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1 FULL ALGORITHM

We describe the complete pseudocode of the proposed training-free
cross-domain image composition framework (TALE) in Algorithm 3.
Note that & and D represents the autoencoder’s encoder and de-
coder of the employed LDM [3], PREPROCESS and INVERSE
denotes preprocessing pipeline and inversion technique adopted
from TF-ICON [2], DENOISE indicates each LDM’s inference step,
and NORMALIZE and OPTIMIZE correspond to the Adaptive
Latent Normalization (Algorithm 1) and Energy-guided Latent Op-
timization (Algorithm 2) respectively introduced in Section 4.2 and
Section 4.3 in the main paper.

2 ADDITIONAL QUALITATIVE RESULTS

We exhibit numerous extra qualitative results of image composition
across different domains in Figures 5, 6, 7, 8, 9, 10, 11, 12, 13 for a
more thorough comparison. Besides, we show additional ablation
study results for component effectiveness in Figure 3 and for T’
selection in Figure 4.

3 USER STUDY ELABORATION

Given the primary objective of subjectively evaluating the perfor-
mance of the proposed TALE framework against existing SOTA
and concurrent works, employing a ranking format for user study
questions, as adopted in TF-ICON [2], would be redundant. This
approach would be cumbersome and time-consuming for users as
there are seven baselines to compare with, and some of which may
generate visually similar composite results. Therefore, we opted
for an either-or format for user study questions, as detailed in
Section 5.2 of the main paper. This format offers enhanced user-
friendliness while effectively demonstrating user preference for our
method compared to alternative approaches.

Users are requested to select better option based on comprehen-
sive criteria:

¢ Foreground Content-Style Balance: The composited im-
age should well-preserve the identity features of given object
within the user-specified mask region while its style adapts
to that of the background.

e Background Preservation: The complement background
area outside the mask should remain unchanged.

o Text Alignment: The composited image should conform to
the given text prompt.

o Seamless Composition: The composited image should be
visually pleasing and free from any noticeable artifacts, such
that it is challenging for users to recognize it was produced
by AI or copied and pasted.

Among 310 questions, there are 56 ones for oil painting, 56

ones for cartoon animation, 63 ones for sketching, 84 ones for
photorealism from the baseline benchmark, and 51 ones for mixture

Algorithm 3 Training-free Image Composition - TALE

Input: Background and foreground images (Xpg, Xr,), object seg-
mentation mask M,y ;, user-specified mask My, prompt P, se-
lective timestep T”, threshold 7

Output: Composition image Xyes

- % M, . = PREPROCESS (x7y, Mop . Mu)

by f9 _ P
2z, ,z{ —S(ng,xfg)

3 209,209 = INVERSE(2)Y, 29, T)
4 fort =T to0do

bg 9 _ bg ,fg
5. 29,79 = DENOISE(z?, 2]%)

6. if t ==T’ then

no A =g o (1-M ) +7l o Mz,
s 27 = DENOISE(z/%")

9. elseif T’ —7 <t < T then

10 ¢ = NORMALIZE(2])

1 #7% = OPTIMIZE(Z%)

122 endif

13: end for

145 Xpes = D(2)

15: return X,eg

of domains from the extended benchmark. The average preference
percentage of TALE over work W (APPyy) is calculated by:

w

APPyy = — Nzci (1)
v Nw ni’

where Ny is the number of questions of which one option is the
composited result generated by TALE and the other by work W, ¢;
is the number of users select TALE’s option for the i*” question,
and n; is the total number of user responses for that question.

4 ADDITIONAL ABLATION STUDIES
4.1 Adaptive Threshold A;

Figure 1 demonstrates the effects of setting different fixed values
for A;. As stated in the main paper Section 4.2, introducing A; helps
balance the content-style trade-off within the object region. We can
observe that the higher the value for A, the more the color tone
of object adapts to the background but the less identifying infor-
mation is preserved. Empirical findings suggest that progressively
increasing the value of A; as the composition (denoising) process
progresses leads to optimal outcomes across diverse domains. This
configuration is motivated by the observation that at later timesteps,
a significant portion of the object content information has already

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

171
172
173
174

ACM MM, 2024, Melbourne, Australia

A bird and vernon davis quote
L TR . — i TR o TR - e O

;;ALQ:‘

E edied idial ndied odiad
~ % SIS IS

h

TR TR TN

A car and ute are shown in a scene from the storyboard

5 Weow gt cch
| e by || e buerfy

Weow e ch

ad Moof couldpleu and Moof coudny |

akeh i -«‘L

A cat and ickle dog are sitting on a tree stump, and a butterfly is sitting on

Figure 1: Ablation study: Qualitative evaluation on the effect
of adative threshold A;.

been incorporated. Consequently, a higher trade-off with style infor-
mation becomes feasible, enabling the generation of more refined
and stylistically consistent results.

4.2 Timestep Constraint v

Figure 2 assesses the effects of setting different values for 7. As
mentioned in the main paper Section 4.3, applying Adaptive Latent
Normalization and Energy-guided Latent Op- timization for every
timestep ¢ € [0,T”) may induce unwanted artifacts in transition
area. Moreover, it is also observed that setting large value for 7 can
lead to loss of content information and thus content-style imbalance
in object area.

5 LIMITATIONS AND FUTURE WORK

The primary limitation of our propose framework TALE is the
inability to generate object views that deviate significantly from
the provided reference image. Consequently, the selection of in-
put objects images may be constrained in certain instances. This
stems from the reliance of TALE on the preprocessed object seg-
mentation mask Mi bj for both Adaptive Latent Manipulation and
Energy-guided Latent Optimization components. Though using the
rescaled user-specified mask M7, as alternative can allow for some
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Figure 2: Ablation study: Qualitative evaluation on the effect
of timestep constraint 7.

flexibility to incorporate objects of different views into composited
results, this often compromises the preservation of object iden-
tity and induces unwanted artifacts in transition areas. To address
this challenge, further research could exploit personalized concept
learning methods, such as Textual Inversion [1] and InST [6], to
encode identifying features of objects fused with background style
information into special text embeddings which can require addi-
tional training or fine-tuning. Besides, it is worth mentioning that
TALE leverages pre-trained LDM [3] hence also inherits its draw-
backs and biases that may lead to undesired outcomes in certain
scenarios.

6 SOCIETAL IMPACTS

TALE empowers individuals without professional artistic exper-
tise to engage in image-guided composition. However, there are
some potential risks associated with employing our framework. For
instance, it could be misused for malicious purposes, such as ha-
rassment or dissemination of false information. Additionally, image
composition is intrinsically linked to image generation, necessitat-
ing awareness of potential biases introduced by diffusion models
trained on web-scraped data like LAION [5]. Notably, LAION un-
intendedly contains inappropriate NSFW contents. Consequently,
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Figure 3: Ablation study: Qualitative evaluation on effective- Figure 4: Ablation study: Qualitative evaluation on selection
ness of each component. of T'.
diffusion models trained on LAION, such as LDM [3] and Ima gen [ 4], language understanding. Advances in neural information processing systems 35

(2022), 36479-36494.

may exhibit social and cultural biases. Therefore, using such models [5] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross
can raise ethical concerns hence warrants careful consideration. Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell
. . .. . . Wortsman, Patrick Schramowski, Srivatsa Kundurthy, Katherine Crowson,
Finally, the ability to compose across artistic domains could be mis- Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. 2022. LAION-5B:
applied for copyright infringement, as users could create images An open large-scale dataset for training next generation image-text models.
of similar style without the artist’s consent. While the generated arXiv:2210.08402 [¢s.CV] - .
. L. . . [6] Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming
artwork may curr ently be readlly dlStlnguIShable from the Orlglnal» Dong, and Changsheng Xu. 2023. Inversion-Based Style Transfer With Diffusion
future technologies could make such infringement challenging to Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

differentiate. Consequently, we urge users to use this method with Recognition (CVPR). 10146-10156.

caution and only for legitimate purposes.
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Figure 5: Qualitative comparison with prior SOTA and concurrent works in image composition for the oil painting domain on
baseline benchmark. Zoom-in for details.
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Figure 6: Qualitative comparison with prior SOTA and concurrent works in image composition for the cartoon animation
domain on baseline benchmark. Zoom-in for details.
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Figure 7: Qualitative comparison with prior SOTA and concurrent works in image composition for the sketching domain on
baseline benchmark. Zoom-in for details.

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696



697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

TALE: Training-free Cross-domain Image Composition via Adaptive Latent Manipulation and Energy-guided Optimization ACM MM, 2024, Melbourne, Australia

Input TF-ICON SDEdit Blended Diffusion  Paint by Example AnyDoor ControlCom ObjectStitch

A professional photograph of a piece of bread and berries, ultrar

A professional photograph of a spoon, a cake and strawberrles, ultra realistic

NN HW@N

A profess:onal photograph of a muffin and berries, ultra reali:

, P of a h fllled with meat and spring rolls, ultra reallstlc

"&'ﬁ'i ®

A profess:onal photograph of a grapefruit and spnng rolls, ultra reallstlc

1% .
A (. .

A professional photograph of a chocolate doughnut and spring rolls, ultra realistic

Figure 8: Qualitative comparison with prior SOTA and concurrent works in image composition for the photorealism domain on
baseline benchmark. Zoom-in for details.
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Figure 9: Qualitative comparison with prior SOTA and concurrent works in image composition for the photorealism domain on
baseline benchmark. Zoom-in for details.
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Figure 10: Qualitative comparison with prior SOTA and concurrent works in image composition for the photorealism domain
on baseline benchmark. Zoom-in for details.
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Figure 11: Qualitative comparison with prior SOTA and concurrent works in image composition for mixture of domains on
extended dataset. Zoom-in for details.
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Figure 12: Qualitative comparison with prior SOTA and concurrent works in image composition for mixture of domains on
extended dataset. Zoom-in for details.
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Figure 13: Qualitative comparison with prior SOTA and concurrent works in image composition for mixture of domains on
extended dataset. Zoom-in for details.
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