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Abstract001

Generative retrieval introduces a groundbreak-002
ing paradigm to document retrieval by directly003
generating the identifier of a pertinent docu-004
ment in response to a specific query. This005
paradigm has demonstrated considerable ben-006
efits and potential, particularly in representa-007
tion and generalization capabilities, within the008
context of large language models. However,009
it faces significant challenges in E-commerce010
search scenarios, including the complexity011
of generating detailed item titles from brief012
queries, the presence of noise in item titles013
with weak language order, issues with long-tail014
queries, and the interpretability of results. To015
address these challenges, we have developed an016
innovative framework for E-commerce search,017
called generative retrieval via query-to-multi-018
span. This framework is designed to effectively019
learn and align an autoregressive model with020
target data, subsequently generating the final021
item through constraint-based beam search. By022
employing multi-span identifiers to represent023
raw item titles and transforming the task of024
generating titles from queries into the task of025
generating multi-span identifiers from queries,026
we aim to simplify the generation process. The027
framework further aligns with human prefer-028
ences using click data and employs a con-029
strained search method to identify key spans for030
retrieving the final item, thereby enhancing re-031
sult interpretability. Our extensive experiments032
show that this framework achieves competitive033
performance on a real-world dataset, and on-034
line A/B tests demonstrate the superiority and035
effectiveness in improving conversion gains.036

1 Introduction037

Deep semantic retrieval models (Zhang et al., 2020;038

Devlin et al., 2018; Qiu et al., 2022; Khattab and039

Zaharia, 2020; Zhang et al., 2021; Li et al., 2023b;040

Wang et al., 2023; Li et al., 2023a), have achieved041

significant success in online E-commerce retrieval042

and recommendation systems. Traditional meth-043

ods rely on the dual-encoder to learn the dense 044

representations of queries and items. They use 045

the dot-product similarity to measure the relevance 046

between the query and candidate items, but lack 047

fine-grained interactions, leading to sub-optimal 048

performance. 049

Recently, a new paradigm, generative retrieval 050

(Wang et al., 2022; Tay et al., 2022; Tang et al., 051

2023; Yuan et al., 2024; Bevilacqua et al., 2022; 052

Rajput et al., 2024a; Zhou et al., 2023), has been 053

proposed in the recommendation field and question- 054

answer fields. These models advocate generating 055

identifiers of target passages/items directly through 056

the autoregressive language models. Existing work 057

could be divided into two categories based on iden- 058

tifier types: 1) Numeric-based (Wang et al., 2022; 059

Zhuang et al., 2022; Rajput et al., 2024a; Yuan 060

et al., 2024), they assign numeric identifiers in var- 061

ious ways, e.g., atomic, naive, and semantic. 2) 062

lexical identifier-based methods (Bevilacqua et al., 063

2022; Lee et al., 2023; Li et al., 2023d) using the 064

n-grams, title, and URLs as the document iden- 065

tifiers. They could leverage the knowledge of 066

PLMs to decode identifiers, exploring the bene- 067

fit of pre-trained vocabulary space. The lexical 068

identifier-based methods show potential in terms of 069

interpretability and generalization capabilities, es- 070

pecially in the era of large language models. Thus, 071

we continue to explore along these lines of methods 072

in this paper. 073

In the field of E-commerce, there exist sev- 074

eral crucial challenges. Firstly, the task of query- 075

to-title(query2title) generation poses difficulties. 076

Specifically, product titles tend to be lengthy on av- 077

erage, whereas user-entered query words are typi- 078

cally short. Attempting to directly generate lengthy 079

titles can result in significant hallucination issues. 080

While some efforts have been made to utilize pre- 081

trained semantic IDs as document identifiers (Wang 082

et al., 2022; Tay et al., 2022; Yuan et al., 2024) to 083

simplify the task into query-to-semanticID and re- 084
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duce complexity, this approach heavily relies on085

external document representations, deviating sig-086

nificantly from the language itself and necessitating087

additional calibration, thereby diminishing result088

interpretability. Additionally, some research ef-089

forts focus on leveraging features inherent to the090

text itself (Zhang et al., 2024). However, these091

approaches encounter limitations in e-commerce092

contexts, including excessively fine-grained term093

granularity and an over-reliance on the model’s fit-094

ting ability for term segmentation, which impedes095

their full effectiveness.096

Secondly, noise in item titles and weak language097

order (i.e., keyword stacking) are prevalent issues.098

In actual product websites, merchants usually pro-099

vide item titles that contain noise and redundant100

information. Moreover, the semantic order is pre-101

dominantly local rather than globally coherent. Es-102

sential information such as brand words, attribute103

words, and categories is often present in the text104

without regard for position.105

Thirdly, long-tail query challenges are appar-106

ent. Unlike in traditional question-and-answer do-107

mains, E-commerce faces a severe sample imbal-108

ance between queries and items. While some long-109

tail queries have limited associated products, head110

queries are linked to a vast array of items. In the age111

of deep semantics, one-to-many mapping issues112

can be mitigated through spatial clustering. How-113

ever, in generative paradigms, such relationships114

manifest diversely, posing ongoing challenges in115

resolving them effectively.116

Lastly, the interpretability of results is a criti-117

cal concern. The ability to interpret search results118

provides valuable insight for enhancing user experi-119

ence. Unfortunately, deep semantic methods often120

fall short in this aspect.121

To alleviate the above problems, we introduce122

a novel framework for E-commerce search, called123

generative retrieval via query-to-multi-span (GenR-124

Q2MS). This framework comprises four key stages:125

1) Task re-definition stage; 2) Supervised fine-126

tuning stage; 3) Preference optimization stage;127

and 4) Inference stage based on constraint beam-128

search. The architecture’s cornerstone lies in its129

initial task redefinition, where we reconstruct item130

titles through linguistic reorganization while pre-131

serving core information. By segmenting titles into132

semantically coherent spans and reformulating the133

task as query-to-multi-span generation, we achieve134

three critical improvements: (1) reducing genera-135

tion complexity by shortening output sequences,136

(2) mitigating information redundancy through lo- 137

calized span modeling that aligns with e-commerce 138

titles’ inherent structure, and (3) amplifying train- 139

ing data utility via multi-span sampling from single 140

query-title pairs. The supervised fine-tuning stage 141

aims to learn the knowledge of the E-commerce 142

field and reduce illusions. The stage of prefer- 143

ence optimization is to align with human prefer- 144

ence data to produce more significant and human- 145

standard-compliant results. The constraint beam 146

search could prevent the generation of invalid iden- 147

tifiers (i.e., span not occurring in any items). We 148

conducted comprehensive experiments using an 149

industrial dataset collected from user interactions 150

on an e-commerce platform, and the results of of- 151

fline and online demonstrate the effectiveness of 152

the proposed. 153

The contributions of this paper can be summa- 154

rized as follows: 155

• We formally characterize the structural mis- 156

match between conventional query-to-title 157

generation and e-commerce semantics (title 158

redundancy, local ordering). To bridge this 159

gap, we innovatively propose a task redefi- 160

nition paradigm centered on query-to-multi- 161

span generation, which is composed of seg- 162

mentation, reconstruction and aggregation. 163

• We propose a novel framework, genera- 164

tive retrieval via query-to-multi-span (GenR- 165

Q2MS), that provides a complete pipeline for 166

training, aligning, and inference, meanwhile 167

enhancing result interpretability. 168

• We conduct extensive experiments on a real- 169

world dataset. Offline and online experi- 170

mental results demonstrate that GenR-Q2MS 171

achieves significant improvements, especially 172

on long-tail queries, compared to generative 173

retrieval and dense retrieval baselines. 174

2 Method 175

While numerous efforts (Wang et al., 2022; Tay 176

et al., 2022; Yuan et al., 2024; Zhang et al., 2024) 177

have been made to enhance generative retrieval in 178

e-commerce, significant challenges remain. First, 179

generating product titles from queries is compli- 180

cated by length disparities, leading to hallucina- 181

tions and reduced interpretability due to reliance 182

on semantic IDs. Second, product titles often suffer 183

from noise and lack coherence, with key elements 184

poorly positioned. Third, long-tail queries create 185

2



Step 1: Task Re-definition Step 2: Supervised Fine-tuning Step 3: Preferences Optimization Step 4: Constrained Beam-search

E-commerce 
    corpus

Clicked 
items

Query

Base Model
(BART,T5,Llama,etc.) 

Generation Loss

SFT Model

E-commerce 
    corpus

Prefix+Query

𝑦! 𝑦"

Chosen spans Rejected spans

DPO Model

𝜋#$%𝜋&
(GFM)

Prefix+Query

DPO Model

Sp1 Sp2 Sp3 Sp4 Sp5

Sp1 Sp2 Sp3 Sp4 Sp5

Filter span

Sp11 …… Sp21 …… Sp51 ……

Indexing

…… Span list

…… Item list

E-commerce 
    corpus

Segment

QueryItem title

𝑖! 𝑖" 𝑖# 𝑖$ 𝑖% 𝑖&'! 𝑖&……

Pair

Re-rank

𝑖! 𝑖" 𝑖#𝑖$ 𝑖% 𝑖&'! 𝑖& ……

Aggerate

𝑖! 𝑖" 𝑖#𝑖$ 𝑖% 𝑖&'! 𝑖& ……

𝑠𝑝𝑎𝑛! 𝑠𝑝𝑎𝑛"

Query

Pair

Query

Query

Pair

……

……

𝑠𝑝𝑎𝑛!

𝑠𝑝𝑎𝑛"

Pair
Pair

Pair

Figure 1: The framework of GenR-Q2MS. It comprises four key stages: 1) Task re-definition stage; 2) Supervised
fine-tuning stage; 3) Preference optimization stage; and 4) Inference stage based on constrained beam-search.

imbalance issues, as generative models struggle to186

capture diverse relational dynamics. To address187

these challenges, we propose a novel framework188

for e-commerce search, called generative retrieval189

via query-to-multi-span (GenR-Q2MS), as illus-190

trated in Figure 1. This framework includes four191

key stages: 1) Task re-definition; 2) Supervised192

fine-tuning; 3) Preference optimization; and 4) In-193

ference using constraint beam-search. The specific194

details of each stage will be discussed in the fol-195

lowing sections.196

2.1 Task Re-definition197

To address the aforementioned issue, we propose198

a method that utilizes multi-segment identifiers to199

reconstruct product titles, transforming the com-200

plex task of matching queries with long titles into201

an association with multiple relevant text segments.202

Specifically, this process is composed of four steps:203

segmentation, re-ranking, aggregation, and match-204

ing.205

Initially, the segmentation step divides the title206

into multiple semantically meaningful phrases or207

terms. Subsequently, the reordering step rearranges208

these segmented terms according to a predefined209

sorting rule. Following this, the aggregation step210

combines the reordered terms into text segments211

(spans) of similar length. Finally, in the matching212

step, the generated segments are scored to evalu-213

ate their degree of correspondence with the title,214

thereby determining which products to recall.215

Based on the task re-definition, we can achieve216

three significant advantages. Firstly, transforming217

the task from generating long texts to match titles 218

into generating short spans to match titles signifi- 219

cantly reduces task complexity. This reduction in 220

the number of tokens generated not only shortens 221

inference time but also effectively decreases the 222

likelihood of hallucinations. Secondly, by segment- 223

ing e-commerce titles into multiple s, we effec- 224

tively address the issue of information redundancy, 225

aligning more closely with the characteristic of e- 226

commerce titles being locally ordered yet globally 227

unrelated. Thirdly, in terms of sample construc- 228

tion, whereas a single query-title pair originally 229

could only form one sample, after segmentation, it 230

can generate multiple samples, thereby greatly en- 231

riching the dataset’s sample volume. This strategy, 232

when applied to large model applications in search 233

and recommendation systems, can significantly en- 234

hance both the efficiency and effectiveness of the 235

task. 236

The details of the 4 steps are presented in the 237

following sections. 238

2.1.1 Segmentation 239

Assuming that there is a training sample pair < 240

query, item >, and the item’s title consists of n 241

tokens, i.e., [i1, i2, · · · , in]. We first adopt a self- 242

developed tokenization tool similar to Jieba, but 243

it considers terms related to title, brand, and cate- 244

gory, processing them at the granularity of n-grams 245

{[i1, i2, i3], [i4, i5], · · · , [in−1, in]}. 246

2.1.2 Re-ranking 247

Considering the position insensitivity in n-grams, 248

we can re-rank terms using various methods such as 249
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Figure 2: The processing of titles.

term frequency, part of speech, lexicographical or-250

der, and neural network scoring. For simplicity and251

ease of implementation, we adopt lexicographical252

order in this paper. The Rerank process is denoted253

as {[i4, i5], [in−1, in], · · · , [i1, i2, i3]}.254

2.1.3 Aggregation255

After that, then we aggregate them into spans with256

a length threshold L. If the length exceeds L, the257

last n-gram is shifted to the next span. This method258

suits the stacked information in e-commerce titles,259

where order within spans is significant.260 [i4, i5, in−1, in]︸ ︷︷ ︸
span1

, · · · , [i1, i2, i3]︸ ︷︷ ︸
spanm

,

 (1)261

where each span has a corresponding length l.262

To illustrate the process more specifically, we263

use an example from e-commerce product titles, as264

shown in Figure 2:265

Given the title: "Safeguard Antibacterial Hand266

Wash 100ml Old Packaging," we begin by sorting267

the n-grams in lexicographical order, in accordance268

with Equation 1. Next, we aggregate multiple con-269

secutive n-grams into spans. Each span has a prede-270

fined length threshold (L). If the aggregated length271

exceeds (L), the last n-gram is moved to the next272

span.273

It is important to note that this strategy is tai-274

lored to our specific business context. For other275

domains, different methods that better suit their276

unique scenarios can be employed.277

2.1.4 Matching278

Following the above reconstruction, we have not279

only preserved the original information but also280

augmented the shared information between prod-281

ucts at the span level, significantly reducing the282

noise and diversity introduced by the word order.283

Each new span contains a portion of the effective284

information, representing a perspective. This is285

because we have simplified the original query2title286

task into a parallel query2multi-span task, meaning 287

one training sample has become m samples, as 288

follows: 289

< query, item >
↓

< query, span1 >, · · · , < query, spanm >
290

2.2 Supervised Fine-tuning 291

Due to the general pre-trained model lacking e- 292

commerce domain knowledge, we perform super- 293

vised fine-tuning (SFT) on specific data via the 294

click pairs between the query and item. Specifi- 295

cally, for each training sample, the objective is to 296

minimize the sum of the negative log-likelihoods 297

of the tokens {i1, ·, ij , ·, il} in a target identifier I 298

(span), whose length is l. The generation loss is 299

formulated as, 300

Lsft = −
m∑

span

l∑
j

log pθ(j|q, I<j) (2) 301

where I<j = {i1, i2, · · · , ij}, pθ is the SFT model. 302

2.3 Preferences Optimization 303

Although the supervised fine-tuning model has 304

achieved tremendous success, the outcomes it gen- 305

erates remain uncontrollable, unstable, and do not 306

align with human preference requirements. To alle- 307

viate this problem, existing works attempt to align 308

preferences with reinforcement learning from hu- 309

man feedback (RLHF). However, this pipeline may 310

be too complex and often unstable. Fortunately, 311

recent work DPO (Rafailov et al., 2024) derives 312

a simple approach for policy optimization using 313

preferences directly. Given a query, the preference 314

data D = {(x, yw, yl)} contains the query x, cho- 315

sen span yw, and rejected span yl, and the objective 316

of DPO is denoted as: 317

LDPO = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref (yw|x))

−β log
πθ(yl|x)
πref (yl|x)

)]
(3)

318

where β is a parameter controlling the deviation 319

from the base reference policy πref . 320

It’s crucial to highlight that the construction of 321

preference data is closely tied to business met- 322

rics. By employing a learning-to-rank approach, 323

preference pairs such as <exposed but not clicked, 324
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clicked> and <random negative, clicked> are cre-325

ated, which enhances the visibility of products that326

are more likely to convert.327

2.4 Constrained Beam-search328

During the inference process, given a query329

text, the trained autoregressive language model330

SFT/DPO model could generate predicted identi-331

fiers in an autoregressive manner with constrained332

beam search, which adopts the FM-index (Ferrag-333

ina and Manzini, 2000) to identify the set of possi-334

ble next tokens, avoiding invalid identifiers without335

in all item title.336

More precisely, after a single decoding pass,337

we get a set of n-grams along with their autore-338

gressively computed probabilities according to the339

model LM and then retrieve their FM-index scores340

via normalized index frequencies. The constrained341

beam-search score is the sum of the model score342

and FM-index score, formulated as343

s(q) = f(q; b;FM-index) (4)344

where b is the beam size for beam search. Subse-345

quently, we obtained a refined probability distri-346

bution, and by employing various ranking strate-347

gies such as top@p and top@k, we generated a set348

of n-grams, which are the next-step inputs. This349

process continued until the generation phase was350

completed. During this computation process, if an351

out-of-vocabulary (OOV) n-gram is encountered,352

its feature mapping (FM) score will be assigned353

negative infinity. As a result, it will be filtered out354

of the selection process. This approach falls under355

the retrieval-augmented paradigm(RAG), which ef-356

fectively reduces the rate of hallucination, thereby357

enhancing the efficacy and accuracy of the infer-358

ence process. More details could refer to the origi-359

nal paper SEAL (Bevilacqua et al., 2022).360

Leveraging the above constrained beam-search,361

we efficiently harvest a batch of potent spans. Sub-362

sequently, we employ the FM-index for the swift363

identification of items that closely correspond to364

these segments. Importantly, the FM-index oper-365

ates independently of span positioning, thus ensur-366

ing comprehensive retrieval of all relevant items, a367

feature that is in harmony with the objectives set368

forth by the task redefinition module.369

#item =1
37.50%

1<#item<=5
42.20%

5<#item<=20
16.20%

20<#item<=40
2.40%

#item>40
1.70%

#item =1 1<#item<=5 5<#item<=20 20<#item<=40 #item>40

Figure 3: The distribution of percentages across differ-
ent queries.

3 Experiments 370

3.1 Datasets and Metrics 371

We collect search logs of user clicks and purchases 372

from an online E-commerce website, where the 373

size of the dataset is 2.8 billion. Within the prac- 374

tical confines of our business operations, we pri- 375

oritize set-based metrics due to their relevance to 376

our objectives. Traditional ranking metrics such 377

as NDCG and AUC, while standard for evaluat- 378

ing ranking quality, are not the main focus dur- 379

ing the retrieval phase. Therefore, We choose the 380

standard retrieval quality metric Recall@K to mea- 381

sure the results based on the full corpus, where 382

K ∈ {500, 1000} respectively. To examine the 383

model’s performance on long-tail queries with fine 384

granularity, we divided the original queries into 385

five groups based on the word-level click count. As 386

shown in Figure 3, queries with less than 5 clicks 387

per account for 80%, indicating a significant long- 388

tail effect. 389

3.2 Baselines 390

In the industrial field, there are two foundational 391

paradigms, dense retrieval and generative retrieval. 392

Therefore, we conduct separate experimental com- 393

parisons for each paradigm. 394

• Dense retrieval. This paradigm is the most 395

widely used work and makes a great success. 396

The representative work is DSSM (Huang 397

et al., 2013) and the variant version with a 398

pre-trained model based on Bert (Devlin et al., 399

2018). Without loss of generality, we select 400

RSR (Qiu et al., 2022) as the representative 401

of the backbone of Bert, which had been de- 402

ployed in the online system, severing hun- 403

dreds of millions of users. 404
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• Generative retrieval. This paradigm is an405

emerging and promising work. Based on406

different identifiers, it can be divided into407

two main categories, numerical-based method408

and lexical-based method. The state-of-the-409

art work numerical-based is TIGER (Rajput410

et al., 2024b), which utilizes semantic codes411

generated by residual quantization (RQ) as412

identifiers. In this paper, we first use the413

two-tower (RSR) product of the item’s em-414

bedding and then construct the semantic ID415

of a given item by RQ. The most relevant416

lexical-based model is SEAL (Bevilacqua417

et al., 2022) uses arbitrary n-grams in doc-418

uments as identifiers, and retrieves documents419

under the constraint of a pre-built FM-indexer.420

What’s more, GenR-Q2MS is easily extensi-421

ble and could be adapted in various aligning422

via LTR learning (Zhou et al., 2023; Qiu et al.,423

2022; Li et al., 2023c).424

3.3 Implementation Details425

To ensure a fair comparison among different meth-426

ods, we keep the vocabulary size, the dimension427

of query/item, and parameters of PQ the same as428

(Li et al., 2023a). Specifically, we set the dimen-429

sion as 128, batch size as 350, n-list of IVF-PQ as430

32768, nprobe as 1, and the indexing construction431

is used in the Faiss ANNS library1. The default432

temperature τ of softmax is 1/30. The Adam op-433

timizer is employed with an initial learning rate434

of 5e-5, and 6e-5 for RSR/SFT and DPO respec-435

tively. The default value of beam-search size is436

set to 100. The base model of SEAL, TIGER, and437

ours are all BART-large2 (Lewis et al., 2019). For438

the TIGER model, the parameter is set to RQ3x12,439

which consists of three residual layers, each encod-440

ing 4096 codebooks, enabling the representation of441

a product scale in the tens of billions.442

3.4 Experiment Results443

The experimental results are shown in Table 1. We444

can conclude that the proposed framework achieves445

a significant improvement over dense retrieval and446

generative retrieval. Specifically,447

• Compared with GenR-Q2MS + SFT, SEAL448

+ SFT leads to a performance decline in vari-449

ous metrics, showing that the straightforward450

query2title task is ineffective. This result is451

1https://github.com/facebookresearch/faiss
2https://huggingface.co/facebook/bart-large

consistent with previous analysis. Compared 452

with TIGER, the lexical-based GenR-Q2MS* 453

makes a great improvement, indicating that it 454

describes a better semantic match. However, 455

the numerical pattern has a semantic gap that 456

requires additional alignment. 457

• Compared with RSR, GenR-Q2MS, and vari- 458

able versions perform better in terms of differ- 459

ent long-tail queries, especially in the #item=1. 460

This phenomenon indicates that generative 461

paradigms have increased generalization ca- 462

pabilities compared to traditional paradigms. 463

Additionally, it is observed that the perfor- 464

mance of the generative method varies signif- 465

icantly across different types of queries. For 466

example, under head queries, the suboptimal 467

performance of the generative method is more 468

pronounced, which may be associated with 469

one-to-many map learning. 470

• The main goal of our experiments was to im- 471

prove recall for mid- and long-tail queries. 472

From Table 1, we can see that after apply- 473

ing SFT (GenR-Q2MS + SFT vs RSR), the 474

model’s recall for mid- and long-tail queries 475

improved significantly compared to KNN. 476

However, the performance for head queries 477

was relatively poor, affecting overall usability. 478

To address this issue, we employed DPO (Dif- 479

ferentiable Prompt Optimization) for pairwise 480

learning and adjusted the dataset accordingly 481

(hard-to-easy negatives ratio: 1:3). The re- 482

sults show that after using DPO (GenR-Q2MS 483

+ SFT + DPO (w/ cons) vs RSR), recall for 484

mid- and long-tail queries saw a substantial 485

increase, while the performance difference 486

for head queries compared to KNN became 487

smaller (especially in recall@1000, where the 488

difference is quite small). When comparing 489

DPO to SFT (GenR-Q2MS + SFT + DPO (w/ 490

cons) vs GenR-Q2MS + SFT), although the 491

metrics for mid- and long-tail queries slightly 492

declined, the performance for head queries im- 493

proved. In summary, DPO has brought overall 494

benefits. 495

3.5 Impact of Different Tasks 496

To investigate the effect of different tasks on perfor- 497

mance, we conduct several tasks, i.e., query2title, 498

title2query, and query2multi-span. The results are 499

shown in Table 2. We can find that the perfor- 500

mance of the query2title and title2query tasks are 501
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Table 1: Performance of different methods in various types of query. Based on the number of items under each query
(#item), we divide the queries into five categories. The fewer the number, the more long-tailed the description. w/o
cons denotes the without constrainted beam-search. The bolded values indicate the optimal values; the underlined
values denote the suboptimal values.

Method #item = 1 1 < #item <= 5 5 < #item <= 20 20 < #item <= 40 #item > 40

Recall@500

RSR 0.2900 0.2922 0.3083 0.3025 0.2117
SEAL + SFT 0.0180 0.0120 0.0133 0.0102 0.0039

TIGER 0.1470 0.1484 0.1561 0.1801 0.1377

GenR-Q2MS + SFT 0.3760 0.3762 0.3266 0.2850 0.1635
+ DPO(w/o cons) 0.3240 0.3344 0.3016 0.2662 0.1544
+ DPO (w/ cons) 0.3680 0.3672 0.3289 0.2918 0.1690

Recall@1000

RSR 0.3100 0.3086 0.3306 0.3315 0.2451
SEAL + SFT 0.0240 0.0198 0.0179 0.0139 0.0061

TIGER 0.1920 0.1930 0.1998 0.2307 0.1906

GenR-Q2MS + SFT 0.4230 0.4304 0.3890 0.3515 0.2169
+ DPO (w/o cons) 0.3700 0.3803 0.3609 0.3273 0.2074
+ DPO (w/ cons) 0.4310 0.4273 0.4001 0.3674 0.2330

Table 2: The effect of different tasks for the perfor-
mance.

Task Recall@500 Recall@1000

query2title 0.0180 0.0240
title2query 0.0160 0.0232

query2multi-span (l=10, m=2) 0.3600 0.4070
query2multi-span (l=8, m=7) 0.3680 0.4310

extremely poor, while the query2multi-span task502

has significantly improved. This suggests that there503

is noise in the original data in the e-commerce field,504

which once again underscores the importance of505

task re-definition.506

3.6 Impact of Beam Size507

The beam size controls the quality and quantity of508

the generated results, impacting the model’s perfor-509

mance. Here, we conduct additional experiments to510

explore the influence (parameters are l=10, m=2).511

The experimental results are shown in figure 4. As512

the size increases, the effect improves, but the gra-513
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50 75 100
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Figure 4: The performance of different beam sizes.

dient of improvement decreases. It is also found 514

that the larger the beam size, the greater the ir- 515

relevance of the returned results. Specifically, as 516

the beamsize increases, the number of generated 517

spans also increases, resulting in a higher number 518

of items after constrained generation. However, 519

expanding the beamsize may introduce irrelevant 520

spans, which in turn can lead to irrelevant product 521

titles through fm-index. For examples: 522

• Query: Phone, Span: Red, Case: Red phone 523

case 524

• Three-fold product, Span: Three-fold, Case: 525

Three-fold umbrella 526

• Query: 100ml hand sanitizer, Span: 100ml, 527

Case: 100ml liquor 528

Therefore, in practical applications, a certain 529

compromise must be made. 530

3.7 Online A/B Test 531

To evaluate the effectiveness of our model, we be- 532

gin by introducing the funnel-shaped architecture 533

of the online system. In e-commerce search en- 534

gines, the system is typically divided into several 535

stages: as shown in Figure 5: retrieval, truncation, 536

pre-ranking, ranking, and mix-ranking. It is impor- 537

tant to note that the online experiment employs a 538

multi-channel recall mechanism, which includes in- 539

verted indexing, KNN, i2i, and our method. There 540
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Table 3: Online performance of A/B tests. The improvements are averaged over a week in 2024. p-value is obtained
by t-test over the online dense retrieval model.

Metric UCVR UV-value recall exposure rate pre-rank exposure rate relevance score
Gain +0.225% +0.050% +1.80% +0.30% +0.12%

p-valueb 0.0276 0.8780 - - -
b Small p-value means statistically significant.

Figure 5: The funnel-shaped architecture of the online
system.

may be overlap among the results from these dif-541

ferent recall paths. Therefore, to achieve perfor-542

mance improvement through the addition of a new543

recall source, it is essential to ensure that it pro-544

vides a significant incremental contribution. In the545

e-commerce context, the recall stage primarily fo-546

cuses on three key metrics: exposure, relevance,547

and efficiency.548

The exposure metric primarily measures the vis-549

ibility rate of candidates in the pre-ranking and550

coarse ranking stages. We assess these metrics551

by calculating the percentage of candidates that552

progress through each stage relative to the total553

number of candidates. Relevance metrics are eval-554

uated using a teacher model within the relevance555

module, specifically employing a cross-encoder556

large model to assess the relevance of search re-557

sults. Efficiency metrics are gauged through the558

user conversion rate (UCVR) which is consistent559

with previous work (Cheng et al., 2024; Wang et al.,560

2024; Li et al., 2023b), reflecting the actual conver-561

sion impact on users utilizing the search engine.562

After a comprehensive one-week monitoring pe-563

riod, the results are presented in Table 3. The data564

indicate that the proposed model achieved a 0.225%565

increase in UCVR (p-value=0.0276), suggesting566

that the model can provide higher-quality candi-567

dates, thereby enhancing conversion rates. Addi-568

tionally, the proportion of candidates advancing 569

through the pre-ranking stage increased by 1.8%, 570

and through the coarse ranking stage by 0.3%, indi- 571

cating that the system can offer more effective prod- 572

uct candidates in these stages. The relevance metric 573

also improved by 0.12%, demonstrating significant 574

performance enhancements in the relevance of gen- 575

erated products, indicating higher quality in the 576

recommended products. 577

These results collectively validate the effective- 578

ness of our approach, illustrating that by optimizing 579

system architecture and model design, the overall 580

performance of search engines in e-commerce sce- 581

narios can be significantly enhanced. 582

4 Conclusion 583

This paper introduces an innovative generative re- 584

trieval framework via query-to-multi-span tailored 585

for E-commerce search. The framework is crafted 586

to adeptly train an autoregressive model in line 587

with the target data and leverage constrained beam- 588

search to produce the ultimate item selection. To 589

cater to the E-commerce domain, we reconstruct 590

the raw item titles and employ multi-span as iden- 591

tifiers, thereby converting the query2title task into 592

a query2multi-span task, which simplifies the gen- 593

eration process. During inference, a constrained 594

beam-search approach is utilized to pinpoint crucial 595

spans, meaning as well as the interpretability of the 596

retrieved items. Comprehensive testing on a real- 597

world dataset shows that our framework markedly 598

outperforms contemporary generative retrieval and 599

dense retrieval in long-tail queries. The A/B test 600

demonstrates that the model has brought about sub- 601

stantial conversion gains. 602

In future work, we aim to harness the power 603

of large language models to bolster representation 604

and generation capabilities for the base model and 605

formulate an improved learning-to-rank scheme to 606

amplify the pertinence of the generated outcomes. 607
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5 Limitation608

• Real-time Online Service: The current609

natural language processing systems in e-610

commerce scenarios require several hundred611

milliseconds for inference, which is insuffi-612

cient for delivering a seamless user experience.613

To achieve genuine real-time online services,614

we must explore additional techniques and615

strategies to accelerate the inference process,616

such as utilizing more efficient algorithms,617

optimizing model structures, and leveraging618

hardware acceleration.619

• More Precise Multi-Spans: In e-commerce620

scenarios, the generated spans often contain621

significant semantic noise due to the presence622

of adjectives and determiner words. These623

words are typically short and appear alone or624

in combination with other words to form short625

phrases, resulting in spans that are semanti-626

cally unrelated or redundant. We are currently627

attempting to alleviate this issue by pairing628

longer "l" values with brand words and other629

terms, and preliminary evaluation results in-630

dicate that this method can enhance the se-631

mantic relevance and usability of spans. How-632

ever, to further improve the quality and rele-633

vance of spans, we will combine the character-634

istics of the e-commerce scenario, using mod-635

els or other methods to generate spans that636

include product words, attribute words, and637

brand words, and filter out irrelevant spans to638

reduce noise and improve accuracy.639

• Model Generalization Improvement: Due640

to the vast and constantly evolving range of641

products in e-commerce scenarios, models642

struggle to cover all possible combinations of643

products and attributes, leading to poor gen-644

eralization performance on new products. To645

address this challenge, we intend to employ in-646

cremental learning (Incremental Learning) or647

online learning (Online Learning) techniques648

to continuously update and refine the model,649

enabling it to adapt to new product and at-650

tribute combinations and enhance generaliza-651

tion performance.652
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