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A Appendix

A.1 Vector Transformer: Pairwise vector attention

Here, we summarize the details of the Vector Transformer used in the Bottleneck Transformer
experiments.

Once TokenLearner generates adaptively learned tokens, a vector attention between key-query pairs
could be computed. This can be thought as a version of multi-head self-attention in which the number
of heads is the same as channels, allowing us to learn a different attention matrix for each channel. It
captures in an efficient way pairwise space-time relations per channel, particularly benefiting tokens
with rich channel information.

Given Z, a set of tokens reflecting different space-time aspects of a video, the Transformer models
space-time interactions between them. In particular, we follow the formulation of [5], which enables
a vector-version of the Transformer, although it is also possible to incorporate other attention
mechanisms.

For every token zi, the output of the Transformer yi is computed by considering all possible zj as:

yi =
∑
zj∈Z

γ(fq(zi)� fk(zj))� fv(zj) (1)

where i and j are the indexes of the tokens in Z whose size is |Z| = ST . fq, fk, and fv are the
linear layers projecting the tokens. γ is an extra projection layer to match the channel dimensionality
followed by a softmax function over j. When the channel sizes of the projections are identical, γ is
simplified as a single softmax layer identical to the standard transformer.

In the original transformer notation, the query matrix Q corresponds to our {fq(zi)}i, and the key
matrix K corresponds to our {fk(zj)}j . Instead of computing the dot product between Q and K
as QKT to generate the attention ‘matrix’, this vector formulation computes an attention ‘tensor’
{γ(fq(zi)� fk(zj))}(i,j) preserving the channel information. It has shape ST × ST × d where d
is the intermediate channel size. The computed attention tensor is multiplied with the value matrix
{fv(zj)}j to get the final transformer outputs.

Notice that this vector transformer is a global representation, and the temporal range of the information
it is able to capture entirely depends on what tokens we provide to it. With our learnable adaptive
tokens, we have the capability to cover a larger number of frames and focus on the temporal structure.

A.2 Video classification training details

ViViT We follow the exact training protocols and the hyper parameters of [1]. We use the same
code (the Scenic library [2]) and the hardware for the training as well as for the evaluation.
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Table 1: TokenLearner compared against
pooling-based token reduction.

Details ImageNet GFLOPS

Base ViT L/16 87.35 363.1

2x2 pool at 9 and 18 85.63 144.3
2x2 pool at 12 and 18 86.41 187.2
4x4 pool at 12 83.93 184.4

TokenLearner 16at12 87.68 184.6
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Figure 1: Ablations with TokenFuser alternatives.

We train the Kinetics model for 30 epochs with the base learning rate of 0.05 with the Momentum
optimizer. Basically, all the settings in our Kinetics experiments follow the setting of ViViT.

Bottleneck Transformer We provide the training details as below. For the training/testing splits
of the datasets, we followed their standard settings.

We use the cosine-decay learning rate which was popularly used in many video CNN model trainings.
The base learning rate of 0.8 per TPU core (which is equivalent to a single GPU) is used for the
Charades dataset (multi-label action classification) and the base rate of 0.025 per TPU was used for
the AViD dataset (video classification). The training was done for 100k iterations with the batch
size of 4 per TPU core (i.e., 4*64=256 was our batch size) in the Charades experiments. The batch
size of 8 per TPU core was used for AViD. 100k iterations correspond to roughly 125 epoches in
AViD. Label smoothing of 0.2 was used for the AViD training. No label smoothing was used for the
Charades. In Charades, the training was done by temporally cropping a long Charades videos (e.g.,
30 seconds) into 64 frame segments. The evaluation was done similarly with 64 frame segments by
merging their output responses.

The training time of a single model was around ∼16 hours with 32 TPU v3. This was bottlenecked
by the data pipeline, and the actual computation is less.

A.3 Additional ablations

TokenLearner vs. pooling. A straightforward alternative to the TokenLearner module is the use
of spatial pooling to reduce the number of tokens. It can be done by spatially rearranging the tokens
to have the height and width, and then applying conventional spatial pooling. This is similar to the
pooling-based MHSA module used in [3].

Table 1 compares the TokenLearner against the spatial pooling, when we add TokenLearner to ViT
for image classification on ImageNet (pretrained on JFT). The architecture described in Figure 4 (a)
of the main paper was adopted. In all these experiments, ViT L/16 model was used. We are able
to observe that there is a benefit in token ‘learning’. The pooling-based token reduction does have
computation similar to the TokenLearner, but it loses its accuracy compared to the base model. On
the other hand, TokenLearner performs a bit better than the base model despite the low computation.

TokenFuser alternatives. Here, we experimentally compare the proposed TokenFuser module
with its alternatives. The role of the TokenFuser is to mix the output tokens from the Transformer
layer and map it back to the original shape before the token reduction.

The most straightforward alternative would be to (1) use the masks from the TokenLearner module to
‘unpool’ the output tokens. The idea is to multiply each output token with the corresponding spatial
map computed during the previous TokenLearner module, and sum all of them to recover the original
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Table 2: Comparing different components of our TokenLearner. On Charades dataset (6fps).
Module Accuracy (%)

Standard transformer (MHSA) 58.4
Vector transformer (VectT) 58.1
Prior-only-attention + broadcasting 58.6
Vector transformer (VectT) + broadcasting 58.9
Vector transformer (VectT) + TokenFuser 59.0
TokenLearner + MHSA + TokenFuser 59.0
TokenLearner + VectT + TokenFuser 59.6

input tensor shape. Alternatively, (2) we can use one more transformer layer to increase the number
of tokens back to the original number of tokens, similar to the ‘re-projection’ used in [4].

Figure 1 shows the results with B/16, on ImageNet classification. The architecture described in Figure
4 (a) of the main paper was adopted. The unpooling strategy performes worse. The re-projection
strategy performs comparably to the TokenFuser, but requires more FLOPS.

Different components. Using the setting of the Bottleneck Transformer experiments, we did an
ablation to evaluate components of our approach and their combinations. We conducted ablations
removing/adding different components of our model. In addition to Vector Transformer described
in the above subsection, we also tried an ablation of replacing it with the multi-head self-attention.
Table 2 shows the results, demonstrating the benefits each of the elements bring to the approach. For
this experiment, we used the module composed of Conv2D + transformer (within the bottleneck),
which we found to perform the best from the other ablations.

A.4 Visualizations

Figure 2 shows visualizations of the tokens being learned with our approach. We show the spatial
attention maps (i.e., αi(x)) from the first TokenLearner module, as the inputs to the higher-level
TokenLearner becomes more mixed spatially and temporally. We are able to observe that they tend to
focus more on human regions, and that they change over time responding to the changes in the visual
input. Among the S = 8 tokens per frame we learn, we visualize 4 of them.
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Figure 2: Visualization of the spatial attention maps for the tokenizations. Attention maps for four
among a total of eight learned tokens are shown.

4


	Appendix
	Vector Transformer: Pairwise vector attention
	Video classification training details
	Additional ablations
	Visualizations


