig. 1a. Instead,
since 0A and 0B are not conditionally equivalent, then the
distributional hypothesis does not hold. Therefore, by com-
bining Theorems 4.1, and 4.2 and Eq. 3.5, we can expect
their embeddings distance to be subject to high variance, as
from one side they need to be close to each other, and from
the other side they need to be far from each other. Fig. 1c
confirms this behavior.

Accuracy. Fig. 2 displays the test accuracy for the untied
model (✗ weight tying) and the tied one (✓ weight tying).
Since for the current setting of the EXor problem, the dis-
tributional hypothesis does not hold for all the symbols, we
would expect a certain degree of instability in the training of

the tied model. This is because, embeddings of 0A and 0B
are pulled close to each other (since 0A ⊜ 0B), and pushed
away from each other (since 0A ̸≜ 0B). This instability is
reflected in the slightly lower-performing model wrt. the
untied model. It can also be noted that the untied model
achieves a higher level of accuracy approaching the optimal
value denoted by the dashed black line.

5.2. Discussion

We are finally ready to answer the RQs proposed in Sect. 1.

RQ1 Why the input embeddings in foundation models
encode semantic information?

Our findings suggest that the semantic information encoded
by input embeddings does align with the notion of seman-
tically equivalent symbols. Intuitively, if two symbols are
semantically equivalent (Def. 3.1) then they will be close in
input embedding space. This was the subject of Theorem 4.2
and it was empirically verified in Fig. 1a.

RQ2 Why the output embeddings in foundation models
encode semantic information?

Our findings suggest that the semantic information encoded
by output embeddings does align with the notion of con-
ditionally equivalent symbols. Intuitively, if two symbols
are conditionally equivalent (Def. 3.3) then they will be
close in output embedding space. This was the subject of
Theorem 4.1 and it was empirically verified in Fig. 1b.

RQ3 Why input-output embeddings weight tying is ef-
fective?

Our findings suggest that under the distributional hypoth-
esis (Def. 3.5) both input and output embeddings encode
the same relationships. In the input embeddings, these rela-
tionships are encoded by exploiting semantic equivalences
in the data. In the output embeddings, these relationships
are encoded by exploiting conditional equivalences in the
data. However, since conditional equivalences coincide
with semantical equivalences, it appears reasonable to tie
the weights of the embeddings. This is consideration re-
sulting from the combination of Theorems 4.1, 4.2, and
Definition 3.5.

We also note that it has been observed that foundation mod-
els that overfit early in the validation set and are continu-
ously trained for several more epochs achieve better human
ratings (Ouyang et al., 2022). While the mechanisms behind
this behavior are still unknown, we can observe that also
in our experiments perfect alignment between semantically
equivalent and distributional equivalent symbols happens
only several epochs after validation overfitting.

Not all agree on the fact that weight tying is always ben-
eficial in NLP language models (Chung et al., 2020). We
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believe that this may be caused by the fact that the Distribu-
tional Hypothesis does not hold strictly like in Def. 3.5, but
more like in its weaker form Def. 3.6 for the NLP domain.
Therefore, it may be beneficial only early in training when
relationships between symbols are established grossly, and
detrimental later when these relationships are more subtle.

Of course, NN training is a very chaotic process that rarely
ends up in an optimum. Therefore, these results may not
hold empirically in all scenarios (Appendix C is devoted
to validating the theorems on different architectures and
datasets). However, we believe that practitioners, in light of
these findings, should carefully decide when using tied input
and output embeddings, as if the distributional hypothesis
does not hold it may result in training instabilities. On the
other hand, when the distributional hypothesis does hold,
then the training should become faster. The main takeaway
of this work for practitioners can be summarized in:

Use tied input-output embeddings only when the
distributional hypothesis hold

6. Related Works
The literature regarding the analysis of word embeddings is
extensive. Here, we only aim to provide a brief overview of
foundational and recent advances in this scientific direction.

Embedding Generation. While we discuss exclusively
non-contextual embeddings arising from foundational lan-
guage models a substantial body of research discusses tech-
niques for generating semantically relevant non-contextual
embeddings (Mikolov et al., 2013; Pennington et al., 2014;
Vilnis & McCallum, 2014; Bojanowski et al., 2017) and con-
textual embeddings (Melamud et al., 2016; McCann et al.,
2017; Peters et al., 2018; Radford et al., 2019; Wang et al.,
2021), refer to (Almeida & Xexèo, 2019) and (Torregrossa
et al., 2021) for a review. Recently, Qin & Van Durme
(2023) proposed a method to generate embeddings from
sentence snippets, and Bai et al. (2023) proposed a method
using optimal transport theory.

Embedding Evaluation. While our findings suggests that
the quality of embeddings should be measured in terms of
semantical and conditional equivalence, an extensive litera-
ture is dedicated to evaluating their intrinsic and extrinsic
properties. Intrinsic properties compare the embeddings
wrt. human judgment such as direct word comparison (Ba-
roni et al., 2014; Hill et al., 2015; Gerz et al., 2016), word
analogies (Pereira et al., 2016; Gladkova et al., 2016), and
thematic fit (Sayeed et al., 2016). Extrinsic properties mea-
sure the embedding performance on downstream tasks such
as text classification (Tsvetkov et al., 2015), Sentiment Anal-
ysis (Schnabel et al., 2015; Zhou et al., 2016), Name Entity
Recognition (Turian et al., 2010), and Semantic Role La-
beling (Ettinger et al., 2016). Refer to (Bakarov, 2018)

and (Torregrossa et al., 2021) for a review.

Embedding Analysis. Some works explore the theoretical
properties of embedding generation algorithms. A foun-
dation work (Levy & Goldberg, 2014) connects skip-gram
with negative-sampling to the pointwise mutual information.
A geometric analysis of the same word modeling technique
is provided in (Mimno & Thompson, 2017). Yin & Shen
(2018) studied the dimensionality of word embeddings.

Embedding Information. While we do not focus on the
inner properties encoded in the embeddings many explored
the inner information embedded in the vector representa-
tions of language models (Köhn, 2015; Adi et al., 2017;
Hupkes et al., 2018). For comprehensive overviews, re-
fer to (Rogers et al., 2021; Belinkov, 2022). Much of this
literature concentrates on investigating whether language
models encode syntactic information such as part-of-speech
tagging (Shi et al., 2016; Belinkov et al., 2017), syntactic
number (Giulianelli et al., 2018), or sentence structure (Liu
et al., 2019; Hewitt & Manning, 2019; Lin et al., 2019).
Several studies have delved into decoding semantic proper-
ties, including entity attributes (Gupta et al., 2015; Grand
et al., 2022), sentiment analysis (Radford et al., 2017), se-
mantic role labeling (Ettinger et al., 2016; Tenney et al.,
2018), world state representation (Li et al., 2021), and agent
property identification (Andreas, 2022). Other works have
addressed the semantic property of topic structure (Meng
et al., 2022; Zhang et al., 2022; Li et al., 2023b).

7. Conclusion & Future Works
In this work, we analyzed the effect of weight tying on input
and output embeddings both from a theoretical and empiri-
cal perspective. Firstly, to study the theoretical implications,
we formalized the distributional hypothesis using the notions
of semantical and conditional equivalence. Next, we demon-
strated that semantically equivalent symbols are encoded
in similar input embeddings, and conditionally equivalent
symbols are encoded in similar output embeddings. Thus,
we concluded that one should consider the practice of tying
embeddings only when the distributional hypothesis holds,
at least in its weak form. Finally, we supported the theo-
retical findings with a battery of experiments on the EXor
problem. Additionally, we note that exploring alternative
interpretations of the distributional hypothesis may lead to
further insight into the semantic space of embeddings. The
code for reproducing the experiments is available at:

https://zenodo.org/records/11103163
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A. Conditionally Equivalent Output Embeddings
Theorem A.1 (Output Embeddings Equivalence).

1. If there are x1, . . . , xd such that matrix B = [g(x1), . . . , g(xd)] form a basis of Rd, and

2. there are u, v ∈ Σ such that u ≜ v

then EO(u) = EO(v).

Proof. Since our model is optimal, we have that ∀w ∈ Σ, x ∈ X : f(w|x) = p(w|x) (Here, x can be thought as a
context-symbol pair, i.e. x = (ρ, ?)). Therefore, since p(u|x) = p(v|x), we have that f(u|x) = f(v|x). Then

∀x : softmax (g(x) · EO)u = softmax (g(x) · EO)v

Using the softmax definition, we have:

∀x :
eg(x)E

O(u)∑
j e

g(x)EO(j)
=

eg(x)E
O(v)∑

j e
g(x)EO(j)

Which yield
∀x : g(x) · (EO(u)− EO(v)) = 0

Since this equation holds for all xs, then EO must satisfy the following system for any x1, . . . , xd:
g(x1) · (EO(u)− EO(v)) = 0

g(x2) · (EO(u)− EO(v)) = 0
...

g(xd) · (EO(u)− EO(v)) = 0

(2)

Now, when g(x1), . . . , g(xd) form a basis of Rd the only solution to the previous system becomes EO(u) = EO(v). A
graphical representation of a 2-dimensional System 2 is depicted in Fig. 3.

x

y

g(x1)

g(x2)

g(x1)(E
O
:u − EO

:v) = 0

g(x2)(E
O
:u − EO

:v) = 0

EO
:u = EO

:v

Figure 3. 2-dimensional representation of Proof of Theorem 4.1.
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B. Semantically Equivalent Input Embeddings
Theorem B.1 (Input Embeddings Equivalence).

1. There are symbols σ1, . . . , σd such that B = EO(σ1, . . . , σd) is a basis of Rd, and

2. there is a symbol s such that the coefficients ai of the linear combination EO(s) =
∑

i aiE
O(σi) (such ai always

exists for B is a basis) do not add up to one, i.e.,
∑

i ai ̸= 1, and

3. there are u, v ∈ Σ such that u ⊜ v

then

||EI(u)− EI(v)|| ≤ 2minρ
{
max

{
||EI(ρ, u)||, ||EI(ρ, v)||

}}
Proof. Firstly, let us recall the NN architecture as the sequence: input embedding layer, self-attention layer, and output
embedding layer. In other words,

f(X; θ) = softmax(g(X; θ) · EO) (3)

g(X; θ) = softmax(XtX
T )X (4)

X = EI(ρ, w; θ) (5)

Let t be the index of the mask token, as it is usually done with MLM training. Let us consider the output of the first Layer 5
for a generic sequence:

x = (ρ, w) = σ1, σ2, . . . , σt−1, ?, σt+1, . . . , σk︸ ︷︷ ︸
ρ

, w, σk+2, . . . , σn︸ ︷︷ ︸
ρ

Where ρ represents the context around the symbol w. The resulting matrix becomes:

EI(ρ, w) =



EI(σ1)
...

EI(?)
...

EI(w)
...

EI(σn)


(6)

Here, vector EI(σi) represents the context symbol embedding of the i-th symbol. EI(?) is the vector embedding corre-
sponding to the mask token (in the t-th position). EI(w) represents the symbol embedding vector in the context-symbol pair
(ρ, w) (in the k-th position). Now, let us refer with Xu and Xv to the matrices representing the context-symbol pairs (ρ, u)
and (ρ, v) depicted as follows.

EI(ρ, u) = Xu =



EI(σ1)
...

EI(?)
...

EI(u)
...

EI(σn)


(7)

EI(ρ, v) = Xv =



EI(σ1)
...

EI(?)
...

EI(v)
...

EI(σn)


(8)
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Note that these matrices differ only on k-th row, where in Xu we have EI(u) and in Xv we have EI(v). Under semantic
equivalence assumption and optimality assumption, we have that:

f(Xu) = f(Xv) (9)

=⇒ softmax(g(Xu; θ) · EO) = softmax(g(Xv; θ) · EO) (10)

Using the softmax definition, it is easy to show that softmax(a) = softmax(b) =⇒ ∃c⃗. a = b+ c⃗. Where c⃗ is the constant
vector c⃗ = [c, . . . , c] Briefly:

softmax(a) = softmax(b) (11)
=⇒ ∀i : softmax(a)i = softmax(b)i (12)

=⇒ ∀i : eai∑
j e

aj
=

ebi∑
j e

bj
(13)

=⇒ ∀i : ai = bi + ln(

∑
j e

bj∑
j e

aj
)︸ ︷︷ ︸

c

(14)

=⇒ ∃c⃗. a = b+ c⃗ (15)

Therefore, using the previous implication we can derive:

softmax(g(Xu; θ) · EO) = softmax(g(Xv; θ) · EO) (16)

=⇒ ∃c⃗. g(Xu; θ) · EO = g(Xv; θ) · EO + c⃗ (17)

=⇒ ∃c⃗. (g(Xu; θ)− g(Xv; θ)) · EO = c⃗ (18)

Using the first two hypothesis of the theorem, it is fairly easy to show that c⃗ = 0⃗. Briefly, let g⃗ = (g(Xu; θ)− g(Xv; θ))

and s⃗ = EO(s). We have that g⃗s⃗ = c. However, we can express the vector s⃗ as a linear combination of the basis vector b⃗i in
B, i.e. s⃗ =

∑
i aib⃗i. However, g⃗b⃗i = c, therefore:

g⃗s⃗ = c =⇒
∑
i

ai g⃗b⃗i︸︷︷︸
c

= c =⇒
∑
i

ai = 1

Which yield a contradiction of the second hypothesis in the theorem definition unless c = 0.Therefore, we obtain:

(g(Xu; θ)− g(Xv; θ))EO = 0⃗ (19)

Further, since EO contains a basis we also have that the only solution to previous equation is g(Xu; θ) = g(Xv; θ) yielding:

g(Xu; θ)− g(Xv; θ) = 0⃗ (20)

=⇒ softmax(Xu
t (X

u)
T
)︸ ︷︷ ︸

Au
t

Xu − softmax(Xv
t (X

v)
T
)︸ ︷︷ ︸

Av
t

Xv = 0⃗ (21)

=⇒ Au
t X

u −Av
tX

v = 0⃗ (22)

Now, from this equation, we proceed with two different parallel derivations:
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Au
t X

u −Av
tX

v = 0⃗ (23)

=⇒ Au
t X

u +Av
tX

u −Av
tX

u −Av
tX

v = 0⃗ (24)

=⇒ Av
t (X

u −Xv) + (Au
t −Av

t )X
u = 0⃗ (25)

=⇒ Av
tk(X

u
k −Xv

k ) + (Au
t −Av

t )X
u = 0⃗ (26)

=⇒ Av
tk(E

I(u)− EI(v)) + (Au
t −Av

t )X
u = 0⃗ (27)

=⇒ (EI(u)− EI(v)) =
(Av

t −Au
t )X

u

Av
tk

(28)

=⇒ ||EI(u)− EI(v)|| ≤ ||Av
t −Au

t ||||Xu||
Av

tk

(29)

Au
t X

u −Av
tX

v = 0⃗ (30)

=⇒ Au
t X

u −Av
tX

v −Au
t X

v +Au
t X

v = 0⃗ (31)

=⇒ Au
t (X

u −Xv) + (Au
t −Av

t )X
v = 0⃗ (32)

=⇒ Au
tk(X

u
k −Xv

k ) + (Au
t −Av

t )X
v = 0⃗ (33)

=⇒ Au
tk(E

I(u)− EI(v)) + (Au
t −Av

t )X
v = 0⃗ (34)

=⇒ (EI(u)− EI(v)) =
(Av

t −Au
t )X

v

Au
tk

(35)

=⇒ ||EI(u)− EI(v)|| ≤ ||Av
t −Au

t ||||Xv||
Au

tk

(36)

Here, Equations 26 and 33 follow from the respective previous by the fact that Xu and Xv differ only in the k-th row (the
one corresponding to embeddings of the semantically equivalent symbols u and v). These two derivations are necessary to
produce tight bounds for the quantity ||EI(u)− EI(v)||.

||EI(u)− EI(v)|| ≤ min

{ ||Av
t −Au

t ||||Xu||
Av

tk

,
||Av

t −Au
t ||||Xv||

Au
tk

}
(37)

≤ ||Av
t −Au

t ||
max {Au

tk, A
v
tk}

max {||Xu||, ||Xv||} (38)

≤

√√√√∑
i

(Av
ti −Au

ti)
2

max {Au
tk, A

v
tk}

2 max {||Xu||, ||Xv||} (39)

≤

√√√√1 +
∑
i̸=k

(Av
ti −Au

ti)
2

max {Au
tk, A

v
tk}

2 max {||Xu||, ||Xv||} (40)

Now recall that:

Aw
ti = softmax(Xw

t (Xw)
T
)i =

exp(Xw
t Xw

:i )∑
j exp(X

w
t Xw

:j )
=

exp(Xw
t Xw

:i )

exp(Xw
t Xw

:i ) +
∑

j ̸=i exp(X
w
t Xw

:j )
(41)

Note that Xu
i = Xv

i when i ̸= k (Xu and Xv differ only in the k-th row where the first has the vector EI(u) and the latter
has EI(v)). In this case, the exponential sum

∑
j ̸=k exp(X

w
t Xw

:j ) is the same in the case of Au and Av, so let us call this
sum β. For simplicity, when i ̸= k let us refer to exp(Xu

t X
u
:i) = exp(Xv

t X
v
:i) = αi. Instead, when i = k we will refer to

exp(Xu
t X

u
:i) = αu and exp(Xv

t X
v
:i) = αv . In other words:

i ̸= k =⇒ Au
ti =

αi

β+αu
i ̸= k =⇒ Av

ti =
αi

β+αv
i = k =⇒ Au

ti =
αu

β+αu
i = k =⇒ Av

ti =
αv

β+αv

Now, we continue from the previous bounding:

18



By Tying Embeddings You Are Assuming the Distributional Hypothesis

=

√√√√1 +
∑
i ̸=k

(Av
ti −Au

ti)
2

max {Au
tk, A

v
tk}

2 max {||Xu||, ||Xv||} (42)

=

√√√√1 +
∑
i ̸=k

( αi

β+αv
− αi

β+αu
)
2

max {Au
tk, A

v
tk}

2 max {||Xu||, ||Xv||} (43)

=

√√√√1 +

(
1

β + αv
− 1

β + αu

)2∑
i ̸=k

α2
i

max {Au
tk, A

v
tk}

2 max {||Xu||, ||Xv||} (44)

≤

1 +

∣∣∣∣ 1

β + αv
− 1

β + αu

∣∣∣∣ 1

max {Au
tk, A

v
tk}

√∑
i̸=k

α2
i

max {||Xu||, ||Xv||} (45)

≤
(
1 +

∣∣∣∣ 1

β + αv
− 1

β + αu

∣∣∣∣ 1

max {Au
tk, A

v
tk}

β

)
max {||Xu||, ||Xv||} (46)

=

1 +

∣∣∣∣ 1

β + αv
− 1

β + αu

∣∣∣∣ 1

max
{

αu

β+αu
, αv

β+αv

}β
max {||Xu||, ||Xv||} (47)

=

1 +

∣∣∣∣ 1

β + αv
− 1

β + αu

∣∣∣∣ 1

max
{
1− β

β+αu
, 1− β

β+αv

}β
max {||Xu||, ||Xv||} (48)

=

(
1 +

∣∣∣∣ 1

β + αv
− 1

β + αu

∣∣∣∣ 1

1− β 1
max{β+αu,β+αv}

β

)
max {||Xu||, ||Xv||} (49)

=

(
1 +

∣∣∣∣ 1

β + αv
− 1

β + αu

∣∣∣∣ β +max {αu, αv}
max {αu, αv}

β

)
max {||Xu||, ||Xv||} (50)

=

(
1 +

∣∣∣∣ αv − αu

(β + αv)(β + αu)

∣∣∣∣ β +max {αu, αv}
max {αu, αv}

β

)
max {||Xu||, ||Xv||} (51)

≤
(
1 +

|αv − αu|
max {αu, αv}

)
max {||Xu||, ||Xv||} (52)

≤ 2max {||Xu||, ||Xv||} (53)
(54)

Therefore, we obtained:
||EI(u)− EI(v)|| ≤ 2max {||Xu||, ||Xv||} (55)

Furthermore, this inequality must hold for any possible context ρ in which symbols u and v could be found. Therefore, we
can update the bound as follows:

||EI(u)− EI(v)|| ≤ 2min
ρ

{
max

{
||EI(ρ, u)||, ||EI(ρ, v)||

}}
(56)

Which concludes the proof.
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C. Ablation Study
C.1. What happens when the distribution hypothesis does hold?

Experiment. In Sect. 5, we exclusively examined a scenario in which the distributional hypothesis held for one pair of
symbols (1A and 1B) but did not for the other pair (0A and 0B). Here, we consider the EXor problem where the distributional
hypothesis holds for all symbols. This can be achieved by simply removing the problematic pair (0A and 0B).

Expectations. In this scenario, we anticipate that a tied model would exhibit slightly faster results compared to an untied
one. This expectation arises from both the input and output embedding matrices of the tied model attempting to encode the
same semantic information in the embeddings. Furthermore, we predict that the embeddings of 1A and 1B will converge,
becoming closer to each other, given their semantic and conditional equivalence. Specifically, the tied model is expected to
converge faster wrt. the untied model.

Result. Fig. 4 shows the results. As one would expect, in this scenario, the tied model works slightly better in terms of
accuracy. Also, the untied model does encode 1A and 1B close to each other in both the input and output embedding layer
since 1A ⊜ 1B and 1A ≜ 1B. However, these embeddings become close to each other faster in the tied model wrt. the untied
model.
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Figure 4. Accuracy and embedding distances for the tied and untied model when the distributional hypothesis hold for all symbols and
there are semantically and conditionally equivalent symbols
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C.2. What happens when the distribution hypothesis does not hold?

Experiment. In Sect. 5, we exclusively examined a scenario in which the distributional hypothesis held for one pair of
symbols (1A & 1B) but did not for the other pair (0A & 0B). Here, we consider the EXor problem where the distributional
hypothesis does not hold for all symbols. This can be achieved by simply removing the semantically and conditionally
equivalent pair (1A & 1B).

Expectation. In this scenario, we expect that an untied model should achieve results slightly better wrt. a tied one as both
input and output embedding matrices try to encode different semantic information in the same embeddings. Additionally,
we also expect embeddings of 0A and 0B to be distanced from each other in the output matrix (as these symbols are not
conditionally equivalent).

Results. Fig. 5 shows the results. In this scenario, the untied model works much better in terms of accuracy. Note that, while
the untied model can catch up with the tied model when all symbols respect the distributional hypothesis, the vice-versa
is not true. This is because the tied model can always reach a parameter configuration such that EI(u) = EO(v) when
u ⊜ v ⇐⇒ u ≜ v. On the other hand, when u ⊜ v ⇍⇒ u ≜ v then EI(u) should be different from EO(v) but this
cannot happen if we tie their weights. Also, the untied model does encode 1A and 1B close to each other in the input and far
apart from each other in the output embedding layer since 1A ⊜ 1B and 1A ̸≜ 1B, as one would expect. On the other hand,
the tied model encodes 1A far from 1B while they should be close to each other in the input embedding layer and far in the
output embedding layer.
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Figure 5. Accuracy and embedding distances for the tied and untied model when there are not symbols both semantically and conditionally
equivalent.
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C.3. What happens when the transformer model is larger?

Experiment. In Sect. 5, we exclusively examined a scenario with an extremely small architecture. Here, we employ a
slightly larger architecture that is over-parametrized for the problem at hand. In particular, we use a 2-layer (previously
1-layer) transformer architecture, with an input and output embedding size of 32 (previously 4).

Expectation. We expect to observe a behavior similar to those observed in the main experiment (Sect. 5).

Results. Surprisingly, while we would expect the untied model to be slightly more accurate this does not happen. We
believe that the tied model is able to compensate (the fact of having input and output embedding matrices tied) by using
the additional parameters. Moreover, the tied model is not particularly fast in encoding 1A close to 1B wrt. tied model.
We believe that over-parametrization is the cause of this behavior, as achieving good results early alleviates the pressure
on having properly aligned embeddings. Notable, we can still observe that 1A and 1B (which are both semantically and
conditionally equivalent) converge. Meanwhile, 0A and 0B (which are not conditionally equivalent) become close to each
other only in the input embedding layer of the untied model.
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Figure 6. Accuracy and embedding distances for the tied and untied model when the transformer is slightly larger
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C.4. What happens when we use and LSTM architecture?

Experiment. In Sect. 5, we exclusively examined a scenario with a transformer architecture. Here, we employ a different
architecture. In particular, we use a 2-layer (a 1-layer architecture was not able to generalize) bidirectional LSTM (Hochreiter
& Schmidhuber, 1997) architecture (we use the PyTorch implementation5), with input and output embedding size of 4.

Expectation. We expect to observe a behavior similar to those observed in the main experiment (Sect. 5).

Results. Mostly, in Fig. 7, we can observe a behavior similar to the one already observed for the transformer architecture.
However, the rate at which embedding becomes close to each other is a bit slower wrt. the transformer architecture. This
may be the result of slight over-parametrization or it may be the case that the bound provided in Theorem 4.2 is less tight.
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Figure 7. Accuracy and embedding distances for the tied and untied model when the model is a LSTM

5https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
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C.5. What happens when we use and MLPMixer architecture?

Experiment. Until now, we have examined a scenario with an attention-based architecture (the Transformer), and a recurrent
neural network (the LSTM). Here we introduce multi-layer-perceptron-based architecture—the MLPMixer (Tolstikhin
et al., 2021). In particular, we use a 1-layer MLPMixer architecture implemented from scratch, with an input and output
embedding size of 4.

Expectation. We expect to observe a behavior similar to those observed in the main experiment (Sect. 5).

Result. Mostly, in Fig. 8, we can observe a behavior similar to the one already observed for the transformer architecture.
The rate at which embedding becomes close to each other is bit slower wrt. the transformer architecture but faster wrt. the
LSTM architecture. Again, we believe that this is the result of either a slight over-parametrization or a less tight bound for
Theorem 4.2.
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Figure 8. Accuracy and embedding distances for the tied and untied model when the model is a MLPMixer
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Figure 9. Embedding distances for a larger LSTM.
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Figure 10. Embedding distances for a larger MLPMixer.
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C.6. Bigger LSTM & bigger MLPMixer

For completeness, we also provide the embedding distance for a larger version of an LSTM and MLPMixer architecture.
However, these figures (Fig. 9 and Fig. 10) simply confirm the results already observed in the previous scenarios.

The LSTM architecture is a 4-layer bidirectional LSTM architecture with input and output embedding size of 32 parameters.
The MLPMixer is a 2-layer MLPMixer architecture with an input and output embedding size of 32. The remaining
parameters remain unchanged.

C.7. What happens when we use natural data?

Overview. In Section 5, we focused solely on a scenario involving an artificially generated small dataset. Here, we aim to
expand the experiment to a larger and more natural dataset to assess the extent to which Theorems 4.1 and 4.2 hold.

Dataset. We chose the Bookcorpus dataset (Zhu et al., 2015), a 5GB collection of English sentences extracted from
existing books. Each sentence was tokenized using a pre-trained tokenizer (Devlin et al., 2019) from the Huggingface
dataset library. 6 Additionally, we curated a set of 100 common tokens, denoted as C (e.g., "the", "time", "two"), to serve as
references. For each token in C, we assigned two symbols representing the same token (e.g., "the" is represented by symbols
1, 996 and 30, 520). During training, each token in C was randomly replaced with equal probability by either one of the two
symbols (e.g., "the" could be replaced with probability 1/2 by either 1, 996 or 30, 520). Consequently, we established 100
symbol pairs for which the distributional hypothesis holds.

Task. We mask a token in a sequence with a probability of 0.15, and the model’s objective is to predict the masked tokens
based on the remaining context.

Model. We adopt a traditional 3-layer transformer architecture with the following hyperparameters: 4 attention heads,
128 embedding size, 512 feed-forward size, and gelu activation. Additionally, we initialize embeddings from a normal
distribution with mean 0 and standard deviation 0.3. The model is trained for 10 epochs using the AdamW optimizer with a
learning rate of 1e−4 and weight decay of 1e−2.

Expectation. Note that symbols representing the same token in C are semantically equivalent. Consequently, during
training, we expect the respective input embeddings to become close to each other (according to Theorem 4.2). Similarly,
these symbols are also conditionally equivalent, suggesting that the respective output embeddings should likewise converge
(according to Theorem 4.1). Conversely, when comparing symbols representing different tokens in C, they are neither
semantically nor conditionally equivalent. Hence, their input and output embeddings should keep their distance from each
other.

Result. The results are depicted in Fig. 11. Firstly, let us discuss the untied model. Both Fig.11b and Fig.11d demonstrate
the expected behavior. Here, semantically equivalent symbols are encoded close to each other in the input embedding matrix,
and similarly, conditionally equivalent symbols are encoded close to each other in the output embedding matrix. This trend
is also observed in the case of the tied model, as shown in Fig.11c. Finally, Fig. 11a presents the validation accuracy during
the 10 training epochs. It can be observed that the tied model initially outperforms the untied model, but the untied model
catches up later during training.

6https://huggingface.co/google-bert/bert-base-uncased
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Figure 11. Accuracy and embedding distances for the tied and untied model for the bookcorpus dataset
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