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ABSTRACT

Although recent generative image compression methods have demonstrated
impressive potential in optimizing the rate-distortion-perception trade-off, they
still face the critical challenge of flexible rate adaptation to diverse compression
necessities and scenarios. To overcome this challenge, this paper proposes a
Controllable Generative Image Compression framework, termed Control-GIC,
the first capable of fine-grained bitrate adaptation across a broad spectrum while
ensuring high-fidelity and generality compression. Control-GIC is grounded in a
VQGAN framework that encodes an image as a sequence of variable-length codes
(i.e. VQ-indices), which can be losslessly compressed and exhibits a direct positive
correlation with bitrates. Drawing inspiration from the classical coding principle,
we correlate the information density of local image patches with their granular
representations. Hence, we can flexibly determine a proper allocation of granularity
for the patches to achieve dynamic adjustment for VQ-indices, resulting in
desirable compression rates. We further develop a probabilistic conditional decoder
capable of retrieving historic encoded multi-granularity representations according
to transmitted codes, and then reconstruct hierarchical granular features in the
formalization of conditional probability, enabling more informative aggregation to
improve reconstruction realism. Our experiments show that Control-GIC allows
highly flexible and controllable bitrate adaptation where the results demonstrate its
superior performance over recent state-of-the-art methods.

1 INTRODUCTION

Lossy image compression complies with the rate-distortion criterion in Shannon’s theorem (Shannon
et al., 1959), which aims to pursue minimal storage of images without quality sacrifice. Traditional
standardized codecs (Wallace, 1990; Taubman & Marcellin, 2001; Bellard) adhere to a typical hand-
crafted “transforming-quantization-entropy coding” rule, showing substantial performance on generic
images. Learnable compression algorithms (Ballé et al., 2017; 2018; Minnen et al., 2018; Minnen &
Singh, 2020) follow a similar pipeline that parameterizes it as convolutional neural networks (CNNs)
operating on latent variables with end-to-end R-D optimization. Recent works (Santurkar et al., 2018;
Tschannen et al., 2018; Agustsson et al., 2019; Mentzer et al., 2020) leverage generative adversarial
networks (GANs) (Goodfellow et al., 2014) to deal with the compression task, known as generative
image compression, which minimizes the distribution divergence between original and reconstructed
images, producing perfect perceptual quality. However, these methods train the models separately
for specific R-D points with Lagrange multiplier (λ)-weighted R-D loss, each corresponding to an
individual λ. In this way, multiple fixed-rate models are necessitated to vary bitrates, leading to
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Figure 1: Illustration of the key motivation behind our approach. ① Generative methods train separate
models for each distinct compression ratio, which achieves promising perceptual quality but overlooks
the flexibility. ② Variable-rate methods modify the compression model by introducing truncated
quantization parameters, which only support a limited range of bitrates and cannot balance the
perceptual quality and compression efficiency. ③ Our proposed Control-GIC enables the generation
of a controllable-length bitstream following different granularity decisions of image patches, which
achieves an excellent trade-off among flexibility, perceptual quality, and compression efficiency.

dramatic computational costs and inefficient deployment to cater to diverse bitrates and devices. Some
CNN-based models propose to learn scalable bitstreams (Johnston et al., 2018; Toderici et al., 2017;
Bai et al., 2021; Mei et al., 2022; Zhang et al., 2024a; Jeon et al., 2023b) or truncated quantization
parameters to control the bitrates (Toderici et al., 2016; Choi et al., 2019; Yang et al., 2021; Cui
et al., 2021). On the one hand, these models typically support a limited range of bitrates with
substantial variance distribution, thus constraining their adaptability to finer bitrate adjustments.
On the other hand, they mostly quantify the distortion using mean square error (MSE), which is
inconsistent with human perception and often yields implausible reconstruction, particularly at low
bitrates (Blau & Michaeli, 2019; Mentzer et al., 2020). Several methods introduce scalable (Iwai
et al., 2024) or variable-rate (Guo et al., 2023) designs into generative models. While achieving
remarkable improvements in perceptual quality, they are still constrained by finite compression rates
(see Figure 1).

In light of the preceding discussion, this work proposes an innovative generative image compression
paradigm, dubbed Control-GIC, which accommodates highly flexible and fine-grained controls on
a broad range of bitrates and perceptually realistic reconstruction with solely one set of optimized
weights. Motivated by that VQ-based models (Esser et al., 2021; Zheng et al., 2022) enable to
encode images into discrete codes representing the local visual patterns, Control-GIC hybridizes the
classical coding principle in the architecture with VQGAN to relax the typical R-D optimization
and provide a controllable unified generative model. Specifically, Control-GIC first characterizes
the inherent information density and context complexity of local image patches as the information
entropy. We devise the granularity-informed encoder that determines the granularity of these patches
based on their entropy values. These are further represented by sequential variable-length codes
(i.e., VQ-indices) based on learned codebook prior. One can flexibly control the statistics of the
granularities to adjust the VQ-indices of patches dynamically adapting to diverse desirable bitrates.
As correlated to the regional information of images, the VQ-indices are spatially variant to adapt to
the local contents. We then develop a no-parametric statistical entropy coding module, which captures
the code distribution in the codebook prior across a large-scale natural dataset to approximate a
generalized probability distribution. This enables lossless and more compact encoding of VQ-indices
during inference, improving the compression efficiency. On top of entropy coding, a probabilistic
conditional decoder is further developed, which formalizes the reconstruction of granular features
in a conditional probability manner with historic encoded multi-granularity representations given
entropy-decoded indices. Our comprehensive experimental results demonstrate the outstanding
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adaptation capability of Control-GIC, which achieves superior performance from perceptual quality,
flexibility, and compression efficiency over three types of recent state-of-the-art methods including
generative, progressive, and variable-rate compression methods using only a single unified model.

The main contributions of this work are three-fold:

• We propose Control-GIC, a unified generative compression model capable of variable bitrate
adaptation across a broad spectrum while preserving high-perceptual fidelity reconstruction.
To our knowledge, this is the first that allows highly flexible and controllable bitrate
adaptation.

• We propose a granularity-inform encoder that represents the image patches of sequential
spatially variant VQ-indices to support precise variable rate control and adaptation. Besides,
a non-parametric statistical entropy coding is devised to encode the VQ-indices losslessly.

• We design a probabilistic conditional decoder, which aggregates historic encoded multi-
granularity representations to reconstruct hierarchical granular features in a conditional
probability manner, achieving realism improvements.

2 RELATED WORK

Neural Image Compression Transformation, quantization, and entropy coding are three key
components in neural image compression (NIC). Since Ballé et al. (Ballé et al., 2017) propose the
pioneering learnable NIC method using convolutional neural network (CNN), later methods make
improvements in transformation to learn a more compact and exact representation with efficient
architecture designs (Cheng et al., 2020; Xie et al., 2021; Zou et al., 2022). Some researchers are
dedicated to improving the entropy coding by designing hyperprior and context models (Ballé et al.,
2018; Lee et al., 2018; Qian et al., 2022) with entropy model, which can capture more precise
spatial dependencies in the latent, helping probability distribution estimation. In recent years, the
integration of generative models like GANs (Goodfellow et al., 2014; Wang et al., 2018; Karras
et al., 2019) and Diffusion Model (DM) (Ho et al., 2020; Zhang et al., 2024b; Wu et al., 2024)
into NIC has shown promising results. For instance, Agustsson et al. (Agustsson et al., 2019) uses
GAN loss along with R-D loss to achieve end-to-end full-resolution image compression while giving
dramatic bitrate savings. Mentzer et al. (Mentzer et al., 2020) incorporates GAN with compression
architecture systematically and generates robust perceptual evaluation. Yang et al. (Yang & Mandt,
2024) propose an end-to-end DM-based compression framework and reconstruct images through the
reverse diffusion process conditioned with context information, outperforming some GAN-based
methods. VQGAN (Esser et al., 2021)-based techniques (Mao et al., 2023; Xue et al., 2024; Jia
et al., 2024) have demonstrated strong codebook priors for discrete visual feature representation in
image synthesis, offering new insights for compression. Mao et al. (Mao et al., 2023) introduce
VQ-indices compression for simple yet efficient compression, markedly improving the compression
ratio. Building on these findings, we aim to harness the potential of VQ and customize VQGAN
designs for controllable generative compression across various bitrates with a unified model.

Rate-Adaptation NIC The aforementioned methods often face the challenge of deployment in
resource-limited devices they are trained as separate models for specific bitrates, which increases the
complexity overhead to support multiple bitrates. Current research solving such a rate adaptation
problem can be roughly divided into two categories: variable-rate compression (Chen & Ma, 2020;
Lu et al., 2021; Cui et al., 2021; Guo-Hua et al., 2023) and progressive compression (Toderici et al.,
2017; Mei et al., 2022; Lee et al., 2022a; Jeon et al., 2023b; Zhang et al., 2024a). Variable-rate
methods, such as those by Theis et al. (Toderici et al., 2017) and Choi et al. (Choi et al., 2019), adjust
scalar parameters or use conditional convolutions to adapt to different quality levels. Others, like
Cai et al. (Cai et al., 2019) and Yang et al. (Yang et al., 2021), employ multi-scale representations
or slimmable networks for content-adaptive rate allocation. Cui et al. (Cui et al., 2021) and Lee et
al. (Lee et al., 2022b) introduce gain units and selective compression, respectively, to further refine
bitrate control. Progressive compression(Toderici et al., 2017; Johnston et al., 2018) develops scalable
bitstreams for bitrate flexibility. Zhang et al. (Zhang et al., 2024a) propose to explore the receptive
field with uncertainty guidance for both quality and bitrate scalable compression. Lee et al. (Lee
et al., 2022a) propose to encode the latent representations into a compressed bitstream trip-plane to
support fine-granular progressive compression. Jeon et al. (Jeon et al., 2023b) further improve it with
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Figure 2: The overall framework of our Control-GIC. In the figure, all components cooperate for
efficient compression with end-to-end training, and dashed lines represent the unparameterized
entropy coding module. The symbols in the diagram are defined as: m: the binary mask; (·)↓:
average pooling operation; ⊙: element-wise multiplication; f(·): the frequency distribution.

context-based trit-plane coding, increasing the R-D performance. In contrast to these methods, this
work leverages VQGAN, integrated with classical coding principle (Huffman, 1952), to design a
controllable generative compression framework. Our method allows highly flexible and controllable
bitrate adaptation while generating plausible results with solely one optimized weight set.

3 METHOD

Our goal is to learn a unified generative compression model capable of compressing an image x
for flexible and continuous bitrates while ensuring high perceptual fidelity. To this end, we propose
Control-GIC, where the overview architecture is illustrated in Figure 2. Control-GIC contains three
components: 1) granularity-informed encoder to encode the image into variable-length codes; 2)
statistical entropy coding module for bitrate reduction; and 3) probabilistic conditional decoder to
reconstruct perceptually plausible results.

3.1 GRANULARITY-INFORMED ENCODER

Given an input image x ∈ RH×W×3, as illustrated in Figure 2, Control-GIC considers the entropy
of local patches as the basis of the information density distribution (See Appendix A.2 for proof of
correlation) of the image, and divides it into multiple non-overlapped patches sorted by their entropy
value from low to high. Then, the granularity-informed encoder distills these patches into hierarchical
features of three granularities: fine-grained z1 ∈ RH

4 ×W
4 ×d, medium-grained z2 ∈ RH

8 ×W
8 ×d, and

coarse-grained z3 ∈ RH
16×

W
16×d. Supposing there is a target bitrate corresponding to the ratios

(r1, r2, r3) ∈ [0, 1] of three granularities, each ratio specifies the proportion of elements with the
lowest entropy to be retained from each zi(i = 1, 2, 3) and yield binary masks mi ∈ {0, 1}. Here,
mi aligns with the spatial dimensions of zi to localize the retained elements in zi. This process is
executed from coarse to fine, progressively and finely assigning the multi-grained representations.

Subsequently, the determined features in each {zi}3i=1 are matched to the codes in the codebook C
and quantized, producing ẑi and a set of discrete VQ-indices Indi that represent the closest matches
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in C based on Euclidean distance. This quantization step q(·) is mathematically formalized as{
ẑi = q(zi) = argmin

ck∈C
∥zi − ck∥,

Indi = k.
(1)

where ck denotes the k-th code in the codebook. With three quantized counterparts {ẑi}3i=1, we can
construct the hybrid representation ẑ to match the spatial scale of the finest granularity as follows:

ẑ = (ẑ1 ⊙m1) + (ẑ2 ⊙m2)↑2
+ (ẑ3 ⊙m3)↑4

, (2)

where (·) ↑4 and (·) ↑2 signify upsampling operations that amplify the spatial dimensions by factors
of 4 and 2, respectively. We use nearest neighbor interpolation as it employs replicates values of
feature points along both the width and height, ensuring the preservation of the original local structure
integrity for each feature point. ⊙ is element-wise multiplication along the spatial dimension.

3.2 PROBABILISTIC CONDITIONAL DECODER

Based on the VQGAN pattern, our decoder receives the indices of ẑi and correspond masks mi from
the encoder, to reconstruct the features of the encoder by searching for the codebook. However,
directly feeding ẑ into the decoder layers is sub-optimal as many non-linear transformations in the
decoder can cause information loss. While the upsampled components ẑ2 and ẑ3 maintain their local
structure through direct value duplication (Eq. (2)), their global structure is inevitably changed.

To address this problem, we introduce a probabilistic conditional decoder, which formalizes the
reconstruction through the conditional probability. Specifically, two downsampling operations (·) ↓4
and (·) ↓2 are first employed to downscale ẑ back to the {ẑi ⊙mi}3i=1 losslessly. We provide (ẑ)↓4

as the initial decoder input y1 which contains the same ẑ3 ⊙m3 as the encoder output to ensure the
accuracy of the input. ẑ1 ⊙m1 and ẑ2 ⊙m2 are provided as conditions to y2 and y3, respectively.
These conditions serve as additional guidance for the reconstruction process:

y2 ∼ p(y2 | y1, (ẑ)↓2 ⊙m2),

y3 ∼ p(y3 | y2, y1, ẑ ⊙m1).
(3)

Consequently, the decoder D begins with the (·) ↓4 operation on ẑ to produce y1 that is fed into the
first decoder layer D1 to generate y2. Then, y2 ⊙ m2 are deliberately replaced with the medium-
grained representation (ẑ)↓2

⊙m2 (equal to ẑ ⊙m2). After that, D3 condition with the ẑ ⊙m1 and
replace the unexact y3 ⊙ (1−m1), ensuring the precision of features in deep layers:

y2 = D1(y1)⊙ (1−m2) + (ẑ)↓2
⊙m2,

y3 = D2(y2)⊙ (1−m1) + ẑ ⊙m1.
(4)

This systematic replacement of representations at varying granularities with increasingly precise
conditions progressively refines the latent space representation, which facilitates the decoder to
diminish information loss and substantially elevates the accuracy of the reconstructed images. It
should be noted that, compared to conventional compression methods (Ballé et al., 2017; Mentzer
et al., 2020), our method effectively avoids the information loss between the encoder and decoder
features except the quantization, thereby achieving nearly minimal-loss reconstruction.

3.3 STATISTICAL ENTROPY CODING STRATEGY

As analyzed in Sec. 3.2 and Eq. (4), the decoding process requires bitstreams comprising the features
of three granularities and their corresponding masks. Since ẑi can be retrieved by searching from
the codebook based on the indices Indi, what we need actually are the {Indi}3i=1 and the masks
{m1,m2}. These elements can be encoded via lossless encoding algorithms as they are integers.
Specifically, the mask consists of 0 and 1 which can be encoded directly into a binary stream. As
for indices, one promising solution is the prefix Huffman coding algorithm (Huffman, 1952), which
can generate the shortest average code length for a given symbol set. However, this advantage often
comes from the frequency statistics of each element. In this work, directly applying this algorithm is
suboptimal as it needs to count the indices frequency used in each independent image and acquire
a codebook that maps the indices to the binary codes. This can introduce significant bit overhead
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when reconstructing the image based on the Huffman codebook during the decoding. A simplified
approach is to treat all indices equally, i.e., assuming the frequency in the codebook is uniform.
Nevertheless, the indices, which point to codebook entries, exhibit an uneven frequency distribution,
with a minority of codes used for quantization (Zhang et al., 2023).

To address this problem, we introduce a statistical entropy coding strategy that captures the frequency
distribution of indices usage across a natural dataset during training. Each index is initialized with
a frequency count of 0, and the frequency is updated each time the index is matched during vector
quantization. Here, we utilize the frequency statistics at the endpoint of the training process to
construct a frequency table tailored for Huffman coding as it is more stable and close to the overall
data distribution. We denote the bitrate after coding as R(·), then the total bitrate of the entire image
can be formulated as:

R =

3∑
i=1

R(Indi) +R(m1) +R(m2). (5)

Note that our model does not optimize network parameters for a specific bitrate. During inference,
we control the bitrate using different multi-granularity allocation ratios. For example, we can set a
group of hyperparameters {r1, r2, r3} to represent the allocation ratios of the masks {m1,m2,m3}
at three granularities. Since the bitrate depends solely on the granularity representations of local
patches, we can flexibly determine the granularities based on the entropy values of local patches,
achieving dynamic adaptation in a target of the quality-bitrate adaptive manner in a unified model
without any post-training.

3.4 LOSS FUNCTION

In our experiments, the overall loss function L for training Control-GIC contains the loss associated
with the VQVAE architecture and GAN component in VQGAN (Esser et al., 2021). The optimization
objective of LVQVAE(E,G,C) is two-fold: 1) minimizing the distortion between the original inputs x
and their reconstructions x̂, and 2) constrain the divergence between the continuous representations
z = E(x) and their quantized versions ẑ, as follows:

LV QV AE(E,G,C) = d(x, x̂) + d(z, ẑ)

= (dM + dP )(x, x̂) + ∥sg[z]− ẑ∥22 + ∥sg[ẑ]− z∥22, (6)

where we use MSE (dM ) and LPIPS (dP ) to measure the reconstruction distortion. sg[·] denotes
the stop-gradient operation widely utilized in VQ-based models to overcome the non-differentiable
nature of quantization. sg[·] enables the quantized representations ẑ to propagate gradients directly
for optimizing the codebook C and allows the continuous representations z to receive gradients for
the refinement of the encoder E. Our Control-GIC deviates from the conventional R-D optimization
paradigm with no-parametric indices compression. This enables the model to adapt flexibly to various
data types and quality levels, transcending the fixed R-D trade-off in most generative methods.

For GAN loss, we use the patch-based discriminator in (Isola et al., 2017) to differentiate between
original and compressed images:

LGAN ({E,G,C}, D) = Ex∼p(x)[logD(x) + log(1−D(G(ẑ)))]. (7)

Therefore, the total loss L is formulated by

L = LV QV AE + λLGAN . (8)

We use the hyperparameter λ to control the trade-off between VQVAE and GAN losses.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Our method is based on MoVQ (Zheng et al., 2022) which improves the VQGAN model by adding
spatial variants to representations within the decoder, avoiding the repeat artifacts in neighboring
patches. We leverage the pre-trained codebook in MoVQ and carefully redesign the architecture.

Training & Inference. We randomly select 300K images from the OpenImages (Krasin et al., 2017)
dataset as our training set, where the images are randomly cropped to a uniform 256× 256 resolution.
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Figure 3: Comparisons with existing methods on the Kodak. The lines with forks represent generative
compression methods and the lines with rhombus represent variable-rate and progressive methods.

Within our model, we take three representation granularities: 4×4, 8×8, and 16×16. The codebook
C ∈ Rk×d comprises k = 1024 code vectors, each with a dimension of d = 4. We train the model
for 0.6M iterations with the learning rate of 5 × 10−5 on NVIDIA RTX 3090 GPUs. Throughout
the training, we maintain the ratio setting of (50%, 40%, 10%) for the fine, medium, and coarse
granularity, respectively. During inference, our Control-GIC can process images of any resolution
and allow fine bitrate adjustment using a unified model.

Evaluation. We evaluate our method on the Kodak (Kodak, 1993), DIV2K (Agustsson & Timofte,
2017), and CLIC2020 (Toderici et al., 2020) datasets. Kodak contains 24 high-quality images
at 768 × 512 resolution. DIV2K and CLIC2020 contain 100 and 428 high-resolution images,
respectively, with resolutions extending up to 2K. We carry out multi-dimensional evaluation and
utilize a comprehensive set of evaluation metrics including perceptual metrics: LPIPS (Zhang et al.,
2018), DISTS (Ding et al., 2020), distortion metric: PSNR, generative metrics: FID (Heusel et al.,
2017), KID (Bińkowski et al., 2018), as well as the no-reference measurement: NIQE (Mittal et al.,
2012) to thoroughly assess the performance of our method. More details are in the Appendix A.1.

4.2 PERFORMANCE COMPARISON

We compare the proposed Control-GIC with four types of state-of-the-art (SOTA) image compression
methods: (1) Generative compression methods. HiFiC (Mentzer et al., 2020) and MRIC (Agustsson
et al., 2023) leverages conditional GAN to purse the rate-distortion-perception trade-off. MS-
ILLM (Muckley et al., 2023) improves statistical fidelity using local adversarial discriminators.
CDC (Yang & Mandt, 2024) is a representative diffusion-based lossy image compression approach;
(2) Variable-rate and progressive compression methods. SCR (Lee et al., 2022b) proposes a
3D important map adjusted by quality level to select the representation elements for variable rates.
CTC (Jeon et al., 2023a) progressively decodes the bit stream truncated at any point to regulate the
bitrate; (3) Classical NIC method. M&S (Hyperprior) (Ballé et al., 2018) trains separate models for
different bitrates; (4) Traditional codecs BPG (Bellard) and VVC (VTM10.0) (Bross et al., 2021).

R-D Performance. In Figure 3, we first provide the R-D curves for all methods, evaluated using four
metrics: LPIPS, DISTS, PSNR, and NIQE, on the Kodak dataset. Our Control-GIC surpasses most
methods across 4 distinct metrics and achieves comparable performance with the most state-of-the-art
methods MS-ILLM and MRIC in LPIPS and NIQE, even though they are trained separately for
specific R-D points. Compared to SCR and CTC, Control-GIC achieves finer granularity flexibility
for bitrate control while preserving obvious preferable perceptual quality. Besides, since conventional
CNN-based NIC methods, e.g. M&S (Hyperprior) and SCR, optimize for the R-D trade-off using
pixel-wise MSE loss, it can be observed that they produce relatively higher PSNR than generative
methods.

Then, we conduct comparisons on the DIV2K (Agustsson & Timofte, 2017) dataset. As illustrated
in Figure 4, in addition to the four metrics in Figure 3, we include FID and KID to provide a
more comprehensive evaluation. The results demonstrate that our Control-GIC maintains promising
competitiveness against existing methods in almost all the metrics across a wide spectrum of bitrates.
We also investigate the effectiveness of our method on the CLIC2020 dataset, where the results are
provided in Figure 10 (see Appendix A.5).
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Figure 4: Compression performance on the DIV2K with compared methods. The lines with forks
represent GIC methods, and the lines with rhombus represent variable-rate and progressive methods.

Figure 5: Comparison of model efficiency for all methods based on four terms: encoding time (s),
decoding time (s), BD-rate saving (%), and training steps (M) on the Kodak dataset. The diamond
icons represent variable-rate and progressive methods, and the triangles represent GIC methods,
with the number of iterations required for model training and the encoding/decoding time multiplier
compared to our method labeled in parentheses after each method name.

Model Efficiency. To demonstrate the efficiency of the proposed method, in Figure 5, we analyze
existing state-of-the-art methods and our Control-GIC on four terms: encoding time (sec.), decoding
time (sec.), BD-rate saving (%) and training steps (M). For fair comparisons, all the methods are
evaluated using their original public code and pre-trained models on the same NVIDIA 3090 GPU.
We calculate the average encoding and decoding time on the Kodak dataset. The BD-rate saving is
evaluated by quantifying the Bpp-LPIPS results, using VVC as the anchor. As shown in Figure 5,
MRIC, MS-ILLM, and Control-GIC obtain very close BD-rate saving and are superior to others. For
the inference speed, M&S, CTC, and HiFiC suffer from critical time costs in both encoding and
decoding. CDC applies a lightweight diffusion variational autoencoder, which benefits the encoding
process but struggles with more decoding time due to its iterative reverse process. Our method
achieves the fastest encoding/decoding time, which is 7× faster than MS-ILLM and 4× faster than
MRIC in encoding, and 3× faster than MS-ILLM and 1.5× faster than MRIC in decoding. Moreover,
the single-point training methods (e.g., M&S, HiFiC, CDC, MRIC, MS-ILLM) require independent
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0.280 / 0.042

M&S
0.304 / 0.053

SCR
0.266 / 0.089

CTC
0.285 / 0.051

HiFiC
0.288 / 0.038

CDC
0.275 / 0.040
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0.274 / 0.045

Control-GIC
0.275 / 0.038

Figure 6: Reconstructed Kodak images by existing state-of-the-art methods and our Control-GIC.
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Figure 7: The fine-grained control over the bitrate by Control-GIC. As r2 diminishes, the proportion
of fine-grained features correspondingly increases, leading to a higher total count of codes, and a
consequent increase in the bitrate (measured in bpp) and reconstruction quality (the lower left corner
visualizes the difference maps between the original image and reconstructed ones).

training of n models for n R-D points. The proposed model requires only a single training session
that enables compression across various bitrates, with the total training steps being substantially
reduced to 0.6 million steps. Although SCR and CTC support multiple compression rates in a single
model, they still involve many more training steps, especially SCR which is more than 15× that
of ours. By comparison, our Control-GIC can achieve a promising balance among training costs,
inference speed, and BD-rate saving.

Qualitative Comparison. In Figure 6, we visualize the reconstructed images by all compared
methods. As we can see, VVC, M&S, SCR, and CTC produce the results with noticeable blurs and
artifacts. While HiFiC, CDC, and MS-ILLM can yield clearer details, their images contain some
misleading textures and artifacts not present in the original ones. By comparison, our method excels
at preserving texture integrity and image sharpness. More visual results are in Appendix A.7.

4.3 ABLATION STUDY

Fine-grained Control of Bitrate. As analyzed in Sec. 3.1, the proposed Control-GIC can flexibly
control the bitrates through the granularity ratios (r1, r2, r3). To validate the effects, in Figure 7, we
visualize the reconstructed samples of our method, where VVC is adopted as a reference. We fix the
ratio of the coarse-grained features as r3 = 50% and adjust the ratio of medium-grained features r2,
thus one can directly obtain the ratio r1 = 1− r2 − r3 for the fine-grained features. It can be observed
that, as r2 diminishes, r1 increases, resulting in a higher total count of codes and, consequently, a
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w/o. med, fin

w/ med

w/ fin
Ours

w/o. med, fin

w/ med

w/ fin
Ours

w/o. med, fin

w/ med

w/ fin
Ours

Figure 8: The ablation experiments on multi-grained conditions for the probabilistic conditional
decoder. All experiments are performed on the DIV2K dataset.

Table 1: Bit cost comparison between our statistical entropy coding and Huffman coding with uniform
frequency for each index on the Kodak dataset.

Granularity Ratio Huffman w. Uniform Frequency Statistical Entropy Coding (Ours) Bit Saving (%)

100%, 0, 0 0.625 0.594 5.0%
60%, 30%, 10% 0.445 0.432 2.9%
20%, 50%, 30% 0.235 0.234 0.4%

higher bitrate (measured in bpp), where the perceptual quality gradually improves. Furthermore, the
continuous controllable compression in Figure 7 indicates that our method enables precise regulation
of the bpp, allowing for minute adjustments within a range as narrow as 0.001 (as exemplified by the
change from 0.4171 in the third-to-last column to 0.4172 in the second-to-last column).

Impacts of Probabilistic Conditional Decoder. In this work, we propose the probabilistic
conditional decoder which formalizes the reconstruction through the conditional probability. Here,
we investigate the contributions of the conditions: the medium-grained (ẑ)↓2 ⊙m2 (denoted as med)
and fine-grained ẑ ⊙ m1 (denoted as fin) to the decoder in Eq. (4) to reveal the impacts of the
proposed probabilistic conditional decoder, where their R-D performance is illustrated in Figure 8.
We can observe that the model without the med and fin produces the worst results in three metrics.
Besides, med and fin present a significant improvement in model performance, and conditioning
upon both presents the best results, especially on DISTS. Moreover, the results also validate that
adding the fine-grained fin to the model brings more benefits than adding med. This is because
the fine-grained fin can correct the features in deeper layers of the decoder, thereby improving the
accuracy after multiple non-linear transformations within the decoder.

Efficiency of Statistical Entropy Coding. In Table 1, we compare the proposed statistical entropy
coding strategy to Huffman coding with uniform frequency for each index. The superiority of our
statistical entropy coding strategy becomes increasingly evident as more codes are employed (i.e.,
higher bpp) in the coding process. Notably, at the highest bpp, our approach achieves nearly 5.0% bit
saving than Huffman coding with uniform frequency distribution thereby verifying its efficiency.

5 CONCLUSION

In this work, we propose Control-GIC, an innovative controllable generative image compression
framework that addresses the critical challenge of flexible rate adaptation By leveraging a VQGAN
foundation and correlating local image information density with granular representations, Control-
GIC achieves fine-grained bitrate control across a wide range while maintaining high-fidelity
compression performance. We propose a granularity-informed encoder that represents the image
patches of sequential spatially variant VQ-indices to support precise variable rate control and
adaptation. Then, a non-parametric statistical entropy coding is devised to encode the VQ-indices
losslessly. In addition, we develop a probabilistic conditional decoder, which aggregates historic
encoded multi-granularity representations to reconstruct hierarchical granular features in a conditional
probability manner, achieving realism improvements. Experiments validate the superior effectiveness,
compression efficiency, and flexibility of our method.
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A APPENDIX

A.1 EVALUATION METRICS

We adopt a comprehensive set of evaluation metrics to thoroughly assess the performance of our
image compression and reconstruction techniques. Our selection encompasses perceptual metrics,
distortion metrics, generative metrics, and a no-reference metric, ensuring a multifaceted evaluation.
The perceptual metrics include LPIPS (Learned Perceptual Image Patch Similarity) (Zhang et al.,
2018), which measures the perceptual difference between images, and DISTS (Deep Image Structure
and Texture Similarity) (Ding et al., 2020), which evaluates the structural dissimilarity. These metrics
are crucial for understanding how closely compressed and reconstructed images resemble their
original counterparts in terms of human visual perception. We also include the widely recognized
distortion metric PSNR (Peak Signal-to-Noise Ratio), which quantifies the pixel-level differences
between the original and reconstructed images. PSNR is a standard in the field, providing a
straightforward measure of image fidelity. For generative metrics, we employ FID (Fréchet Inception
Distance) (Heusel et al., 2017) and KID (Kernel Inception Distance) (Bińkowski et al., 2018) to
offer statistical assessments of the similarity between the distributions of original images and those
of reconstructed images, which is particularly valuable in the context of generative models. NIQE
(Natural Image Quality Evaluator) (Mittal et al., 2012) stands out as a no-reference metric, capable of
evaluating image quality without requiring an original reference image. This feature renders NIQE
exceptionally beneficial in applications such as super-resolution where an original high-resolution
image may not be available. For comparison with other methods on FID and KID, we divide the
DIV2K dataset into 6,573 patches, and the CLIC2020 dataset into 28,650 patches, each of size 256.

A.2 CORRELATION BETWEEN ENTROPY AND INFORMATION DENSITY

Inspired by Celik (Celik, 2014), we measure the information density of image regions based on
a non-parametric spatial entropy algorithm. Unlike feature-level entropy models based on neural
networks (Ballé et al., 2017; 2018), our Control-GIC does not rely on a neural entropy model
and is not optimized for entropy during training. Instead, we adopt a non-parametric algorithm to
reduce computational overhead while maintaining robust performance in granularity selection. The
mathematical formulation of this process is described below.

Consider a pixel x ∈ Ω with a value px within the interval [-1,1], where Ω denotes a patch of the
image. We define the bin of each pixel value as i = −1 + 2k

n−1 , where k = 0, 1, 2, ..., n − 1, and
the number of bins n is set to 32. The Gaussian distance fx,i between the pixel x and each bin i is
computed as:

fx,i = exp

(
− (px − i)2

2σ2

)
, (9)

where σ is the standard deviation. Thus, fx,i exhibits an unnormalized, truncated discrete Gaussian
distribution over the bins i. This implies that fx,i models the probability of px being associated with
bin i, reflecting the likelihood of pixel value distribution across bins.

Next, we compute the average of fx,i across all pixels within the patch Ω to obtain the probability
distribution fΩ,i for this region. This is normalized to yield fΩ,i. The average operation is denoted as
mean
x∈Ω

, and the mathematical expression is as follows:

fΩ,i =
fΩ,i∑
j fΩ,j

, where fΩ,i = mean
x∈Ω

fx,i. (10)

Finally, the spatial entropy H(Ω) of the patch Ω is computed as:

H(Ω) = −
∑
i

fΩ,i log fΩ,i. (11)

Control-GIC considers the spatial entropy of local patches to model the information density
distribution of the image. The image is divided into multiple non-overlapping patches, which
are sorted by their entropy values from low to high, allowing the assignment of multi-grained features.
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A.3 DETAILS FOR GRANULARITY DIVISION

As illustrated in Figure 2, given an input image x partitioned into a series of patches, the encoder E
first computes the entropy values for all patches and sorts them in ascending order. We categorize
these patches into three distinct granularity levels: fine, medium, and coarse. Upon completion of
training, an index frequency table is generated, which facilitates the assignment of codes to each
index during the entropy encoding process. Through empirical analysis, for a codebook comprising
1024 codes, the average code length of all indices is determined to be L = 10.3875. For an input
image of size H ×W , the range of assigned indices spans from H

16 × W
16 to H

4 × W
4 , corresponding

to fully coarse-grained and fine-grained patch divisions, respectively. For any given combination
of granularity ratios (r1, r2, r3), the theoretical bit-per-pixel (bpp) values for indices and mask are
derived as follows:

BppIndices =
L

256
(16r1 + 4r2 + r3) , (12)

BppMask =
1

256
(4r1 + r2) , (13)

where r1, r2, and r3 represent the ratios of fine, medium, and coarse patches, respectively.

Based on these equations, a query table mapping granularity ratios to theoretical bpp values is
constructed. When a user-specified bpp is provided, the model automatically searches for the
closest theoretical bpp in the query table and assigns the corresponding granularity ratios. In our
experiments, the discrepancy between the theoretical and actual bpp values is consistently less than
0.05. Specifically, at high bit rates, the actual bpp tends to be slightly lower than the theoretical value,
whereas at low bit rates, the actual bpp is marginally higher. To address this, our model allows users
to adjust the granularity ratios to minimize the error and achieve optimal results. Table 2 provides
a simplified query table illustrating the relationship between granularity ratios and theoretical bpp
values. This approach enables precise control over bitrates, ensuring high flexibility and accuracy in
compression.

Table 2: Partial query table of granularity ratios and bpp values.

Granularity Ratio
Bpp

r1 r2 r3

0 23% 77% 0.070
10% 67% 23% 0.187
37% 46% 17% 0.330
61% 30% 9% 0.460
90% 10% 0 0.616

A.4 VISUALIZATION OF DIFFERENT GRANULARITY RATIOS

In our method, the compression performance is highly dependent on the combination of granularity
ratios r1, r2, and r3, which correspond to fine, medium, and coarse patches, respectively. To
investigate their impact, we compress images using different combinations of these ratios and
visualize the qualitative results on the Kodak dataset in Figure 9 (a). Generally, the visual quality
improves as r1 and r2 increase. This is because a higher proportion of fine- and medium-granularity
patches provides more local texture cues, which are crucial for detail recovery. However, increasing
r2 and r3 also leads to higher bitrate costs.

To further analyze the effect of granularity ratios, we conduct experiments on images containing small
faces, comparing our results with those of CDC (Yang & Mandt, 2024) and MS-ILLM (Muckley et al.,
2023). As shown in Figure 9 (b), small faces pose a significant challenge for image compression.
Both CDC and MS-ILLM struggle to recover fine details in these regions. When coarse- and medium-
granularity ratios are excessively high in the face area (i.e., large patch sizes), our model also fails to
reconstruct facial details effectively. However, by assigning fine-granularity patches to the face region
and reducing their patch size, artifacts are significantly alleviated, resulting in clearer details. For
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Original (Bpp / LPIPS)
(r1, r2, r3)

0.104 / 0.144
(0, 50%, 50%)

0.138 / 0.097
(0, 80%, 20%)

0.351 / 0.043
(40%, 50%, 10%)

0.490 / 0.033
(70%, 30%, 0)

0.606 / 0.032
(100%, 0, 0)

(a)

Original / Bpp / LPIPS
(r1, r2, r3)

CDC / 0.362 / 0.083 MS-ILLM / 0.353 / 0.043

Ours / 0.139 / 0.090
(0, 80%, 20%)

Ours / 0.226 / 0.061
(15%, 65%, 20%)

Ours / 0.339 / 0.045
(40%, 40%, 20%)

(b)

Figure 9: Compression results with different granularity ratios. (a) Building images; (b) Small face
images. Here, r1, r2, and r3 denote fine, medium, and coarse granularity ratios, respectively.

instance, our model with granularity ratios (40%, 40%, 20%) achieves better reconstruction quality at
a lower bitrate. Despite these improvements, the complexity of small faces highlights the need for
more targeted design in future work.

A.5 EFFECTIVENESS ON THE CLIC2020 DATASET

Here, we evaluate the proposed method on the CLIC2020 dataset (Toderici et al., 2020) which
contains 428 images. In Figure 10, we provide the R-D curves for our Control-GIC and existing state-
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Figure 10: Compression performance on the CLIC2020 dataset with compared methods. The lines
with forks represent GIC methods, and the lines with rhombus represent variable-rate and progressive
methods.

of-the-art methods, which are measured in six metrics: LPIPS, DISTS, FID, KID, PSNR, and NIQE.
It can be seen that Control-GIC achieves superior performance in most metrics over conventional
codecs BPG, VVC, and variable-rate and progressive methods SCR, CTC. Compared to generative
compression methods which are trained separately for multiple R-D points, our Control-GIC still
maintains competitive performance, which validates that our method can achieve optimal trade-off
between flexibility and effectiveness.

A.6 EXTENSION TO EXTREMELY LOW BITRATE COMPRESSION

As described in Section 4, our method take three representation granularities: 4 × 4, 8 × 8, and
16 × 16. The codebook C ∈ Rk×d consists of k = 1024 codes, each with a dimension of d = 4.
The lowest bitrate of our method corresponds to a fully coarse-grained partition, i.e. (r1, r2, r3) =
(0, 0, 100%). In this section, we investigate the performance of our method for extremely low bitrate
compression (< 0.05 bpp), comparing it with Mao et al. (Mao et al., 2023), a VQGAN-based method
designed for very low bitrate compression. As shown in Table 3, our method achieves the best LPIPS
on both the Kodak and CLIC2020 datasets while maintaining lower bpp, validating its superiority.
Furthermore, Figure 11 provides visual comparisons of compressed images, illustrating that our
method generalizes well to extremely low bitrates and produces vivid reconstructions.

Table 3: Quantitative performance at the extremely low bitrate on the Kodak and CLIC2020 datasets.

Dataset Kodak CLIC2020

Method Ours Mao et al. Ours Mao et al.

Bpp↓ 0.0381 0.0391 0.0372 0.0389
LPIPS↓ 0.115 0.136 0.086 0.112
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Original / Bpp / LPIPS Mao et al. / 0.0391 / 0.234 Ours / 0.0381 / 0.203

Original / Bpp / LPIPS Mao et al. / 0.0389 / 0.204 Ours / 0.0382 / 0.168

Figure 11: The visual results compressed by Mao et al. (Mao et al., 2023) and our Control-GIC at
the extremely low bitrate on the Kodak (top) and CLIC2020 (bottom) datasets.

A.7 ADDITIONAL VISUALIZATION

Original (Bpp / LPIPS) VVC (0.261 / 0.177)

M&S (0.265 / 0.204) SCR (0.256 / 0.234)
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CTC (0.279 / 0.189) HiFiC (0.309 / 0.064)

CDC (0.314 / 0.096) Ours (0.258 / 0.054)

Figure 12: Rconstructed images of Kodim22. Bitrate (bpp) and LPIPS are below each image.

Original (Bpp / LPIPS)
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VVC (1.069 / 0.093)

HiFiC (0.452 / 0.115)

Ours (0.448 / 0.066)

Figure 13: Rconstructed images of DIV2K0807. Bitrate (bpp) and LPIPS are below each image.
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