8th ICML Workshop on Automated Machine Learning (2021)

Ranking Architectures by Feature Extraction Capabilities

Debadeepta Dey, Shital Shah, Sebastien Bubeck Microsoft Research
DEDEY,SHITALS,SEBUBECK@MICROSOFT.COM

Abstract

The fundamental problem in Neural Architecture Search (NAS) is to efficiently find high-
performing ones from a search space of architectures. We propose a simple but powerful
method for ranking architectures FEAR in any search space. FEAR leverages the viewpoint
that neural networks are powerful non-linear feature extractors. By training different
architectures in the search space to the same training or validation error and subsequently
comparing the usefulness of the features extracted on the task-dataset of interest by freezing
most of the architecture we obtain quick estimates of the relative performance. We validate
FEAR on Natsbench topology search space on three different datasets against competing
baselines and show strong ranking correlation especially compared to recently proposed
zero-cost methods. FEAR especially excels at ranking high-performance architectures in the
search space. When used in the inner loop of discrete search algorithms like random search,
FEAR can cut down the search time by ~ 2.4X without losing accuracy. We additionally
empirically study very recently proposed zero-cost measures for ranking and find that they
breakdown in ranking performance as training proceeds and also that data-agnostic ranking
scores which ignore the dataset do not generalize across dissimilar datasets.

1. Introduction

We propose a method to speed-up the evaluation phase of discrete NAS methods (10; 23)
where it is often an ad-hoc choice on how long to evaluate each sampled architecture for
a given dataset and is the most expensive part of such methods (34; 36). Specifically we
propose a simple but powerful architecture ranking methodology that enables good ranking
by leveraging the fact that neural networks are powerful feature extractors and the power
of an architecture is dependent on how effective it is at extracting useful features for the
given task. We term this ‘recipe’ (see Figure 1 for an overview) FEAR (FEATure-extraction
Ranking) which we discuss at length in Section 3.

We have two main contributions: 1. A simple fast architecture evaluation method named
FEAR and validate it on a variety of datasets on the Natsbench topological space benchmark
against competing baselines.! 2. We also empirically find that a number of very recently
proposed lightweight ranking measures (1; 19) degrade in ranking performance as network
training progresses and that data-agnostic ranking measures especially don’t generalize across
datasets. The performance of an architecture is a function of both the topology and the dataset
(in addition to the training pipeline).

2. Related Work

Here we discuss the works that are directly relevant to fast evaluation and ranking of
architectures.

1. Reproducible implementation of all experiments are available at https://github.com/microsoft/archai/
tree/fear_ranking (25).

(©2021 D. Dey, S. Shah and S. Bubeck.

https://github.com/microsoft/archai/tree/fear_ranking
https://github.com/microsoft/archai/tree/fear_ranking

DEY, SHAH AND BUBECK

Stage 2: Rank architectures
X Training/validation Stage 1: Partially trained Freeze most of the by final
Train fast, shallow learner threshold Train architecture | architecture i train/val accuracy
(e.g., linear classifier, random g till threshold > architecture and >
forest, random kitchen sink, etc) ! resho continue training for
accuracy
» a few more epochs

Architecture

Figure 1: Overview of FEAR which first trains a fast but shallow learner to get a reasonable
training/validation error threshold and then trains the architecture in a two-stage procedure.
In the first stage the architecture is regularly trained until it achieves threshold accuracy. In
the second stage most of the partially trained architecture from the first stage is frozen and
training continues for a few more epochs. All candidate architectures can then be ranked by
final training or validation accuracy obtained via this two stage procedure.

Architecture Performance Prediction: Since this body of work is orthogonally related
but important to discuss we detail it in Appendix A.2.

Lightweight Architecture Evaluation: Zhou et al. (37) (EcoNAS) search for combina-
tions of reduced input image resolution, fewer epochs, and number of stem channels to find
computationally cheap proxies for evaluating architectures while keeping their relative ranks
the same. They find an optimal configuration of resolution, epochs and number of channels
on a bag of 50 models. Abdelfattah et al. (1) note that the configuration found by EcoNAS
suffers from degrading performance when evaluated on all 15625 models in Nasbench-201
CIFARI10 dataset (8). Abdelfattah et al. (1) conduct their own search and find a different
configuration that works better on Nasbench201 CIFAR10 dataset. They caution that such
proxies clearly don’t work on different search spaces even when the dataset and task are the
same and also the importance of measuring actual wallclock run times as reduced flops often
don’t translate into actual time savings due to different ways of accessing memory.

Trainingless Proxies: Mellor et al. (19) propose a trainingless method for ranking archi-
tectures based on the KL divergence between an uncorrelated Gaussian distribution and the
correlation matrix of local linear operators (for networks with ReLU activation functions)
associated with every data point. If the correlation between such maps is low then the
network should be able to model each data point well. Since this score can be computed with
just a small sample of the dataset (a single minibatch), it takes negligible compute and time.
In recent work Abdelfattah et al. (1) thoroughly empirically evaluate this method (termed
as jacob_cov) along with an entire family of pruning-at-initialization schemes which they
convert to trainingless ranking methods by simply summing up the saliency scores at each
weight. The particular methods include snip (15), grasp (32), synflow (28) and fisher
(31). On Nasbench-201, on all three datasets (CIFAR10, CIFAR100, ImageNet16-120) they
find that synflow and jacob_cov scores performed very well. A majority vote amongst
synflow , jacob_cov and snip termed as vote performs the best.

Note that FEAR is *not* a trainingless method and does use more computation than
trainingless proxies. But we empirically show in Section 4 that FEAR outperforms these
proxy measures as well as the natural baselines of reduced number of training epochs. In
the process of experimentation we identify some curious properties of trainingless proxies
like degradation in performance as the network trains more which is counter-intuitive and
also the curious phenomenon of synflow -based ranking (which is a data-agnostic scoring

RANKING ARCHITECTURES BY FEATURE EXTRACTION CAPABILITIES

mechanism) in particular not generalizing across datasets (See Appendix A.4). This supports
the intuition that architecture performance is not an intrinsic property of just its topology
(and training procedure) but crucially also dependent on the task and dataset at hand. This
has been empirically validated by the very recent work of Tuggener et al. (30) who show
that architectures which perform well on ImageNet (7) do not necessarily perform as well on
other datasets. On some datasets their ranks are negatively correlated with ImageNet ranks.
This further suggests that a data-agnostic scoring mechanism like synflow should not work
well at ranking architectures.

3. Approach

Training accuracy threshold: Figure 1 shows a high level schematic of the approach.
FEAR first trains a fast but shallow learner on the dataset and task of choice to learn a training
or validation accuracy threshold. Specifically, for the task of image classification one can use
a number of fast shallow learners like random forest, linear classifier, with handcrafted visual
features like Histogram-of-Gradients (HoG) (6) or random features like random kitchen sink
(22). We emphasize that the role of this threshold is to be both non-trivial yet not too
difficult to beat with a neural network architecture.

Stage 1: Regular training till threshold accuracy: FEAR trains the candidate archi-
tecture till it achieves this threshold accuracy.

Stage 2: Using architecture as feature extractor: FEAR then freezes most of the
layers of the architecture other than the last few layers and trains for a few more epochs.
Freezing is several times faster per step as gradients are not computed for most layers. This
stage treats the network as a feature extractor and trains a relatively shallow network utilizing
these features. A pool of candidate architectures are then ranked by their final training or
validation accuracies on the dataset under consideration. Intuitively FEAR ranks architectures
on their ability to extract useful features from inputs.

A question that arises is by cutting off training of most of the layers at a relatively early
stage of training, are we not hurting the architecture’s ability to potentially distinguish
itself at feature extraction? Raghu et al. (21) and Kornblith et al. (13) dive deep into the
training dynamics of neural networks and show that networks train ‘bottom-up’ where the
bottom layers (near the input) train quite fast early-on in training and become stable. As
training progresses bottom layers rarely change their representation and mostly the top layers
change to learn decision-making rules using the bottom layers as rich feature extractors.
FEAR leverages this insight.

Role of training till threshold accuracy: We re-emphasize that FEAR does not fix the
number of epochs apriori. This has a number of advantages. First, it makes architectures
comparable to each other and makes sure that every architecture gets ample time to learn
the best features it can for the task. Secondly, it exposes first-order dynamics of training
in that weak architectures take longer time to reach the same training or validation error
compared to stronger architectures. See Figure 2 where we plot for CIFAR10 the time taken
by 1000 architectures to reach a threshold accuracy (x-axis) against the final test error
(y-axis). (Appendix A.5 for all three datasets.) Invariably architectures which go on to attain
good final test accuracy achieve threshold training accuracy much faster. Note that there
are no architectures that train slowly but go on to achieve good final test accuracy after full

DEY, SHAH AND BUBECK

training (‘late-bloomers’, these would have been on the upper-right hand part of the plots).
This effect can be utilized to early-stop evaluation of candidates that take much longer than
the fastest architecture encountered to reach threshold accuracy. This is in fact crucial to
obtain large speedup when combining our ranking method with standard discrete neural
architecture search techniques.

Motivation: The motivation for our method comes

from the emerging theoretical understanding of gradi- o
ent learning on neural networks. It has been observed
(e.g., (11; 4; 20; 2)) that initially training happens
in the so-called “neural tangent kernel” (NTK) (12)
regime, where the network basically uses its initial-
ization as a sort of kernel embedding and performs
a kernel regression. Our key hypothesis is that this
phase should stop a bit before reaching the threshold 7

accuracy, since this threshold has been obtained with .

a good kernel method (or something slightly more e to remh thresiot train sem racy o
powerful like a random forest model). In other words,

when we stop the training after reaching the threshold
accuracy, it should be that the network has already
escaped the NTK regime and is currently actively
training the features (second phase of learning). Our
second (empirical) hypothesis is that the quality of FAR10. Worse-performing architec-
the features learned in the early part of this second tures take longer time to reach thresh-
phase is predictive of the final quality of the network. ©ld training accuracy than stronger
We measure the quality of the learned features via O1€S:

the freezing technique, whose extreme case is to only

continue training the final layer (i.e., a linear model on top of the current embedding).

@
@

Final Aogcuracy
8

Figure 2: Time to reach threshold
training accuracy (x-axis) vs. final
test accuracy on 1000 uniformly sam-
pled architectures on Natsbench CI-

4. Experiments

Search space: We uniformly randomly sample 1000 architectures from the 15625 architec-
tures of the topology search space of the Natsbench (9) benchmark and hold them constant
for all following experiments. The topology search space is similar to that used in DARTS
(18). See Figure 1 in (9) for a visualization of the search space. Natsbench topology search
space has trained each architecture on CIFAR10, CIFAR100 (14) and ImageNet16-120 (5)
image classification datasets.

Spearman’s rank correlation vs. evaluation wall-clock time: We report perfor-
mance of FEAR and baselines by first binning architectures into several buckets of increasing
size. For example Top 10% in Figure 5 shows the average wall-clock time taken by any
method (x-axis) vs. Spearman’s rank correlation (27)? of the method with the groundtruth
rank of architectures (by test accuracy) after full final training procedure over the top 10%
of architectures. Similarly the bin of Top 20% architectures includes top 20% of candidates
and so on. We break-up the performance of methods over such cumulative bins to highlight

2. Spearman’s rank correlation is between (—1, 1) with 1 implying perfect correlation and —1 anti-correlation
of the ranks of candidate architectures.

RANKING ARCHITECTURES BY FEATURE EXTRACTION CAPABILITIES

how methods perform in discriminating amongst high-performing candidates and not just
over the entire population, since it is crucial for any reduced-computation proxy ranking
method to hone-in on good ones especially and not just the entire population.

Percentage overlap with groundtruth ranking vs. evaluation wall-clock time: It
is also important to evaluate what percentage of architectures are common between the top
2% of groundtruth architectures as ranked by some method. This evaluates when asked to
rank the entire population, do high ranking ones in groundtruth end up in high ranking
places (and vice-versa). By definition this is between (0,1).

Regular training with reduced epochs: shortreg The natural baseline is to compare
FEAR against reduced epochs of training. Most NAS methods use a reduced number of
training epochs (16) in the inner loop to decide the relative ranks of architectures as a proxy
for final performance after undergoing the complete training procedure. We term this as
shortreg. We show that FEAR consistently outperforms the pareto-frontier of wall-clock
time vs. Spearman rank correlation and ratio of common architectures at cumulative bins of
candidate architectures by groundtruth (test accuracy).

Zero-cost Proxies: We evaluate zero-cost proxies (1) for ranking and observe a number of
mysterious phenomena where such measures break down across datasets and as networks are
trained. This shows that such measures while exhibiting reasonable prima-facie performance
on NAS benchmarks are not generalizing across datasets. We detail our investigation in
Appendix A 4.

Reduced resolution Proxies: While reduced resolution proxies as proposed in (37) and
(1) can significantly speed up architecture evaluation, note that they are orthogonal to our
approach as they equally speed-up both shortreg and FEAR .

Training procedure hyperparameters and hardware: All experiments use the same
hyperparameter settings as Natsbench, specifically cosine learning rate schedule with starting
rate of 0.1, minimum rate of 0.0, SGD optimizer, decay of 0.0005, momentum 0.9 and Nesterov
enabled. For shortreg baseline we vary number of epochs and batch sizes 256, 512, 1024, 2048
to find a pareto-frontier of wall-clock time vs. Spearman’s correlation and common ratio. We
especially investigate varying the batch size since that can have a large effect on wall-clock
time. All experiments were conducted on Nvidia V100 16 GB GPUs.

4.1 Main Results

We show the pareto-frontier of performance between FEAR and shortreg in Appendix A.6
(figures 5, 6 and 7) on Natsbench CIFAR10, CIFAR100 and ImageNet16-120 respectively.
We order architectures in descending order of test accuracy, and bin them cumulatively
into top 10%, 20%, ... bins. For each bin we report the two performance criteria detailed
above. For better elucidation, in Table 1 for each bin we note FEAR and the nearest point
on the pareto-frontier generated by shortreg using Spearman’s correlation (‘spe’) and
common ratio of architectures in groundtruth ranking against the average time in seconds.
Especially on CIFAR10 and CIFAR100 large gaps in performance can be seen at high-
performing architecture bins. In Table 3 in Appendix A.6 we note the corresponding tables

for CIFAR100 and ImageNet16-120.

DEY, SHAH AND BUBECK

Top % | FEAR (spe, s) Nearest Pareto | FEAR (common, Nearest Pareto

(spe, s) s) (common, s)

10 0.22, 0.16, 0.59, 0.40,
133.22+4.09 138.28+2:25 133.22+4.09 138.28+2:25

20 0.40, 0.19, 0.60, 0.57,
133.04%276 134.68%1:50 133.04%2.76 134.68%1:50

30 0.41, 0.28, 0.70, 0.70,
132.76+2:24 140.13+146 132.76+224 132.77%2:24

40 0.43, 0.34, 0.78, 0.72,
131.41+200 135.31+1.32 131.41+2:00 135.31+1.32

50 0.55, 0.50, 0.79, 0.79,
134.48+197 136.26%114 134.48+1:97 136.26+114

100 | 0.83, 0.90, 1.0, 236.36=939 1.00,
236.36+9-39 218.97+1.44 218.97+1-44

Table 1: (Left) Spearman’s correlation (‘spe’) comparison between FEAR and the nearest point
on the pareto-frontier etched out by shortreg variants with respect to average wall-clock time
(s). (Right) Ratio of overlap in bins between rankings of FEAR and nearest pareto-frontier
point of shortreg . The nearest pareto-frontier points are found by inspecting figure 5

For CIFAR10, CIFAR100 FEAR consistently places above the pareto-frontier of shortreg
especially at higher ranked architectures. FEAR is able to both discriminate better amongst
high-performing architectures with shorter wall-clock time and achieve ranking which overlaps
more with the groundtruth. As the bin increases to encompass the entire set of 1000 archi-
tectures (Top 100%) by construction FEAR takes more time as low-performing architectures
take longer to reach threshold accuracy (recall Figure 4). In practice, this extra time for
lower-performing architectures will not be paid since low-performing ones can be simply
removed from consideration when they exceed the fastest time to achieve threshold accuracy
till then. On ImageNet16-120 the gap between FEAR and shortreg is not as significant but
nevertheless it doesn’t degrade in performance below shortreg and over the high-performance
bins is marginally better.

Deeper dive into zero-cost measures In Appendix A.4 we detail experiments on zero-
cost measures. Our main findings are that counter-intuitively many zero-cost measures
degrade drastically in performance as training progresses. Also that on a synthetic dataset
zero-cost measures have almost no ranking correlation while FEAR still performs reasonably.

Random Search with FEAR: On CIFAR100 we ran 10 trials random search (RS) with
FEAR with different random seeds where the search cut-off any architecture which exceeded
4.0 times the fastest time to reach threshold training accuracy (0.3) encountered so far. This
obtained a final accuracy of 72.04 4 0.29% with 142550 + 3106 seconds search time. Random
search with shortreg of 50 epochs obtained 72.08 +0.30% with 347639 4+ 1674 seconds search
time. RS-FEAR can get same final accuracy within experimental error while being ~ 2.43
times faster. Each method got a budget of 500 architectures and the same set of 10 random
seeds so that each method encountered the same sequence of architectures.

Ongoing Work We are validating FEAR on currently state-of-the-art discrete search meth-
ods (34) or even simpler techniques which have been surprisingly effective on NAS benchmarks

RANKING ARCHITECTURES BY FEATURE EXTRACTION CAPABILITIES

like (36), larger search spaces like DARTS via Nasbench-301 (26) and search spaces around
Transformer-like architectures (33; 29).

References

[1] Mohamed S Abdelfattah, Abhinav Mehrotra, Lukasz Dudziak, and Nicholas Donald
Lane. Zero-cost proxies for lightweight nas. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=0cmMMy8J5q.

[2] Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning
performs deep learning, 2021.

[3] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural

architecture search using performance prediction. arXiv preprint arXiv:1705.10823,
2017.

[4] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer
neural networks trained with the logistic loss, 2020.

[5] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of
imagenet as an alternative to the CIFAR datasets. CoRR, abs/1707.08819, 2017. URL
http://arxiv.org/abs/1707.08819.

[6] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886-893. Ieee, 2005.

[7] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

[8] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=HJxyZkBKDr.

[9] Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. Nats-bench: Benchmark-
ing nas algorithms for architecture topology and size. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1-1, 2021. doi: 10.1109/TPAMI.2021.3054824.

[10] Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. Neural architecture search:
A survey. J. Mach. Learn. Res., 20(55):1-21, 2019.

[11] Wei Hu, Lechao Xiao, Ben Adlam, and Jeffrey Pennington. The surprising simplicity of
the early-time learning dynamics of neural networks, 2020.

[12] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/badbelfald4e62bb8abec6b91d2462f5a-Paper. pdf.

https://openreview.net/forum?id=0cmMMy8J5q
http://arxiv.org/abs/1707.08819
https://openreview.net/forum?id=HJxyZkBKDr
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

DEY, SHAH AND BUBECK

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity
of neural network representations revisited. In International Conference on Machine
Learning, pages 3519-3529. PMLR, 2019.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online:
http://www. cs. toronto. edu/kriz/cifar. html, 55:5, 2014.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT
NETWORK PRUNING BASED ON CONNECTION SENSITIVITY. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=B1VZqjAcYX.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture
search. In Ryan P. Adams and Vibhav Gogate, editors, Proceedings of The 35th
Uncertainty in Artificial Intelligence Conference, volume 115 of Proceedings of Machine
Learning Research, pages 367-377. PMLR, 22-25 Jul 2020. URL http://proceedings.
mlr.press/v115/1i20c.html.

Marius Lindauer and Frank Hutter. Best practices for scientific research on neural
architecture search, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture
search. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=S1eYHoC5FX.

Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural architecture
search without training, 2021.

Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L. Edelman,
Fred Zhang, and Boaz Barak. Sgd on neural networks learns functions of increasing
complexity, 2019.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singu-
lar vector canonical correlation analysis for deep learning dynamics and interpretability.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/
file/dc6a7e655d7e5840e66733e9eeb67cc69-Paper. pdf.

Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: replacing
minimization with randomization in learning. In Nips, pages 1313-1320. Citeseer, 2008.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen,
and Xin Wang. A comprehensive survey of neural architecture search: Challenges and
solutions, 2021.

Ariel Keller Rorabaugh, Silvina Caino-Lores, Michael R. Wyatt II au2, Travis Johnston,
and Michela Taufer. Pengdnn: An accurate performance estimation engine for efficient
automated neural network architecture search, 2021.

https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
http://proceedings.mlr.press/v115/li20c.html
http://proceedings.mlr.press/v115/li20c.html
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://proceedings.neurips.cc/paper/2017/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

RANKING ARCHITECTURES BY FEATURE EXTRACTION CAPABILITIES

Shital Shah and Debadeepta Dey. Archai: Reproducible rapid research for neural
architecture search. https://github.com/microsoft/archai, 2020.

Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank
Hutter. Nas-bench-301 and the case for surrogate benchmarks for neural architecture

search, 2020.

C. Spearman. The proof and measurement of association between two things. The
American Journal of Psychology, 15(1):72-101, 1904. ISSN 00029556. URL http:
//www. jstor.org/stable/1412159.

Hidenori Tanaka, Daniel Kunin, Daniel L. Yamins, and Surya Ganguli. Pruning neural
networks without any data by iteratively conserving synaptic flow. Advances in Neural
Information Processing Systems, 33, 2020.

Henry Tsai, Jayden Ooi, Chun-Sung Ferng, Hyung Won Chung, and Jason Riesa. Finding
fast transformers: One-shot neural architecture search by component composition, 2020.

Lukas Tuggener, Jiirgen Schmidhuber, and Thilo Stadelmann. Is it enough to optimize
cnn architectures on imagenet?, 2021.

Jack Turner, Elliot J. Crowley, Michael O’Boyle, Amos Storkey, and Gavin Gray.
Blockswap: Fisher-guided block substitution for network compression on a budget. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=Sk1kDkSFPB.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training
by preserving gradient flow. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkgsACVKPH.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song
Han. HAT: Hardware-aware transformers for efficient natural language processing. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
Online, July 2020. Association for Computational Linguistics. doi: 10.18653,/v1/2020.
acl-main.686. URL https://www.aclweb.org/anthology/2020.acl-main.686.

Colin White, Willie Neiswanger, and Yash Savani. BANANAS: bayesian optimization
with neural architectures for neural architecture search. CoRR, abs/1910.11858, 2019.
URL http://arxiv.org/abs/1910.11858.

Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A study on encodings
for neural architecture search. Advances in Neural Information Processing Systems, 33,
2020.

Colin White, Sam Nolen, and Yash Savani. Local search is state of the art for neural
architecture search benchmarks, 2020.

Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen
Zhang, and Wanli Ouyang. Econas: Finding proxies for economical neural architecture
search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11396-11404, 2020.

https://github.com/microsoft/archai
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://openreview.net/forum?id=SklkDkSFPB
https://openreview.net/forum?id=SklkDkSFPB
https://openreview.net/forum?id=SkgsACVKPH
https://www.aclweb.org/anthology/2020.acl-main.686
http://arxiv.org/abs/1910.11858

DEY, SHAH AND BUBECK

Appendix A. Appendix
A.1 Reproducibility and Best Practices Checklist in NAS

We use the best practices by (17) to foster reproducibility and do better empirical NAS
research.

1. Best practices for releasing code.

(a) Code for the training pipeline used to evaluate the final architectures. - Yes.
(b) Code for the search space. - Yes.

(¢) The hyperparameters used for the final evaluation pipeline as well as random
seeds. - Yes.

(d) Code for your NAS method. - Yes.

(e) Hyperparameters for your NAS method, as well as random seeds. - Yes.
2. Best practices for comparing NAS methods.

(a) For all NAS methods you compare, did you use exactly the same NAS benchmark,
including the same dataset (with the same training-test split), search space and
code for training the architectures and hyperparameters for that code? - Yes.

(b) Did you control for confounding factors (different hardware, versions of DL libraries,
different runtimes for the different methods)? - Yes. Specifically we run all the
baselines ourselves on the same hardware.

Did you run ablation studies? - Yes.

Did you use the same evaluation protocol for the methods being compared? - Yes.

)
)
e) Did you compare performance over time? - Yes.
) Did you compare to random search? - Yes.
) Did you perform multiple runs of your experiments and report seeds? - Yes.
)

Did you use tabular or surrogate benchmarks for in-depth evaluations? - Yes.
3. Best practices for reporting important details. - Yes

(a) Did you report how you tuned hyperparameters, and what time and resources
this required? - Yes.

(b) Did you report the time for the entire end-to-end NAS method (rather than, e.g.,
only for the search phase)? - Yes.

(¢) Did you report all the details of your experimental setup? - Yes.

A.2 Orthogonally Related Work

Architecture Performance Prediction: Baker et al. (3) propose training regressors
which take in the architecture, training hyperparameters and the first few validation accuracies
as features and try to predict the final validation accuracy. The proposed method has a
“burn-in” phase where a sampled few architectures are first fully trained to gather data for
training the regressor. This regressor is then utilized in the rest of the pipeline. Similarly

10

RANKING ARCHITECTURES BY FEATURE EXTRACTION CAPABILITIES

Rorabaugh et al. (24) propose fitting curves to the performance numbers of the first few
training iterations and extrapolate to later accuracy values. White et al. (34) study neural
network performance prediction in the context of Bayesian Optimization. Orthogonally
White et al. (35) conduct an extensive study of architecture encodings for common NAS
algorithm subroutines including performance prediction which sheds light on the pros and
cons of certain featurizations for this task. FEAR is orthogonal to the above body of work
on architecture performance prediction and in fact can be used for further speeding up the
performance prediction modules as one doesn’t have to train the architectures fully to create
the training set.

A.3 Finding the training threshold for a dataset

We construct a shallow pipeline using Histogram-of-Oriented-Gradients (HoG) (6) as image
features and construct a relatively shallow learner by passing the features through two hidden
fully connected layers. This simple pipeline achieves 0.6 training accuracy on CIFARI10,
0.3 on CIFAR100 and 0.2 accuracy on ImageNet16-120. These numbers were used as the
training accuracy threshold for stage 1 of FEAR with respective datasets.

A.4 Deeper Dive into Zero-Cost Measures

As discussed in Section 2, Abdelfattah et al. (1) propose using pruning-at-initialization
methods like synflow , snip , grasp , fisher etc for ranking architectures without any
training by summing up the per-weight saliency scores to come up with an overall architecture
score. In thorough experiments, synflow emerged as a really good ranking measure with a
majority voting scheme with synflow , jacob_cov and snip emerging as the best overall.
As discussed in Section 2, synflow ’s good performance is a bit perplexing since it is a
data-agnostic measure. It suggests that there are inherently good and bad architectures and
the particulars of the dataset should not matter. In order to investigate this we created a
synthetic dataset with properties such that it would be a drop-in for CIFAR10. Specifically
we created random Gaussian images of dimension [32, 32, 3]. Each image was assigned a
class label in (0, 10) by passing each image through 10 randomly initialized neural networks
and picking the id of the network which assigned the image a maximum score. Each of the
networks has a simple architecture of a linear layer with dimension 3072, followed by a ReLu
layer, followed by a linear layer which produces a single scalar output. A dataset of 60000
images was generated with 50000 training and the rest held-out as a test set. Each class has
6000 examples. We refer to this dataset asSynthetic CIFAR10 .

The same set of 1000 randomly sampled architectures were evaluated on this dataset
using FEAR and the various zero-cost measures. Table 2 shows that the various zero-cost
measures have almost no correlation with rankings while FEAR still works reasonably. Also
note that the rankings via synflow which ignore the dataset are no longer valid on Synthetic
CIFARI10 . This means that architectures which performed really well on CIFAR10 don’t
work as well on Synthetic CIFAR10 . This is at least an existence proof of the fact that
performance of an architecture is also a function of the dataset and task and is not an
inherent property of just the topology of the network as also empirically shown recently by
Tuggener et al. (30).

In Figure 3 we evaluated zero-cost measures after each epoch of training on CIFAR10 for
the 1000 randomly sampled architectures from Natsbench topological search space. We find

11

DEY, SHAH AND BUBECK

Method Spearman Corr.
synflow —0.000437
jacob_cov = —0.13

snip —0.31

fisher —0.42

grasp —-0.25
synflow_bn 0.18

FEAR 0.55

Table 2: Zero-Cost measures on Synthetic CIFAR10 shows achieve low correlation while
FEAR still gets reasonable performance. This phenomenon is especially not amenable for
data-agnostic measures like synflow which ignore the dataset completely.

£ o “gred o
O 0.6
~—grasp

s 8; Podancr: ~fisher
g : e s At jacob_cov
s 0 pg ey plain
(%_0'2 j synflow

—0.4 svnflow bn

0 50 100 150 200

Epochs

Figure 3: Evaluating the ranking performance of zero-cost measures after each epoch of
training. Measures like grasp and jacob_cov demonstrate large degradation in performance
after even a single epoch of training. snip and grad_norm decay gradually.

that measures like snip and grad_norm gradually degrade in rank correlation as the network
trains. jacob_cov and grasp at initialization have Spearman of 0.69 and 0.63 respectively
but after even one epoch of training drastically degrade to —0.02 and —0.41. Note from
figures 5, 6, and 7 that ranking architectures via training error even after one or two epochs
of training leads to much better ranking correlation.

Note that measures derived from snip , grasp , synflow are intended originally for the
task of pruning architectures at initialization. So it is perhaps not surprising that the saliency
scores when summed-up over individual weights to provide a global architecture score doesn’t
exhibit good ranking performance as the network is trained.

12

RANKING ARCHITECTURES BY FEATURE EXTRACTION CAPABILITIES

75

70

65

%

60

cy

@
@

Final Accurac
)
3

Final Accura

IS IS
=) @

w
G

65
0 500 1000 1500 2000 0 500 1000 1500 2000
Time to reach threshold train accuracy (s)

(b) CIFAR 100

Time to reach threshold train accuracy (s)

(a) CIFAR 10

w
@

w
S

A

N
@

0 1000 2000 3000 4000 5000 6000
Time to reach threshold train accuracy (s)

(c) ImageNet16-120

Figure 4: Time to reach threshold training accuracy (x-axis) vs. final test accuracy on
1000 uniformly sampled architectures on Natsbench. They show a clear relationship where
ultimately worse performing architectures take longer time to reach threshold accuracy than

stronger ones.

A.5 Test Duration vs. Final Test Accuracy

A.6 Detailed Ranking Plots on Natsbench Topological Search Space

13

= Top 10 % o Top 10 %
S 0.4 Y M 06 . . . h - . fastarchrank stage 2: batch 1024, Ir 0.1,
w . - - B o . epochs 5, stage 1: batch 256, thresh 0.6
g 0.2 1 T IN s 04 o ¥t rat * zero cost score at initialization fisher
E L ot L € 02 * s = zero cost score at initialization grad_norm
3 0 ': * g 0 20 + zero cost score at initialization grasp
o o L
0 0 100 200 300 400 500 600 0 100 200 300 400 500 600 * Zero costscore atinitialization jacob_cov
* zero cost score at initialization plain
~ zero cost score at initialization snip
~ zero cost score at initialization synflow
Top 20 % 0.8 Top 20 % < zero cost score at initialization synflow_bn
0.6 i - : 1 - o T = * shortreg: batch 1024 epochs 01
04 . M T 06 ¢ {1; N = shortreg: batch 1024 epochs 02
02 : A 04 * rt." + shortreg: batch 1024 epochs 04
. re
4 S # 02 ! + shortreg: batch 1024 epochs 06
0 J "" : ;’ = shortreg: batch 1024 epochs 08
-0.2 . .
0 100 200 300 400 500 0 100 200 300 400 500 shortreg: batch 1024 epochs 10
v shortreg: batch 1024 epochs 20
+ shortreg: batch 1024 epochs 30
» shortreg: batch 512 epochs 01
Top 30 % Top 30 % ~ shortreg: batch 512 epochs 02
06 ~ * = 0.8 - o = + shortreg: batch 512 epochs 04
04 . M ¥ 0.6 ; ol N * shortreg: batch 512 epochs 06
& : 4 ot r shortreg: batch 512 epochs 08
02 ¢ " 0.4 o~ * shortreg: batch 512 epochs 10
“
0 .;" [* shortreg: batch 256 epochs 01
0 100 200 300 400 500 0 100 200 300 400 500 * shortreg: batch 256 epochs 02
¢ shortreg: batch 256 epochs 04
* shortreg: batch 256 epochs 06
* shortreg: batch 256 epochs 08
Top 40 % Top 40 % 4 shortreg: batch 256 epochs 10
0.6 ~ * = 0.8 . o v ¥ = v shortreg: batch 256 epochs 20
. ~ . . &
0.4 " . M ; rax = shortreg: batch 256 epochs 30
O BN os * Lt
. é ot 4 g
0o 27 04
. 02 *
0 100 200 300 400 500 ' 0 100 200 300 400 500
Top 50 % Top 50 %
< - . « x
- v 1 v
05 ¥ S 08§ EE
K -
it 0.6 o
o s)
1o 0.4 =
0 100 200 300 400 500 0 100 200 300 400 500
Top 100 % Top 100 %
1 s = 2
i et - 1.5
0.5 - Ve
» 1 wem wodmr we 4 R 4 « =
.
O 0.5
x
0
0 100 200 300 400 0 100 200 300 400

Duration (s)

DEY, SHAH AND BUBECK

Duration (s)

Figure 5: [Left] Average duration vs. Spearman’s correlation and [Right] average duration vs.
common ratio over the top 2% of the 1000 architectures sampled from Natsbench topological
search space on CIFAR10. We also show the various zero-cost measures from Abdelfattah
et al. (1) in green.

14

RANKING ARCHITECTURES BY FEATURE EXTRACTION CAPABILITIES

Duration (s)

Duration (s)

= Top 10 % o Top 10 %
S o6 <> N S 206 = = = S2 . fastarchrank stage 2: batch 512, Ir 0.1,
» o 94 - & |q = < 0.4 MK . > epochs 5, stage 1: batch 256, thresh 0.3
% ¥ * * g : N +F ° ‘. * zero cost score at initialization fisher
E 0.2 £ 02 -+ N = zero cost score at initialization grad_norm
H
3 o % g 0 = + zero cost score at initialization grasp
o o e
0 0 100 200 300 400 500 600 0 100 200 300 400 500 600 * Zerocostscoreatinitialization jacob_cov
* zero cost score at initialization plain
~ zero cost score at initialization snip
~ zero cost score at initialization synflow
Top 20 % Top 20 % < zero cost score at initialization synflow_bn
1 . . b 0.8 d - * shortreg: batch 256 epochs 10
0.4 1 O 06 ¢ -+ S = shortreg: batch 256 epochs 20
[— . 0.4 P L - + shortreg: batch 256 epochs 30
0.2 ' 5 0o t v + shortreg: batch 512 epochs 10
0 = 0 x = shortreg: batch 512 epochs 20
0 100 200 300 400 500 0 100 200 300 400 500 * shortreg: batch 512 epochs 30
v shortreg: batch 1024 epochs 10
+ shortreg: batch 1024 epochs 20
» shortreg: batch 1024 epochs 30
Top 30 % Top 30 % ~ shortreg: batch 2048 epochs 10
0.6 o - 0.8 . SR o + shortreg: batch 2048 epochs 20
N v N ®
- . *+ shortreg: batch 2048 hs 30
04 B . 06 ¥ — < shortreg: batc epochs
02 ¢ P = 0.4 v
~
o 0.2 *
0 100 200 300 400 500 0 100 200 300 400 500
Top 40 % Top 40 %
06 I - i 0.8 P x L i
5 .
0.4 ! = " 0.6 !) “
. ~ ¥
0.2 =50 . 04 #
O ’ 02 *
0 100 200 300 400 500 0 100 200 300 400 500
Top 50 % Top 50 %
. L * . ‘ - > - *
T . \
05 * - = 08 r . =
] 1 o
. .) 0.6
0) v’ “ +
* N 04 =
0 100 200 300 400 500 0 100 200 300 400 500
Top 100 %) Top 100 %
gy | P e *
] e “ 1.5
0.5 Al
1 . . ax m oe» - .
0 " 0.5
. 0
0 100 200 300 400 0 100 200 300 400

Figure 6: |Left] Average duration vs. Spearman’s correlation and |Right| average duration vs.
common ratio over the top 2% of the 1000 architectures sampled from Natsbench topological
search space on CIFAR100. We also show the various zero-cost measures from Abdelfattah
et al. (1) in green.

15

DEY, SHAH AND BUBECK

= Top 10 % ° Top 10 %
~ = 0.8
8 0.6 . ™o o ® S = " v f‘ 0Py - . fastarchrank stage 2: batch 512, Ir 0.1,
v 04 (L ,' « + " o< 06 ‘ « T = epochs 10, stage 1: batch 256, thresh 0.2
c N c v P N -
E 0.2 0: [g 0.4 § RO * zero cost score at ‘\mt!a\!zat!on fisher
b= 0 : " € 0.2 = zero cost score at initialization grad_norm
B « o 0 : + zero cost score at initialization grasp
= (o] PR
n 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 * Zerocostscoreatinitialization jacob_cov
* zero cost score at initialization plain
~ zero cost score at initialization snip
~ zero cost score at initialization synflow
Top 20 % Top 20 % < zero cost score at initialization synflow_bn
. ,‘. - ~ 0.8 voe XS e ™ = * shortreg: batch 256 epochs 01
0.5 ~ VT R * 0.6 ¢ = 2 = shortreg: batch 256 epochs 02
i, .t [0.4 = .: = + shortreg: batch 256 epochs 04
0 * 02 + * + shortreg: batch 256 epochs 06

shortreg: batch 256 epochs 08
shortreg: batch 256 epochs 10

o
-

»

0 200 400 600 800 1000 0 200 400 600 800 1000
v shortreg: batch 256 epochs 12
+ shortreg: batch 256 epochs 14
» shortreg: batch 256 epochs 16
Top 30 % Top 30 % ~ shortreg: batch 256 epochs 18
~| 250 of™ . 0.8 ST e met e n - 4 shortreg: batch 256 epochs 20
0.5 ' X < P - 0-6 X & ; 7 *+ shortreg: batch 256 epochs 30
i [I B - *e r shortreg: batch 512 epochs 10
0 o ,‘ 0.4 &0 * shortreg: batch 512 epochs 20
¥ 0.2 « shortreg: batch 512 epochs 22
0 200 400 600 800 1000 0 200 400 600 800 1000 * shortreg: batch 512 epochs 24
¢ shortreg: batch 512 epochs 26
* shortreg: batch 512 epochs 28
* shortreg: batch 512 epochs 30
Top 40 % Top 40 % 4 shortreg: batch 1024 epochs 10
y - feS e m T by s e e T v shortreg: batch 1024 epochs 20
0.5 1 = > — = o = 0.8 E Sox - T = shortreg: batch 1024 epochs 30
i s+ " 0.6 . . + shortreg: batch 2048 epochs 10
.
0 T ot 0.4 +° ¢+ shortreg: batch 2048 epochs 20
] 02 * + shortreg: batch 2048 epochs 30
0 200 400 600 800 1000 0 200 400 600 800 1000
Top 50 % Top 50 %
o, S0P - LT TS -~
. ’ .
0.5 I r PR 0.8 ~ + x
1] ; + " ¥ . *
P 0.6 .
4o
o) 0.4
0 200 400 600 800 1000 0 200 400 600 800 1000
Top 100 %) Top 100 %
1 PR T R = m—
AT - v b4
RS 1.5
0.5
" 1 ®em 4 & oy« e orovE 4 - ——
.
0 0.5
*
0
0 200 400 600 800 1000 0 200 400 600 800 1000
Duration (s) Duration (s)

Figure 7: [Left] Average duration vs. Spearman’s correlation and [Right| average duration
vs. common ratio over the top 2% of the 1000 architectures sampled from Natsbench
topological search space on ImageNet16-120. We also show the various zero-cost measures
from Abdelfattah et al. (1) in green.

16

RANKING ARCHITECTURES BY FEATURE EXTRACTION CAPABILITIES

Top % | FEAR (spe, s) Nearest Pareto | FEAR (common, Nearest Pareto
(spe, s) s) (common, s)
10 0.61, 0.42, 0.63, 0.63,
213.07+6:33 264.68+3-52 213.04+6:33 264.68+3-52
20 0.51, 0.25, 0.79, 0.79,
208.84+4:36 257.12%2:43 208.84+4.36 257.12+2:43
30 0.66, 0.15, 0.79, 0.79,
207.19+3:63 249.86+2-03 207.19+3.63 249.86+2:03
40 0.70, 0.27, 0.85, 0.85,
205.13+3.16 253.67%+2-18 205.13%3.17 244.96+1-85
50 0.76, 0.26, 0.90, 0.90,
201.65+2:78 247.37%1:97 201.65+2-78 239.41+1-66
100 | 0.93, 0.90, 1.0, 313.52%+931 1,00,
313.52+9:31 329.79%2-19 281.30+2-42
(a) Natsbench CIFAR 100
Top % | FEAR (spe, s) Nearest Pareto | FEAR (common, Nearest Pareto
(spe, s) s) (common, s)
10 0.56, 0.56, 0.76, 0.72,
481.75F17-14 468.17+6-07 481.75+17-14 510.86+6-77
20 0.73, 0.64, 0.82, 0.81,
498.91+1452 530.86%5-98 498.91+14.52 445.89+5.05
30 0.78, 0.69, 0.83, 0.85,
486.40+11.56 514.65+499 486.40F11-56 470.47+4.58
40 0.79, 0.75, 0.90, 0.91,
491.91+10.74 493.66+4-61 491.91+10.74 493.66+4-61
50 0.84, 0.83, 0.91, 0.88,
571.37+10.73 532.04+4.70 511.37+10.73 510.74%5-04
100 | 0.95, 0.96, 1.0, 1.00,
1070.88+35-88 822.05+8-14 1070.88+35-88 822.05%8-14

Table 3: (Left) Spearman’s correlation (‘spe’) comparison between FEAR and the nearest point
on the pareto-frontier etched out by shortreg variants with respect to average wall-clock time
(s). (Right) Ratio of overlap in bins between rankings of FEAR and nearest pareto-frontier
point of shortreg . The nearest pareto-frontier points are found by inspecting figures 5, 6

and 7

17

(b) Natsbench ImageNet16-120

	Introduction
	Related Work
	Approach
	Experiments
	Main Results

	Appendix
	Reproducibility and Best Practices Checklist in NAS
	Orthogonally Related Work
	Finding the training threshold for a dataset
	Deeper Dive into Zero-Cost Measures
	Test Duration vs. Final Test Accuracy
	Detailed Ranking Plots on Natsbench Topological Search Space

