Under review as a conference paper at ICLR 2025

DUELING IN THE DARK: AN EFFICIENT AND OPTIMAL
MIRROR DESCENT APPROACH FOR ONLINE CONVEX
OPTIMIZATION WITH ADVERSARIAL PREFERENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent developments in Large Language Models (LLMs) have sparked significant
attention in Reinforcement Learning from Human Feedback (RLHF). A simple,
widely used, and cost-effective method for gathering human feedback is through
relative queries based on human preferences, where the pairwise preference of
two alternatives is often modeled as the sigmoid of their respective utility scores.
Despite the popularity of these sigmoid-based RLHF frameworks, their theoreti-
cal foundations remain underdeveloped as existing algorithms often lack the de-
sired performance guarantees, or are limited to small-scale problems due to com-
putationally intractable steps. We address this challenge by developing the first
efficient online gradient descent-based algorithm for the problem with provably
optimal performance guarantees. In fact, our proposed methods work even for ad-
versarially changing preferences, unlike existing attempts, which assume a fixed
underlying stochastic preference model. Formally, we consider the adversarial on-
line convex (linear) optimization (OLO) problem in d-dimensions, but unlike the
existing OLO framework, we assume only that the learner can observe a (weaker)
preference feedback upon choosing a few alternatives at each round. With the
objective of identifying the best arm, we propose an efficient online mirror de-
scent (OMD) based approach for the problem with regret and sample complexity
guarantees. The main challenge lies in finding a suitable gradient approximation
of the underlying (adversarially changing) utility functions solely from the weak
preference feedback, as opposed to the conventional gradient or value feedback
used in OLO. We also extend our methods beyond pairwise preferences to multi-
way preference (B-sized batched pairwise) and partial ranking feedback with im-
proved performance guarantees. Additionally, our algorithms are optimal as we
proved by matching lower bounds closing the potential of any better algorithms
for the settings.  Our contribution lays the groundwork for a practical gradi-
ent descent-based algorithm in RLHF. Supported by robust theoretical guarantees,
our approach holds promise in the current landscape of developing efficient algo-
rithms for LLMs and addressing human-Al alignment challenges.

1 INTRODUCTION

The rapidly advancing field of Al has sparked interest in Reinforcement Learning from Human
Feedback (RLHF), which incorporates human input to refine Al systems, mitigating risks in au-
tonomous decision-making and fostering systems that act aligned with users’ best interests. This
paper explores the theoretical aspects of RLHF with preference feedback, emphasizing its potential
to enhance Al alignment.

Human preference feedback is a critical form of feedback within the field of machine learning (ML).
Unlike conventional feedback models used in ML optimization literature for designing predictive
Al models, which includes demonstration [Hussein et al.| (2017); [Swamy et al.| (2023)); [Torabi et al.
(2018)), gradient-based Zinkevich|(2003); Boyd et al.|(2004); Fletcher|(2013)), value-based feedback
Flaxman et al.[ (2005); |[Cesa-Bianchi & Lugosi| (2006b); [Shamir| (2015); [Sahal (2021a), preference
feedback is a weaker form of feedback that receives only relative desirability (a.k.a. preference) of
different outcomes/actions for a given task. However, on the positive end, preference feedback can
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capture a more nuanced understanding of human values and priorities by tallying the relative desir-
ability of different outcomes. Studies in psychology and cognitive neuroscience also corroborate the
fact that humans are often naturally more comfortable providing relative feedback compared to the
other modes (Musallam et al.| 2004} Kahneman & Tversky, [1982), hence the training data tend to be
less biased and resource-efficient. Consequently, this form of feedback enables Al systems to learn
more complex and subtle aspects of human intentions, which are often difficult to encode through
demonstrations or reward feedback. This also makes RLHF with preference feedback a powerful
tool for improving the reliability and safety of Al systems in practice.

To understand the RLHF with preference feedback problem Wu & Sun| (2024); Xie et al.| (2024);
Xiong et al.| (2024)); [Rafailov et al.| (2024) more formally: In the simple online/active exploration
RLHF with preference feedback setting, the learner can sequentially query a pair of actions and
receive binary 01 preference feedback indicating the preferred item. The objective for these classes
of problems is usually to find a good (value-maximizing) policy 7 : C — D, a mapping from the
context space C to decision space D, as efficiently as possible. The decision space D represents
the set of actions/alternatives to learn from, e.g., for language models D could be the class of all
words (or tokens), the set of trajectories for autonomous car driving, or the set of movies for a
movie-recommender system, etc.

Existing work on preference-based learning for online (exploratory) RLHF, whether empirical or
theoretical, is limited by computationally inefficient algorithms (Xie et al.,2024; |Xiong et al.,[2024)).
Many current approaches struggle to scale effectively with the complexity of real-world scenarios,
often requiring extensive computational resources and time to process human feedback and update
Al models accordingly. This inefficiency not only hampers the practical deployment of preference-
based learning systems but also restricts their ability to quickly adapt to dynamic environments and
evolving human preferences.

Limitations of Existing Online RLHF with Preference Feedback Algorithms. The well-cited
work of [Rafailov et al.[(2024); Ouyang et al| (2022); |Chen et al.| (2024) use offline data in nature
which does not allow active exploration and also lack convergence guarantees. Recently the liter-
ature saw a surge of papers on online RLHF with preference feedback (Xu et al., [2020; |Chatterji
et al., 2021} |[Saha et al., 2023} [Sahal [2021a; [Kausik et al.l 2024} |Das et al., [2024), however, these
algorithms are based on the optimism in the face of the uncertainty (UCB based) principle which
requires maintaining confidence sets and optimizing over the policy space which could be compu-
tationally intractable. Few studies (Efroni et al. [2021} [Li et al., 2024; 'Wu & Sun, 2024) have also
considered Thompson Sampling (TS) approaches as an alternative but again updating and sampling
from the posterior distribution could be computationally hard as well, making them impractical for
real-world applications. Quoting from Xie et al.|(2024), “However, the most powerful approaches in
this space are computationally intractable in the general reinforcement learning (RL) setting (Jiang
et al., 2017} Jin et al., 2021} |Foster et al.| [2021)), and prior attempts to adapt them to RLHF either
make unrealistic modeling assumptions (i.e., do not allow for general function approximation) (Xu
et al.| 2020; Novoseller et al., [2020; Saha et al.| 2023; /'Wu & Sun, |[2024;|Zhan et al.,|2023; |Du et al.,
2024} Das et al.l [2024)), or are computationally inefficient and not feasible to faithfully implement
(Chen et al., [2022; Wang et al.l [2023; |Ye et al.| 2024)),” which nicely summarizes the state of the
literature. In fact, the computational efficiency of [Xie et al.| (2024) itself is in question since they
require to optimize in the policy space using methods like PPO (Schulman et al.,|2017) which might
not be runtime efficient unless the policy space is finite or parameterized under some restrictive
assumptions.

Consequently, there is a pressing need for the development of more computationally efficient al-
gorithms that can harness preference feedback in a timely and resource-effective manner, thereby
enhancing the feasibility and responsiveness of Al alignment strategies. In this work, we present
the first mirror (gradient) descent-based algorithm for the problem with an optimal performance
guarantee.

1.1 CONTRIBUTIONS

For simplicity, we frame the RLHF problem as a best-arm identification problem in the online linear
optimization (OLO) framework Shamir| (2015); Hazan|(2019) in dimension d, with pairwise prefer-
ence feedback (see Sec.[2). Note this is the first step in designing gradient descent-based approaches
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for RLHF which certainly will play a critical role in extending these methods for more complex
policy optimization settings.

Key Contribution. Our contributions are multifaceted. At a technical level, we are the first to
address the problem of adversarial online linear optimization with preference feedback, which has
critical implications in the RLHF with preference feedback literature. Our specific contributions
are: *(1) Algorithmic Contribution. Our key contribution is to design an online mirror-descent
based (OMD) algorithm to obtain a near-optimal O(d+/T') regret algorithm for online optimization
with adversarial preferences (Alg. [[,Thm. [I). Our algorithm is motivated by the Scrible algorithm
of Hazan|(2019). However, Scrible operates under ‘value feedback’, as opposed to preference feed-
back of our setting, which allowed them to use the standard ‘one-point gradient estimation’ tech-
nique (Flaxman et al., [2005) to estimate the loss functions. One of our primary contributions in
our proposed algorithm Double-Scribleis to estimate the loss function per round from the weaker
preference feedback. Consequently, we had to adapt to a different proof analysis to incorporate
the changes which finally led to near-optimal (upto log factors) O(d\/T) regret bounds of Double-
Scrible (Thm.[I)). *(2) Performance Limit Analysis. To understand the effectiveness of our anal-
ysis, we further prove a matching lower bound of Q(d\/T ) to show that our algorithm is within a
logarithmic factor of the optimal performance limit (Thm. [3). Deriving the lower bound for this
problem was non-trivial, we derive this from the first principle lifting tools from the classical litera-
ture of information theory.

Additional Contributions. We enriched and extended our above result with pairwise preference in
multiple ways:

1. In Sec. 4] we first generalize the above algorithm to multiwise (batched) preference feedback,
where the learner can query a set of B pairwise preferences in one go. In many settings, it is
not feasible to actively update the model’s prediction after every round, perhaps due to commu-
nication delays, parallel processing or time/ cost overhead. Instead, the system may prefer to
collect a bunch of comparison queries in a batch and then update its model to generate the next
set of queries. In such settings, batched RLHF is a natural model to consider. Our improved
analysis of Alg. [2] the batched variant of Double-Scrible shows that one can achieve a faster

d . .
O( \/m\/f ) regret learning rate for this case (Thm. .
2. Next we consider another interesting feedback model in Sec. [5| which generalizes pairwise pref-
erence feedback to subsets of size k (for any k£ > 2), and allows the learners to query partial
rank ordered feedback of length m € {1,...k}. The objective was to understand if the learning
algorithm is allowed to query from a larger set of k alternatives and obtain a richer m-length
ranking feedback, can it learn faster? What is the optimal trade-off of the learning rate with m
and k£? Our proposed algorithm MNL-Scrible addresses this setting with a regret guarantee of

s d . . o .
O(im V/T). The k (subsetsize) independence of the result could be surprising to many

as one may expect that larger subsets may lead to faster convergence! However, this is not the
case we explained in Rem. [§] On the other hand, as expected the regret indeed improves with the
increasing length of the rank-ordered feedback m. Our algorithm MNL-Scrible actually exploits
the key ideas of our batched algorithm Alg. 2|by cleverly extracting m-batched pairwise prefer-
ence information from the Top-m ranking feedback o, ;. We describe the algorithm in Sec.
and its regret performance follows almost immediately from Thm.

3. Same as Thm. [3] we corroborate the performance analysis of all our algorithms with their cor-
responding lower bound analysis to understand the tightness of our algorithmic guarantees. Pre-
cisely, for the B-batched feedback setting we show that our regret guarantee of BaBle-Scrible is
optimal (up to log factors) with a matching lower bound analysis Thm.[6] Similarly, our Top-m
ranking feedback lower bound of Thm. 9] justifies the tightness of regret performance of MNL-
Scrible. All our lower bounds are derived from the first principles of information theory.

Advantage of Gradient Descent Methods: Gradient-based methods have multiple advantages
compared to confidence-based methods: (1) GD/OMD handle high-dimensional problems effi-
ciently due to their reliance on gradient information: (2) They are suitable for both stochastic and
adversarial environments, making the gradient-based methods robust to changing data distributions
or the underlying loss/reward functions which is often more practical for modeling real-world prob-
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lems, (3) These methods can optimize a wide range of objective functions, including non-linear,
non-convex, and constrained problems, (4) Gradient descent algorithms are simple to implement,
even seamlessly integrate with modern deep learning frameworks, making these methods computa-
tionally efficient, unlike many UCB and TS based methods which often do not have a closed form
solution Saha et al.| (2023); |Das et al.| (2024)) or sampling from the posteriors could be complicated
Novoseller et al.| (2020), and (5) Gradient descent techniques are inherently robust to model mis-
specification and smoothly integrate with differential privacy techniques.

2 PROBLEM SETUP

Notation. Let [n] = {1,...n}, forany n € N. Given a set S and two items z,y € S, we denote
by z > y the event z is preferred over y. For any r > 0, let By(r) and S4(r) denote the ball and the
surface of the sphere of radius r in d dimensions respectively. I; denotes the d x d identity matrix.
For any vector x € RY, ||x||2 denotes the £ norm of vector x. 1(¢) is generically used to denote an
indicator variable that takes the value 1 if the predicate ¢ is true and 0 otherwise. Unif(.S) denotes

a uniform distribution over any set .S. We write O for the big O notation up to logarithmic factors.
For any set 2 C R?, int(2) denotes the interior of the set 2. Ber(p) defines Bernoulli distribution
with parameter p € [0, 1].

2.1 PROBLEM: ADVERSARIAL LOGISTIC DUELING BANDITS (LoG1IT-DB):

We consider an online 7' round sequential decision-making game on a decision space D C R¢
in the Adversarial Online Linear Optimization (Bandits) Hazan| (2019); [Abernethy et al.[ (2008))
framework. At every round, the algorithm plays x;,y: € D and observes a binary feedback o, s.t.

0y ~ Ber(a(Q’{T(xt — yt))).

We denote the probability of arm x being preferred over arm y as:
exp(6; ' x)
* 1 * T
exp(0; x)+exp(0; 'y)

Note we call the problem Logit—-DB since the preference relation P; follows a logistic model, as
o : R+ [0,1] is the logistic link function, i.e. o(x) = (1 + %)L

Pt(x,y):U(OIT(x—y)) = , Vx,y € D.

Objective-I: Regret Minimization w.r.t. the Best Choice. The goal of the algorithm is to mini-
mize the cumulative regret, defined as:

Regle® . 3° {(Pxx*,xt) — U2+ (Plcty) - 1/2)]

t=1

assuming x* <— arg maxxep ZtT:l 0; Tx the best (highest scoring) arm in the hindsight.

* T %
Remark 1. For any x € D, note then W < P(x*,x) —1/2 < 0} (x* — x), when
D C By(1). We prove this in App. |A| Consequently, in the rest of the paper, we will address the
regret

T «T «T
_— Logit-DB o * 0 *—
Rengt = E |: t (X Xt)_; t (X yt) 7
t=1

. Logit-DB — Logit-DB L. . — Logit-DB
noting Regp < Regr from Rem. |l thus designing algorithm to bound Reg would
suffice to bound Reglq‘fg’t_DB.

Objective-II: Sample Complexity. One can also consider a different learning objective where
instead of regret minimization the goal is to find ‘e-best arm’. Precisely, we define an arm x € D
to be an e-best arm if Z;‘FZI HIT(X* — X) < e. The goal could be find any such x € D with the
least number of samples.
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Remark 2. An attentive reader might have already noticed that for our problem setting, regret
minimization is a stronger objective than the latter as a regret guarantee of a learning algorithm

immediately yields a valid sample complexity bound for the same setting X = % ZZ;I (thiyt)

— Logit-DB
To understand Rem. more formally, consider any algorithm A with regret bound RegTOgl (A) <

RA(T). Then

1« 1« 1 o (x¢ +y¢)
w1 * ~ * 1 * t t
20 ) = 130 [ gy ]
t=1 =1 t=1
T T T T
1 sT (xt +y¢) 1 T s (xe+yd)| _ Ba(T)
P L e R S S e
t=1 t=1 t=1 t=1
Let use define g(a) = Ra(a)/a for any a € N, then equating g(T") < e, the desired sample
complexity 7' = g~ (e).

2.2 PROBLEM SETUP: ADVERSARIAL BATCHED LoGIT-DB

As motivated in the introduction, from a practical viewpoint it might be hard to actively up-
date the parameters of the learning algorithm at each round ¢ due to time or cost overhead.
Distributed deployment of the system might also hinder an active sequential adaptation of the
learning algorithm due to parallel processing. Thus a natural variant of Logit—-DB problem
is to consider a batched feedback model where the learner gets to (actively) query B-pairwise
queries in a batched fashion: Precisely, at each round ¢, the learner gets to query B-pairs
{(x},y}),(x2,¥2),...,(xP,yP)} together and observes the corresponding B-pairwise prefer-

ences o}, 02, . ..o, where o} ~ Ber(c (6] ' (xi — yi))).

. . ——Batched-LogitDB . . . . .
Regret Objective. Same as Reg; , the objective of the learner, in this case, is to

minimize the regret over 7' rounds, defined as:

_— Batched-LogitDB T 17 OIT(xj —x) + GZ‘T(X;‘ -y}
T 1D :

i=1

Note we can also consider the exact same Sample complexity objective in this setting as well, as
defined above for Logit-DB in Sec.[2.1]

2.3 PROBLEM SETUP: ADVERSARIAL MULTINOMIAL LOGIT BANDITS (MNL-BANDITS):

In this setting, we generalize the Logit-DB problem (Sec. [3) to the subsetwise case, where

the learner can observe preference feedback over a subset of items. More formally, as be-

fore, we consider a decision space D C R¢ and at every round the algorithm plays a k-subset

Sy = {x},x?,...x}} C D and gets to see Categorial feedback o; € [k] indicating the index of the
exp(GZTxi)

Sk exp(0; Tx])’

In fact, one could even consider a top-m ranking generalization of the above feedback model. Let for
any subset S, ¥ g = {0 | o is a permutation over items of S}, where for any permutation o € Xg,
o (i) denotes the element at the i-th position in o, ¢ € [|S|]. Then one can further define X :=
{om :=(0(1),...,0(m)) | 0 € g} and formally define the top-m ranking feedback as follows:

winning arm in S; s.t. o, ~ Categorial (p},p}, ..., p}), where p! =

Generalized Top-m ranking of items (TR-m): In this case at every round ¢ the environment
returns a ranking of the top m items from S; (|.S;| = k) by drawing a full ranking o; € Xg, over S;
according to Plackett-Luce (PL) model without replacement, and returns the first m ranked elements
of o, ie., (o(1),...,0(m)). More precisely, if 0,y ; is any random top-m ranking on a k-subset .S,
drawn according to the multinomial (MNL) model (Saha & Gopalan, 2019), then for every position
1e€m],1<m<k-1,
exp(67 ' xi)
O, (1) ~ Categorial (pi, ph, - - -, DL \{PS, (1) Pl o(2)s - Porn o(i-1)})s S DF = = Ll
Y ’ ' Zj:l exp(6;  x7)
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is drawn by successively sampling m winners from S according to the PL model, without replace-
ment. Thus (equivalently) we have:

m

Pt(am,t|S) = H

m * T _omt(J * T _om,e(3)\]
i=1 Zj:i exp(0; x; (])) + ZJGSt\m exp(6; x; (J))
such that Sp\p, =S¢ \ {om,¢(7) }iZ.

exp(6; ' x7")

Note for £k = 2, the top-m ranking feedback is equivalent to the dueling feedback discussed in

Sec.2.11

Regret Objective. Following the objective from Logit-DB from Sec. [2.1] and Rem.[T] one can
similarly define the regret for this setup as:

T
Rear™ =3 (1 T oo ),

t=1 XES:

. . T . o
again assuming X* := arg maxXyxcp Zle 0; x the best arm in the hindsight.

3 DUELING CASE: ALGORITHM FOR LocIT-DB PROBLEM

In this section, we investigate the Logit-DB problem (Sec. [2.T) for the pairwise preference (duel-
ing) feedback.

Algorithm description: Our algorithm is motivated by the Scrible algorithm from |Abernethy
et al| (2008); Hazan| (2019), which is a variant of the online mirror descent algorithm with a
self-concordant barrier Boyd et al.| (2004) as the regularizerP_-] The algorithm iteratively updates
the decision variable w; by minimizing the sum of the v-regularized linearized loss within the
§-contracted decision set D5 := {x | ti;x € D}. Precisely at each step ¢, we compute
W; = arg minyep; {77 Zi_:ll glw+ w(w)}. We then perform eigendecomposition of the Hes-
sian V2¢)(w;), sample an index i, uniformly at random from [d], and generate perturbed solu-
tions Xy = wW; + V4 ﬁvmt and y; = w; — ﬁvm—t. It is important here to note that

x¢, ¥+ € D owing to the properties of self-concordant barrier functions, as argued in Lem. [I0]
By playing the pair (x;,y;) and observing the outcome o;, we construct the gradient estimator
g = %(ot — %)\ /At,i, Ve,i, for the next iteration and continue to the step iteration. Thm. analyze

the regret performance of Alg.|l|yielding an optimal O(\/T) regret for the problem, as justified in
Rem. ] Due to space limitations, the algorithm pseudocode is given in App. and the detailed
regret analysis of Double-Scrible (Alg.[T) is given in App.[B.3]

Theorem 1 (Regret Analysis of Alg. EI) Consider the decision space D, such that Vi)(w) >

H%,wId, Yw € D. Then for the choice of n = d‘&%, § = 7 and v, < 0.7Hp y, the Double-

Scrible (Alg.|l) guarantees a regret bound:

_—~Logit-DB dv/vT log T
Reg " <O(W0g).
Hpy

It is worth noting that Hp ,; is generally a problem-dependent constant for bounded decision sets
and most choices of 1), as we explain in Rem.

Remark 3 (Minimal Eigenvalue Assumption). Thm. |I| holds assuming the minimal eigenvalue of
V2y(w) is larger than H. %, - This assumption was not required in the analysis of Scrible Abernethy
et al.|(2008), however, we could not circumvent it. The reason we are required to make this assump-
tion lies in the fact the reward model we optimize is a non-linear model, whereas the reward model
in/Abernethy et al.|(2008) is linear in w. This assumption is equivalent for assuming 1 (w) is strongly
convex and may hold for different choices of decision sets. For example, for a decision set which

!Interested readers may check|Luo|(2017);Boyd et al.|(2004);|Hazan|(2019) for the properties and examples
of self-concordant barrier functions.
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is the interior of the unit ball B4(1) and choosing p(w) = —In(1 — ||w||§) is a 1-self concordant

barrier and it is easy to check that Hl%-xb = 2. Another example could be (w) = — Zle In w;,

which is a d-self-concordant barrier in the unit ball B4(1) and it is straightforward to verify that in
this case H%ﬂ/) =d.

Remark 4 (Optimality of Thm.[T). The rate depicted in Thm.[l)is optimal (up to logarithmic fac-
tors), as follows from the existing lower bound of the Logit—DB problem (Sahal(2021D)).

Remark 5 (Advantage of Our Approach over Existing Algorithms for Logit -DB). (1) Prior works
that considered online learning in the generalized linear bandit setting |Li et al.| (2017, 2024)) are
required to assume a lower bound on the derivative of the sigmoid link function, which results in
a multiplicative dependency on k = minscr) arginf)e_g:|<1 J’(GT(X —y)) in the Logit—-DB
problem|Saha et al.|(2023); |Das et al.|(2024). Interestingly, we do not need to make this assumption,
owing to the nice trick of exploiting the pairwise preference of symmetrically opposite points X,
and yy, as shown in Lem.[[1} This is a clear advantage of our approach over the existing GLM-
bandits based approach for Logit —DB which relies on UCB estimation based confidence bounding
technique. (2) Further, since our approach relies on gradient-based techniques, they are extremely
computationally efficient—the runtime requirement of our method is just O(dT'), compared to the
prior methods which are computationally infeasible and not implementable in practice |Saha et al.
(2023)); |Kausik et al.|(2024); \Das et al.|(2024]).

Due to page limitations, the complete proof of Thm.[T]is moved to App.

We also note that the sample complexity bound of Double-Scrible (Alg.[I) directly follows from
Rem. 2] leading to the following result.

dv
2 2
HDWe

Corollary 2 (Sample Complexity Bound of Double-Scrible (Alg.[1))). Under the parameter settings
ithe e-sample complexity of Double-Scrible (Alg.|l) is roughly O

of Thm.

Theorem 3 (Regret Lower Bound for Logit-DB Problem). Consider any fixed time step T. Then
for any algorithm A for the Logit—DB problem, there exists a decision space D C R® and a
sequence of unknown linear functionals 07, . .. 0% € R?, such that the regret of algorithm A in T

— Logit-DB
rounds Reg > divgggT.

4 BATCHED FEEDBACK: ALGORITHM FOR B-BATCHED LoGIT-DB
PROBLEM

In this section, we will analyze the batched variant of Logit -DB problem as described in Sec.[2.2]
Recall that in this the learner can actively query B-pairwise preferences in a batched fashion.

This section can be considered a primer to our algorithm for the rank-ordered feedback setting (see
Sec.[2.3)) that we discussed in Sec.[5] as we will use a nice reduction of ranked-feedback setting to
the batched-feedback setting.

4.1 ALGORITHM FOR BATCHED-LOGITDB

Our proposed algorithm for this case is Batched-DouBle-Scrible (BaBle-Scrible) which is a variant
of Double-Scrible we detailed in the previous section for the Logit—DB. Same as algorithm, it
takes input parameters 7, 4, and 4, and a v-self concordant barrier function ).

Similar to Alg.[1] in this case too the idea is to build an estimate of @; from the pairwise observations.
However, due to the batched feedback of size B, we can build an estimate with better variance
leading to v/ B-factor improvement in the final learning rate of O(%\/T ). However, one would

need B < d since it is impossible to obtain a regret rate better than Q(+/T)), which is the rate one
obtains in the full information setting |[Zinkevich| (2003)).

More precisely, at any round ¢, assuming w; is the running estimate of the optimizer over the de-

cision set D, our proposed algorithm BaBle-Scrible first computes the eigendecomposition of the

Hessian V2 (wy) = 7| A¢ive,iv, ;. and samples B indices ij,i7, ..., i, uniformly from [d].
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Upon this it assigns x! = w; + yy—~—v, + and y! = w; — v, —~—V, ;. and plays the
t 2 /)\t,if t’lt t 2 /Atﬂ:f t’7‘t

batch of B-pairs {(x},y}), (x2,y7),...,(xP,yB)}. Upon this it receives the corresponding B
pairwise preferences o7, ...,0oP and computes a gradient (6;) estimate g; = %22:1 g!, where
g = L(of - 3) mvt,if' The process is then repeated for a 7" rounds, iteratively, refining the
running estimate w1 by minimizing the sum of the 1)-regularized linearized loss over Ds. Due to
space limitations, the pseudocode of BaBle-Scrible is given in App.[C.1]

Thm. @] analyzes the regret performance of Alg. 2] which is shown to yield an optimal
o (W‘ZB} VT ) regret for the the problem.

Theorem 4 (Regret Analysis of Alg. . Consider the decision space D, such that Vi)(w) >

H%’wI7 VYw € D. Then for the choice of n = —”Vﬁw%%b, 0= % and vy < 0.7THp y, the

BaBle-Scrible (Alg.[I) guarantees a regret bound:

1:Te\Batched-LogitDI’)’ < O( dvT log T )
8T - «/min{B,d}HDﬂp '

The regret analysis of BaBle-Scrible (Alg.[2) is given in App.[C.2]

Similar to Corollary [2] one can derive the sample complexity bounds for BaBle-Scrible (Alg.[2)
using Rem. [2}

Corollary 5 (Sample Complexity Bound of BaBle-Scrible (Alg.[2)). Under the parameter settings

of Thm. 4| the e-sample complexity of BaBle-Scrible (Alg.|2)) is roughly O AL”ZQ .
min{d,B}HZ, e
Theorem 6 (Regret Lower Bound for Batched Logit-DB Problem). Consider any fixed time step
T and batched size B. Then for any algorithm A for the B-Batched Logit—DB problem, there
exists a decision space D C R? and a sequence of unknown linear functionals 07, ...0% € R,

. . — Batched-Logit-DB
such that the regret of algorithm A in T rounds Regp > _dvilog T
2564/min{B,d}

5 RANKING FEEDBACK: ALGORITHM FOR MNL-BANDITS PROBLEM

In this section, we investigate the MNL-Bandits problem (Sec.[2.3) for the general top-m rank-
ing feedback. We first analyze the fundamental performance limit proving a lower bound for the
problem. Following this we design an optimal algorithm matching the lower bound.

5.1 PROPOSED ALGORITHM: MNL-Scrible

Useful Notations. We will find it useful to define some notations before describing our main
algorithm MNL-Scrible.

We denote by V,, = {(£1)"}, for any n € N,.
Clearly |V,,| = 2™. Let G(V,,) be the graph with
vertex set V;, C {£1}" and there exists an (undi-
rected) edge between two nodes v and v iff v and
v only differs sign in one of the n coordinates, i.e.
3k € [n], v(k) = v(k) and v(k") = ©(k) for any
k' # k. Clearly the number of neighboring nodes
of any vertex v € V,, in graph G is [N (v, G)| = n.
In other words, the degree of any node in graph G
is n. We show an example for n = 3 in the right
figure. Also, let us define ¢, = [log k|.

Algorithm Description: MNL-Scrible As before (in Alg.[IJand Alg.[2), this algorithm too maintains
a running estimate of the minimizer w; (initialized to w; € D), and find the eigen decomposition

of the hessian at wy, say V2¢(w;) = 25:1 Ai Veivy .
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(7). Structured Query Sets S;: At each time t, it queries a set S; of k points around w; such that
for every point x € S;, there exists exactly ¢; neighboring points which are symmetrically opposite
to x in exactly one of the realization of vy ;s: More precisely, at each time ¢, the algorithm first

. v, . Vt 'LK
samples ¢, directions i ~ [d] for j € [¢4] and let U; = [\;’E‘%,..., ﬂ’k} € R4, We then
k k
define St = {Wt + ’}/tUtV | Vv E wk}

Note that by construction indeed S; = 2°* < k. Further, note for any point x = w; + YU,v € S;
there exists exactly ), symmetrically opposing points x; = w; + yUyv} € S, for all v, € N(v,G)

such that (x i) _y +41» J € [£x].Given any such point x, := wy +7UyV, let us denote by the set

N(xy) = {wt + vUtv’ | vi € N(v,G)} of all symmetrically opposing points of x in S; around
w; which differs in exactly one of the realization of v; ;s. This property will play a very crucial role
in our analysis.

(ii). Inferring Pairwise Preferences from Top-m Ranking o,,; € ¥7': One of our critical ob-
servations is Lem. [14] . Thanks to this result, we actually break the top- m ranking feedback o, ;

to m pairwise comparisons. In particular for any ¢ € [m], let us denote by x,g D= Xy t(l),

Spi =S¢\ {th)}] 1, and x >, y denotes x is preferred over y in the ranking 0 € g, for all

X,y € S C D. Now note that for any 7 € [m], we can always find at least one z € N(xgi)) N Spi

such that x; )+ 7. For ease of notation, for any such xg ), we denote the corresponding rank-broken

pair z by xi ). Thus by definition XE 9 =t x§ ) Vie [m].

(#i1). Extracting m Batched-LogitDB (batched pairwise preference) Feedback to Obtain

Aggregated 0; Estimate: Following the notations from #(i7) above we extract all the pairwise

comparisons (xg ). %!, for all £ € [m)]. Further since by definition x\") € N(x\"), let us denote
i) o

estimate:

= Y v(é , where note v, ' = v, ; for some ¢ € [d] and construct an aggregated gradient

m

d
g = 5 th, where gt = 2% \ /)‘mie)vt,iﬁ“

(iv). FTRL update of w;: Upon finding the gradient estimate g, the rest of the algorithm proceeds
exactly same as Alg. [T] (or Alg. [2). More precisely, The algorithm iteratively updates the decision
variable w; by minimizing the sum of the - regularized linearized loss within the J-contracted

decision set Dj such that w; = arg minyep, {n S elw 4 g(w )}

The complete pseudocode of MNL-Scrible is given in App.[D.I]

Theorem 7 (Regret Analysis of MNL-Scrible(Alg.[3). Consider the decision space D, such that
V23(w) > pyl YW e D.

Then for the choice of n = —””n;n{Tm\/%Im 6= and Y < M , the MNL-Scrible (Alg.|I

guarantees a regret bound:

—— MNL dv/vTlogT
Regr <O \/»HDw .

The proof of Thm. [/| follows from the simple observation that upon receiving o,, ; at each round
t, MNL-Scrible actually extracts m independent pairwise preference feedback from o, ;. This
reduces the problem to our B-batched pairwise feedback setting with batchsize B = m. The result
of Thm. [7]hence follows immediately from Thm.

Following the argument of Rem. 2] the sample complexity bounds of MNL-Scrible (Alg.[3]is as
follows:

Corollary 8 (Sample Complexity Bound of MNL-Scrible (Alg.[3)). Under the parameter settings
of Thm. H the e-sample complexity of MNL-Scrible (Alg.|3)) is roughly O (M)

Remark 6. One may expect to see an improved regret rate as the number of items being simul-
taneously tested in each round (i.e. k) gets larger and larger. On the other hand, the learning
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rate worsens since (in the worst case) it is intuitively ‘harder’ for the ‘best-item’ of a k-subset to
prove its supremacy against the k — 1-competitors due to higher outcome variance. The result, in
a sense, formally establishes that the former advantage is nullified by the latter drawback yielding
a k-independent guarantee. One really needs to consider a worst-case problem instance for this
interplay to happen, as we carefully construct it in our lower bound derivation of Thm.[9]

Theorem 9 (Regret Lower Bound for Top-m Ranking MNL-Bandits Problem). Consider any
fixed time step T, subsetsize k and length of rank-ordered feedback m € {1,... k}. Then for any
algorithm A for the Top-m MNL-Bandits problem, there exists a decision space D C R® and a
sequence of unknown linear functionals 07, . ..0% € RY, such that the regret of algorithm A in T
= —MNL d/TlogT
> V- e
rounds Regp > 250 /min{md)

6 EXPERIMENTS

We run synthetic experiments to report the performance of our methods, Double-Scrible (Sec.|3) and
MNL-Scrible (Sec.[]5) respectively, for dueling and top-m ranking feedback. All results are averaged
across 100 runs. We run our experiments on different environments (adversarial loss sequences):
Precisely, for a fixed d, we construct ; =1 + ¢

Adversarial (6) Environments. We report our experiment results on problem instances with vary-
ing dimension d generated as follows: (1) Inst-1: For a given d and round ¢, we choose 6; (2) Inst-2:
For a given d and round ¢, we choose 6;

The decision space is given by D = {x | Ax < b}, for some A € R°*? and b € R, for some
[AS N+.

Choice of the self concordant barrier 1): We use the following self concordant barrier 1)(w) =
— Y7t In(b; — ajw), which is known to be an c-self-concordant barrier for D, a; being the j-th
row of A.

6.1 WITH VARYING d

b = o b
5]

& A& & a A

g

S
<
-l

8 8
e 8
S o

Avg-Regret
Avg-Regret

QOur first experi- Double-Scrible Double-Scrible
ments are reported i soooll -
for the Adver- a=2 v
sarial Logistic e T) T
Dueling  Bandits

N 2000
(iogie-0n) ] e
setting on Inst-1 o - ~ = = s o -~ " = 8
and Time (T) — x10% Time (T) - x10*
Inst-2. We run the experiments for d = 2,5,10, 20,50 to examine the scalability and runtime
efficiency of our proposed methods which are provably shown to scale as O(dv/T).

6.2 RUNTIME COMPARISON.

H d  runtime (sec) H H d  runtime (sec) H
We now report the (averaged) run- 3 1.459960 > 5339139
times of the above executions in sec- 6 1773056 6 3.035577
onds. Note the first experiment is run 10 5149256 10 3731622
for T' = 50,000 while the second 30 3150031 30 5036075
experiment is run for 7' = 80,000 50 11567123 70 17398917
rounds. - -
T = 50,000 (Inst-1) T = 80,000 (Inst-2)

10
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6.3 PERFORMANCE OF MNL-Scrible: WITH VARYING m

MNL-Scrible

m
3000 ™"

Regret

For top-m ranking setting, we used m = 2,4,8,16,32 ford =
50 on Inst-1.

2000

Avg

1000

0

7 CONCLUSION

In this paper, we introduced an efficient gradient descent-based approach for regret minimization
for online linear optimization with adversarial preferences. Our results have critical implications in
learning problems of RLHF which has wide applications in fields of Al-alignment, fine-tuning lan-
guage models, etc. Our proposed novel online mirror descent (OMD) algorithm achieves an optimal
regret bound of O(+/T') while only relying on binary preference feedback. This advancement im-
proves upon existing methods by addressing key computational challenges, particularly in handling
high-dimensional and adversarial environments while still respecting optimal performance guaran-
tees. We also extended our algorithm to accommodate B-batched preference feedback and m-partial
ranking on k-subsets, which is shown to yield improved performance guarantees depending on the
batch size B or the length of the rank-ordered feedback m. The computational efficiency of our
algorithms makes them suitable for large-scale real-world applications.

Future Work. Building on this work, several promising avenues for future exploration emerge: One
potential extension is to generalize the setting beyond linear scores which is certainly not straight-
forward even for value-feedback based convex optimization setting . Extending to partially observ-
able preferences or partial ranking feedback over a subset of alternatives is also an interesting open
problem. Another direction is to explore hybrid approaches that combine gradient descent with
other optimization techniques like Thompson sampling or Bayesian methods, to reduce variance
in feedback-based learning. Finally, investigating how this algorithm can be adapted for different
Al alignment challenges, such as incorporating fairness or ethical constraints in decision-making,
presents an exciting opportunity for future research.
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SUPPLEMENTARY: DUELING IN THE DARK: AN
EFFICIENT AND OPTIMAL MIRROR DESCENT
APPROACH FOR ONLINE CONVEX OPTIMIZATION
WITH ADVERSARIAL PREFERENCES

A APPENDIX FOR SEC.

Remark 1. For any x € D, note then M < P(x*,x) —1/2 < O*T(x — x), when
D C By(1). We prove this in App. E] Consequently, in the rest of the paper, we will address the
regret

T * 1 * 1
_— Logit-DB 2] * - (7] -
Regy }[ ¢ (K =x)+6; (X~ yi)

2 )
Logit-DB — Logit-DB — Logit-DB
noting Reg < Regr from Rem. thus designing algorithm to bound Reg would
suffice to bound Regl‘og" PE.

Proof of Rem.[I} Let us fix a round ¢, and for simplicity denote x* = x; (dropping the subscript).
Note that due to the underlying preference structure for any x € D,

exp(0; ' x*)
exp(0] ' x*) + exp(6] ' x)
(exp(6] ' (x* —x)) — 1)) @ (exp(6; ' (x* —x)) — 1))
2(exp(0; ' (x* —x)) +1)) 4

(1+Z B*T * )) 1) N OIT(XJ —X)

where (a) follows since 8] 'x € [0,1], Vx € D, assuming 8; € By(1) and D C By(1). On the
other hand,

P(x*,x)—1/2=0(0 T (x* —x)) - 1/2 = —~1/2

9; 'x*
Pi(x*,x) —1/2 = 0(0; (x* —x)) —1/2 = iXp( r x') — 12
exp(0; x*) + exp(6; x)
%1 /o % * T /o %
_ (exp(6; (x*=x)) = 1)) © (exp(6; (x" —x))—1))
(exp(O*T(x* ~-x))+1)) 2
*T X
—5(1+ Z O L=y,
Now let us denote a = H*T(x* — x) and note by assumption 0 < a < 2.
P, at a a? a a?
(x*, x—1/2_7 g <ot (ltgtate
a a? 2 a a T
5T 3 E_g Sata T8 Ko,
where the second the last inequality holds since a € (0,2), assuming 8; € B,(1) and D C B,4(1).

O

14
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B APPENDIX FOR SEC.

B.1 Double-Scrible: ALGORITHM PSEUDOCODE

Algorithm 1 Double-Scrible

1: Input: Decision set D with v-self concordant barrier 1), parameters 7, §, ;.
2: fort =1to T do

3:  Compute: w; = arg minyep; {TI Et;:ll(—gT)Tw + w(w)} .
Compute eigendecomposition s.t. V2¢p(w;) = 2?21 AtjVigvi .
Sample i; € [d] uniformly at random

4
5:
. _ 1 _ W 1 A
6:  Choose x¢ = Wy + 3 T Vi andyy = wy — Vi3 T Ve
7
8
9

Play (x¢,y¢), observe o; ~ Ber(P;(x¢,y¢))-

gt = %(Ot - %)\/ Abyis Vi

: end for

B.2 KEY LEMMAS FOR THM. (REGRET ANALYSIS OF ALG.

We define the useful notations which will be useful for stating the claims:

Notations: We denote the history H; := {(i1,01), (i2,02), ... (it—1,0:—1)} till time ¢t. We define

a norm associated with the Hessian of ¢ at w as [|x||w = [|X[[v2pw) = /X" V2 (W)x for any

x € R% This is indeed a norm since a self-concordant barrier is strictly convex, such that V21 (w)
is positive definite for any w € int(D).

Further considering the eigen-decomposition of V21)(w) = Zle A\;iv;v;, we further note that

d d
[l = \/XTVO(W)x = | D AaxT (viavi)x = | Y Ni(xTve)?, vx € RY
i=1 i=1

Further, one can define the dual norm of Hessian of ¢ at w as:

d
[l = \/xT V2 (w)x = | >
=1

1
3 xT (v iv])x, ¥x € R%
ti

The Dikin ellipsoid centered at w with radius r is defined as the ellipsoid

E(w)={xeR: |x—wlw <r}.

Property 1 (Luo|(2017); Boyd et al.| (2004)). If 1 is a self-concordant barrier on D, then E1(w) C
D for any w € int(D).

Property 2 (Luo| (2017)). Let x € int(D) be such that |VO(x)||% <
arg minkep ®(x). Then forany ® : D — R,

%, and let x* =

Ix — x*

x < 2[|Ve(x)|l5-
Property 3 (Luo|(2017); Hazan| (2019)). Let 1) be a v-self concordant function over D, then for all
x,y € int(D):

)

Y(y) —(x) <vlog T—m(y)

where Ty (y) = inf{t > 0:x+t"1(y — x) € D}.

The proof sketch of Thm. [I|depends on some key lemmas. First we claim that g; given an ‘almost’
unbiased estimate of 87 up to some constants.

Lemma 10 (Ensuring Decision Boundaries). At any round t, x; andy; € D in Alg.
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Proof. We will prove the result for x;. A similar analysis will apply to y; as well. Note since
w; € int(D), and ||x; — wi||x < v < 1. Note Rem.ensures ~¢ < 1 and thus the results follows
using Property [T} O

Lemma 11 (Gradient Estimation). It can be shown that for any round t,
Elg: | H:] = COy,

Sor some C' € [0.22,0.25], whenever vy < 0.7/ Amin(V2(Wy)).

Remark 7 (Ensuring appropriate choice of v;). Noting that, given the decision space D, since
VZh(wy) > H%,wld, one can easily satisfy v¢ < 0.7/ Amin(VZ(Wy)) by choosing v =
min{1, 0.7Hp  }. We have given some specific examples in Rem.

Proof. Consider any fixed round ¢ € [T]. We note that:
Eo,[(0r — 1/2) | i, He] = B, [0 | i, He] — 1/2 = 0(8] " (x¢ — y1)) — 1/2
= a((mt/« /A,,Jt)OZ‘Tvt,it) —1/2
= 0’ (er) (/\/30)0; Vi, [using MVT, where |e,] € [0, |(v/y/30i0)0F T vas, [l (1)

.
Let us denote ¢; = |(7¢/\/*v.:,)0; Vi.i,| and note that we can bound ¢; < \/%:t 107 Vel <

, where the first inequality follows from the Cauchy-Schwarz inequality.

Vt
Amin (V29(wy))

Then by choosing any ; < 0.7/ Amin (V29 (w;)) we get ¢; < 0.7. This along with the results of
Lem. [15] (App. [E) implies that o/ (e,) < [0.222, 0.25] for the appropriate choice of ;. Note Rem.
explains the suitable choice of v; For simplicity, we will use L = 0.222, U = 0.25 for the rest of
this proof and let o’ (¢;) € [L, U]. The interesting thing now is to note that, given the history #, till
time ¢, g; in Alg. [T]satisfies:

d

1
7E0t |:(Ot - 7) | itht:| \V4 At,itvt,it]
Vt 2

EOf,-,it [gt | Ht] = Eitwa,

=E, using Eq. (I))

d .
. (a’@t)(w/\ﬁxt,q)et TVm) Ve
t

S

d d

LE;, L <("’t/\/&,n)9fTvt,u) V At,itvt,it] ,UE;, L <(7‘/\/At.,n)9fTVm) V At,itvt,it”
t t

€ [LO;,U0;],

where the last inequality follows noting:

d " X
Eif, l:'Y <(%/\/ Atvit)gt Tvtﬂlt) \% /\t,itvt,it:| = Eit |:d<(1/\/ >"~77t)0t TV@%) V At7itvt;it:|
t
S|
= d( —_— )\t,ivt,iVZi) 0: = 0:,
2

since ), vmv;,r ; = Iy by the fact that {v; ; },c[q) are orthonormal vectors that span R4, O

Equipped with the previous results, we are now ready to proof our main theorem, Thm. [I] as shown
below.
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B.3 REGRET ANALYSIS: PROOF OF THM.

Suppose Be The Leader (BTL) algorithm Cesa-Bianchi & Lugosi| (2006a)); Ma (2018)) is run on the
loss vector sequence —g1, —g2, - - ., —&r), & € R We know that for any u € Ds:

zT:Wt_u - ET: — Wii1) ( gt)+w’

t=1 t=1 N

Further applying Holder’s inequality, we get:

T T

S(uwi) g Y lhwe— weal, -l + @

t=1 t=1

Note we defined: g; = (ot — 3)V/At,i, Vi,i, and by Lem . we have
0.2207 < Elg, | H] < 0.2567,

which implies :

0; " (u—w) < —-Elg) | He](u—wy), 3)

1
0.22

combining this with Eq. (), we get:

T
0220 (u—wi) < 3w — wraly, el + LNV

“4)
n
On the other hand, by definition of |||, we have that for any realization of g;:
el T)g = o ©
= (veiv = —.
2 Wi A t t,i 8t 2715

Additionally, let us denote by ®;(w) = 13-, (—g,) W + 1(w), then note Alg. have Wiyl =
arg minwep, ®.(z). Thus, applying Property |2} we get:
[wi = wiiallw, <2[V((Wi)l[G, = 2[VPi1(wi) +ngillw, = 2nllgell,,

where note by definition V®;_; (wt) = 0 by definition of w; for all . But note for Propertylto be
applied we need ||V ®;(w;)||; < 7, but this is indeed true since since Eq. (7) implies

nllgellw, < 27
and thus choosing any n < 34, we have ||[V®;(w,)||; < 1, as desired. We will see shortly how to
choose 7 to ensure n < 34.

Further using Property we have [[w; — Wiy, <27l ||$Vt, which along with Eq. @) we get:

T T
0223 (u—wi) 07 <3 2nllee |2 + W(U)—nqﬂ(wm
t=1 t=1

T 1
2 vlog T (W)
=2y R
t=1 't

n

17
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However noting u and w; € Ds , by definition of 7, (u) = (1 — §) in Property [3] implying:

&l T T2 vlog &
O.QQZ(u—wt) 0:37,2—2+ N (6)
= — 27 n
Further if we choose u := argmaxyep, Zthl 0; "x, and recalling that we defined x* :=

arg MaXxep Zle HITX, note that:

T T
S (x*—we) 0; <> (u—wy) 6; +6TLD
t=1 t=1
T 1
1 d? log =
=~ 772 V %35 +dTLD, from Eq. (6)
0.2 t=1
1 d2 log 1
— 0.22 [min«?l, HZ " A 6} +6TLD, since we chose v < min{l1,0.7Hp 4}
d/vTlogT
_ T |
0.22Hp 4
choosing n = ‘fﬁ}fg”} and § = =, concludes the prove noting the diameter of the decision set

D C Bgy(1) is bounded by 1, and the lipschitz constant L < max;¢7)(/07] < 1.

C APPENDIX FOR SEC.

C.1 BaBle-Scrible: ALGORITHM PSEUDOCODE

Algorithm 2 BaBle-Scrible

1: Input: Decision set D with v-self concordant barrier 1), parameters 7, 8, V¢.
2: fort=1toT do

3:  Compute: w; = arg minyep; {7] Zt;:ll(ng)Tw + w(w)} .

4:  Compute eigendecomposition s.t. V2 (w;) = Zle At,in,i,VZi-
5. for /=1, 2 .., B do
6: Sample i¢ € [d] umformly at random.
7: Choose x{ = w; + 7, 2\/7v, 4 and yi=w; — ")/tz\/ivt it
8: Play (x{,y?), observe of ~ Ber(P;(x!,yf)).
9: g = %(Of - %)\/ At it Vit
10:  end for
1B e
11:  Updateg; = 5 >, &;
12: end for

C.2 REGRET ANALYSIS OF ALG.

We will need to prove some key lemmas before proceeding to the proof of the main theorem 7" hm.[4]

Lemma 12 (Gradient (0} ) Estimation). It can be shown that for any round t,
E[g: | 1] = C6;,

for some C € [0.22,0.25], whenever v < 0.7/ Amin (V210 (W}))

18
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Proof of Lem.[IZ} Let us fix any ¢ € [T]. Recall that we defined gf = (o] — 3), /Ay v, ;¢ and

for any £ = 1,2, ..., B, Now noting since i} ~ Unlf([d]), following the notations and exact same
proof of Lem. |1 - we get that: for any £ € [B], E[gf | H;] = C8;, for some C € [0.22,0.25]. The

proof now follows noting g; := % Zle gl O

We next prove the most important claim of this analysis that shows that indeed the batched feedback
helped to obtain a more accurate (reduced variance) estimate of the gradient 8} at each time step ¢.
The proof involves a smart exploitation of the second moment of Binomial distribution, we will see
in the proof of Lem.

Lemma 13 (Improved Variance of g; (Norm bound)). At any time t, one can show that
d

Ei olligil,) € ——=——=
o © wV/{B,d}

Proof of Lem.[I3] We start by recalling that we defined the dual norm of Hessian of ¢ at w as

(7

d

Ixli = X7V 20(wx = | S 5

i=1 bt

xT(viav])x, Vx € R

At any round ¢, let us now denote by N, ; the number of times the ¢-th eigen basis, v, ;, was drawn
atround ¢, i € [d]. Clearly Zle N;; = B. With this view we note that:

d d
gt = BZE 372 )\tthz,

and noting that since v;s are orthogonal to each other:

d
:Eiz},ot .i¢,0¢ [HgtHwJ = 2B"Yt zt, i Z Vtz Vi thTz)Vtz

We now note that N; ~ Bin(B,1/d) and if X ~ Bin(n,p), then E[X?] = V(X) + E[X]? =
np(1 — p) + n?p?. Using this and denoting By = min{ B, d} < d, we get:

L 3B, d

d
Ezl ol,..id 0d |8 wil = 9 T
e [” ! ] i=1 d ’Yt\/Ed

2Bavt

Finally we are now ready to proof the bound of our main theorem, Thm. i}

Proof of Thm. 4| The proof follows almost the same steps that of proof of Thm. [I| In particular,
same as the proof of Thm.[T} one can bound:

log
0222 u—w) 0*<2277Hgt\| s
1
<%Z ”%a
= I’Yt

where the last inequality follows from Lem. [I3] Same as before, choosing u :=
arg MaXxeD; Zthl OITX, and recalling that x* := arg maxyep ZtT:1 OITX, we get:

19
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(u—w,) 6 +6TLD

™=

d T
Z (X* —wt) 0; <

t=1 t=1
T
1 2d? Vlog 3
= — 6TLD, from Eq.
m [ m 8
<1 nd"T vlogs) L srip, s hose 7 < min{1,0.7Hp}
— ince we chose min{1, 0.
=022 |min{1,H3 JBs 7 8 = D
_ dy/vT'logT L LD,
0.22Hp w\/Bd
choosing n = ~ d%’ and 0 = =, concludes the proof noting the diameter of the decision set
D C By(1) is bounded by 1, and the lipschitz constant L < max;c[7)/|6; | < 1. O

D APPENDIX FOR SEC.

D.1 MNL-Scrible: ALGORITHM PSEUDOCODE

Algorithm 3 MNL-Scrible

1: Input: Initial point: w; € D, Learning rate 7, Perturbation parameter v, Query budget T’
(depends on error tolerance ), Batch-size m. Define £}, := [logm| and m := 2% < m.

2: Initialize Current minimum m; = wy

3: fort =1toT do

4:  Compute: Wy = arg minyep; {77 Zt;:ll(—gT)TW + w(w)} .

5. Compute eigendecomposition s.t. V29 (w;) = Zle At,in,iVZi-
6: for 6—1,27..,m do

7: Sample i¢ € [d] unlformly at random.

8: Choose X! = wy + 2\/7vt 4 and yi=w;— v 2\/7vt it
9: Play (x¢,y!), observe of ~ Ber(P;(x!,y?)).
10: g = 2 (Of %)\//\t it Vit
11:  end for
12: Update gy = L 3" | gf
13: end for
14: fort = 1,2,37...,Td0
15:  Sample ul,u?,...u%* % Umf(Sd( -))- Denote Ut := [ul,...,u*] € Rx%

16:  Define S; := {w; + fyUtv |v e ng} (see definition of Vj, in the description)
17:  Play the m-subset S;

18:  Receive the winner feedback o; = arg min(f(x}), f(x?),..., f(x/*))

19: end for

20: Return mp4

Lemma 14 (Pairwise Properties of MNL Model).

P(i > j) ZP

o€, ;

E SoOME USEFUL RESULTS
Lemma 15. For any x € [-0.7,0.7], o’(z) € [0.222,0.25].

Proof. Let us first consider the positive interval 2 € [0,0.7]. Note by definition, since o(x) =

ﬁ, Vz € R, first derivative and the second derivative of sigmoid is respectively given by:

20



Under review as a conference paper at ICLR 2025

—T

o'(x) = :
T+ )T+
1 1
S lte T (14e=)2’
and
/ - e " 7 2e7 7"
o'(x) = Ate=)? (1tew)3]
As shown in the right figure, this brings = s

us to the observation that o”(z) < 0 for any z > 0, and thus o'(-) is a decreasing function in
the interval [0, 00). Thus the function ¢’(+) attains maximum at 2z = 0 and minimum at = 0.7,
yielding o’ (x) € [0.222,0.25] in the range = € [0,0.7].

The result follows from the symmetry of ¢’ (-) function around the Y -axis. O
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