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InstantAS: Minimum Coverage Sampling for Arbitrary-Size
Image Generation

Figure 1: InstantAS can generate arbitrary-size image, such as horizontal panorama or vertical panorama.The generation speed
of InstantAS is nearly four times that of commonly used MultiDiffusion [3] while maintaining generation quality. InstantAS
can also apply different semantic information to different parts of the image during sampling and achieve seamless blending.

ABSTRACT
In recent years, diffusion models have dominated the field of im-
age generation with their outstanding generation quality. How-
ever, pre-trained large-scale diffusion models are generally trained
using fixed-size images, and fail to maintain their performance at
different aspect ratios. Existing methods for generating arbitrary-
size images based on diffusionmodels face several issues, including
the requirement for extensive finetuning or training, sluggish sam-
pling speed, and noticeable edge artifacts. This paper presents the
InstantASmethod for arbitrary-size image generation.Thismethod
performs non-overlappingminimum coverage segmentation on the
target image, minimizing the generation of redundant information
and significantly improving sampling speed. To maintain the con-
sistency of the generated image, we also proposed the Inter-Domain
Distribution Bridging method to integrate the distribution of the
entire image and suppress the separation of diffusion paths in dif-
ferent regions of the image. Furthermore, we propose the dynamic
semantic guided cross-attention method, allowing for the control
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of different regions using different semantics. InstantAS can be
applied to nearly any existing pre-trained Text-to-Image diffusion
model. Experimental results show that InstantAS has better fusion
capabilities compared to previous arbitrary-size image generation
methods and is far ahead in sampling speed compared to them.

CCS CONCEPTS
• Computing methodologies→ Computer vision; Image pro-
cessing; Machine learning.

KEYWORDS
Image Generation, Diffusion Models, Fast Sampling, Training-Free

1 INTRODUCTION
In the field of image generation, diffusion models [5, 10, 11, 21,
26, 30, 31, 40] have achieved remarkable accomplishments in re-
cent years. In terms of text-to-image generation models [4, 20, 25,
37, 38], many models that generate high-quality images with sim-
plicity and usability have become popular. Existing text-to-image
generation models are mostly trained on datasets of fixed sizes,
leading to poor generalization for images of different sizes. Appli-
cations such as book covers, illustrations, and posters require flexi-
bility in image sizes. Directly scaling images can compromise their
coherence, while stitching images together can result in noticeable
seams. Therefore, we need a method that can generate images of
any size based on constrained pre-trained diffusion model.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Existing works have addressed this issue through various meth-
ods. Any-size-diffusion [41] and SDXL [23] fine-tune the model
using various images of different sizes, achieving outstanding gen-
eration results. However, considering the model’s parameter vol-
ume, this requires a large amount of training data and significant
computational resources. ElasticDiffusion [8] decouples global and
local generation and extracts the proportionate region from its
generated results matching the target image size, then enlarges it
to the target size using the proposed resampling technique. This
method takes into account global information, but the large num-
ber of samples makes it very slow. ScaleCrafter [9] proposes a
simple yet effective reexpansion that can dynamically adjust the
convolution receptive field during the inference process, achiev-
ing high-quality super-resolution image generation. Some recent
works [14, 19, 35, 36] adopt the MultiDiffusion [3] panoramic im-
age generation method, which involves splitting large-sized im-
ages into different regions for separate generations, achieving ex-
cellent generation results. However, in these methods, the individ-
ually generated regions overlap, requiring a significant number of
separately generated regions to be combined to form the target im-
age during the generation process. This results in an exponential
increase in the generation time as the region of the image grows.

In this paper, we propose the InstantAS method, which can gen-
erate images of any size at extremely high speed. To achieve this
objective, we introduce the non-overlapping minimum coverage
sampling method. This approach involves decomposing the large
target image into smaller regions capable of independent genera-
tion. Compared to the large overlap of sampling areas in previous
works [3, 14, 36], we require these regions to collectively form a
precise cover of the large target image without any overlap. This
meticulous segmentation minimizes the generated content com-
pared to methods necessitating extensive overlaps and reduces the
number of steps necessary in the sampling phase. Simply sampling
images in block units may lead to gradual dispersion of probability
flows among different blocks during the diffusion process, thereby
creating distinct boundaries between images. To address this issue,
we propose an inter-domain distribution bridging method, which
harmoniously integrates various sampling regions during the gen-
eration phase to facilitate cohesive guidance for multiple score pre-
dictions. In addition, we further explored a more refined control
method by guiding different regions of the image with different
prompts. Specifically, we proposed the dynamic semantic guided
cross-attention method, which dynamically allocates semantic in-
formation to different sampling regions under different diffusion
steps by splitting the guiding parameters without the need for a
classifier, achieving a more precise control.

We conducted extensive qualitative and quantitative compara-
tive experiments on InstantAS to validate its superiority. The ex-
perimental results demonstrate that InstantAS outperforms state-
of-the-art methods and is much faster than previous works [3, 8,
26] in generating arbitrary-size images. Overall, this paper makes
the following three contributions:

• We propose a training-free arbitrary-size image sampling
method that significantly outperforms all existing methods
in terms of sampling speed while maintaining generation
quality.

• We introduce a region-controlled generationmethod that al-
lows for the generation of different regionswithin an arbitrary-
size image using distinct semantic information, building upon
our proposed fast sampling method.
• We demonstrate the outstanding capabilities of our method

through analysis and extensive comparative experiments.

2 RELATEDWORK
2.1 Conditional Diffusion Models
Conditional diffusion models has emerged as a powerful tool for
controlling the synthesis process in generative tasks. Currently,
conditional generation with diffusion models primarily falls into
two forms: Classifier Guidance [5] and Classifier-Free [11]. Classi-
fier Guidance uses an additional network to measure the degree of
match between the intermediate results of the generation process
and the conditions, and use its gradients to modify the generated
results. Classifier-Free incorporates conditions into the generation
process at the beginning of training in diffusion models.

ControlNet [40] utilizes the encoder of the U-net [27] in the
pre-trained diffusion model to encode and input conditions, train-
ing with paired data to achieve outstanding results under various
control conditions. T2I-Adapter [20] adjusts multiple conditions
to a unified form through a pre-trained adapter, achieving multi-
condition control in text-to-image generation without modifying
the network. Some recent works [12, 17, 28, 39] focus on person-
alized content generation, enabling precise control over generated
scenes, clothing, characters, and other content at minimal cost. In
this paper, we propose a region-controlled method based on over-
lapping minimum coverage sampling, allowing to impose different
semantic controls on different regions in images of arbitrary sizes.

2.2 Arbitrary Size Image Generation For
Diffusion Models

Diffusion models [1, 5, 10, 11, 30, 31, 40] are an emerging class of
generative models that progressively transform noise into struc-
tured data, positioned as an alternative to GANs [2, 6, 7, 13, 15,
16, 42] and VAEs [18, 33, 34]. Diffusion models boast exceptional
generation quality, but their unique generation process results in
significant training costs. Existing pre-trained diffusionmodels are
typically built upon fixed image size datasets, leading to subopti-
mal performance when generating images of different resolutions.
Consequently, arbitrary-size image generation methods based on
pre-trained diffusion models have garnered widespread attention.

Multidiffusion [3] employs diffusion path merging, segmenting
the target image of arbitrary size into fixed-size regions for gener-
ation. However, this approach necessitates extensive overlapping
of the sampled regions, resulting in significant information redun-
dancy and a substantial reduction in generation speed. ElasticD-
iffusion [8] extracts a proportionally scaled-down region from a
fixed-size image and then upscale it to the target size, ensuring
global information consistency. However, extensive upsampling
also diminishes generation speed and leads to inferior generation
quality for imageswith large aspect ratios. SyncDiffusion [19], build-
ing upon Multidiffusion’s method, introduces optimization tech-
niques to enhance image consistency. ScaleCrafter [9] proposes
a simple rescaling method that dynamically adjusts the receptive
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Figure 2: The overall process of InstantAS. First, the noise image of the target size is divided into several sampling areas
of different sizes according to the minimum coverage sampling method we proposed. Subsequently, these regions are filled
respectively and then input into U-net, where dynamic semantic guided cross-attention is calculated with the corresponding
prompts from different constrained regions. Finally, these sampling areas are assembled, the initial value of the next sampling
is generated, and the sampling area is re-divided according to the inter-domain distribution bridging method.

field of convolutions during inference. In contrast to these meth-
ods, InstantAS proposed in this paper significantly reduces infor-
mation redundancy through non-overlapping minimum coverage
sampling, achieving sampling speeds surpassing all existing arbitrary-
size image generation methods while maintaining image quality.

3 INSTANTAS
The goal of this paper is to use a pre-trained diffusion model for
rapid sampling of larger images with non-uniform aspect ratios
while maintaining image consistency. To address this issue, we
propose a non-overlapping minimum coverage sampling method.
Specifically, for a target size of 𝐻 ×𝑊 , we decompose the noise
of the target size into multiple non-overlapping regions and sam-
ple them separately. To ensure consistency and seamlessness in
the generated images, we also propose an inter-domain distribu-
tion bridging method to integrate the distribution differences be-
tween different regions. In addition, we introduce a dynamic se-
mantic guidance intensity allocation method, which allows differ-
ent semantic information to be applied to different regions during
the generation process and naturally blend them, thereby enhanc-
ing the control precision in the sampling process. The complete
method is shown in Figure 2.

3.1 Non-Overlapping Minimum Coverage
Sampling

Some previous works[3, 14, 36] samples large-sized images by di-
viding them into different regions. However, in order to ensure the
exchange of information between different sampling regions and
avoid obvious boundaries between them, these methods generally

have large overlapping areas between different sampling regions.
This result in neighboring regions being very close to each other,
so to sample large-sized images, they must be divided into a large
number of sampling regions. For example, MultiDiffusion[3] uses
sampling regions with an interval of 8. For a panoramic imagewith
a target size of 512 × 2048, it needs to generate 2048/8 = 256 sam-
pling regions. In these works, at least 87.5% of adjacent sampling
regions are required to overlap. However, to achieve a smooth tran-
sition between different areas, a large number of overlapping re-
gions need to be sampled and then the average calculated. These
repeated samplings create a large amount of information redun-
dancy, thus greatly reducing the sampling speed.

To address this issue, we propose the Non-Overlapping Mini-
mum Coverage Sampling method, as illustrated in the upper half
of Figure 3. Specifically, let the target image be denoted as I with
dimensions 𝐻 ×𝑊 . As the current diffusion models commonly de-
fault to generating square images with a side length denoted as
𝐿, for simplicity, we set the size of each sampling region R𝑖 as a
square with a side length of 𝐿. Subsequently, the sampling regions
form the minimum coverage on the target noisy image:

{R𝑖 }𝑚𝑖=0 = 𝑀𝑖𝑛_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒{I, 𝐿} (1)

For the part of the target image edge that is less than one sam-
pling region length, we only allow temporary overlapping of two
sampling regions in this area to meet the size of the target image.
However, in the processing after each sampling step, we will re-
move the overlapping part used to fill the edge.

After segmenting the target image using our non-overlapping
minimum coverage sampling method, the number of sampling re-
gions obtained is much smaller than in previous works[3, 14, 36].
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Figure 3: On a 584×2296 image, we partition the sampling re-
gions using non-overlapping minimum coverage sampling
and overlapping sampling methods. Clearly, the area that
needs to be sampled using InstantAS is far less than that re-
quired for overlapping sampling.

For example, for simplicity, when using Stable Diffusion 2.0 [26]
trained to generate 512×512 images to produce 512×2048 images,
InstantAS requires sampling of𝐶𝑒𝑖𝑙 (2048/512)×𝐶𝑒𝑖𝑙 (512/512) = 4
regions at each step, while the previous works would need to di-
vide at least 2048/[(1− 0.875) × 512] = 32 regions. InstantAS inno-
vates the sampling method, eliminates the overlapping redundant
information generated in the process of sampling images of any
size, and greatly improves the sampling speed. Moreover, the orig-
inal sampling results without averaging processing avoid the infor-
mation confusion caused by multiple samplings, which improves
the quality of the generated results to a certain extent, which will
be detailed and compared in the Section 4.

3.2 Inter-Domain Distribution Bridging
If the sampling steps are only conducted in non-overlapping re-
gions, the lack of information transfer between regions will cause
them to gradually differentiate in the flow of the diffusion model’s
ODEs, leading to generated results in different regions being un-
related and showing obvious stitching traces. To address this is-
sue, we propose the Inter-Domain Distribution Bridging method.
In this method, we denote the distribution in the 𝑡-th sampling
space of the diffusion model generation process as 𝑃𝑡 (x𝑡 |c), where
c represents the prompt.The coordinates of two adjacent sampling
regions in this distribution are denoted as xR𝑖

𝑡 and xR𝑖+1
𝑡 . Since the

initial value x𝑇 of the entire target image is sampled from the stan-
dard normal distribution N(0, I) with covariance 0, if there is no
information transfer between xR𝑖

𝑡 and xR𝑖+1
𝑡 from the beginning

to the end, they are unlikely to converge to the same distribution.
This discrepancy will eventually be reflected in the target image
space 𝑃0 (x0 |c) with significant differences, as illustrated in Figure
4. Therefore, we realign the two coordinates to compensate for the
differentiation that may occur in the next sampling:

R𝑖 ← 𝑅𝑒𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑒 (R𝑖 ,R𝑖+1, 𝛾) (2)
Specifically, at the completion of the sampling in the 𝑡-th step,
we select two adjacent sampling regions and choose a portion be-
tween them based on the fixed size of the sampling regions to form
the sampling region for step 𝑡 − 1. In our experiments, we choose

𝛾 from region xR𝑖
𝑡 and 1 − 𝛾 from region xR𝑖+1

𝑡 , which form region
xR𝑖
𝑡−1 after reorganization.𝛾 , as a hyperparameter, is used to control

the proportion of two adjacent images in a single reorganization.
It is important to note that for incomplete sampling regions at the
edges, we first fill them inwards, and after one sampling step is
completed, we remove the excess parts. In addition, for sampling
regions at the edge, we consider their neighboring regions as the
starting sampling regions, ensuring that the number of sampling
regions remains constant after each reorganization.

Figure 4(b) illustrates the principle of the inter-domain distri-
bution bridging method. In practice, we arrange large images to
form a ring by connecting them end to end, both from top to bot-
tom and from left to right. In this way, the distribution bridging
in each sampling step can be viewed as a cyclic shift downwards
or backwards across all sampling regions currently involved. We
control the length of the shift to ensure that each sampling region
can cover a portion of the two sampling regions from the previous
step. We found that choosing either a horizontal or vertical shift,
but not both, within a single sampling step of the diffusion model
yields satisfactory generative results. Therefore, we adopt an alter-
nating shifting strategy: if a horizontal shift is used in the current
sampling step, a vertical shift will be applied in the next step.

(a) Generate directly by region (b) Inter-Domain Distribution Bridging

Reorganize the sampling region

Figure 4: Inter-Domain Distribution Bridging method can
ensure the consistency of images. (a) Each sampling region
is generated individually. Their distribution distance will
grow increasingly larger. (b) The inter-domain distribution
bridging method reorganizes the sampling regions to close
in on the directions of same probability flows.

3.3 Dynamic Semantic Guided Cross-Attention
Building upon our proposed non-overlapping rapid samplingmethod,
we delved further into more refined control mechanisms, specifi-
cally, guiding the generation of different image regions with dis-
tinct semantic information. To achieve this objective, we introduce
the Dynamic Semantic Guided Cross-Attention method, which al-
lows for the dynamic distribution of semantic information to each
sampling region throughout the generation process.

Before the generation starts, we have𝑘 different guiding prompts:
{c𝑖 }𝑘𝑖=1, each ofwhich corresponds to𝑘 different and non-overlapping
regions {A𝑖 }𝑘𝑖=1 in image I:

A𝑖𝑡 ⇐ 𝑃𝑡 (xA
𝑖

𝑡 |c𝑖 ) (3)

During the generation process, since the sampling regions bridg-
ing the inter-domain distribution change at each step, we consider
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𝑘 different semantic guidance regions in the target-sized image and
their corresponding semantics as the basis of the image. Each sam-
pling region R𝑖 intersects with some semantic guidance regions
{A𝑗 } ⊆ {A𝑖 }𝑘𝑖=1 𝑗 ∈ 𝐼𝑖 , and these semantic guidance regions pre-
cisely form an internal partition of the sampling region:

R𝑖 =
∪
𝑗∈𝐼𝑖
(R𝑖 ∩ A𝑗 ) (4)

where 𝐼𝑖 represents the index set of those semantic guidance re-
gions that intersect withR𝑖 .Wemodify the cross-attentionmodule,
which integrates semantic information with the generated image,
by employing prompts within the intersection of each sampling
region R𝑖 and the semantically-guided regions {A𝑗 } to compute
cross-attention. This dynamically assigned cross-attention enables
region-specific control of semantic information:

AttnR𝑖 ← Assemble
𝑗∈𝐼𝑖

(
𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

( (𝑄R𝑖 ∩ A𝑗 ) · 𝐾𝑐 𝑗
√
𝑑

)
·𝑉 𝑐 𝑗

)
(5)

The modified attention map is input into U-Net for generation. Af-
ter all sampling areas are generated, we remove some temporarily
filled areas in the attention map and splice all sampling areas into
the size of the original image for the next sampling, as shown in
Figure 2. Complete sampling algorithm as shown in Algorithm 1.

Algorithm 1 InstantAS Sampling Process
Input:

x𝑇 ∼ N(0, I) ⊲ Noise at target size 𝐻 ×𝑊
𝜖𝜃 ⊲ Pre-trained diffusion model at 𝐿 × 𝐿
{c𝑗 }𝑘𝑗=1 and {A𝑗 }𝑘𝑗=1 ⊲ Prompts and corresponding regions

1: {R𝑖 }𝑚𝑖=0 = 𝑀𝑖𝑛_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒{x𝑡 , 𝐿} ⊲ Eq.1
2: for 𝑡 = 𝑇 to 1 do
3: for 𝑖 = 0 to𝑚 do
4: AttnR𝑖 ← Assemble

𝑗∈𝐼𝑖

(
𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(𝑄R𝑖∩A𝑗 ) ·𝐾𝑐 𝑗

√
𝑑

)
·𝑉 𝑐 𝑗

)
5: xR𝑖

𝑡−1 ← 𝜖𝜃
(
xR𝑖
𝑡 ,AttnR𝑖 , 𝑡

)
6: end for
7: R(𝑡−1)𝑖 ← 𝑅𝑒𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑒 (R(𝑡 )𝑖 ,R(𝑡 )𝑖+1, 𝛾) ⊲ Eq.2
8: end for
9: x0 = 𝑀𝑖𝑛_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒−1{[xR0

0 , ..., xR𝑚
0 ], 𝐿}

10: return x0

4 EXPERIMENTS
Evaluation Metrics. In order to quantitatively evaluate the ex-

perimental results, we followed previous text-to-image generation
work and usedwidely recognized and utilizedmetrics, FID (Fréchet
Inception Distance) [22] and CLIP-Score, as evaluation indicators.
FID utilizes the Inception v3 [32] image classification model to
extract features and compute the similarity between two sets of
images, used to measure image diversity and quality. In our ex-
periment, we used the base generation model Stable Diffusion 2.0
to generate a set of 512 × 512 images based on a fixed prompt,
then randomly cropped the large-size images generated by vari-
ous comparative methods to obtain another set of 512×512 images,
for FID calculation. We employed two CLIP-based evaluation met-
rics: (1) text-to-image CLIP score (CLIP-S) [24] encodes images and

prompts into the same latent space to calculate their cosine simi-
larity, measuring the matching degree between generated images
and prompts. (2) CLIP aesthetic (CLIP-A) [29] uses a linear estima-
tor at the top of CLIP to obtain aesthetic indicators of the images.
Furthermore, we introduced a very important metric: Sampling
Speed. This metric is used to measure the efficiency of sampling
methods and test whether they can maintain reasonable sampling
times when increasing content generation.

Baselines. Wecompared InstantASwith five previousworks: Sta-
ble Diffusion [26], MultiDiffusion [3], ElasticDiffusion [8], SyncD-
iffusion [19] and ScaleCrafter [9]. We use Stable Diffusion to sam-
ple directly on the noise of the target size. MultiDiffusion divides
the image into overlapping small regions and samples them sepa-
rately, then combines them to obtain the output. ElasticDiffusion
starts from a small area in a fixed-size image to generate an image
of target size. SyncDiffusion, based on theMultiDiffusion panoramic
image generationmethod, proposes optimization strategies tomake
the image more coherent. ScaleCrafter proposed a simple and ef-
fective re-expansionmethod that can dynamically adjust the recep-
tive field of the convolution during the inference process.

ImplementationDetails. InstantAS does not require any additional
training. In the experiments, for fair comparison, all methods used
the unified pre-trained text-to-image diffusion model Stable Diffu-
sion 2.0 and the DDIM sampling method as the base, with diffusion
steps set to 50 and guidance scale set to 7.5. For the Dynamic Se-
mantic Guided Cross-Attention module, we set𝛾 to 0.015. All other
settings were kept consistent. Additionally, all experiments were
conducted on the same RTX 4090 GPU.

4.1 Qualitative Comparison
In this section, we conducted visual comparisons of all methods.
We selected four different sizes within 2048×2048. The generation
results are as shown in the Figure 5 and the Figure 6.

Figure 5 shows the results of six methods for generating hori-
zontal long images. We present four sets of different sizes paired
with prompts. Figure 6 shows the results of six methods on the
generation of vertical long images. We still use randomly chosen
image sizes within a reasonable range.

Empty borders. MultiDiffusion excels in both semantic restora-
tion ability and generation results. However, for images whose size
is not amultiple of 512, empty borders often appear to the right and
below, affecting the quality of the generation. SyncDiffusion uses
the same arbitrary-sized image generation method as MultiDiffu-
sion, so the results also have similar content-free edges.

Generation quality. Stable Diffusion directly generates images
of the target size, but it lacks the ability to generalize from the
trained 512×512 size to larger sizes, resulting in repeated stacking
of certain elements and poor generation quality. ElasticDiffusion
performs poorly, producing blurry imageswith obvious seams. Scale-
Crafter’s generated results are visually impressive, but there are
still repeating elements that are similar to each other.

In contrast, InstantAS performs excellently in all three experi-
ments, showing high generation quality while perfectly matching
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Figure 5: The generation results of the six methods under four sets of different prompts and image size settings. For ease of
display, we scaled the heights of the generated results for different sizes to compare.

Table 1: Quantitative comparisons. We performed a quantitative comparison of the following three metrics at four different
dimensions: FID, CLIP-Score, CLIP-Aesthetic. We used 20 different prompts and sampled each size 2000 times.

Methods 512 × 1024 512 × 2048 1024 × 512 2048 × 512
FID↓ CLIP-S↑ CLIP-A↑ FID↓ CLIP-S↑ CLIP-A↑ FID↓ CLIP-S↑ CLIP-A↑ FID↓ CLIP-S↑ CLIP-A↑

MultiDiffusion 23.62 0.25 6.02 25.43 0.25 6.29 39.92 0.23 6.19 42.95 0.23 5.38
StableDiffusion 22.34 0.25 5.28 24.98 0.22 5.97 37.03 0.20 5.53 39.84 0.20 5.44
ElasticDiffusion 61.20 0.03 2.29 63.38 0.04 2.71 81.67 0.04 2.15 67.11 0.02 1.93
SyncDiffusion 20.19 0.24 5.72 25.17 0.24 6.02 38.93 0.22 6.02 40.18 0.25 6.09
ScaleCrafter 21.36 0.26 5.21 25.10 0.25 5.98 37.21 0.23 5.87 39.92 0.24 5.59
InstantAS 20.58 0.26 6.39 23.19 0.24 6.42 37.69 0.24 6.22 37.19 0.25 6.34

the target size. In conclusion, InstantAS demonstrates superior per-
formance in image generation tasks of various sizes and propor-
tions compared to other methods.

4.2 Quantitative Comparison
GenerateQuality Comparison. In this section, we conducted quan-

titative experimental comparisons of the six methods. Specifically,
for each method, we conducted sampling experiments using the
same parameter settings. To facilitate metric calculations, we fixed
four different image sizes: 512×1024, 512×2048, 1024×512, 2048×
512. This allowed easy integration of CLIP and Inception v3. For

each size, we performed 2, 000 samplings for all methods and dis-
played the average scores of the sampling results, as shown in Ta-
ble 1. MultiDiffusion performs well on both the FID metric and the
two metrics calculated through CLIP, indicating excellent image
quality and text consistency. However, because we fixed the size
of the generated images, the lack of content edges in images of
certain sizes was not used for metric calculation. StableDiffusion
directly generates from noise at the target size, achieving a higher
FID score, but slightly lower on CLIP-S and CLIP-A scores due to
frequent stacking of repeated elements in the images. ElasticDiffu-
sion’s generated results lack clear content, making the images ap-
pear blurry, thus performing poorly on all metrics. SyncDiffusion
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Table 2: Sampling Time andMemoryUsage.We compare the
sampling time and storage space required for all methods at
five different sizes. The best-performing indicator is high-
lighted in bold, and the second-best indicator is underlined.

Resolution Methods Time Memory Usage

512
×

1024

MultiDiffusion 12.9s 10.8GB
StableDiffusion 5.5s 10.0GB
ElasticDiffusion 48.2s 10.2GB
SyncDiffusion 93.8s 23.7GB
ScaleCrafter 6.4s 10.0GB
InstantAS 3.4s 9.8GB

512
×

2048

MultiDiffusion 27.5s 12.9GB
StableDiffusion 11.5s 12.8GB
ElasticDiffusion 54.7s 12.9GB
SyncDiffusion 151.3s 23.7GB
ScaleCrafter 16.7s 10.0GB
InstantAS 7.1s 12.8GB

1024
×
512

MultiDiffusion 13.4s 10.8GB
StableDiffusion 6.1s 10.1GB
ElasticDiffusion 48.6s 9.8GB
SyncDiffusion 97.2s 23.7GB
ScaleCrafter 6.7s 10.0GB
InstantAS 3.8s 10.0GB

2048
×
512

MultiDiffusion 28.2s 12.9GB
StableDiffusion 13.2s 12.6GB
ElasticDiffusion 55.8s 16.8GB
SyncDiffusion 159.9s 23.5GB
ScaleCrafter 17.1s 10.0GB
InstantAS 7.2s 12.9GB

4096
×

4096

MultiDiffusion 4829.7s 21.4GB
StableDiffusion - -
ElasticDiffusion 172.8s 17.8GB
SyncDiffusion 30159.9s 23.7GB
ScaleCrafter - -
InstantAS 47.3s 19.2GB

enhances the coordination consistency of images based on Mul-
tiDiffusion, so the overall performance metric is slightly higher
than MultiDiffusion. ScaleCrafter performs quite well in most met-
rics, but the similar repeating elements among them result in a

slightly lower CLIP-A score. In contrast, InstantAS has good gen-
eration quality and diversity, along with good consistency with the
prompt, showing a clear lead on all three metrics.

Sampling Speed and Memory Usage Comparison. We conducted
another important test: Sampling Speed and Memory Usage, as
shown in Table 2. It can be seen that ElasticDiffusion has a longer
average sampling time. However, due to its characteristic of crop-
ping and generating from fixed-size images, its sampling time is
less affected by image size. The sampling time of MultiDiffusion
increases significantly with the increase in image size and greatly
exceeds the time taken by StableDiffusion. InstantAS far exceeds
the other methods in sampling speed across all image sizes, with
an average time that is only 1/4 of MultiDiffusion and even about
half the average time of direct sampling in StableDiffusion, demon-
strating the superiority of the non-overlapping minimum cover-
age sampling method. To further demonstrate the relationship be-
tween the time and memory required for various methods and im-
age size, Table 2 also shows an extreme case: generating images
of 4096 × 4096. It can be observed that the time required for Mul-
tiDiffusion sampling grows explosively with the increase in im-
age size, reaching around an hour and a half. ElasticDiffusion, on
the other hand, is less affected by image size. StableDiffusion and
ScaleCrafter were unable to complete the sampling due to insuffi-
cient memory as it samples the entire image directly.The sampling
speed of SyncDiffusion is the slowest among all methods. Instan-
tAS maintains an extremely fast average sampling speed and rea-
sonable range of memory usage, demonstrating strong stability.

4.3 Ablation Study
Inter-DomainDistribution Bridging. Table 3 demonstrates the im-

pact of the Inter-Domain Distribution Bridging method on the ex-
perimental results by controlling variables. In this experiment, we
fixed the size of the images at 512 × 2048 and sampled 700 images
each time for metric calculation. Since the images of each area
are generated separately without the Inter-Domain Distribution
Bridging method, sampling takes less time, but the sampling re-
sults perform poorly in terms of image quality indicators. Figure
7 shows the impact of the proportion coefficient 𝛾 on the gener-
ated results during domain distribution bridging. When 𝛾 is small,
the information fused in the sampling area during the subsequent
generation step is also less compared to the previous generation
step. Under the multi-step generation characteristic of the diffu-
sion model, this allows the information from different areas to be
merged more progressively and gradually. However, when 𝛾 in-
creases to 0.5, the result is similar to that of 𝛾 at 1.0, indicating that
when two identical sampling areas are divided into diffusion steps
at a short period (with a period of 2 when 𝛾 = 0.5, and a period of 1

Table 3: Ablation Study

Method Details FID↓ CLIP-S↑ CLIP-A↑ Time↓
Stable Diffusion (Baseline) 23.17 0.21 5.45 12.9s
w/o 𝑁𝑜𝑛-𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 24.34 0.24 6.28 45.2s

w/o 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝐵𝑟𝑖𝑑𝑔𝑖𝑛𝑔 103.62 0.09 3.02 7.0s
Complete InstantAS 22.66 0.23 6.39 7.6s
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Figure 7: The generated results under different 𝛾 . When the setting of 𝛾 shortens the period at which two identical sampling
regions are partitioned, the boundaries become more pronounced. However, when the period length exceeds the number of
sampling steps, continuing to lengthen the period will not have a major impact on the results. Therefore, we set 𝛾 to 0.015.

Figure 8: Ablation study of Inter-DomainDistributionBridg-
ing method. There are obvious splicing gaps between the
sampling regions without the inter-domain distribution
bridging method. However, by using this method, the blend-
ing between sampling areas becomes relatively smooth.

when𝛾 = 1.0), the fusion effect is worse. Figure 8 shows the impact
of using the Inter-Domain Distribution Bridging method on the
generated results. When each region is generated separately, their
generation paths disperse unconstrainedly, showing clear edges.
However, after the application of the Inter-Domain Distribution
Bridging method, the information from different regions blends
with each other, making their transitions more natural.

Non-Overlapping Minimum Coverage. Table 3 demonstrates the
impact of Non-OverlappingMinimumCoverage method on the ex-
perimental results. As a comparison„ we overlapped adjacent two
sampling regions by 90%, and at the end of each sampling step, the
average feature maps of all overlapping regions were calculated as
the initial values for the next sampling step, as described in Fig-
ure 3. The Non-Overlapping method can significantly reduce the
sampling time while maintaining the image quality.

4.4 Region Control Generation
In Figure 9, we demonstrate the effect of region control generation.
In this experiment, we give different foregrounds (orange) to the
same semantically controlled region division while retaining the
background (gray). Experimental results suggest that the region
control method achieves a good fusion and control effect.

A photo of 

dolomites;

A TV signal tower

A photo of 

dolomites;

A rocket taking 

off

A photo of 

dolomites;

A wind power 

station

Figure 9: Experimental results of region-controlled genera-
tion. The size of the image is 540 × 1082.

5 CONCLUSION
In this paper, we propose a method for generating images of arbi-
trary sizes: InstantAS, which is used for pre-trained text-to-image
diffusion models and requires no additional training.The highlight
of InstantAS is the non-overlapping division of the sampling re-
gion, which effectively reduces the information redundancy in im-
age sampling of any size and greatly increases the sampling speed.
The inter-domain distribution bridgingmethod effectively prevents
obvious splicing gaps caused by non-overlapping divisions and
achieves high-quality global fusion. In addition, we also explored
themethod of partitioned region control generation, using dynamic
guidance cross-attention to dynamically adjust the guidance infor-
mation in different regions. However, our method still has some
shortcomings, such as lack of global information. We will present
and discuss these shortcomings in detail in the supplementary ma-
terial. InstantAS reveals the potential of partitioned area genera-
tion in the task of generating images of arbitrary sizes. In future
work, we will further explore methods that generate images while
maintaining resolution, balancing local and global information.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

InstantAS: Minimum Coverage Sampling for Arbitrary-Size Image Generation ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Brian D.O. Anderson. 1982. Reverse-time diffusion equation models. Stochastic

Processes and their Applications 12, 3 (1982), 313–326. https://doi.org/10.1016/
0304-4149(82)90051-5

[2] Kyungjune Baek, Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Hyunjung
Shim. 2021. Rethinking the truly unsupervised image-to-image translation. In
IEEE/CVF International Conference on Computer Vision. 14154–14163.

[3] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. 2023. Multidiffusion:
Fusing diffusion paths for controlled image generation. (2023).

[4] DeepFloydLab. 2023. Deepfloyd if. (2023). https://github.com/deep-floyd/IF
[5] Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion models beat gans on

image synthesis. Conference and Workshop on Neural Information Processing Sys-
tems 34 (2021).

[6] Patrick Esser, Robin Rombach, and Bjorn Ommer. 2021. Taming Transformers
for High-Resolution Image Synthesis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 12873–12883.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative
adversarial networks. Commun. ACM 63, 11 (2020), 139–144.

[8] Moayed Haji-Ali, Guha Balakrishnan, and Vicente Ordonez. 2023. Elas-
ticDiffusion: Training-free Arbitrary Size Image Generation. arXiv preprint
arXiv:2311.18822 (2023).

[9] Yingqing He, Shaoshu Yang, Haoxin Chen, Xiaodong Cun, Menghan Xia, Yong
Zhang, Xintao Wang, Ran He, Qifeng Chen, and Ying Shan. 2024. Scalecrafter:
Tuning-free higher-resolution visual generation with diffusion models. In The
Twelfth International Conference on Learning Representations.

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion proba-
bilistic models. Advances in Neural Information Processing Systems 33 (2020),
6840–6851.

[11] Jonathan Ho and Tim Salimans. 2021. Classifier-Free Diffusion Guidance. (2021).
https://openreview.net/forum?id=qw8AKxfYbI

[12] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-
image translation with conditional adversarial networks. In IEEE Conference on
Computer Vision and Pattern Recognition. 1125–1134.

[14] Álvaro Barbero Jiménez. 2023. Mixture of diffusers for scene composition and
high resolution image generation. arXiv preprint arXiv:2302.02412 (2023).

[15] Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator ar-
chitecture for generative adversarial networks. In IEEE Conference on Computer
Vision and Pattern Recognition. 4401–4410.

[16] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. 2020. Analyzing and improving the image quality of stylegan. In IEEE
Conference on Computer Vision and Pattern Recognition. 8110–8119.

[17] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel,
Inbar Mosseri, and Michal Irani. 2023. Imagic: Text-based real image editing
with diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 6007–6017.

[18] Diederik P. Kingma and Max Welling. 2013. Auto-Encoding Variational
Bayes. CoRR abs/1312.6114 (2013). https://api.semanticscholar.org/CorpusID:
216078090

[19] Yuseung Lee, Kunho Kim, Hyunjin Kim, and Minhyuk Sung. 2023. SyncDif-
fusion: Coherent Montage via Synchronized Joint Diffusions. arXiv preprint
arXiv:2306.05178 (2023).

[20] Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying Shan,
and Xiaohu Qie. 2023. T2i-adapter: Learning adapters to dig out more control-
lable ability for text-to-image diffusion models. arXiv preprint arXiv:2302.08453
(2023).

[21] Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved denoising dif-
fusion probabilistic models. In International Conference on Machine Learning.
PMLR, 8162–8171.

[22] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. 2022. On aliased resizing and
surprising subtleties in gan evaluation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 11410–11420.

[23] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn,
Jonas Müller, Joe Penna, and Robin Rombach. 2023. SDXL: Improving La-
tent Diffusion Models for High-Resolution Image Synthesis. arXiv preprint
arXiv:2307.01952 (2023).

[24] Alec Radford, JongWook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision. In
International Conference on Machine Learning. PMLR, 8748–8763.

[25] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
2022. Hierarchical text-conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125 (2022).

[26] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 10684–10695.

[27] Olaf Ronneberger, Philipp Fischer, andThomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In MICCAI. Springer, 234–241.

[28] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and
Kfir Aberman. 2023. Dreambooth: Fine tuning text-to-image diffusion models
for subject-driven generation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 22500–22510.

[29] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross
Wightman,Mehdi Cherti,TheoCoombes, Aarush Katta, ClaytonMullis, Mitchell
Wortsman, et al. 2022. Laion-5b: An open large-scale dataset for training next
generation image-text models. Advances in Neural Information Processing Sys-
tems 35 (2022), 25278–25294.

[30] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
2015. Deep unsupervised learning using nonequilibrium thermodynamics. In
International conference on machine learning. PMLR, 2256–2265.

[31] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021. Denoising Diffusion
Implicit Models. (2021). https://openreview.net/forum?id=St1giarCHLP

[32] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2818–
2826.

[33] Arash Vahdat and Jan Kautz. 2020. NVAE: A deep hierarchical variational au-
toencoder. Conference and Workshop on Neural Information Processing Systems
33 (2020).

[34] Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural discrete representation
learning. Conference and Workshop on Neural Information Processing Systems 30
(2017).

[35] Bingyuan Wang, Hengyu Meng, Zeyu Cai, Lanjiong Li, Yue Ma, Qifeng Chen,
and Zeyu Wang. 2023. MagicScroll: Nontypical Aspect-Ratio Image Genera-
tion for Visual Storytelling via Multi-Layered Semantic-Aware Denoising. arXiv
preprint arXiv:2312.10899 (2023).

[36] Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and
Chen Change Loy. 2023. Exploiting diffusion prior for real-world image super-
resolution. arXiv preprint arXiv:2305.07015 (2023).

[37] Tengfei Wang, Ting Zhang, Bo Zhang, Hao Ouyang, Dong Chen, Qifeng Chen,
and Fang Wen. 2022. Pretraining is all you need for image-to-image translation.
arXiv preprint arXiv:2205.12952 (2022).

[38] Ting-ChunWang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. 2018. High-resolution image synthesis and semantic manipulation
with conditional gans. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 8798–8807.

[39] Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun,
Dong Chen, and FangWen. 2023. Paint by example: Exemplar-based image edit-
ing with diffusion models. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 18381–18391.

[40] Lvmin Zhang and Maneesh Agrawala. 2023. Adding conditional control to text-
to-image diffusion models. arXiv preprint arXiv:2302.05543 (2023).

[41] Qingping Zheng, Yuanfan Guo, Jiankang Deng, Jianhua Han, Ying Li, Songcen
Xu, and Hang Xu. 2023. Any-size-diffusion: Toward efficient text-driven synthe-
sis for any-size hd images. arXiv preprint arXiv:2308.16582 (2023).

[42] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Un-
paired image-to-image translation using cycle-consistent adversarial networks.
In IEEE/CVF International Conference on Computer Vision. 2223–2232.

https://doi.org/10.1016/0304-4149(82)90051-5
https://doi.org/10.1016/0304-4149(82)90051-5
https://github.com/deep-floyd/IF
https://openreview.net/forum?id=qw8AKxfYbI
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:216078090
https://openreview.net/forum?id=St1giarCHLP

	Abstract
	1 Introduction
	2 Related Work
	2.1 Conditional Diffusion Models
	2.2 Arbitrary Size Image Generation For Diffusion Models

	3 InstantAS
	3.1 Non-Overlapping Minimum Coverage Sampling
	3.2 Inter-Domain Distribution Bridging
	3.3 Dynamic Semantic Guided Cross-Attention

	4 Experiments
	4.1 Qualitative Comparison
	4.2 Quantitative Comparison
	4.3 Ablation Study
	4.4 Region Control Generation

	5 Conclusion
	References

