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Bottleneck in Discrete NAS Methods

Evaluating individual architectures
is the most expensive step in discrete NAS methods!

Open Question: How many epochs to evaluate to
accurately rank candidates?

Current approaches:
*  Pick a small number of epochs. Hope it is enough!
* Training-less measures.
+ Lift-and-shift pruning-at-initialization
schemes.
« Zero-cost measures [Abdelfattah et al. 2021]
*  SNIP [Lee et al. 2018]
*  GRASP [Wang et al. 2020]
*  SYNFLOW [Tanaka et al. 2020]
*  NAS-without-training [Mellor et al. 2020]

Deeper Dive in Training-less Measures

Synthetic dataset:

* Random 32x32 RGB images.

* 10-way multi-class classification.

* Labeled via 10 randomly initialized two-layer NNs.
*  Drop-in replace CIFAR10.
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SNIP and GRAD_NORM degrade as

network trains!
At init: JACOB_COV: 0.69, 1 epoch: -0.02!
At init: GRASP: 0.63, 1 epoch: -0.41!
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Motivation:

Two-stage training of NNSs: [Hu et al. 2020][Chizat and Bach
2020][Nakkiran et al. 2019][Allen-Zhu and Li 2020]

» Stage 1: Network uses initialization as a kernel
embedding and does kernel regression.
» Stage 2: Actively trains the features from phase 1
to learn a classifier.
Lower layers train quickly.
Weak architectures are slow to train (no late bloomers)

Nasbench-201 (1000 networks each randomly sampled)
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FEAR: Ranking Architectures by their Feature-Extraction Capabilities

Rank
architectures
by final
Partially trained Stage 2: train/val
architecture Freeze most of the accuracy
architecture and
continue training for a
few more epochs

Hypothesis: Should
have escaped
feature-learning
regime.
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Hypothesis: The relative
performance of
architectures depends on
the power of the features
learnt in stage 1.
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