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ABSTRACT

Powered by large-scale pre-training, vision foundation models exhibit significant
potential in open-world image understanding. However, unlike large language mod-
els that excel at directly tackling various language tasks, vision foundation models
require a task-specific model structure followed by fine-tuning on specific tasks. In
this work, we present Matcher, a novel perception paradigm that utilizes off-the-
shelf vision foundation models to address various perception tasks. Matcher can
segment anything by using an in-context example without training. Additionally,
we design three effective components within the Matcher framework to collaborate
with these foundation models and unleash their full potential in diverse perception
tasks. Matcher demonstrates impressive generalization performance across various
segmentation tasks, all without training. For example, it achieves 52.7% mloU
on COCO-20° with one example, surpassing the state-of-the-art specialist model
by 1.6%. In addition, Matcher achieves 33.0% mlIoU on the proposed LVIS-92°
for one-shot semantic segmentation, outperforming the state-of-the-art generalist
model by 14.4%. Our visualization results further showcase the open-world gener-
ality and flexibility of Matcher when applied to images in the wild. Our code is at:
https://github.com/aim-uofa/Matcher

1 INTRODUCTION

Pre-trained on web-scale datasets, large language models (LLMs) (Brown et al., 2020; Ouyang
et al., 2022; Chowdhery et al., 2022; Zhang et al., 2022b; Zeng et al., 2022; Touvron et al., 2023),
like ChatGPT (OpenAl, 2023), have revolutionized natural language processing (NLP). These
foundation models (Bommasani et al., 2021) show remarkable transfer capability on tasks and
data distributions beyond their training scope. LLMs demonstrate powerful zero-shot and few-
shot generalization (Brown et al., 2020) and solve various language tasks well, e.g., language
understanding, generation, interaction, and reasoning.

Research of vision foundation models (VFMs) is catching up with NLP. Driven by large-scale image-
text contrastive pre-training, CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) perform strong
zero-shot transfer ability to various classification tasks. DINOv2 (Oquab et al., 2023) demonstrates
impressive visual feature matching ability by learning to capture complex information at the image
and pixel level from raw image data alone. Recently, the Segment Anything Model (SAM) (Kirillov
et al., 2023) has achieved impressive class-agnostic segmentation performance by training on the
SA-1B dataset, including 1B masks and 11M images. Unlike LLMs (Brown et al., 2020; Touvron
et al., 2023), which seamlessly incorporate various language tasks through a unified model structure
and pre-training method, VFMs face limitations when directly addressing diverse perception tasks.
For example, these methods often require a task-specific model structure followed by fine-tuning on a
specific task (He et al., 2022; Oquab et al., 2023).
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In this work, we aim to find a new visual research paradigm: investigating the utilization of VFMs for
effectively addressing a wide range of perception tasks, e.g., semantic segmentation, part segmentation,
and video object segmentation, without training. Using foundation models is non-trivial due to the
following challenges: 1) Although VFMs contain rich knowledge, it remains challenging to directly
leverage individual models for downstream perception tasks. Take SAM as an example. While SAM
can perform impressive zero-shot class-agnostic segmentation performance across various tasks, it
cannot provide the semantic categories for the predicted masks. Besides, SAM prefers to predict
multiple ambiguous mask outputs. It is difficult to select the appropriate mask as the final result for
different tasks. 2) Various tasks involve complex and diverse perception requirements. For example,
semantic segmentation predicts pixels with the same semantics. However, video object segmentation
needs to distinguish individual instances within those semantic categories. Additionally, the structural
distinctions of different tasks need to be considered, encompassing diverse semantic granularities
ranging from individual parts to complete entities and multiple instances. Thus, naively combining
the foundation models can lead to subpar performance.

To address these challenges, we present Matcher, a novel perception framework that effectively
incorporates different foundation models for tackling diverse perception tasks by using a single
in-context example. We draw inspiration from the remarkable generalization capabilities exhibited
by LLMs in various NLP tasks through in-context learning (Brown et al., 2020). Prompted by
the in-context example, Matcher can understand the specific task and utilizes DINOv2 to locate
the target by matching the corresponding semantic feature. Subsequently, leveraging this coarse
location information, Matcher employs SAM to predict accurate perceptual results. In addition, we
design three effective components within the Matcher framework to collaborate with foundation
models and fully unleash their potential in diverse perception tasks. First, we devise a bidirectional
matching strategy for accurate cross-image semantic dense matching and a robust prompt sampler for
mask proposal generation. This strategy increases the diversity of mask proposals and suppresses
fragmented false-positive masks induced by matching outliers. Furthermore, we perform instance-
level matching between the reference mask and mask proposals to select high-quality masks. We
utilize three effective metrics, i.e., emd, purity, and coverage, to estimate the mask proposals based
on semantic similarity and the quality of the mask proposals, respectively. Finally, by controlling the
number of merged masks, Matcher can produce controllable mask output to instances of the same
semantics in the target image.

Our comprehensive experiments demonstrate that Matcher has superior generalization performance
across various segmentation tasks, all without the need for training. For one-shot semantic seg-
mentation, Matcher achieves 52.7% mloU on COCO-20° (Nguyen & Todorovic, 2019), surpassing
the state-of-the-art specialist model by 1.6%, and achieves 33.0% mloU on the proposed LVIS-
927, outperforming the state-of-the-art generalist model SegGPT (Wang et al., 2023b) by 14.4%.
And Matcher outperforms concurrent PerSAM (Zhang et al., 2023) by a large margin (+29.2%
mean mloU on COCO-20¢, +11.4% mlIoU on FSS-1000 (Li et al., 2020), and +10.7% mean
mloU on LVIS-92%), suggesting that depending solely on SAM limits the generalization capabilities
for semantically-driven tasks, e.g., semantic segmentation. Moreover, evaluated on two proposed
benchmarks, Matcher shows outstanding generalization on one-shot object part segmentation tasks.
Specifically, Matcher outperforms other methods by about 10.0% mean mloU on both benchmarks.
Matcher also achieves competitive performance for video object segmentation on both DAVIS 2017
val (Pont-Tuset et al., 2017) and DAVIS 2016 val (Perazzi et al., 2016). In addition, exhaustive abla-
tion studies verify the effectiveness of the proposed components of Matcher. Finally, our visualization
results show robust generality and flexibility never seen before.

Our main contributions are summarized as follows:

* We present Matcher, one of the first perception frameworks for exploring the potential
of vision foundation models in tackling diverse perception tasks, e.g., one-shot semantic
segmentation, one-shot object part segmentation, and video object segmentation.

* We design three components, i.e., bidirectional matching, robust prompt sampler, and
instance-level matching, which can effectively unleash the ability of vision foundation
models to improve both the segmentation quality and open-set generality.

* Our comprehensive results demonstrate the impressive performance and powerful gener-
alization of Matcher. Sufficient ablation studies show the effectiveness of the proposed
components.
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Figure 1: An overview of Matcher. Our training-free framework addresses various segmentation tasks
through three operations: Correspondence Matrix Extraction, Prompts Generation, and Controllable
Masks Generation.

2 RELATED WORK

Vision Foundation Models Powered by large-scale pre-training, vision foundation models have
achieved great success in computer vision. Motivated by masked language modeling (Devlin et al.,
2019; Liu et al., 2019) in natural language processing, MAE (He et al., 2022) uses an asymmetric
encoder-decoder and conducts masked image modeling to effectively and efficiently train scalable
vision Transformer (Dosovitskiy et al., 2020) models. CLIP (Radford et al., 2021) learns image
representations from scratch on 400 million image-text pairs and demonstrates impressive zero-shot
image classification ability. By performing image and patch level discriminative self-supervised
learning, DINOvV2 (Oquab et al., 2023) learns all-purpose visual features for various downstream tasks.
Recently, pre-trained with 1B masks and 11M images, Segment Anything Model (SAM) (Kirillov
et al., 2023) emerges with impressive zero-shot class-agnostic segmentation performance. Although
vision foundation models have shown exceptional fine-tuning performance, they have limited ca-
pabilities in various visual perception tasks. However, large language models (Brown et al., 2020;
Chowdbhery et al., 2022; Touvron et al., 2023), like ChatGPT (OpenAl, 2023), can solve a wide range
of language tasks without training. Motivated by this, this work shows that various perception tasks
can be solved training-free by utilizing off-the-shelf vision foundation models to perform in-context
inference.

Vision Generalist for Segmentation Recently, a growing effort has been made to unify various
segmentation tasks under a single model using Transformer architecture (Vaswani et al., 2017). The
generalist Painter (Wang et al., 2023a) redefines the output of different vision tasks as images and
utilizes masked image modeling on continuous pixels to perform in-context training with supervised
datasets. As a variant of Painter, SegGPT (Wang et al., 2023b) introduces a novel random coloring
approach for in-context training to improve the model’s generalization ability. By prompting spatial
queries, e.g., points, and text queries, e.g., textual prompts, SEEM (Zou et al., 2023) performs various
segmentation tasks effectively. More recently, PerSAM and PerSAM-F (Zhang et al., 2023) adapt
SAM for personalized segmentation and video object segmentation without training or with two
trainable parameters. This work presents Matcher, a training-free framework for segmenting anything
with one shot. Unlike these methods, Matcher demonstrates impressive generalization performance
across various segmentation tasks by integrating different foundation models.

3 METHOD

Matcher is a training-free framework that segments anything with one shot by integrating an all-
purpose feature extraction model (e.g., DINOv2 (Oquab et al., 2023))and a class-agnostic segmenta-
tion model (e.g., SAM (Kirillov et al., 2023)). For the given in-context example, including reference
image x,. and mask m,, Matcher can segment the objects or parts of a target image x; with the
same semantics. The overview of Matcher is depicted in Fig. 1. Our framework consists of three
components: Correspondence Matrix Extraction (CME), Prompts Generation (PG), and Controllable
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Figure 2: Illustration of the proposed bidirectional matching. Bidirectional matching consists of three
steps: forward matching, reverse matching, and mask filtering. Purple points denote the matched
points. Red points denote the outliers.

Masks Generation (CMG). First, Matcher extracts a correspondence matrix by calculating the simi-
larity between the image features of x,. and x;. Then, we conduct patch-level matching, followed
by sampling multiple groups of prompts from the matched points. These prompts serve as inputs to
SAM, enabling the generation of mask proposals. Finally, we perform an instance-level matching
between the reference mask and mask proposals to select high-quality masks. We elaborate on the
three components in the following subsections.

3.1 CORRESPONDENCE MATRIX EXTRACTION

We rely on off-the-self image encoders to extract features for both the reference and target images.
Given inputs x,. and x, the encoder outputs patch-level features z,,z;, € RF*W*C  Patch-wise
similarity between the two features is computed to discovery the best matching regions of the
reference mask on the target image. We define a correspondence matrix S € RTW>HW a5 follows,

il
Z, - Z

EAREAN

(S)s ey

where (S);; denotes the cosine similarity between i-th patch feature z’. of z,. and j-th patch feature
z] of z;. We can denote the above formulation in a compact form as S = sim(z,, z).

Ideally, the matched patches should have the highest similarity. This could be challenging in practice,
since the reference and target objects could have different appearances or even belong to different
categories. This requires the encoder to embed rich and detailed information in these features.

3.2 PROMPTS GENERATION

Given the dense correspondence matrix, we can get a coarse segmentation mask by selecting the most
similar patches in the target image. However, this naive approach leads to inaccurate, fragmented
result with many outliers. Hence, we use the correspondence feature to generate high quality point
and box guidance for promptable segmentation. The process involves a bidirectional patch matching
and a diverse prompt sampler.

Patch-Level Matching The encoder tends to produce wrong matches in hard cases such as ambiguous
context and multiple instances. We propose a bidirectional matching strategy to eliminate the matching
outliers.

* As shown in Fig. 2, we first perform bipartite matching between the points on the reference
mask P, = {pi}L, and z; to obtain the forward matched points on the target image
P = {pi}L | using the forward correspondence matrix S~ = sim(P,, z).

* Then, we perform another bipartite matching, named the reverse matching between P, and

7, to obtain the reverse matched points on the reference image P/~ = {pi}~ , using the
reverse correspondence matrix S© = sim(z,, P;7).
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* Finally, we filter out the points in the forward set if the corresponding reverse points are not
on the reference mask m,.. The final matched points are P = {p} € P”|p’ inm,}.

Robust Prompt Sampler Inspired by the effective prompt-engineering (Kojima et al., 2022; Wei
et al., 2022; Li & Liang, 2021; Zhu et al., 2023), we introduce a robust prompt sampler for the
promptable segmenter to support robust segmentation with various semantic granularity, from parts
and whole to multiple instances. We first cluster the matched points P based on their locations into
K clusters Py, with k-means++ (Arthur & Vassilvitskii, 2007). Then the following three types of
subsets are sampled as prompts:

* Part-level prompts are sampled within each cluster PP C Py

» Instance-level prompts are sampled within all matched points P* C P;

* Global prompts are sampled within the set of cluster centers P9 C C' to encourage coverage,
where C' = {¢y1, ca, ..., ¢} are the cluster centers.

In practice, we find this strategy not only increases the diversity of mask proposals but also suppresses
fragmented false-positive masks induced by matching outliers.

3.3 CONTROLLABLE MASKS GENERATION

The edge features of an object extracted by the image encoder can confuse background information,
inducing some indistinguishable outliers. These outliers can generate some false-positive masks.
To overcome this difficulty, we further select high-quality masks from the mask proposals via an
instance-level matching module and then merge the selected masks to obtain the final target mask.

Instance-Level Matching We perform the instance-level matching between the reference mask and
mask proposals to select great masks. We formulate the matching to the Optimal Transport (OT)
problem and employ the Earth Mover’s Distance (EMD) to compute a structural distance between
dense semantic features inside the masks to determine mask relevance. The cost matrix of the OT
problem can be calculated by C = %(1 —S). We use the method proposed in (Bonneel et al., 2011)
to calculate the EMD, noted as emd.

In addition, we propose two other mask proposal metrics, i.e., purity = %&"ﬁ
Num(Ppp)
Num(P)
P |plin my}, Num(-) represents the number of points, Area(-) represents the area of the mask,
and m,, is the mask proposal. A higher degree of purity promotes the selection of part-level masks,
while a higher degree of coverage promotes the selection of instance-level masks. The false-positive
mask fragments can be filtered using the proposed metrics through appropriate thresholds, followed

by a score-based selection process to identify the top-k highest-quality masks

and coverage =

, to assess the quality of the mask proposals simultaneously, where Pmp = {p! €

score = o - (1 — emd) + f3 - purity - coverage”, 2)

where «, 3, and A are regulation coefficients between different metrics. By manipulating the number
of merged masks, Matcher can produce controllable mask output to instances of the same semantics
in the target image. More details of emd, purity and coverage are provided in Appendix A.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTING

Vision Foundation Models We use DINOv2 (Oquab et al., 2023) with a ViT-L/14 (Dosovitskiy
et al., 2020) as the default image encoder of Matcher. Benefiting from large-scale discriminative
self-supervised learning at both the image and patch level, DINOv2 has impressive patch-level
representation ability, which promotes exact patch matching between different images. We use the
Segment Anything Model (SAM) (Kirillov et al., 2023) with ViT-H as the segmenter of Matcher.
Pre-trained with 1B masks and 11M images, SAM emerges with impressive zero-shot segmentation
performance. Combining these vision foundation models has the enormous potential to touch open-
world image understanding. In all experiments, we do not perform any training for the Matcher.
More implementation details are provided in Appendix B.
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COCO-20¢ FSS-1000 LVIS-92¢

Methods Venue one-shot few-shot | one-shot few-shot | one-shot few-shot

specialist model

HSNet (Min et al., 2021) ICCV’21 41.2 49.5 86.5 88.5 17.4 22.9
VAT (Hong et al., 2022) ECCV’22 41.3 47.9 90.3 90.8 18.5 22.7
FPTrans (Zhang et al., 2022a) NeurlPS22| 47.0 58.9 - - - -
MSANet (Igbal et al., 2022) arXiv'22 51.1 56.8 - - - -
generalist model
Painter (Wang et al., 2023a) CVPR’23 33.1 32.6 61.7 62.3 10.5 10.9
SegGPT (Wang et al., 2023b) ICCV'23 56.1 67.9 85.6 89.3 18.6 25.4

PerSAM' (Zhang et al., 2023) arXiv'23 23.0 - 71.2 - 11.5 -
PerSAM-F* 23.5 - 75.6 - 12.3 -
Matcher™ this work 52.7 60.7 87.0 89.6 33.0 40.0

Table 1: Results of few-shot semantic segmentation on COCO-20¢, FSS-1000, and LVIS-92¢. Gray
indicates the model is trained by in-domain datasets. 1 indicates the training-free method. { indicates
the method using SAM. Note that the training data of SegGPT includes COCO.

4.2 FEW-SHOT SEMANTIC SEGMENTATION

Datasets For few-shot semantic segmentation, we evaluate the performance of Matcher on COCO-
20¢ (Nguyen & Todorovic, 2019), FSS-1000 (Li et al., 2020), and LVIS-92¢. COCO-20¢ partitions
the 80 categories of the MSCOCO dataset (Lin et al., 2014) into four cross-validation folds, each
containing 60 training classes and 20 test classes. FSS-1000 consists of mask-annotated images from
1,000 classes, with 520, 240, and 240 classes in the training, validation, and test sets, respectively. We
verify Matcher on the test sets of COCO-20¢ and FSS-1000 following the evaluation scheme of (Min
et al., 2021). Note that, different from specialist models, we do not train Matcher on these datasets.
In addition, based on the LVIS dataset (Gupta et al., 2019), we create LVIS-92¢, a more challenging
benchmark for evaluating the generalization of a model across datasets. After removing the classes
with less than two images, we retained a total of 920 classes for further analysis. These classes were
then divided into 10 equal folds for testing purposes. For each fold, we randomly sample a reference
image and a target image for evaluation and conduct 2,300 episodes.

Results We compare the Matcher against a variety of specialist models, such as HSNet (Min et al.,
2021), VAT (Hong et al., 2022), FPTrans (Zhang et al., 2022a), and MSANet (Igbal et al., 2022),
as well as generalist models like Painter (Wang et al., 2023a), SegGPT (Wang et al., 2023b), and
PerSAM (Zhang et al., 2023). As shown in Table 1, for COCO-20%, Matcher achieves 52.7% and
60.7% mean mloU with one-shot and few-shot, surpassing the state-of-the-art specialist models
MSANet and achieving comparable with SegGPT. Note that the training data of SegGPT includes
COCO. For FSS-1000, Matcher exhibits highly competitive performance compared with specialist
models and surpasses all generalist models. Furthermore, Matcher outperforms training-free PerSAM
and fine-tuning PerSAM-F by a significant margin (+29.2% mean mloU on COCO-20¢, +11.4%
mloU on FSS-1000, and +10.7% mean mloU on LVIS-92%), suggesting that depending solely on
SAM results in limited generalization capabilities for semantic tasks. For LVIS-92%, we compare the
cross-dataset generalization abilities of Matcher and other models. For specialist models, we report
the average performance of four pre-trained models on COCO-20¢. Matcher achieves 33.0% and
40.0% mean mloU with one-shot and few-shot, outperforming the state-of-the-art generalist model
SegGPT by 14.4% and 14.6%. Our results indicate that Matcher exhibits robust generalization
capabilities that are not present in the other models.

4.3 ONE-SHOT OBJECT PART SEGMENTATION

Datasets Requiring a fine-grained understanding of objects, object part segmentation is a more
challenging task than segmenting an object. We build two benchmarks to evaluate the performance
of Matcher on one-shot part segmentation, i.e., PASCAL-Part and PACO-Part. Based on PASCAL
VOC 2010 (Everingham et al., 2010) and its body part annotations (Chen et al., 2014), we build the
PASCAL-Part dataset following (Morabia et al., 2020). The dataset consists of four superclasses, i.e.,
animals, indoor, person, and vehicles. There are five subclasses for animals, three for indoor, one for
person, and six for vehicles. There are 56 different object parts in total. PACO (Ramanathan et al.,
2023) is a newly released dataset that provides 75 object categories and 456 object part categories.
Based on the PACO dataset, we build the more difficult PACO-Part benchmark for one-shot object
part segmentation. We filter the object parts whose area is minimal and those with less than two
images, resulting in 303 remaining object parts. We split these parts into four folds, each with about
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Methods Venue . . PASCAL-Part . PACO-Part
animals indoor person vehicles mean| FO F1 F2 F3 mean
HSNet Min et al., 2021) ICCV’21 | 21.2  53.0 202 35.1 32.4|20.8 21.3 25.5 22.6 22.6
VAT (Hong et al., 2022) ECCV’22| 21.5 559 20.7 36.1 33.6(22.0 22.9 26.0 23.1 23.5
Painter (Wang et al., 2023a) CVPR’23| 202 495 17.6 344 30.4|13.7 12.5 15.0 15.1 14.1
SegGPT (Wang et al., 2023b) ICCV’23 | 22.8 509 31.3 38.0 35.8|13.9 12.6 14.8 12.7 13.5
PerSAM'# (Zhang et al., 2023) arXiv’23 | 19.9 51.8 186 32.0 30.1 [19.4 20.5 23.8 21.2 21.2
Matcher'® this work | 37.1 563 324 457 429 |32.7 35.6 36.5 34.1 34.7

Table 2: Results of one-shot part segmentation on PASCAL-Part and PACO-Part. 1 indicates the
training-free method. I indicates the method using SAM.

DAVIS 2017 val DAVIS 2016 val
J&F J F J&F J F

Methods  Venue

with video data

AGAME (Johnander et al., 2019) CVPR’19 700 672 727 - - -

AGSS (Linet al., 2019)  ICCV’19 674 649 699 - - -

AFB-URR (Liang et al., 2020)  NeurIPS'20 74.6 73.0 76.1 - -

AOT (Yangetal., 2021)  NeurIPS'21 | 854 824 884 | 920 90.7 93.3

SWEM (Lin et al., 2022) CVPR’22 843 812 874 | 913 899 926

XMem (Cheng & Schwing, 2022) ECCV'22 87.7 840 914 | 920 90.7 932

without video data

Painter (Wang et al., 2023a) CVPR’23 346 285 408 | 703 69.6 709

SegGPT (Wang et al., 2023b)  ICCV’23 75.6 725 78.6 | 837 836 83.8
PerSAM'# (Zhang et al., 2023) A Xiv'23 603 566 639 - - -

PerSAM-F* 719 69.0 74.8 - - -

Matcher'®  this work 795 765 82.6 | 86.1 852 86.7

Table 3: Results of video object segmentation on DAVIS 2017 val, and DAVIS 2016 val. Gray
indicates the model is trained on target datasets with video data. T indicates the training-free method.
1 indicates the method using SAM.

76 different object parts. We crop all objects out with their bounding box to evaluate the one-shot
part segmentation on both two datasets. More details are provided in Appendix C.

Results We compare our Matcher with HSNet, VAT, Painter, and PerSAM. For HSNet and VAT, we
use the models pre-trained on PASCAL-5% (Shaban et al., 2017) and COCO-20? for PASCAL-Part
and PACO-Part, respectively. As shown in Table 2, the results demonstrate that Matcher outperforms
all previous methods by a large margin. Specifically, Matcher outperforms the SAM-based PerSAM
+12.8% mean mloU on PASCAL-Part and +13.5% on PACO-Part, respectively. SAM has shown
the potential to segment any object into three levels: whole, part, and subpart (Kirillov et al., 2023).
However, it cannot distinguish these ambiguity masks due to the lack of semantics. This suggests
that SAM alone cannot work well on one-shot object part segmentation. Our method empowers
SAM for semantic tasks by combining it with an all-purpose feature extractor and achieves effective
generalization performance on fine-grained object part segmentation tasks with an in-context example.

4.4 VIDEO OBJECT SEGMENTATION

Datasets Video object segmentation (VOS) aims to segment a specific object in video frames.
Following Wang et al. (2023b), we evaluate Matcher on the validation split of two datasets, i.e.,
DAVIS 2017 val (Pont-Tuset et al., 2017), and DAVIS 2016 val (Perazzi et al., 2016), under the
semi-supervised VOS setting. Two commonly used metrics in VOS, the J score and the F' score, are
used for evaluation.

Details In order to track particular moving objects in a video, we maintain a reference memory
containing features and the intermediate predictions of the previous frames in Matcher. We determine
which frame to retain in the memory according to the score (see subsection 3.3) of the frames.
Considering that objects are more likely to be similar to those in adjacent frames, we apply a decay
ratio decreasing by time to the score. We fix the given reference image and mask in the memory to
avoid failing when some objects disappear in intermediate frames and reappear later.

Results We compare Matcher with the models trained with or without video data on different datasets
in Table 3. The results show that Matcher can achieve competitive performance compared with the
models trained with video data. Moreover, Matcher outperforms the models trained without video
data, e.g., SegGPT and PerSAM-F, on both two datasets. These results suggest that Matcher can
effectively generalize to VOS tasks without training.
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1| COCO-20° [FSS-1000[DAVIS 2017 Strategy | COCO-20° [FSS-1000 ‘ DAVIS 2017
mean mloU| mloU J&F - - meaglo = 0 nglol =
29.0 76.2 39.9 orwar : : :
v/ ‘ 527 ‘ 87.0 ‘ 79.5 reverse 21.4 47.7 41.3
: : : bidirectional 52.7 87.0 79.5
(a) Ablation study of ILM. (b) Ablation study of bidirectional matching.
COCO-20" | FSS-1000| DAVIS 2017 DAVIS 2017
emd ‘p dee mean mloU| mloU ‘ J&F Frames ‘ 1 2 4 6
v 51.3 86.3 67.5 J&F 73.5 74.4 79.5 78.0
v 353 86.3 76.3 J 700 705 765 749
VI 5277 87.0 795 F 7715 782  82.6  81.1

(c) Effect of different mask proposal metrics. (d) Effect of the number of frames for VOS.

Table 4: Ablation study. We report the mean mloU of four folds on COCO-20?, mIoU on FSS-1000,
and J&F on DAVIS 2017 val. Default setting settings are marked in Gray .
SegGPT

Matcher PerSAM-F
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Figure 3: Qualitative results of one- shot segmentation.
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4.5 ABLATION STUDY

As shown in Table 4, we conduct ablation studies on both the difficult COCO-20¢ dataset and the
simple FSS-1000 dataset for one-shot semantic segmentation and DAVIS 2017 val for video object
segmentation to sufficiently verify the effectiveness of our proposed components. In this subsection,
we explore the effects of matching modules (ILM), patch-level matching strategies, and different
mask proposal metrics.

Ablation Study of ILM Patch-level matching (PLM) and instance-level matching (ILM) are the vital
components of Matcher that bridge the gap between the image encoder and SAM to solve various
few-shot perception tasks training-free. As shown in Table 4a, PLM builds the connection between
matching and segmenting and empowers Matcher with the capability of performing various few-shot
perception tasks training-free. And ILM enhances this capability by a large margin.

Ablation Study of Bidirectional Matching As shown in Table 4b, we explore the effects of the
forward matching and the reverse matching of the proposed bidirectional matching. For the reverse
matching, because the matched points P, (see subsection 3.2) are unavailable when performing
reverse matching directly, we perform the reverse matching between z, and z,.. Without the guidance
of the reference mask, reverse matching (line 2) produces many wrong matching results, resulting in
poor performance. Compared with the forward matching (line 1), our bidirectional matching strategy
improves the performance by +2.1% mean mloU on COCO-20?, by +5.9% mloU on FSS-1000,
and by +6.0% J& F' on DAVIS 2017. These significant improvements show the effectiveness of the
proposed bidirectional matching strategy.
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Figure 4: Quahtatlve results of video object segmentation on DAVIS 2017.

Ablation Study of Different Mask Proposal Metrics As shown in Table 4c, emd is more effective
on the complex COCO-20° dataset. emd evaluates the patch-level feature similarity between the
mask proposals and the reference mask that encourages matching all mask proposals with the same
category. In contrast, by using purity and coverage, Matcher can achieve great performance on DAVIS
2017. Compared with emd, purity and coverage are introduced to encourage selecting high-quality
mask proposals. Combining these metrics to estimate mask proposals, Matcher can achieve better
performance in various segmentation tasks without training.

Effect of the Number of Frames for VOS As shown in Table 4d, we also explore the effect of the
number of frames on DAVIS 2017 val. The performance of Matcher can be improved as the number
of frames increases, and the optimal performance is achieved when using four frames. More ablation
studies are provided in Appendix D.

4.6 QUALITATIVE RESULTS

To demonstrate the generalization of our Matcher, we visualize the qualitative results of one-shot
segmentation in Fig. 3 from three views, i.e., object and object part segmentation, cross-style
object and object part segmentation, and controllable mask output. Our Matcher can achieve
higher-quality objects and parts masks than SegGPT and PerSAM-F. Better results on cross-style
segmentation show the impressive generalization of Matcher due to effective all-feature matching. In
addition, by manipulating the number of merged masks, Macther supports multiple instances with the
same semantics. Fig. 4 shows qualitative results of VOS on DAVIS 2017. The remarkable results
demonstrate that Matcher can effectively unleash the ability of foundation models to improve both
the segmentation quality and open-set generality.

5 CONCLUSION

In this paper, we present Matcher, a training-free framework integrating off-the-shelf vision foundation
models for solving various few-shot segmentation tasks. Combining these foundation models properly
leads to positive synergies, and Matcher emerges complex capabilities beyond individual models. The
introduced universal components, i.e., bidirectional matching, robust prompt sampler, and instance-
level matching, can effectively unleash the ability of these foundation models. Our experiments
demonstrate the powerful performance of Matcher for various few-shot segmentation tasks, and our
visualization results show open-world generality and flexibility on images in the wild.

Limitation and Ethics Statement While Matcher demonstrates impressive performance for semantic-
level segmentation, e.g., one-shot semantic segmentation and one-shot object part segmentation, it
has relatively limited instance-level matching inherited from the image encoder, which restrains
its performance for instance segmentation. However, the comparable VOS performance and the
visualization of controllable mask output demonstrate that Matcher has the potential for instance-level
segmentation. We will explore it in future work. Our work can unleash the potential of different
foundation models for various visual tasks. In addition, our Matcher is built upon open-source
foundation models without training, significantly reducing carbon emissions. We do not foresee any
obvious undesirable ethical or social impacts now.
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APPENDIX

A  MORE DETAILS OF INSTANCE-LEVEL MATCHING

The emd metric. The OT problem can be described as follows: suppose that m suppliers U =
{u;|i = 1,2,...,m} require transport goods for n demanders D = {d;|j = 1,2, ...,n}, where u;
represents the supply units of i-th supplier and d; denotes the demand of j-th demanded. The cost
of transporting each unit of goods from the i-th supplier to the j-th demander is represented by c;;,
and the number of units transported is denoted by 7;;. The goal of the OT problem is to identify a
transportation plan 7 = {m;;|i = 1,...m,j = 1, ...n} that minimizes the overall transportation cost

. m n

min E E CiiTii.

pe i=1 b—j=1 YUY
n m d
s.t. E Tii = U; E mii =d;
=1 i 09 i Vi 7

m n d

E w; = E ;

i=1 " j=1 7

m; >0, i=1,2,..m, j=1,2,..n.

3

In the context of Matcher, the suppliers are m reference image patches covered by the reference mask,
and the demanders are n target image patches covered by the mask proposal (produced by SAM).
The goods that the suppliers need to transmit have the same value, i.e., u; = %, > u; = 1. Similarly,
the goods that the demanders need also have the same value, i.e., d; = %, > d; = 1. The cost ¢;;
can be obtained from the cost matrix C by utilizing the mask proposal m,, and the reference mask
m,-. Then, we use the method proposed in Bonneel et al. (2011) to calculate the EMD.

coverageT coverageT

purity | purity T
(a) Single instance (b) Multiple instances

Figure 5: Tllustration of the effects of the purity and coverage.

The purity and coverage metrics Fig. 5 shows examples to demonstrate the effects of the purity
and coverage criteria in two scenarios, i.e., single instance and multiple instances. A higher degree
of purity promotes the selection of part or single instance masks, while a higher degree of coverage
promotes the selection of whole or multiple instance masks.

B IMPLEMENTATION DETAILS

We use DINOV2 (Oquab et al., 2023) with a ViT-L/14 (Dosovitskiy et al., 2020) as the default image
encoder of Matcher. And we use the Segment Anything Model (SAM) (Kirillov et al., 2023) with
ViT-H as the segmenter of Matcher. In all experiments, we do not perform any training for the
Matcher. We set input image sizes are 518 x 518 for one-shot semantic segmentation and object
part segmentation and 896 x 504 for video object segmentation. We conduct experiments from three
semantic granularity for semantic segmentation, i.e., parts (PASCAL-Part and PACO-Part), whole
(FSS-1000), and multiple instances (COCO-20% and LVIS-92¢). We set the number of clusters to
8. For COCO-20° and LVIS-92¢, we sample the instance-level points from the matched points and
dense image points to encourage SAM to output more instance masks. We set the filtering thresholds
emd and purity to 0.67, 0.02 and set «, 8 and A to 1.0, 0.0, and 0.0, respectively. For FSS-1000, we
sample the global prompts from centers. We set o, 3, and A to 0.8, 0.2, and 1.0, respectively. We
sample the points from the matched points and use the smallest axis-aligned box containing these

13



Published as a conference paper at ICLR 2024

matched points for PASCAL-Part and PACO-Part. We set the filtering threshold coverage to 0.3 and
set o, B and A to 0.5, 0.5, and 0.0, respectively. For video object segmentation, we sample the global
prompts from centers. We set the filtering threshold emd to 0.75 and set «, 3, and )\ to 0.4, 1.0, and
1.0.

C DATASET DETAILS

PASCAL-Part Based on PASCAL VOC 2010 (Everingham et al., 2010) and its body part annota-
tions (Chen et al., 2014), we build the PASCAL-Part dataset following (Morabia et al., 2020). Table 5
shows the part taxonomy of PASCAL-Part dataset. The dataset consists of four superclasses, i.e.,
animals, indoor, person, and vehicles. There are five subclasses for animals (bird, cat, cow, dog,
horse, sheep), three for indoor (bottle, potted plant, tv monitor), one for person (person), and six for
vehicles (aeroplane, bicycle, bus, car, motorbike, train). There are 56 different object parts in total.

PACO-Part Based on the PACO (Ramanathan et al., 2023) dataset, we build the more difficult
PACO-Part benchmark for one-shot object part segmentation. Firstly, we filter the categories having
only 1 sample. Then, we filter low-quality examples with an extremely small pixel area within PACO,
which leads to significant noise during evaluation, resulting in 303 remaining object parts. Table 6
shows the part taxonomy of the PACO-Part dataset. We split these parts into four folds, each with
about 76 different object parts.

Superclasses Subclasses Parts
bird face, leg, neck, tail, torso, wings
cat face, leg, neck, tail, torso

animals cow face, leg, neck, ta?l, torso
dog face, leg, neck, tail, torso
horse face, leg, neck, tail, torso
sheep face, leg, neck, tail, torso
bottle body

indoor potted plant plant, pot
tv monitor screen

person person face, arm & hand, leg, neck, torso
aeroplane body, engine, wheel, wings
bicycle wheel

. bus door, vehicle side, wheel, windows

vehicles . . .
car door, vehicle side, wheel, windows
motorbike wheel
train train coach, train head

Table 5: Part taxonomy of PASCAL-Part

D ADDITIONAL RESULTS AND ANALYSIS

Effect of Different Image Encoders Table 7a shows the comparison experiments of CLIP, MAE, and
DINOv2. DINOV2 achieves the best performance on all datasets. Because the text-image contrastive
pre-training limits learning complex pixel-level information, CLIP cannot precisely match image
patches. Although MAE can extract pixel-level features by masked image modeling, it performs
poorly. We suspect that the patch-level features extracted by MAE confuse the information about the
surrounding patches, resulting in mistaken feature matching. In contrast, pre-trained by image-level
and patch-level discriminative self-supervised learning, DIVOv2 extracts all-purpose visual features
and exhibit impressive patch-level feature matching ability. As a training-free general perception
framework, Matcher can deploy different image encoders. With the continuous development of
vision foundation models, the capabilities of vision foundation models will continue to improve, and
Matcher’s performance and generalization ability will also be enhanced. This is confirmed by the
continuous improvement in performance from MAE to CLIP to DINOv2, demonstrating that Matcher
has strong flexibility and scalability. Besides, we aim to make Matcher a valuable tool for assessing
the performance of pre-trained foundation models on various downstream tasks.
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Fold

Parts

bench:arm, laptop_computer:back, bowl:base, handbag:base, basket:base, chair:base,
glass_(drink_container):base, cellular_telephone:bezel, guitar:body, bucket:body, can:body, soap:body,
vase:body, crate:bottom, box:bottom, glass_(drink_container):bottom, basket:bottom, lamp:bulb,
television_set:button, watch:case, bottle:closure, book:cover, table:drawer, pillow:embroidery,
car_(automobile):fender, dog:foot, bicycle:fork, bicycle:gear, clock:hand, bucket:handle, basket:handle,
spoon:handle, bicycle:handlebar, guitar:headstock, sweater:hem, trash_can:hole, bucket:inner_body,
hat:inner_side, microwave_oven:inner_side, tray:inner_side, pliers:jaw, laptop_computer:keyboard,
shoe:lace, bench:leg, can:lid, fan:light, car_(automobile):mirror, spoon:neck, sweater:neckband,
tray:outer_side, bicycle:pedal, can:pull_tab, shoe:quarter, can:rim, mug:rim, pan_(for_cooking):rim,
tray:rim, basket:rim, car_(automobile):runningboard, laptop_computer:screen, chair:seat, bicycle:seat_stay,
lamp:shade_inner_side, sweater:shoulder, television_set:side, sweater:sleeve, blender:spout, jar:sticker, hel-
met:strap, table:stretcher, blender:switch, bench:table_top, plastic_bag:text, shoe:tongue, television_set:top,
bicycle:top_tube, hat:visor, car_(automobile):wheel, car_(automobile):wiper

chair:apron, chair:back, bench:back, fan:base, cup:base, pan_(for_cooking):base, lap-
top_computer:base_panel, knife:blade, scissors:blade, bowl:body, sweater:body, handbag:body,
mouse_(computer_equipment):body, towel:body, dog:body, bowl:bottom, plate:bottom, televi-
sion_set:bottom, spoon:bowl, car_(automobile):bumper, cellular_telephone:button, laptop_computer:cable,
fan:canopy, bottle:cap, clock:case, pipe:colied_tube, sweater:cuff, microwave_oven:dial, mug:drawing,
vase:foot, car_(automobile):grille, plastic_bag:handle, scissors:handle, handbag:handle, mug:handle,
cup:handle, pan_(for_cooking):handle, dog:head, bicycle:head_tube, towel:hem, car_(automobile):hood,
plastic_bag:inner_body, wallet:inner_body, glass_(drink_container):inner_body, crate:inner_side,
pan_(for_cooking):inner_side, plate:inner_wall, soap:label, chair:leg, crate:lid, laptop_computer:logo,
broom:lower_bristles, fan:motor, vase:neck, dog:nose, shoe:outsole, lamp:pipe, chair:rail, bucket:rim,
bowl:rim, car_(automobile):rim, tape_(sticky_cloth_or_paper):roll, bicycle:saddle, scissors:screw,
bench:seat, bicycle:seat_tube, soap:shoulder, box:side, carton:side, earphone:slider, bicycle:stem,
chair:stile, bench:stretcher, dog:tail, mug:text, bottle:top, table:top, laptop_computer:touchpad, shoe:vamp,
helmet:visor, car_(automobile):window, mouse_(computer_equipment):wire

table:apron, telephone:back_cover, plate:base, kettle:base, blender:base, bicycle:basket, fan:blade,
plastic_bag:body, trash_can:body, plate:body, mug:body, kettle:body, towel:border, mug:bottom,
telephone:button, microwave_oven:control_panel, microwave_oven:door_handle, dog:ear, hel-
met:face_shield, scissors:finger_hole, wallet:flap, mirror:frame, kettle:handle, blender:handle,
earphone:headband, earphone:housing, bowl:inner_body, trash_can:inner_body, helmet:inner_side,
basket:inner_side, calculator:key, bottle:label, mouse_(computer_equipment):left_button, dog:leg,
box:lid, trash_can:lid, vase:mouth, pipe:nozzle, slipper_(footwear):outsole, fan:pedestal_column,
ladder:rail, hat:rim, plate:rim, trash_can:rim, bottle:ring, car_(automobile):roof, telephone:screen,
mouse_(computer_equipment):scroll_wheel, stool:seat, lamp:shade, bottle:shoulder, microwave_oven:side,
basket:side, chair:spindle, hat:strap, belt:strap, car_(automobile):taillight, towel:terry_bar, newspa-
per:text, microwave_oven:time_display, shoe:toe_box, microwave_oven:top, car_(automobile):trunk,
slipper_(footwear):vamp, car_(automobile):windowpane, sweater:yoke

chair:arm, remote_control:back, cellular_telephone:back_cover, bottle:base, bucket:base,
television_set:base,  jar:base, tray:base, lamp:base, telephone:bezel, bottle:body, pen-
cil:body, scarf:body, calculator:body, jar:body, glass_(drink_container):body, bottle:bottom,
pan_(for_cooking):bottom, tray:bottom, remote_control:button,  bucket:cover, basket:cover,
bicycle:down_tube, earphone:ear_pads, dog:eye, guitar:fingerboard, blender:food_cup,
stool:footrest, scarf:fringes, knife:handle, vase:handle, car_(automobile):headlight, mug:inner_body,
jar:inner_body, cup:inner_body, box:inner_side, carton:inner_side, trash_can:label, table:leg,
stool:leg,  jar:lid, kettle:lid, car_(automobile):logo, bucket:loop, bottle:neck, dog:neck,
pipe:nozzle_stem, book:page, mouse_(computer_equipment):right_button, handbag:rim, jar:rim,
glass_(drink_container):rim, cup:rim, cellular_telephone:screen, blender:seal_ring, lamp:shade_cap,
table:shelf, crate:side, pan_(for_cooking):side, mouse_(computer_equipment):side_button, chair:skirt,
car_(automobile):splashboard, bottle:spout, ladder:step, watch:strap, chair:stretcher, chair:swivel, can:text,
jar:text, spoon:tip, slipper_(footwear):toe_box, blender:vapour_cover, chair:wheel, bicycle:wheel,
car_(automobile):windshield, handbag:zip

Table 6: Part taxonomy of PACO-Part

Effect of different types of prompts We validated the impact of different prompts on datasets with
scenes involving parts (PACO-Part), the whole (FSS-1000), and multiple instances (COCO-20?) in
Table 7b: 1) Part-level prompts are needed for PACO-Part, which requires segmenting parts of an
instance. However, our experiment results demonstrate that using instance-level prompts yields better
results because instance-level prompts cover more situations than part-level prompts. 2) FSS-1000
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Encoder | €OC0-20" | FSS-1000) DAVIS 2017 p, 1| cOCO-20 | PACO-Part | FSS-1000
mean mloU| mloU J&F
Global | 517 316 | 870
MAE | 188 719 05
Part | 517 302 | 792
CLIP 322 774 739 Instance 52.7 34.0 86.5
DINOV2| 527 87.0 795

(a) Effect of different image encoders. (b) Effect of different types of prompts.

Segmenter | COCO-20° | LVIS-92 | FSS-1000 | PACO-Part

SAM 52.7 314 87.0 32.7
Semantic-SAM 51.1 30.1 87.5 36.0

(c) Effect of different segmenters.
| COCO-20" | LVIS-92° | FSS-1000 | PACO-Part
83.6 ‘ 75.4 ‘ 93.1 ‘ 67.5

Upper Bound

Matcher 52.7 314 87.0 32.7

(d) Upper bound analysis.

Table 7: Ablation study on the effects of different image encoders, different types of prompts, different
segmenters, and upper bound of Matcher.

often involves one instance that occupies the entire image. Thus, global prompts are used for full
image coverage. 3) For COCO-20°, which requires detecting all instances in an image, instance-level
points are the most effective. All the experiments are conducted on one fold in both three datasets.

Methods | SAM | DINOv2 | #Params (M) | LVIS-92° | FSS-1000

SegGPT| - - 307 17.5 85.6
base | base 180 28.6 85.3
large | base 399 29.9 85.7

Matcher | ). oc | large 617 304 | 863
huge | large 945 314 87.0

(a) Ablation study on model size.
Number | FSS-1000

4 78.9
6 83.3
8 87.0
10 87.2
12 86.9

(b) Ablation study on the cluster number.

Table 8: Ablation study on different model sizes and cluster number.

Ablation of model size Table 8a shows the results of Matcher when using VFMs with different model
sizes. When using SAM base and DINOv2 base, Matcher still performs well on various datasets and
achieves better generalization performance on LVIS-92¢ than SegGPT. Besides, as the model size
increases, Matcher can continuously improve performance.

Effect of different segmenters Table 7c shows the results when using Semantic-SAM (Li et al.,
2023) as the segmenter. Semantic-SAM achieves comparable performance with SAM on four
benchmarks. Because Semantic-SAM can output more fine-grained masks, it performs better than
SAM on PACO-Part. The results indicate that Matcher is a general segmentation framework.

Upper bound analysis We conduct experiments on four different datasets and find that the upper
bound of Matcher consistently outperforms the current performance on all datasets by a large margin
in Table 7d. This indicates that the Matcher framework has more potential. Therefore, Matcher can
serve as an effective evaluation criterion for VFMs, assessing the performance of different vision
models from a general segmentation perspective. Based on the advantage, Matcher can contribute to
developing VFMs.

How does few-shot segmentation work? In the few-shot setting, we concatenate multiple references’
features and match them with the target image in the PLM. The remaining process is the same as the
one-shot setting. Multiple samples provide richer visual details, enabling more accurate matching
results and reducing outliers, resulting in performance improvement.
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Visualizations Fig. 6 shows the quality of background concept segmentation of Matcher. Fig. 7
visualizes the results of Patch-Level Matching, Robust Prompt Sampler and Instance-Level Matching.
In addition, We provide more visualizations for one-shot semantic segmentation in Fig. 8, one-shot
object part segmentation in Fig. 9 and Fig. 10, controllable mask output in Fig. 11, and video object
segmentation in Fig. 12. The remarkable results demonstrate that Matcher can effectively unleash the
ability of foundation models to improve both the segmentation quality and open-set generality.

reference image target images

Figure 6: Visualization of Matcher for the quality of background concept segmentation. Matcher can
segment various background concepts like SegGPT.

reference target GT

PLM

RPS

ILM

FP mask TP mask TP mask result FP mask TP mask TP mask result

Figure 7: Visualization of the results of Patch-Level Matching (PLM), Robust Prompt Sampler (RPS)
and Instance-Level Matching (ILM). (a) For PLM, the Green stars present the correct matched points,
and the Red stars present the matched outliers. The PLM can effectively remove most of the outliers
via proposed bidirectional matching. (b) RPS can sample various point prompts by using the matched
points of PLM. (c) Take the prompts as inputs, SAM can output the mask proposals. Because there
are still outliers in the matched points, SAM can output some false-positive (FP) masks. Thus, we
propose ILM to filter these FP masks and merge the true-positive (TP) masks. Then, we can get the
result. These components within the Matcher framework collaborate with foundation models and
unleash their full potential in diverse segmentation tasks.
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Reference GT Prediction  Reference GT Prediction Reference GT Prediction

Figure 8: Visualization of one-shot semantic segmentation.
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Reference GT Prediction  Reference GT Prediction Reference GT Prediction

Figure 9: Visualization of one-shot object part segmentation on PASCAL-Part.

19



Published as a conference paper at ICLR 2024

Reference GT Prediction Reference GT Prediction Reference GT Prediction

Figure 10: Visualization of one-shot object part segmentation on PACO-Part.
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Reference GT Controllable mask output

Figure 11: Visualization of controllable mask output.
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Figure 12: Visualization of video object segmentation.

22



	Introduction
	Related Work
	Method
	Correspondence Matrix Extraction
	Prompts Generation
	Controllable Masks Generation

	Experiments
	Experiments Setting
	Few-shot Semantic Segmentation
	One-shot Object Part Segmentation
	Video Object Segmentation
	Ablation Study
	Qualitative Results

	Conclusion
	More Details of Instance-Level Matching
	Implementation Details
	Dataset Details
	Additional Results and Analysis



