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A EXPERIMENT SETTINGS DETAILS
In this section we provide additional information about the experiments settings.

Design in the Ras Protein Family Input sequences are restricted to a maximum length of 186
with 25 possibilities (20 natural amino acids and 5 additional). We use the esm2_t30_150M_UR50D
architecture from the ESM2 repository E], which is made of 30 attention layers and 150 millions of
parameters in total. We use the 120, 000 elements of the PFAM database to initalize the repertoire
in every experiment. We use a batch size of 126 at each iteration and perform 7937 iterations to
evaluate 1e6 elements in total. Every method is run for a total of 5 trials. ME-GIDE was run for
three values of target entropy: 0.4, 0.6 and 0.8. MAP-ELITES was run with different values of
number of mutations at each iteration but the best results were obtained with 1—point mutation at
each iteration. ME-GDP was run for values of o, = 0.1, 1,10, 100, 1000 and the best results were
obtained for o4 = 100.

Binarized digits Input images are treated as vectors of length 784 with 2 possibilites (0 or 1).
We use an RBM with 500 hidden units and we train it with the contrastive divergence algorithm.
We initialize the repertoire uniformly at random. We use a batch size of 512 at each iteration and
perform 2000 iterations to evaluate 1,024, 000 elements in total. Every method is run for a total of
5 trials. ME-GIDE was run for three values of target entropy: 0.4, 0.6 and 0.8. MAP-ELITES was run
with different values of number of mutations at each iteration and with crossover but the best results
were obtained with 1—point mutation at each iteration and no crossover. ME-GDP was run for values
of o4 = 1,10, 100 and the best results were obtained for o, = 10 in value.

Discrete LSI The latent space is made of 32 x 32 = 1024 codes with 512 possibilites. We use
a VQ-VAE which architecture is detailed in Appendix [C| We initialize the repertoire uniformly at
random. We use a batch size of 560 at each iteration and perform 10000 iterations to evaluate
5,600, 000 elements in total. Every method is run for a total of 5 trials. ME-GIDE was run for three
values of target entropy: 0.4, 0.6 and 0.8. MAP-ELITES was run with different values of number
of mutations at each iteration and with crossover but the best results were obtained with 1—point
mutation at each iteration and no crossover. ME-GDP was run for values of o, = 1,10,100 and
the best results were obtained for o, = 100. Concerning the descriptors and objective range, the
CLIP-based descriptors are scalar values ranging from 0 to 10, lower descriptor indicating stronger
similarity. To compute the fitness score, we transform the score associated with the fitness prompt
by applying the function z +— (10 — x) x 10. Thus we obtain a score ranging from 0 to 100 as
displayed in the Figure[3}

B DETAILED RESULTS FOR DIFFERENT TARGET ENTROPIES

—— ME-GIDE (target_entropy: 0.40) —— ME-GIDE (target_entropy: 0.60) —— ME-GIDE (target_entropy: 0.80)
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Figure 6: QD-score evolution on the different domains (median and interquartile range over 5 seeds)
for different values of target entropy. On three out of the four domains, different values of target en-
tropy yield similar results. It demonstrates that the use of a target entropy eases the hyperparameter
tuning procedure.

https://github.com/facebookresearch/esm
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In all of our experiments we run our method for 3 values of entropy and only plot the best one
on Figure 2| We show here that the conclusions are unchanged even with other values of target
entropies, meaning that the range [0.4, 0.8] seems a reasonable starting point for most problems.

C VQ-VAE ARCHITECTURE

To train our VQ-VAE, we follow guidelines of [Van Den Oord et al.|(2017). We train our VQ-VAE
on ImageNelE] where images are pre-processed to be of size 128 x 128. We use the same architecture
as the authors of the aforementioned paper and use a latent vector of size 32 x 32 = 1024 with a
codebook size of 512. We use 3 convolutional layers for the encoder and 3 layers for the decoder.
We use Adam optimizer with a learning rate n = 2e — 4 we set the commitment loss coefficient to
8 =0.25.

D VISUALIZATION OF THE MNIST DATA IN THE DESCRIPTOR SPACE

505bﬁ&666éd{

é / I

0

o

o
8
X 0

&
3
3
3
3
2
2
1
<

~bLkuooOoD
mm%PQ}NQJ\nEﬂQ
2N)Jeo s hyl

‘x.:'j
Ny ) PN . - LN =

-40

NN AN DR A0
e AW AW N RVARE TN TS G I
~Mﬂ\%mw&mmm
N W H e e iy g o
NN WU XD R
RN R S S L T )Y

!
!

Figure 7: MNIST images projected in a T-SNE reduction of our descriptor space. The whole MNIST
dataset is embedded into a the 20-dimensional space defined by the PCA over the hidden units of the
RBM. Then we obtain a 2-dimensional representation with T-SNE and we sample images uniformly
in this space.
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On complex data such as MNIST binary images, it is no easy task to define a relevant descriptor
space. To characterize the diversity of different images of digits, one possible solution is to use the
features extracted by a Deep Neural Network trained for the classification task. We instead chose
to use the features implicitly embedded in the hidden layer of the RBM trained on the MNIST data.
As the RBM model is trained for likelihood estimation, we expect it to learn a robust representation
of the data, that efficiently separe the different classes of digits. To further validate this choice, we
visualize a projection of the MNIST dataset in our embedding space. To do so, we first embed the
whole dataset in the 20-dimensional descriptor space, then we project it in dimension 2 using the
T-SNE algorithm. On Figure [/| we showcase MNIST images sampled uniformly in the projection
space. It demonstrates the fact that our descriptor space properly spread the MNIST different classes
and is able to characterize the diversity in the digits’ space.

3https://www.image-net.org/
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E CORRELATIONS BETWEEN GIDE ESTIMATE IMPROVEMENT AND TRUE
IMPROVEMENT

To assess the quality of the approximation we make in Equation [2] which is a an estimation of the
true improvement g(z(**)) — g(x) denoted d; ;. here. For this analysis, we consider the Discrete LSI
- 1 setting and we set g to the CLIP fitness function associated with our prompt ”A labrador”. We
sample 10 random elements from the VQ-VAE latent space and we compute the true improvement
d; 1. for every possibility, leading to 5, 242, 880 evaluations in total. Then we compute our estimated

improvement d; ;, on the same data. We display on the left of the Figure [8} the heatmap of the
Pearson correlation for each dimension of the latent space ¢ < 1024 and each possible position
k < 512 of the variable d;;, and d; ;. On the right of the same figure, we plot the histogram
showing the distribution of the Pearson correlations between the 1024 x 512 = 524, 288 variables

d; 1 and d; j, the median correlation is m = 0.65. Overall we measure high positive correlations
over the majority of variables, which demonstrate that the approximation used by ME-GIDE contains
relevant information for optimization. Interestingly, some directions are clearly better approximated
than others, justifying that keeping randomness in the choice of the direction to update is sound.
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Figure 8: The gradient-informed estimate used by ME-GIDE shows a positive correlation with the
true improvement g(2(**)) —g(z). It demonstrates the capability of our method to leverage gradients
to determine best updates directions.

F VALIDATION ON PROTEIN DATA

We visualize the diversity obtained on proteins with two information: primary structure and sec-
ondary structure. Firstly, we sub-sample 300 the repertoire obtained with MAP-ELITES and ME-
GIDE by performing a K = 300-means clustering on the centroids of the repertoire. Then every
protein from the original repertoire is added to the new one, keeping only the most fit in every
region. We evaluaete diversity in the primary structure (amino acid sequence) by computing the
pairwise Levenshtein distances between each protein. We display the histograms of the distributions
of pairwise distances on MAP-ELITES and ME-GIDE on Figure[9]
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Figure 9: ME-GIDE finds more diverse solutions in the sequence space.
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