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1 FULL ALGORITHM
We describe the complete pseudocode of the proposed training-free
cross-domain image composition framework (TALE) in Algorithm 3.
Note that E and D represents the autoencoder’s encoder and de-
coder of the employed LDM [3], PREPROCESS and INVERSE
denotes preprocessing pipeline and inversion technique adopted
from TF-ICON [2], DENOISE indicates each LDM’s inference step,
and NORMALIZE and OPTIMIZE correspond to the Adaptive
Latent Normalization (Algorithm 1) and Energy-guided Latent Op-
timization (Algorithm 2) respectively introduced in Section 4.2 and
Section 4.3 in the main paper.

2 ADDITIONAL QUALITATIVE RESULTS
We exhibit numerous extra qualitative results of image composition
across different domains in Figures 5, 6, 7, 8, 9, 10, 11, 12, 13 for a
more thorough comparison. Besides, we show additional ablation
study results for component effectiveness in Figure 3 and for T’
selection in Figure 4.

3 USER STUDY ELABORATION
Given the primary objective of subjectively evaluating the perfor-
mance of the proposed TALE framework against existing SOTA
and concurrent works, employing a ranking format for user study
questions, as adopted in TF-ICON [2], would be redundant. This
approach would be cumbersome and time-consuming for users as
there are seven baselines to compare with, and some of which may
generate visually similar composite results. Therefore, we opted
for an either-or format for user study questions, as detailed in
Section 5.2 of the main paper. This format offers enhanced user-
friendliness while effectively demonstrating user preference for our
method compared to alternative approaches.

Users are requested to select better option based on comprehen-
sive criteria:

• Foreground Content-Style Balance: The composited im-
age should well-preserve the identity features of given object
within the user-specified mask region while its style adapts
to that of the background.

• Background Preservation: The complement background
area outside the mask should remain unchanged.

• Text Alignment: The composited image should conform to
the given text prompt.

• Seamless Composition: The composited image should be
visually pleasing and free from any noticeable artifacts, such
that it is challenging for users to recognize it was produced
by AI or copied and pasted.

Among 310 questions, there are 56 ones for oil painting, 56
ones for cartoon animation, 63 ones for sketching, 84 ones for
photorealism from the baseline benchmark, and 51 ones for mixture

Algorithm 3 Training-free Image Composition - TALE

Input: Background and foreground images (x𝑏𝑔, x𝑓 𝑔), object seg-
mentation maskM𝑜𝑏 𝑗 , user-specified maskM𝑢 , prompt P, se-
lective timestep 𝑇 ′, threshold 𝜏

Output: Composition image x𝑟𝑒𝑠
1: x𝑝

𝑓 𝑔
,M𝑧

𝑜𝑏 𝑗
= PREPROCESS(x𝑓 𝑔,M𝑜𝑏 𝑗 ,M𝑢 )

2: z𝑏𝑔0 , z𝑓 𝑔0 = E(x𝑏𝑔, x
𝑝

𝑓 𝑔
)

3: z𝑏𝑔
𝑇
, z𝑓 𝑔
𝑇

= INVERSE(z𝑏𝑔0 , z𝑓 𝑔0 ,𝑇 )
4: for 𝑡 = 𝑇 to 0 do
5: z𝑏𝑔

𝑡−1, z
𝑓 𝑔

𝑡−1 = DENOISE(z𝑏𝑔𝑡 , z𝑓 𝑔𝑡 )
6: if 𝑡 == 𝑇 ′ then
7: z𝑟𝑒𝑠𝑡 = z𝑏𝑔𝑡 ⊙ (1 −M𝑧

𝑜𝑏 𝑗
) + z𝑓 𝑔𝑡 ⊙ M𝑧

𝑜𝑏 𝑗

8: z𝑟𝑒𝑠
𝑡−1 = DENOISE(z𝑟𝑒𝑠𝑡 )

9: else if 𝑇 ′ − 𝜏 ≤ 𝑡 < 𝑇 ′ then
10: z̃𝑟𝑒𝑠𝑡 = NORMALIZE(z𝑟𝑒𝑠𝑡 )
11: ẑ𝑟𝑒𝑠

𝑡−1 = OPTIMIZE(z̃𝑟𝑒𝑠𝑡 )
12: end if
13: end for
14: x𝑟𝑒𝑠 = D(ẑ𝑟𝑒𝑠0 )
15: return x𝑟𝑒𝑠

of domains from the extended benchmark. The average preference
percentage of TALE over work𝑊 (𝐴𝑃𝑃𝑊 ) is calculated by:

𝐴𝑃𝑃𝑊 =
1

𝑁𝑊

𝑁W∑︁
𝑖=1

𝑐𝑖

𝑛𝑖
, (1)

where 𝑁𝑊 is the number of questions of which one option is the
composited result generated by TALE and the other by work𝑊 , 𝑐𝑖
is the number of users select TALE’s option for the 𝑖𝑡ℎ question,
and 𝑛𝑖 is the total number of user responses for that question.

4 ADDITIONAL ABLATION STUDIES
4.1 Adaptive Threshold 𝜆𝑡

Figure 1 demonstrates the effects of setting different fixed values
for 𝜆𝑡 . As stated in the main paper Section 4.2, introducing 𝜆𝑡 helps
balance the content-style trade-off within the object region. We can
observe that the higher the value for 𝜆𝑡 , the more the color tone
of object adapts to the background but the less identifying infor-
mation is preserved. Empirical findings suggest that progressively
increasing the value of 𝜆𝑡 as the composition (denoising) process
progresses leads to optimal outcomes across diverse domains. This
configuration is motivated by the observation that at later timesteps,
a significant portion of the object content information has already
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A bird and vernon davis quote

A dog and a woman are in a painting

A car and a man are in a comic book

A cat and ickle dog are sitting on a tree stump, and a butterfly is sitting on

A car and ute are shown in a scene from the storyboard

Input 𝜆𝑡 = 𝟎. 𝟏 𝜆𝑡 = 𝟎. 𝟑 𝜆𝑡 = 𝟎. 𝟓 𝜆𝑡 = 𝟎. 𝟕

Figure 1: Ablation study: Qualitative evaluation on the effect
of adative threshold 𝜆𝑡 .

been incorporated. Consequently, a higher trade-offwith style infor-
mation becomes feasible, enabling the generation of more refined
and stylistically consistent results.

4.2 Timestep Constraint 𝜏
Figure 2 assesses the effects of setting different values for 𝜏 . As
mentioned in the main paper Section 4.3, applying Adaptive Latent
Normalization and Energy-guided Latent Op- timization for every
timestep 𝑡 ∈ [0,𝑇 ′) may induce unwanted artifacts in transition
area. Moreover, it is also observed that setting large value for 𝜏 can
lead to loss of content information and thus content-style imbalance
in object area.

5 LIMITATIONS AND FUTUREWORK
The primary limitation of our propose framework TALE is the
inability to generate object views that deviate significantly from
the provided reference image. Consequently, the selection of in-
put objects images may be constrained in certain instances. This
stems from the reliance of TALE on the preprocessed object seg-
mentation mask M𝑧

𝑜𝑏 𝑗
for both Adaptive Latent Manipulation and

Energy-guided Latent Optimization components. Though using the
rescaled user-specified mask M𝑧

𝑢 as alternative can allow for some

A chair and urn on the porch of a house with a view of the ocean

A car and iphone with a london skyline

A painting of a bird sitting on a branch

A car and a man are in a room

A cat and a pillow on a bed

Input 𝝉 = 𝟑 𝝉 = 𝟓 𝝉 = 𝟕 𝝉 = 𝟗

Figure 2: Ablation study: Qualitative evaluation on the effect
of timestep constraint 𝜏 .

flexibility to incorporate objects of different views into composited
results, this often compromises the preservation of object iden-
tity and induces unwanted artifacts in transition areas. To address
this challenge, further research could exploit personalized concept
learning methods, such as Textual Inversion [1] and InST [6], to
encode identifying features of objects fused with background style
information into special text embeddings which can require addi-
tional training or fine-tuning. Besides, it is worth mentioning that
TALE leverages pre-trained LDM [3] hence also inherits its draw-
backs and biases that may lead to undesired outcomes in certain
scenarios.

6 SOCIETAL IMPACTS
TALE empowers individuals without professional artistic exper-
tise to engage in image-guided composition. However, there are
some potential risks associated with employing our framework. For
instance, it could be misused for malicious purposes, such as ha-
rassment or dissemination of false information. Additionally, image
composition is intrinsically linked to image generation, necessitat-
ing awareness of potential biases introduced by diffusion models
trained on web-scraped data like LAION [5]. Notably, LAION un-
intendedly contains inappropriate NSFW contents. Consequently,



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

TALE: Training-free Cross-domain Image Composition via Adaptive Latent Manipulation and Energy-guided Optimization ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

A bird and a bird with the words holy trinity

A car and iphone comic strip about the people who are protesting

Input Baseline + Selective 𝑻′ + Normalization + Optimization

A car and a man are in a room

A bird in a cityscape

A cat and a sword in a forest

Figure 3: Ablation study: Qualitative evaluation on effective-
ness of each component.

diffusionmodels trained on LAION, such as LDM [3] and Imagen [4],
may exhibit social and cultural biases. Therefore, using such models
can raise ethical concerns hence warrants careful consideration.
Finally, the ability to compose across artistic domains could be mis-
applied for copyright infringement, as users could create images
of similar style without the artist’s consent. While the generated
artwork may currently be readily distinguishable from the original,
future technologies could make such infringement challenging to
differentiate. Consequently, we urge users to use this method with
caution and only for legitimate purposes.
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Input Ours TF-ICON Blended DiffusionSDEdit AnyDoor ControlCom ObjectStitchPaint by Example

An oil painting of a dog, Van Gogh Style

An oil painting of a squirrel, Van Gogh Style

An oil painting of a sheep, Van Gogh Style

An oil painting of a chocolate doughnut, Van Gogh Style

An oil painting of a sandwich, Van Gogh Style

An oil painting of an eiffel tower in the distance, Van Gogh Style

An oil painting of a shopping mall in the distance, Van Gogh Style

Figure 5: Qualitative comparison with prior SOTA and concurrent works in image composition for the oil painting domain on
baseline benchmark. Zoom-in for details.
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A cartoon animation of a goose in the forest

A cartoon animation of a squirrel in the forest

A cartoon animation of an elephant in the forest

A cartoon animation of a croissant, a croissant, a piece of bread and a cup of coffee

A cartoon animation of a roast Chicken, a croissant, a piece of bread and a cup of coffee

A cartoon animation of a building in the distance

A cartoon animation of buildings in the distance

Figure 6: Qualitative comparison with prior SOTA and concurrent works in image composition for the cartoon animation
domain on baseline benchmark. Zoom-in for details.
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A pencil drawing of a dog in the sunset

A pencil drawing of a squirrel in the sunset

A pencil drawing of a muffin and other food, gray tone

A pencil drawing of a croissant and other food, gray tone

A pencil drawing of a car and a willow, black and white painting

A  pencil drawing of buildings in the distance, black and white painting

A pencil drawing of a car and a willow, black and white painting

Figure 7: Qualitative comparison with prior SOTA and concurrent works in image composition for the sketching domain on
baseline benchmark. Zoom-in for details.
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A professional photograph of a cake and spring rolls, ultra realistic

A professional photograph of a piece of bread and strawberries, ultra realistic

A professional photograph of a spoon, a cake and strawberries, ultra realistic

A professional photograph of a muffin and strawberries, ultra realistic

A professional photograph of  a sandwich filled with meat and spring rolls, ultra realistic

A  professional photograph of a chocolate doughnut and spring rolls, ultra realistic

A professional photograph of a grapefruit and spring rolls, ultra realistic

Figure 8: Qualitative comparison with prior SOTA and concurrent works in image composition for the photorealism domain on
baseline benchmark. Zoom-in for details.
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A professional photograph of a bag on the desk, ultra realistic

A professional photograph of a bag on the desk, ultra realistic

A professional photograph of a flower on the beach, ultra realistic

A professional photograph of a cabinet, ultra realistic

A professional photograph of a teddy bear, ultra realistic

A  professional photograph of skyscrapers, ultra realistic

A professional photograph of a wet puppy in a pool, ultra realistic

Figure 9: Qualitative comparison with prior SOTA and concurrent works in image composition for the photorealism domain on
baseline benchmark. Zoom-in for details.
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A professional photograph of a fox sitting on the ground, ultra realistic

A professional photograph of a sheep on the ground, ultra realistic

A professional photograph of a dog lying on the beach, ultra realistic

A professional photograph of a panda lying in a garden, ultra realistic

A professional photograph of a fox in the wild, ultra realistic

A  professional photograph of a fire hydrant on the grass, ultra realistic

A professional photograph of a puppy on the grass, ultra realistic

Figure 10: Qualitative comparison with prior SOTA and concurrent works in image composition for the photorealism domain
on baseline benchmark. Zoom-in for details.
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A chair and urn in the living room of a russian log cabin

A car and a tree

A bird and urchin are fighting over a skull

A car and a man are driving down the road

A car and a house in a watercolor painting

A car and urns are parked in front of a building

A bird and a cat in watercolor

Figure 11: Qualitative comparison with prior SOTA and concurrent works in image composition for mixture of domains on
extended dataset. Zoom-in for details.
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A car and a building

A chair in a room with a dog sitting on the floor

A bird in a cityscape

A dog and a man walking on a leash

A chair in a living room with a red wall

A  dog at sunset, watercolor painting

A bird and a man are sitting on a bench

Figure 12: Qualitative comparison with prior SOTA and concurrent works in image composition for mixture of domains on
extended dataset. Zoom-in for details.
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A car is driving down a street

A bird and chicken family vector illustration

A car and ute cartoon of a soldier with a medical bag

A car on the street

A dog and a cat are in a comic strip

A  dog and a yellow labrador retriever

A car and a woman are in a comic book

A  bird and a painting of a bird sitting on a post

A  dog and izumi in the forest

Figure 13: Qualitative comparison with prior SOTA and concurrent works in image composition for mixture of domains on
extended dataset. Zoom-in for details.
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