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An oil painting of buildings in 
the distance, Van Gogh 

Style

An oil painting of a shopping 
mall in the distance, Van 

Gogh Style

A cartoon animation of a 
cake, a croissant, a piece of 

bread and a cup of coffee

A cartoon animation of a 
hamburger, a croissant, a 

piece of bread and a cup of 
coffee

A car and a man are driving 
down the road

A car and a man are driving 
down the road

A pencil drawing of a muffin 
and other food, gray tone

A pencil drawing of a 
croissant and other food, 

gray tone

A professional photograph 
of a grapefruit and spring 

rolls, ultra realistic

A professional photograph 
of a teapot and spring rolls, 

ultra realistic

A dog at sunset, watercolor 
painting

A dog at sunset, watercolor 
painting

(a) Composition within the photorealism domain (b) Composition between real & cartoon domains (c) Composition between real & comic domains

(d) Composition between real & sketching domains (e) Composition between real & oil painting domains (f) Composition between real & watercolor domains

Figure 1: Cross-domain image composition targets to harmoniously incorporate objects into specific background context. Our
proposed training-free TALE framework enhances text-driven diffusion models with the ability to accomplish this task in
diverse domains: (a) photorealism, (b) cartoon animation, (c) comic, (d) sketching, (e) oil painting, and (f) watercolor painting.
Zoom-in for more details.

ABSTRACT
We present TALE, a novel training-free framework harnessing the
power of text-driven diffusion models to tackle cross-domain im-
age composition task that aims at seamlessly incorporating user-
provided objects into a specific visual context regardless of domain
disparity. Previous methods often involve either training auxiliary
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for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
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© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

networks or finetuning diffusion models on customized datasets,
which are expensive and may undermine the robust textual and
visual priors of pre-trained diffusion models. Some recent works at-
tempt to break the barrier by proposing training-free workarounds
that rely on manipulating attention maps to tame the denoising
process implicitly. However, composing via attention maps does
not necessarily yield desired compositional outcomes. These ap-
proaches could only retain some semantic information and usually
fall short in preserving identity characteristics of input objects or
exhibit limited background-object style adaptation in generated
images. In contrast, TALE is a novel method that operates directly
on latent space to provide explicit and effective guidance for the
composition process to resolve these problems. Specifically, we
equip TALE with two mechanisms dubbed Adaptive Latent Ma-
nipulation and Energy-guided Latent Optimization. The former

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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formulates noisy latents conducive to initiating and steering the
composition process by directly leveraging background and fore-
ground latents at corresponding timesteps, and the latter exploits
designated energy functions to further optimize intermediate la-
tents conforming to specific conditions that complement the former
to generate desired final results. Our experiments demonstrate that
TALE surpasses prior baselines and attains state-of-the-art perfor-
mance in image-guided composition across various photorealistic
and artistic domains.

CCS CONCEPTS
• Computing methodologies → Image processing; Computer
vision tasks; • Applied computing→ Arts and humanities.

KEYWORDS
Image Composition, Cross-domain, DiffusionModels, Training-free,
Adaptive Latent Manipulation, Energy-guided Optimization

1 INTRODUCTION
Image composition, as a branch of image editing, has progressively
garnered attention in recent years [3, 25, 29, 42, 49, 52]. Typically,
this task involves integrating a user-specified image or text prompt
into a specified area of background while ensuring that the com-
posited image appears natural and seamless, exhibiting consistent
lighting conditions and a smooth foreground-background transi-
tion. Image composition has been employed in various fields. For
example, the entertainment industry relies on image composition to
create stunning visual effects, facilitating the seamless integration
of actors and objects into fantastical environments that would be
impractical or impossible to capture in real life. Moreover, image
composition can also be used in interior design. Specifically, it is
used to place virtual furniture into real interior spaces, aiding in
visualization and decision-making processes for both designers and
clients. In light of these significant and useful applications, it is
imperative to explore the field of image composition fully.

The prevailing methods for image composition involve fine-
tuning pre-trained models with customized datasets, aiming to
improve the semantic coherence of the composited results. For in-
stance, Paint by Example [49] utilizes object detection and data
augmentation to generate pairs consisting of a foreground and a
background. These pairs are used for training the diffusion model.
AnyDoor [3] designs an identity (ID) extractor module to distill
the characteristic features of specified objects. These extracted fea-
tures are subsequently employed as conditional inputs to guide
the training process of the diffusion model. While these training-
based methods have demonstrated remarkable performance, they
require substantial computational effort that limits the accessibility
for researchers with constrained resources. Training-free meth-
ods (e.g., TF-ICON [29]) offer a promising direction by injection
mechanism to merge the self-attention maps of foregrounds and
backgrounds. However, they still face critical challenges, particu-
larly in preserving the identity of the composited elements. Besides,
they demonstrate subpar performance when tackling cross-domain
image composition.

To mitigate these drawbacks, we present TALE, a training-free
framework harnessing the power of text-driven diffusion models

to tackle cross-domain image composition task, aiming at seam-
lessly incorporating user-provided objects into a specific visual
context regardless of domain disparity. Specifically, TALE functions
in the latent spaces, offering precise and potent direction within
the compositing workflow to remedy the above-mentioned issues.
TALE is equipped with two distinct components: Adaptive Latent
Manipulation and Energy-guided Latent Optimization. The former
establishes an initial noisy latent conducive to beginning the com-
position, then applies normalization to iteratively guide subsequent
composing steps. In complement, the latter utilizes specific energy
functions to further refine the normalized intermediate latents. This
synergistic mechanism ensures the production of the intended vi-
sual outcomes. The experimental results and user studies reveal
that the proposed TALE outperforms existing methods. The code
will be made available to promote future research.

Overall, our contributions are listed as follows:
• We propose TALE, a novel training-free framework capa-
ble of seamlessly incorporating user-provided objects into
diverse visual contexts across multiple domains.

• TALE excels in preserving the identity characteristics of
input objects while harmonizing their style with the back-
grounds, resulting in highly realistic and aesthetically pleas-
ing composited images thanks to its Adaptive Latent Manipu-
lation and Energy-guided Latent Optimization mechanisms.

• Extensive experiments and user studies provide compelling
evidence of TALE’s strength over prior work. We will release
the code to promote future research.

2 RELATEDWORK
2.1 Image Composition
Image composition is an essential task utilized in various image
editing platforms. The primary goal is to integrate an object into
a given background [32]. The composition models should create
a visually seamless and convincingly realistic composited image,
making it imperceptible for observers to discern any traces of ma-
nipulation. Generally, image composition can be categorized into
two types based on whether the original object’s structure or con-
tour is preserved.

When structure preservation is necessary, some works design
image harmonization techniques [4, 11, 12, 26, 45, 46], emphasizing
color consistency and luminance coherence across the composited
areas. Other methods introduce image blending strategies [1, 28, 47,
54] to remedy the unnatural boundaries between the foreground
and background, ensuring a seamless integration while maintaining
the integrity of the original structure.

Another line of work suggests that maintaining the object’s
identity is sufficient, allowing for changes in its perspective and
enabling more flexibility [3, 21, 24, 25, 29, 42, 43, 49, 52]. For in-
stance, Paint by Example [49] leverages object detection and data
augmentation techniques to create foreground-background pairs,
with the augmented foreground image acting as a conditioning in
the training of a diffusion model. AnyDoor [3] incorporates an ID
extractor to capture the identity features of given objects, which are
utilized as conditions for training the diffusion model. It is worth
mentioning that TF-ICON [29] introduces a training-free frame-
work, taking advantage of pre-trained text-to-image models for
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image composition. In particular, it incorporates the self-attention
maps extracted when reconstructing foregrounds and backgrounds
to melt them together. It is shown that the performance of TF-ICON
surpasses existing image composition methods in versatile visual
domains, yet they struggle to preserve object identity features and
suffer from incohesive style adaptation.

Generally, the proposed TALE adheres to a training-free routine
but distinguishes itself from TF-ICON in that our method is capa-
ble of well preserving the object identity and seamlessly blending
to diverse domains of different styles, powered by the proposed
Adaptive Latent Manipulation and Energy-guided Optimization
mechanisms.

2.2 Diffusion Models
In recent years, diffusion models [2, 10, 13, 14, 33, 35, 38, 40, 53, 57]
have become the mainstream of generative models across vari-
ous domains, owing to their exceptional fidelity and diversity in
generated results when compared with GANs [9] and VAEs [19].

Notably, the Latent Diffusion Model (LDM) [37] performs the
diffusion process in a VAE-compressed latent space, thereby im-
proving computational efficiency. DDIM [40] introduces a novel
approach to accelerate the latent diffusion processes. Remarkably,
DDIM inversion has been effectively utilized for editing purposes
and has been integrated into other image composition methods [29].
Imagen [38] introduces multiple diffusion models for progressive
generation, enhancing the resolution of generated images step by
step. SD-XL [35] enlarges the model size and designs curated strate-
gies to enhance the image quality. DiT [33] utilizes Transformers as
the backbone and proves the scaling ability. ControlNet [53] intro-
duces an additional branch to receive the additional conditions, such
as the canny maps and segmentation maps. Uni-ControlNet [57]
enables processing multiple conditions at the same time. Typically,
these methods require training or finetuning on the additional con-
ditions involved to enable a certain degree of control over specific
tasks.

To enable controllable generation with different conditions at
sampling time, several methods leverage energy functions to guide
the diffusion process [6, 7, 22, 50, 56], alleviating the cost of train-
ing. In particular, EGSDE [56] introduces a time-dependent energy
function designated for unpaired image-to-image translation task.
Differently, FreeDom [50] proposes a flexible time-independent for-
mulation for energy functions that facilitate different image editing
tasks on multiple conditions.

3 PRELIMINARY
3.1 Latent Diffusion Model
We leverage the pre-trained text-to-image LDM for our composition
model. The diffusion procedure follows the standard formulation
in [13, 39, 41], which comprises a forward diffusion and a backward
denoising process. Given a data sample x ∼ 𝑝 (x), an autoencoder
consisting of an encoder E and a decoder D will first project it
into latent z0 = E(x). Subsequently, the diffusion and denoising
processes are conducted in latent space. Once the denoising is
finished and a final clean latent ẑ0 is generated, the sample can then
be decoded via x̂ = D(ẑ0).

3.2 Energy Diffusion Guidance
The original diffusion models [13] can only serve as an uncondi-
tional generator. In order to control the generation process with a
desired condition 𝑐 , classifier-guided methods [5, 27, 31, 56] propose
to alter the prediction of the denoising network as:

𝜖𝜃 (z𝑡 , 𝑡, c) = 𝜖𝜃 (z𝑡 , 𝑡) − 𝜎𝑡∇z𝑡 log𝑝𝜙 (c|z𝑡 ), (1)

where 𝜎𝑡 is predefined diffusion scalar and 𝜙 is a trained time-
dependent noisy classifier that estimates the label distribution of
each sample of z𝑡 . The term ∇z𝑡 log𝑝𝜙 (c|z𝑡 ) can be interpreted as a
correction gradient that steers z𝑡 toward a hyperplane in the latent
space where all latents are compatible with the given condition c.
To approximate such a gradient, a flexible and straightforward way
is utilizing the energy guidance function [22, 50, 56] as follows:

∇z𝑡 log𝑝𝜙 (c|z𝑡 ) ∝ −∇z𝑡 𝜉 (z𝑡 , 𝑡, c). (2)

Here 𝜉 (z𝑡 , 𝑡, c) denotes an energy function that quantifies the com-
patibility between the condition c and the noisy latent z𝑡 . The more
z𝑡 conforms to c, the smaller the energy value should be. Such a
loose property enables great flexibility in designing suitable 𝜉 to
suit for each condition c. Correspondingly, the updated conditional
backward process can be written as:

ẑ𝑡−1 = z𝑡−1 − 𝜌𝑡∇z𝑡 𝜉 (z𝑡 , 𝑡, c), (3)

where z𝑡−1 ∼ 𝑝𝜃 (z𝑡−1 |z𝑡 ) and 𝜌𝑡 is a scale factor. We base on this
equation to derive a latent optimization mechanism to modulate
the composition process.

4 METHOD
4.1 Problem Formulation
Given a background (main) image x𝑏𝑔 , a foreground (object) image
x𝑓 𝑔 with segmentation mask M𝑜𝑏 𝑗 , a text prompt P, and a user-
provided binary maskM𝑢 indicating the region of interest within
x𝑏𝑔 , the objective of cross-domain image composition is to generate
composited image x𝑟𝑒𝑠 that harmoniously acquires three properties.
Firstly, the inputted object appears in the masked region of x𝑟𝑒𝑠
and picks up a similar style to x𝑏𝑔 while preserving its identity
features, i.e. 𝐼𝐷 (x𝑟𝑒𝑠 ⊙ M𝑢 ) ≈ 𝐼𝐷 (x𝑓 𝑔) and 𝑆𝑡𝑦𝑙𝑒 (x𝑟𝑒𝑠 ⊙ M𝑢 ) ≈
𝑆𝑡𝑦𝑙𝑒 (x𝑏𝑔). Secondly, the complementing background area of x𝑟𝑒𝑠
closely resembles the corresponding area of x𝑏𝑔 , i.e. x𝑟𝑒𝑠 ⊙ (1 −
M𝑢 ) ≈ x𝑏𝑔⊙ (1−M𝑢 ). Lastly, the transition area x𝑟𝑒𝑠 ⊙ (M𝑢 ⊕M𝑜𝑏 𝑗 )
is visually imperceptible. To concurrently tackle these challenges,
we harness the power of pre-trained text-to-image latent diffusion
model and propose a novel training-free approach comprised of two
stages: Adaptive Latent Manipulation (Section 4.2) to construct and
gradually calibrate initial latent suitable for the composition process
and Energy-guided Latent Optimization (Section 4.3) to further
optimize intermediate latents via task-specific energy function for
better outcomes.

4.2 Adaptive Latent Manipulation
Selective Initiation.To initiate composition process, TF-ICON [29]
first inverts x𝑏𝑔 and x𝑓 𝑔 into corresponding noisy latent represen-

tations z𝑏𝑔
𝑇

and z𝑓 𝑔
𝑇

via inversion process of predefined 𝑇 timesteps.
Then, they are merged to constitute noisy latent used as starting
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Energy-guided Latent 
Optimization (Sec 4.3)

𝑡 = 𝑇 𝑡 = 0𝑡 = 𝑇′

Background 𝒛𝑻
𝒃𝒈

Foreground 𝒛𝑻
𝒇𝒈

𝐂𝐨𝐦𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝒛𝟎
𝒓𝒆𝒔

Background 𝒛𝟎
𝒃𝒈

Foreground 𝒛𝟎
𝒇𝒈𝒛𝒕

𝒓𝒆𝒔
𝒛𝒕−𝟏

𝒓𝒆𝒔

x𝟎|𝒕
𝒓𝒆𝒔

x𝒃𝒈 

Inversion process (background and foreground) Denoising process (composition)

𝝁𝒃𝒈 

𝝈𝒃𝒈

AdaIN
𝝁𝒐𝒃𝒋 

𝝈𝒐𝒃𝒋

Initiation Normalization

𝒛𝑻′
𝒓𝒆𝒔

Adaptive Latent 
Manipulation (Sec 4.2)

∇𝝽

𝑡 ∈ [𝑇′ − 𝜏, 𝑇′)

Figure 2: Illustration for the overall framework of TALE. First, the background latent z𝑏𝑔0 and foreground latent z𝑓 𝑔0 are inverted

into their respective noisy correspondences z𝑏𝑔
𝑇

and z𝑓 𝑔
𝑇
. Then, for selected timestep 𝑇 ′, we initiate the composition process

by incorporating z𝑏𝑔
𝑇 ′ and z𝑓 𝑔

𝑇 ′ via Selective Initiation (Section 4.2). In subsequent timesteps 𝑡 ∈ [𝑇 ′ − 𝜏,𝑇 ′), the intermediate
latent z𝑟𝑒𝑠𝑡 is progressively refined through the sequential application of Adaptive Latent Normalization (Section 4.2) and
Energy-guided Latent Optimization (Section 4.3), ultimately yielding the desired composited result z𝑟𝑒𝑠0 .

A chair and urn in the living room of a 
russian log cabin

A dog and a man walking on a leash

TF-ICON Ours TF-ICON Ours

Figure 3: Our proposed TALE is robust against identity fea-
ture loss and noticeable artifacts indicating domain style
disparity compared to TF-ICON.

point for composing by

z𝑟𝑒𝑠𝑇 = z𝑏𝑔
𝑇

⊙ M𝑧
𝑏𝑔

+ z𝑓 𝑔
𝑇

⊙ M𝑧
𝑜𝑏 𝑗

+ z ⊙ M𝑧
𝑡𝑟𝑎𝑛, (4)

where z ∼ N(0, I), M𝑧
𝑏𝑔

= 1 −M𝑧
𝑢 indicates region outside M𝑧

𝑢 , and
M𝑧
𝑡𝑟𝑎𝑛 = M𝑧

𝑢 ⊕M𝑧
𝑜𝑏 𝑗

represents the transition area. Note that these
masks are correspondingly rescaled to latent resolution from those
mentioned in Section 4.1. After inversion stage, composition is
essentially a backward process which involves concurrently denois-
ing z𝑏𝑔

𝑇
, z𝑓 𝑔
𝑇

, and z𝑟𝑒𝑠
𝑇

. The incorporation in Eq. 4 is applied at initial
timestep 𝑇 while for 𝑡 < 𝑇 , the composition process is implicitly
controlled by injecting self-attention maps obtained when denois-
ing z𝑏𝑔𝑡 and z𝑓 𝑔𝑡 into those of z𝑟𝑒𝑠𝑡 in specific manner [29]. Though
self-attention maps could bring about some semantic information
of the inputted object to the resulting image, they are susceptible to
identity features loss and incohesive style adaptation, as illustrated

in Fig. 3. Moreover, randomly initializing values within transition
area M𝑧

𝑡𝑟𝑎𝑛 can produce unwanted artifacts.
To overcome these issues, we aim to induce explicit guidance that

directly leverages noisy latents to capture identity features better
while seamlessly altering domain style. Our empirical observations
reveal that it can be achieved by initiating the composition process
at a later timestep instead of 𝑇 . Formally, we select timestep 0 <

𝑇 ′ < 𝑇 and employ z𝑟𝑒𝑠
𝑇 ′ as the starting point for composing:

z𝑟𝑒𝑠𝑇 ′ = z𝑏𝑔
𝑇 ′ ⊙ (1 −M𝑧

𝑜𝑏 𝑗
) + z𝑓 𝑔

𝑇 ′ ⊙ M𝑧
𝑜𝑏 𝑗

. (5)

The rationale behind preference of 𝑇 ′ over 𝑇 is the more the de-
noising progresses, the more style and identity information are
reconstructed in z𝑇

′

𝑓 𝑔
and z𝑇

′

𝑏𝑔
comparing to those from timestep

𝑇 , hence the more informative and effective they can be brought
to z𝑇

′
𝑟𝑒𝑠 . Moreover, the pre-trained denoising network 𝜖𝜃 can re-

tain the layout structure of z𝑇
′

𝑟𝑒𝑠 while gradually rectifying its tex-
ture throughout the remaining duration 𝑡 ∈ [0,𝑇 ′). Therefore,
commencing the composition process at timestep 𝑇 ′ with z𝑇

′
𝑟𝑒𝑠 ex-

plicitly leads to desired outcomes without any intervention into
self-attention features. Conceivably, this shares a similar intuition
with SDEdit [30] to hijack the reverse denoising process, but while
SDEdit firstly performs composition in pixel space and then per-
turbation, we adopt a reversed manner by conducting inversion
before composition, allowing for better style harmonization while
effectively preserving background and foreground contents. We
discuss how to choose the appropriate value for 𝑇 ′ in Section. 5.3.
Adaptive Latent Normalization. For challenging cases where
a significant domain discrepancy exists between x𝑏𝑔 and x𝑓 𝑔 , al-
though the Selective Initiation operation is able to integrate identity
information of the input object into the composited image, its color
hue falls short of the anticipated outcome. For instance, when x𝑏𝑔
is black-and-white but x𝑓 𝑔 is colorful, as in Fig. 6, some colors are
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Algorithm 1 Adaptive Latent Normalization
Input: Intermediate composited and background latents

(z𝑟𝑒𝑠𝑡 , z𝑏𝑔𝑡 ), preprocessed object segmentation mask M𝑧
𝑜𝑏 𝑗

,
threshold 𝜆𝑡 .

Output: Normalized latent z̃𝑟𝑒𝑠𝑡

1: 𝜇𝑏𝑔, 𝜎𝑏𝑔 = STATS(z𝑏𝑔𝑡 )
2: 𝜇𝑜𝑏 𝑗 , 𝜎𝑜𝑏 𝑗 = STATS(z𝑟𝑒𝑠𝑡 ⊙ M𝑧

𝑜𝑏 𝑗
)

3: z𝑎𝑑𝑛𝑡 = 𝜎𝑏𝑔
(
z𝑟𝑒𝑠𝑡 ⊙ M𝑧

𝑜𝑏 𝑗
− 𝜇𝑜𝑏 𝑗

)
/𝜎𝑜𝑏 𝑗 + 𝜇𝑏𝑔

4: z̃𝑟𝑒𝑠𝑡 = 𝜆𝑡 z𝑎𝑑𝑛𝑡 + (1 − 𝜆𝑡 ) (z𝑟𝑒𝑠𝑡 ⊙ M𝑧
𝑜𝑏 𝑗

) + z𝑟𝑒𝑠𝑡 ⊙ (1 −M𝑧
𝑜𝑏 𝑗

)
5: return z̃𝑟𝑒𝑠𝑡

smeared onto the resulting image. Based on the principle underly-
ing AdaIN [15], we contemplate that tone information is intricately
correlated with channel statistics of intermediate latents. Thus, we
propose to extract the object region within z𝑟𝑒𝑠𝑡 , i.e. z𝑟𝑒𝑠𝑡 ⊙ M𝑧

𝑜𝑏 𝑗
,

of following timesteps 𝑡 ∈ [0,𝑇 ′) and modulate it with channel
statistics of background latent z𝑏𝑔𝑡 via

z𝑎𝑑𝑛𝑡 = 𝜎𝑏𝑔
(
z𝑟𝑒𝑠𝑡 ⊙ M𝑧

𝑜𝑏 𝑗
− 𝜇𝑜𝑏 𝑗

)
/𝜎𝑜𝑏 𝑗 + 𝜇𝑏𝑔, (6)

where 𝜇 and 𝜎 denote channel-wise means and standard deviations.
Besides, we introduce a threshold 𝜆𝑡 to further balance the content-
style trade-off of the modulated latent as:

z̃𝑎𝑑𝑛𝑡 = 𝜆𝑡 z𝑎𝑑𝑛𝑡 + (1 − 𝜆𝑡 ) (z𝑟𝑒𝑠𝑡 ⊙ M𝑧
𝑜𝑏 𝑗

). (7)

Finally, substituting z̃𝑎𝑑𝑛𝑡 into z𝑟𝑒𝑠𝑡 results in the updated z̃𝑟𝑒𝑠𝑡 that
can preserve content information of object region while its color
tone is gradually aligned better with the background.

4.3 Energy-guided Latent Optimization
Energy Function Design. Despite capturing object identity fea-
tures and emulating the style of the background, the resulting z𝑟𝑒𝑠𝑡

might be inconsistent with the contextual guidance provided by
the input text prompt P. This may undermine the rich semantic
prior of diffusion model 𝜖𝜃 and eventually lead to deviation from
intended outcomes similar to TF-ICON. Inspired by [34, 48, 50],
we propose to leverage the updated conditional denoising process
in Eq. 3 and design suitable energy function 𝜉 to further optimize
z𝑟𝑒𝑠𝑡 conforming with P. Specifically, given latent variable z𝑟𝑒𝑠𝑡 at
timestep 𝑡 ∈ [0,𝑇 ′), we first derive the composited image x𝑟𝑒𝑠0 |𝑡 from
z𝑟𝑒𝑠𝑡 and predicted noise 𝜖𝑡 via

x𝑟𝑒𝑠0 |𝑡 = D(z𝑟𝑒𝑠0 |𝑡 ) = D
(
(z𝑟𝑒𝑠𝑡 − 𝜎𝑡𝜖𝑡 )/𝛼𝑡

)
, (8)

where 𝜖𝑡 = 𝜖𝜃 (z𝑟𝑒𝑠𝑡 , 𝑡) and D is the decoder mapping from latent
back to image space. With such clean prediction on image space,
we can then employ external models pre-trained on normal data to
estimate 𝜉 (z𝑟𝑒𝑠𝑡 , 𝑡, P) as below:

𝜉 (z𝑟𝑒𝑠𝑡 , 𝑡, P) ≈ F = 1 − cos(EMBP (x𝑟𝑒𝑠0 |𝑡 ), EMBP (P)). (9)

Here EMBP projects input into an aligned embedding space via
pre-trained multimodal projector P, and F denotes a distance mea-
suring function, which is one minus cosine similarity between two
embedding vectors. The obtained distance then serves as a global
penalty to backpropagate the computational graph and obtain a

Algorithm 2 Energy-guided Latent Optimization

Input: Intermediate composited latent z𝑟𝑒𝑠𝑡 , background image
x𝑏𝑔 and latent z

𝑏𝑔
𝑡 , user-specified maskM𝑢 , preprocessed object

segmentation maskM𝑧
𝑜𝑏 𝑗

, predefined diffusion scalars (𝜎𝑡 , 𝛼𝑡 ),
prompt P, optimization steps 𝑁 , scale factors (𝜂, 𝜂′).

Output: Optimized latent ẑ𝑟𝑒𝑠
𝑡−1

1: for 𝑖 = 0 to 𝑁 do
2: z̃𝑟𝑒𝑠𝑡 , 𝜖𝑡 = DENOISE(z𝑟𝑒𝑠𝑡 )
3: x𝑟𝑒𝑠0 |𝑡 = D((z𝑟𝑒𝑠𝑡 − 𝜎𝑡𝜖𝑡 )/𝛼𝑡 )
4: F = 1 − cos(EMBP (x𝑟𝑒𝑠0 |𝑡 ), EMBP (P))
5: F ′ = | |GP (x𝑟𝑒𝑠0 |𝑡 ⊙ M𝑢 ) − GP (x𝑏𝑔) | |2𝐹
6: z̄𝑟𝑒𝑠𝑡 = z̃𝑟𝑒𝑠𝑡 − (𝜂∇z𝑟𝑒𝑠𝑡

F + 𝜂′∇z𝑟𝑒𝑠𝑡
F ′) ⊙ M𝑧

𝑜𝑏 𝑗

7: end for
8: ẑ𝑟𝑒𝑠

𝑡−1 = z̄𝑟𝑒𝑠𝑡 ⊙ M𝑧
𝑜𝑏 𝑗

+ z𝑏𝑔𝑡 ⊙ (1 −M𝑧
𝑜𝑏 𝑗

)
9: return ẑ𝑟𝑒𝑠

𝑡−1

gradient on z𝑟𝑒𝑠𝑡 . By incorporating Eq. 3 and Eq. 9, we can derive
the updated composition process as:

ẑ𝑟𝑒𝑠𝑡−1 = z𝑟𝑒𝑠𝑡−1 − 𝜂∇z𝑟𝑒𝑠𝑡
F , (10)

in which 𝜂 serves as the learning rate of each optimization step.
We leverage CLIP [36] model with powerful text-image alignment
capability as the projector.

Note that 𝜉 can be approximated by a combination of multiple
distance functions, one can also compute the distance of the style
information between 𝑥𝑟𝑒𝑠0 |𝑡 within M𝑢 (the object patch) and 𝑥𝑏𝑔 to
attain better local style cohesion:

F ′ = | |GP (x𝑟𝑒𝑠0 |𝑡 ⊙ M𝑢 ) − GP (x𝑏𝑔) | |2𝐹 , (11)

where G denotes the Gram matrix [17] of the feature map obtained
from the projector P that captures the second-order style informa-
tion. This extra regularization can be added to Eq. 10 as:

ẑ𝑟𝑒𝑠𝑡−1 = z𝑟𝑒𝑠𝑡−1 − 𝜂∇z𝑟𝑒𝑠𝑡
F − 𝜂′∇z𝑟𝑒𝑠𝑡

F ′ . (12)

Since object area is the region to be edited while background must
remain unchanged, it is intuitive to only optimize the object patch
within M𝑧

𝑜𝑏 𝑗
using Eq. 12, while background region outside the

mask can be effectively maintained via replacement trick as in [29].

Timestep Constraint. It is observed that applying normalization
and optimization for every timestep 𝑡 ∈ [0,𝑇 ′) may lead to notice-
able artifacts in transition area. Thus, similar to [1, 29], we introduce
threshold 𝜏 to regulate them within 𝑡 ∈ [𝑇 ′ − 𝜏,𝑇 ′) only, allowing
sufficient time left for diffusion model to rectify the outputs.

5 EXPERIMENTS
5.1 Experimental Setups
Baseline Benchmark.We utilize the benchmark dataset provided
by the TF-ICON [29] for evaluation of our method. It includes 332
samples, each comprising a background image, an object image,
a user-provided mask, an object segmentation mask, and a text
prompt. The background images are divided into four visual do-
mains: photorealism, pencil sketching, oil painting, and cartoon



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Input Ours TF-ICON Blended DiffusionSDEdit AnyDoor ControlCom ObjectStitchPaint by Example

A bird and a tree

A cat and a cat sit on the window sill looking out at the snow

A car and a man are in a comic book

A professional photograph of a roast Chicken and some strawberries, ultra realistic

A panda and other animals are standing in front of a barn

A pencil drawing of a tortoise in the sunset

Figure 4: Qualitative comparison of TALE with prior SOTA and concurrent works in cross-domain image-guided composition.
From top to bottom are representative results for compositing between real and watercolor, oil painting, comic, photorealism,
sketching, and cartoon animation domains. Zoom-in for details.

animation. The object images comprise more than 60 categories
from photorealism domain with segmentation masks obtained us-
ing SAM [20] model. The text prompts are manually annotated
according to the semantics of background and object images.
ExtendedDataset. Since the baseline benchmark is heavily skewed
towards the photorealism domain with over 70% of samples and
provides a limited number of background images for assessment,
we propose an extended dataset with more non-photorealistic sam-
ples and diverse backgrounds. We randomly select artistic domain
images from Clipart1k, Watercolor2k, and Comic2k [16], to be back-
ground images, utilizing their object bounding box annotations for
user-specified mask generation. For each background, we randomly
select an object of class [CLS] and adopt BLIP2 [23] model to gener-
ate caption of template "A [CLS] and . . . ". Then, we leverage Inpaint
Anything [51] framework to inpaint the selected object location,
obtaining a clean background image. Besides, object images are
sampled from the baseline benchmark due to their category di-
versity. Subsequently, we pair the object and background images,

and accordingly replace [CLS] in the background caption with the
category [CLS*] of the paired object. Lastly, we manually remove
unreasonable pairs for sanity and eventually obtain an extended
benchmark of 207 high-quality non-photorealistic domain samples
with diverse backgrounds for evaluation, complementing what is
lacking from the baseline.
ImplementationDetails.Wefirst adopt the preprocessing pipeline
from TF-ICON [29] to preprocess each data sample so that the
input object is rescaled and relocated to correspond with user-
inputted mask. In addition, we employ Inpaint Anything [51] model
to remove unwanted objects underneath the user mask to pro-
duce a clean background image for composing. Then, we con-
duct composition processes using our proposed training-free ap-
proach TALE of which the overall framework is depicted in Fig. 2.
Specifically, we leverage the inversion technique introduced in [29]
to invert background and foreground images into latent repre-
sentations z𝑏𝑔

𝑇
and z𝑓 𝑔

𝑇
then iteratively denoise them for 𝑇 = 20
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Figure 5: Quantitative comparison of TALE with prior SOTA works in cross-domain composition on the baseline benchmark
with sketching, oil painting, and cartoon animation domains, and on the extended benchmark containing mixture of other
domains such as comic and watercolor painting.

Table 1: Quantitative performance achieved by different
methods for photorealism same-domain composition on test
benchmark provided by [29]. Our results are shown in bold,
the best and second-best results are in red and blue.

Method LPIPS𝑏𝑔 ↓ LPIPS𝑓 𝑔 ↓ CLIP𝐼𝑚𝑎𝑔𝑒 ↑ CLIP𝑇𝑒𝑥𝑡 ↑

Tr
ai
ni
ng

PbE [49] 0.12 0.69 80.26 25.92
AnyDoor [3] 0.09 0.59 87.87 31.24

ControlCom [52] 0.10 0.60 84.97 30.57
ObjectStitch [42] 0.11 0.66 84.86 30.73

Tr
ai
ni
ng

-fr
ee Blended [1] 0.11 0.77 73.25 25.19

SDEdit (0.4) [30] 0.35 0.62 80.56 27.73
SDEdit (0.6) [30] 0.42 0.66 77.68 27.98

TF-ICON [29] 0.10 0.60 82.86 28.11
TALE (Ours) 0.10 0.51 85.12 31.03

timesteps while conducting composition process intertwine start-
ing from 𝑇 ′ = 8. Subsequently, we proceed to normalize and op-
timize the intermediate composited latent z𝑟𝑒𝑠𝑡 via our proposed
Adaptive Latent Normalization (Algorithm 1) and Energy-guided
Latent Optimization (Algorithm 2) operations with 𝜏 = 5. We
respectively set 𝜆𝑡 = 0.1 + 0.5(𝑇 ′ − 𝑡)/𝜏 for normalization and
𝑁 = 3, 𝜂 = 15, 𝜂′ = 0.15 for optimization. We fix the random
seed for fair comparisons and conduct all experiments on NVIDIA
Geforce RTX 3090 GPUs, where the composition takes about 23
seconds per sample, depending on the size of the foreground image
and user mask. Note that these settings are kept by default for every
cross-domain experiments, and for same-domain composition, we
adjust 𝑇 ′ = 6, 𝜏 = 3, 𝜆𝑡 = 0.1 and skip optimization as domain dis-
crepancy between background and foreground images is negligible.

5.2 Performance Comparisons
We compare TALE with prior SOTA and concurrent works that
are capable of performing image-guided composition, including
TF-ICON [29], SDEdit [30], Blended Diffusion [1], Paint by Exam-
ple [49], AnyDoor [3], ControlCom [52], and ObjectStitch [42].
Qualitative Results. Qualitative results shown in Fig. 4 highlight
the superiority of our method across all domains. First, TALE gen-
erates high-quality composited images of which the objects are
stylized according to target backgrounds more naturally. Second,

the identity features of input objects are better preserved. Third, the
complementing background regions of composited images remain
unchanged. Fourth, the objects seamlessly blend into the back-
grounds without noticeable artifacts in the transition area. In one
hand, although AnyDoor, ControlCom, and ObjectStitch can com-
pose images within their photorealistic training domain, they suffer
from poor adaptation to other domains. On the other hand, TF-
ICON and Paint by Example can provide certain degree of freedom
for composing in different domains yet they fall short in retaining
object identities and altering color style. For SDEdit and Blended
Diffusion, while the former often causes unwanted changes to the
background, the latter solely resorts to text prompt for composing;
hence, its results tend to deviate from user’s intention.
Quantitative Results. We first follow the prior works to per-
form quantitative comparisons using four metrics: LPIPS𝑏𝑔 [55]
to assess background preservation, LPIPS𝑓 𝑔 [55] to measure low-
level similarity between foreground image and the edited region,
CLIP𝐼𝑚𝑎𝑔𝑒 [36] to examine the semantic correspondence between
foreground image and the edited region in CLIP embedding space,
and CLIP𝑇𝑒𝑥𝑡 [36] to evaluate the semantic alignment between
input text prompt and the composited image. However, since these
metrics do not assess domain style adaptability and are known for
texture and semantic bias [8, 18] in which style information can
affect the scores, we only employ them for evaluating composition
within the same photorealism domain. As demonstrated in Tab. 1,
our method TALE achieves the best performance among training-
free approaches, even outperforms several frameworks that are
trained on this domain.

For cross-domain comparisons, we adopt the recent evaluation
protocol from [18], which can precisely examine domain trans-
ferability in terms of style and content similarity. Specifically, we
leverage their pre-trained discriminator to predict color style sim-
ilarity score between the edited patch of composited image and
the background. For content similarity, we utilize LDC [44] model
to extract edge features of background, foreground, and compos-
ited images. These features are more tolerant of style changes and
hence can be used to assess content preservation. We then compute
content similarity score with a slight modification as

S = (1 + SSIM𝑏𝑔) (1 + SSIM𝑓 𝑔)/4, (13)

where SSIM𝑓 𝑔 denotes SSIM calculated between edge features of
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Figure 6: Ablation study: Qualitative evaluation on effective-
ness of each component.
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Figure 7: User preference of TALE over prior works.

foreground image and edited region of resulting image, and SSIM𝑏𝑔

is calculated on the complementing background area. This metric
formulation can effectively reflect both background and object
identity preservation capabilities. Results presented in Fig. 5 show
that we attain the most balanced content-style trade-off across all
domains. We can observe that although Anydoor and ControlCom
have high content similarity scores, they often fail to alter the object
style. In contrast, SDEdit may obtain high style similarity scores
yet they struggle to retain content information.
User Study. To subjectively evaluate the performance of our TALE
compared to other methods, we invite 50 users to participate in a
user study. We show each of them 20 to 30 image sets randomly
selected from a pool of 310 questions each consists of a background
image, a foreground image, and two composited options of which
one is from ours and the other is randomly picked from 7 results
generated by prior works. Users are required to select the better-
composited image based on comprehensive criteria considered fore-
ground content-style balance, background preservation, text align-
ment, and seamless composition. After collecting user responses,
we computed the average preference percentage of our method
over others. Fig. 7 shows that TALE is greatly favored by the users.

5.3 Ablation Studies
Component Effectiveness. We sequentially ablate the key ele-
ments of our proposed TALE on the extended dataset with the
following configurations: (1) Baseline, in which the composition
is generated by a plain denoising process from 𝑇 to 0 with nei-
ther adaptive latent manipulation nor energy-guided optimization.
The initial point is composed by incorporating inverted noises
at 𝑇 ′ = 𝑇 ; (2) 𝑇 ′ is selectively set; (3) The adaptive normalization
is additionally conducted; (4) The energy-guided optimization is

Input 𝑻′ = 𝟏𝟔 𝑻′ = 𝟏𝟐 𝑻′ = 𝟖 𝑻′ = 𝟒

A bird and chicken family vector illustration

A dog and a cat are in a comic strip

Figure 8: Ablation study: Qualitative evaluation on different
selections of 𝑇 ′.

Table 2: Ablation study: Quantitative evaluation on effective-
ness of each component.

Config Baseline + Selective T’ + Normalization + Optimization
Content Similarity ↑ 0.45 0.48 (+ 0.03) 0.49 (+ 0.01) 0.50 (+ 0.01)

Style Similarity ↑ 0.40 0.50 (+ 0.10) 0.81 (+ 0.31) 0.82 (+ 0.01)

Table 3: Ablation study: Quantitative evaluation on different
selection of 𝑇 ′.

Config 𝑇 ′ = 16 𝑇 ′ = 12 𝑇 ′ = 8 𝑇 ′ = 4
Content Similarity ↑ 0.47 0.48 0.50 0.51

Style Similarity ↑ 0.56 0.75 0.82 0.78

finally applied. Results shown in Tab. 2 and Fig. 6 indicate that the
proper selection of 𝑇 ′ can preserve content and style information
of inputs while adaptive normalization can enhance the color tone
of objects and energy-guided optimization helps further refine the
outcomes.
𝑇 ′ Selection. Intuitively, the more the denoising progresses, the
more information about backgrounds and objects are reconstructed,
hence the more effectively they can be composed into final out-
comes. To validate this intuition, we experiment with the influence
of different choices of𝑇 ′ on the extended dataset. Consistent results
are demonstrated in Fig. 8 and Tab. 3. Notably, too large𝑇 ′ leads to
content information loss, while too small 𝑇 ′ affects domain style
adaptation.

6 CONCLUSION
We have presented a novel training-free framework dubbed TALE
leveraging powerful text-driven diffusion models for high-quality
cross-domain image-guided composition. TALE is equipped with
two components, namelyAdaptive LatentManipulation and Energy-
guided Latent Optimization, that works in synergy to construct and
control the composition process, seamlessly incorporating user-
provided objects into a specific visual background of different do-
mains. Our experimental results highlight the superiority of our ap-
proach over prior and concurrent works, achieving state-of-the-art
performance. We hope that our method can inspire future research
on similar or relevant topics.
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