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Partially Aligned Cross-modal Retrieval via Optimal
Transport-based Prototype Alignment Learning
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ABSTRACT
Supervised cross-modal retrieval (CMR) achieves excellent perfor-
mance thanks to the semantic information provided by its labels,
which helps to establish semantic correlations between samples
from different modalities. However, in real-world scenarios, there
often exists a large amount of unlabeled and unpaired multimodal
training data, rendering existing methods unfeasible. To address
this issue, we propose a novel partially aligned cross-modal
retrieval method called Optimal Transport-based Prototype
Alignment Learning (OTPAL). Due to the high computational
complexity involved in directly establishing matching correlations
between unannotated unaligned cross-modal samples, instead, we
establish matching correlations between shared prototypes and
samples. To be specific, we employ the optimal transport algorithm
to establish cross-modal alignment information between samples
and prototypes, and then minimize the distance between samples
and their corresponding prototypes through a specially designed
prototype alignment loss. As an extension of this paper, we also
extensively investigate the influence of incomplete multimodal data
on cross-modal retrieval performance under the partially aligned
setting proposed above. To further address the above more challeng-
ing scenario, we raise a scalable prototype-based neighbor feature
completion method, which better captures the correlations between
incomplete samples and neighbor samples through a cross-modal
self-attention mechanism. Experimental results on four benchmark
datasets show that our method can obtain satisfactory accuracy
and scalability in various real-world scenarios.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval.

KEYWORDS
Robust Cross-modal Retrieval, Partially Aligned Data, Optimal
Transport Strategy, Prototype Alignment Learning

1 INTRODUCTION
Cross-modal retrieval (CMR) is a cross-modal search task: retrieving
relevant information from different modalities, such as text, image,
audio, etc. With the introduction of deep learning, cross-modal
retrieval has made great progress. It has become the core research
in many multi-modal applications, such as audio-video retrieval
[30], automatic story generation [38], visual question answering
[16, 23, 41], and medical image-report retrieval [3, 37]. Thus, CMR
has attracted increasing attention in both academia and industry
due to its importance in real-world applications.

Common cross-modal retrieval methods include the following
types: (1) unsupervised cross-modal retrieval (US-CMR) [7, 8, 35,
36, 39], (2) supervised cross-modal retrieval (S-CMR) [20, 29, 33, 34,
42, 43, 47] and (3) semi-supervised cross-modal retrieval (SS-CMR)
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Figure 1: The differences between our proposed partially
aligned CMR and traditional methods. (a) In traditional su-
pervised CMR, images and texts are labeled and paired. (b)
The semi-supervised CMRmethod operates on both partially
labeled paired and partially unlabeled paired data. To en-
hance the practicality of the aforementioned CMR methods
in open environments, we introduce two types of partially
aligned CMR methods tailored for unlabeled unpaired data
(c) and unlabeled incomplete data (d), respectively.

[12, 17, 18]. S-CMR methods can access semantic labels, which are
generally superior to US-CMR performance. However, it usually in-
curs substantial labeling costs. Thus, SS-CMR methods [12, 17, 18]
have been proposed to balance the conflict between the perfor-
mance and cost of labeling data.

Semi-supervised methods [12, 17, 18] exploit the intrinsic struc-
ture, pairwise relationships, and semantic information between
different modalities to improve retrieval performance on the over-
all data. However, despite existing semi-supervised cross-modal
methods performing well, most of them require pairwise data to es-
tablish representation consistency [17] and prediction consistency
[18], which is only applicable to well-paired data. For instance, as
depicted in Fig. 1 (𝑏), even though some of the images and texts in
the aforementioned semi-supervised methods are unlabeled, they
still leverage the pairwise information of the images and texts. Un-
fortunately, in real-world applications, this assumption is always
violated due to the diversity of multimodal data sources and noise
issues, the pairwise correspondences are also partially available
and inevitably suffer from partial mismatch problems. For example,
images collected from web pages are difficult to be semantically
related to text descriptions, or they can easily be mistakenly col-
lected as irrelevant image-text pairs (as shown in Fig. 1 (𝑐)). As a
result, real-world multi-modal data often consists of a small piece
of well-paired multi-modal data and a massive amount of unpaired
multi-modal data. Furthermore, in addition to irrelevant image-text
pairs resulting from erroneous acquisition, multimodal pairwise

1
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data are inevitably limited by complete requirements. Yet this re-
quirement is also equally demanding. For instance, in practical
scenarios, multimodal training datasets inevitably suffer damage or
loss during data collection, processing, storage, and transmission.
Therefore, incomplete modal data will result in some pairwise rela-
tionships being unavailable (as shown in Fig. 1 (𝑑)). We unify the
above two problems, referring to them collectively as cross-modal
retrieval under two types of partially aligned data.

To tackle the above challenges of two types of partially aligned
data (Fig. 1 (c) and (d)) in cross-modal retrieval, we propose an Op-
timal Transport-based Prototype Alignment Learning (OT-
PAL) framework, which comprises a dual optimal transport-based
prototype alignment module, by leveraging semantic prototypes
learned from labeled data to facilitate the alignment of unlabeled
unpaired data with prototypes. Specifically, we initially employmul-
timodal classification and invariance learning to capture modality-
discriminative and invariant representations on labeled paired data.
Furthermore, since the prototype can be characterized as the se-
mantic center of each category in the feature space and can serve
as the bridge between data and semantics, we define a prototype
for each category and learn and update it through training. Besides,
to learn the alignment relationship between unpaired data and
prototypes, minimizing intra-class variation, and maximizing inter-
class distance, our OTPAL tackles the partially aligned problem
caused by unlabeled unpaired data (Fig. 1 (c)) from the perspective
of an optimal transport strategy, leveraging the inherent correla-
tion among multi-modal data to construct the effective transport
cost, and progressively transport unlabeled unpaired samples into
the correct prototype at the minimum cost. Finally, to address the
partial alignment problem caused by unlabeled incomplete data
(Fig. 1 (d)) and further extend the application of partially aligned
cross-modal retrieval, we construct a prototype-guided neighbor-
based feature completion method, which can perform feature re-
construction based on the correlation between missing features and
neighbor features. The major contributions of this paper can
be summarized as follows:

• We clarify two key challenges in enhancing the robustness
of cross-modal retrieval systems in practical applications.
Furthermore, we propose a prototype-based optimal trans-
port learning strategy for partially aligned cross-modal
retrieval.

• We propose a novel framework for partially aligned cross-
modal retrieval, which minimizes the distance between
samples and their corresponding prototypes, thereby en-
hancing modality discriminability and invariance.

• We design a scalable cross-modal prototype and neighbor
completion method to address incomplete partially aligned
intractable scenarios.

• Experimental results on four benchmark datasets demon-
strate the effectiveness of our method, which can handle
cross-modal retrieval tasks in various complex scenarios.

2 RELATEDWORK
Cross-modal retrieval (CMR) methods can be roughly divided into
two groups: traditional multimodal representation learning meth-
ods and deep multimodal representation learning methods.

Traditional CMR methods primarily learn linear or simple
nonlinear mappings through statistical analysis. Canonical Corre-
lation Analysis (CCA) [8] is one of the most typical unsupervised
subspace learning methods, which leverages canonical correlation
analysis to maximize pairwise correlations between two sets of
heterogeneity. Many CCA-based extensions and similar methods
have been proposed, such as Kernel Canonical Correlation Analy-
sis (KCCA) [36] and Partial Least Squares (PLS) [28]. To learn the
common space with semantic information, a joint representation
learning (JRL) [44] is proposed to jointly explore the correlation
and semantic information in a unified optimization framework. To
exploit the correlations on semi-supervised data, Generalized Semi-
supervised Structured Subspace Learning (GSS-SL) [45] is proposed
to take the label space as a linkage to model the correlations among
different modalities.

Deep learning CMRmethods exploit the power of deep neural
networks to capture non-linear relationships. DAVAE [14] proposes
dual-aligned variational autoencoders to learn latent common rep-
resentations in the view of distribution level and semantic level. To
learn intra-modality and inter-modality representation correlations,
several cross-modal retrieval methods [19, 21, 22] have been pro-
posed. More recent works [29, 34, 42, 43, 47] exploit pair-wise label
and class-wise information to learn modality invariance and dis-
criminability. PAN [43] learns a unified prototype for each semantic
category and uses them as anchors to learn cross-modal represen-
tations. Cross-Modality Cross-Instance Contrastive Learning for
Cross-Media Retrieval (C3CMR) [34] proposes intra-modal and
inter-modal contrastive learning to capture data associations and
enhance the discriminative capability of features. Incomplete Cross-
Modal Retrieval with Deep Correlation Transfer (ICMR-DCT) [29]
proposes to model incomplete multi-modal data and dynamically
capture adjacency semantic correlation for cross-modal retrieval.

To balance the conflict between the performance and cost of
labeling data, some semi-supervised works [12, 17, 18] are pro-
posed. Label Prediction Framework (LPF) [18] predicts the labels
of the unlabeled data utilizing complementary information from
both modalities for semi-supervised cross-modal retrieval. Semi-
Supervised Multi-Modal Learning with Balanced Spectral Decom-
position (SMLN) [12] correlates different modalities by capturing
the intrinsic structure and discriminative correlations of multimedia
data. However, the role of semantic information is not considered.
Self-Supervised Correlation Learning (SCL) [17] leverages label
prediction and class-aware contrastive learning to learn modality
invariance and discrimination. Although the above works perform
well on semi-supervised data, it is difficult to extend to partially
aligned data.

Optimal Transport Strategy (OT) was originally proposed to
depict the distance between two probability distributions, which
is often used to find correspondences with learnable features or
measure distribution distances. It has been applied to many fields,
such as domain adaptation [5], sequence alignment [46], vision
and language [2]. Cuturi [6] first proposed to use the Sinkorn al-
gorithm to compute an approximate transport coupling with an
entropic regularization. This method is lightspeed and can handle
large-scale problems efficiently. Unbalanced Optimal Transport [1]
(UOT) is proposed to relax equality constraint and the correspond-
ing optimization problem can be reformulated as a non-negative
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penalized linear regression problem. In contrast, we apply OT for a
data-to-prototype assignment problem.

3 PROPOSED METHOD
The purpose of this paper is to train a model that can effectively
address the two types of partially aligned cross-modal retrieval
we introduce. To this end, we propose that the Optimal Transport-
based Prototype Alignment Learning (OTPAL) model (Fig. 3) con-
sists of three modules: 1) Multimodal Classification and Invariance
Learning (MCIA) in Section 3.2 can help the model capture basic
discriminant representation and modality invariance. 2) Dual Op-
timal Transport-based Prototype Alignment (DOTPA) in Section
3.3 can effectively establish the correspondence between unlabeled
unpaired images and texts. 3) Prototype-based Neighborhood Fea-
ture Completion (PNFC) in Section 3.4 aims to generate incomplete
features to maintain the semantic consistency of multimodal data.

3.1 Problem Formulation
Notations. Different from traditional cross-modal retrieval, we
propose a more practical task: partially aligned cross-modal re-
trieval, aimed at addressing the challenges of partially unaligned
and partially incompletemultimodal data commonly encountered in
real-world scenarios. Next, we formulate the partially aligned prob-
lem concerning the image and text modalities. We assume that two
types of partially aligned data are illustrated in Fig. 2. Data type-1
consists of two parts: 1) labeled aligned image and text pairsD𝑙 , and
2) unlabeled unaligned data D𝑢

𝑢 . Data type-2 contains two parts
of data: 1) labeled aligned images and texts D𝑙 , and 2) unlabeled
incomplete multimodal data D𝑢

𝑚 . Here, D𝑙 = {𝑥𝑣
𝑖
, 𝑥𝑡
𝑖
, 𝑦𝑖 }𝑁𝑙

𝑖=1, where
images and texts are paired via semantic labels 𝑦𝑖 and 𝑁𝑙 is the
number of training samples from the labeled data.D𝑢

𝑢 = {𝑥𝑣
𝑖
, 𝑥𝑡
𝑖
}𝑁𝑢

𝑖=1,
where the image 𝑥𝑣

𝑖
and text 𝑥𝑡

𝑖
are not aligned. D𝑢

𝑚 = {D𝑣,D𝑡 },
where D𝑣 = {𝑥𝑣

𝑖
}𝑁𝑣

𝑖=1 defines only image modal data, while the
corresponding text is inaccessible, and D𝑡 = {𝑥𝑡

𝑖
}𝑁𝑡

𝑖=1 denotes only
text modal data, while the corresponding image is inaccessible. 𝑁𝑣
and 𝑁𝑡 represent the number of image-only samples and text-only
samples respectively. The goal of OTPAL is to establish a common
space for partially aligned data. In this space, the representations
of images and texts can be better semantically aligned.

3.2 Multimodal Classification and Invariance
Learning

We first explore a type of partially aligned cross-modal retrieval
method that we propose, shown in Fig. 2 (a). In the labeled data
in Fig. 2 (a), images and texts are paired with semantic labels one-
to-one. However, in the unlabeled data, image samples and text
samples are not aligned (unpaired) and lack semantic information.
Next, we specify our proposed method.

Due to the heterogeneous properties of different modalities,
cross-modal retrieval first learns a common representation space.
Thus, the dual-stream backbones (e.g., CLIP-RN50 [24] and CLIP-
Xformer [24]) 𝑓𝑣 (.) and 𝑓𝑡 (.) are used to extract the image 𝑥𝑣

𝑖
and

text 𝑥𝑡
𝑖
modal features, and then project the features from different

modalities into a modality-shared feature space formulated as:

𝑧𝑣𝑖 = 𝑓𝑣 (𝐶𝐿𝐼𝑃𝑣 (𝑥𝑣𝑖 );𝜃𝑣), (1)

(a)

Paired

Unpaired
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Image

Text

Unlabeled 𝒟𝑢
𝑢Labeled 𝒟𝑙

Data type-2:

(b)

Missing image

Missing text?

Image

Text

Unlabeled 𝒟𝑚
𝑢

??

? ?

Labeled 𝒟𝑙

Figure 2: Illustration of partially aligned multimodal data.

𝑧𝑡𝑖 = 𝑓𝑡 (𝐶𝐿𝐼𝑃𝑡 (𝑥
𝑡
𝑖 );𝜃𝑡 ), (2)

where 𝐶𝐿𝐼𝑃𝑣 (.) and 𝐶𝐿𝐼𝑃𝑡 (.) define visual and textual encoders.
To generate a common representation space, two modality-specific
multi-layer perception (MLP) 𝑓𝑣 (.) and 𝑓𝑡 (.) are utilized, where 𝜃𝑣
and 𝜃𝑡 are trainable parameters of modality-specific multi-layer
perception. Finally, we obtain the representation features 𝑧𝑣

𝑖
and 𝑧𝑡

𝑖
projected on a common subspace. Multimodal Classification and
Invariance Learning (MCIA) over the labeled data can help the
model learn basic discriminative representation ability. At first,
we design two modality-specific classifiers based on the projected
features, and then utilize cross-entropy loss and standard triplet
loss [33] to optimize the network parameters expressed as follows:

𝐿𝑙𝑐𝑒 = − 1
𝑁𝑙

𝑁𝑙∑︁
𝑖=1

(𝑦𝑖 · log(𝑦𝑣𝑖 ) + 𝑦𝑖 · log(𝑦𝑡𝑖 )), (3)

𝐿𝑙𝑡𝑟𝑖 =
1

|𝑋𝑣 |
∑︁

(𝑧𝑣
𝑖
,𝑧𝑡+

𝑗
,𝑧𝑡−

𝑗
) ∈𝑋𝑣

[𝑑 (𝑧𝑣𝑖 , 𝑧
𝑡+
𝑗 ) − 𝑑 (𝑧𝑣𝑖 , 𝑧

𝑡−
𝑗 ) + 𝛿] (4)

+ 1
|𝑋𝑡 |

∑︁
(𝑧𝑡

𝑖
,𝑧𝑣+

𝑗
,𝑧𝑣−

𝑗
) ∈𝑋𝑡

[𝑑 (𝑧𝑡𝑖 , 𝑧
𝑣+
𝑗 ) − 𝑑 (𝑧𝑡𝑖 , 𝑧

𝑣−
𝑗 ) + 𝛿], (5)

where 𝑦𝑣
𝑖
and 𝑦𝑡

𝑖
are predicted values by the two MLP classifier

layers. 𝑋𝑣 denotes the set of triplets by selecting 𝑧𝑣
𝑖
as the anchor

to find the positive text 𝑧𝑡+
𝑗

and the negative text 𝑧𝑡−
𝑗
. The same

applies to 𝑋𝑡 . |𝑋𝑣 | and |𝑋𝑡 | are their cardinalities.
The unsupervised classification loss 𝐿𝑢𝑐𝑒 is defined as the cross-

entropy between the pseudo-labels 𝑦𝑖 and the model’s predictions
𝑦𝑣
𝑖
, 𝑦𝑡
𝑖
in the image and text modalities, respectively:

𝐿𝑢𝑐𝑒 = − 1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

(𝑦𝑖 · log(𝑦𝑣𝑖 ) + 𝑦𝑖 · log(𝑦𝑡𝑖 )) . (6)

The MCIA loss function (Fig. 3) combines 𝐿𝑙𝑐𝑒 , 𝐿𝑙𝑡𝑟𝑖 and 𝐿
𝑢
𝑐𝑒 , which

helps the model to learn certain intra-modality discriminability and
inter-modal alignment representations and can be represented as:

𝐿𝑀𝐶𝐼𝐴 = 𝐿𝑙𝑐𝑒 + 𝐿𝑙𝑡𝑟𝑖 + 𝛽𝐿
𝑢
𝑐𝑒 . (7)

3
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Figure 3: Overview of the OTPAL framework. To mitigate modal heterogeneity and establish cross-modal semantic corre-
spondence in partially aligned multimodal scenarios, the OTPAL model is introduced, comprising three main components:
Multimodal Classification and Invariance Learning (MCIA) in Section 3.2, Dual Optimal Transport-based Prototype Alignment
(DOTPA) in Section 3.3, and Prototype-based Neighborhood Feature Completion (PNFC) in Section 3.4.

3.3 Dual Optimal Transport-based Prototype
Alignment

The aforementioned MCIA does not directly explore the alignment
relationship of unlabeled unpaired data from two modalities, thus it
cannot address situations where modality data is partially aligned.
Next, we focus on the key challenge of the partially aligned CMR
task: unlabeled unpaired image and text data association. To ad-
dress such an issue, we propose a Dual Optimal Transport-based
Prototype Alignment (DOTPA) method (Fig. 3). It simultaneously
matches the unpaired images and texts with the prototypes and
obtains a matching matrix. The prototype [40] can be regarded as
a set of modality-shared semantic centers, and features with simi-
lar semantics have consistent prototype assignments. The shared
prototype for images and texts can be expressed as:

𝑀 = {𝑚 𝑗 | 𝑗 = 1, ..., 𝐾}, (8)

where 𝑗 denotes the index of the category. During the initialization
phase, we randomly generate a set of prototypes that are learned
and updated through training.We use prototypes as an intermediate
bridge to find correspondences between unlabeled unpaired images
and texts.

Specifically, for the given 𝑁𝑢 suppliers (unlabeled unpaired im-
ages and texts) and𝐾 demanders (prototypes). The supplier supplies
unlabeled unpaired images and texts to the demander, described as
a vector a, and the demander receives unlabeled unpaired images
and texts from the supplier, described as a vector b. We formulate
the cross-modal prototype assignment task as an optimal transport
problem. The problem is to find an optimal transportation plan
𝑃 ∈ 𝑅𝐵×𝐾 to minimize the transport cost 𝐶 , which satisfies the
following equation:

𝑃∗ = arg max
𝑃∈P

⟨𝑃,𝐶⟩𝐹 + 𝜆H(𝑃), (9)

where ⟨𝑃,𝐶⟩𝐹 is the Frobenius inner product between the cost
matrix 𝐶 and the matching plan 𝑃 . 𝐶 is a cost matrix where each
element 𝐶𝑖 𝑗 represents the similarity from 𝑧𝑣

𝑖
(𝑧𝑡
𝑖
) to𝑚 𝑗 , and the

cost matrix for our optimal transport problem can be denoted𝐶𝑖 𝑗 =
1 − cos(𝑧𝑣

𝑖
,𝑚 𝑗 ). We add entropy regularization on 𝑃 as 𝐻 (𝑃) =∑

𝑖 𝑗 𝑃𝑖 𝑗 log 𝑃𝑖 𝑗 . This ensures that 𝑃 is not over-concentrated on
a few elements. Finally, the solution of Eq. (9) can constrain a
transportation polytope:

P = {𝑃 ∈ 𝑅𝐵×𝐾 |𝑃1𝐾 = a, 𝑃𝑇 1𝐵 = b}, (10)

where 𝑃𝑖 𝑗 means the transport plan between the 𝑖 − 𝑡ℎ unlabeled
unpaired sample and the 𝑗 − 𝑡ℎ prototype, and 𝑃 contains all non-
negative 𝐵 × 𝐾 elements, with row and column sums equal to a
and b, respectively. We preserve the assignment matrix 𝑃∗ and the
solution of the transportation polytope, solved efficiently using the
Sinkhorn-Knopp algorithm [6], which can be written as follows:

𝑃∗ = 𝐷𝑖𝑎𝑔(𝑢) exp( 1
𝜆
𝐶)𝐷𝑖𝑎𝑔(𝑣), (11)

where 𝑢, 𝑣 are row and column normalized vectors and can be
calculated through the iterative Sinkhorn-Knopp algorithm [6].

To minimize intra-class and maximize inter-class variations, and
learn discriminative representations, each sample should be close
to the prototype to which it belongs. Specially, for each feature
𝑧𝑟
𝑖
, 𝑟 = {𝑣, 𝑡}, we can calculate the softmax of its similarity to the

corresponding prototype, formulated as follows:

𝑆𝑖 𝑗 =
exp(𝑠𝑖𝑚(𝑧𝑟

𝑖
,𝑚 𝑗 )/𝑇 )∑𝐾

𝑗=1 exp(𝑠𝑖𝑚(𝑧𝑟
𝑖
,𝑚 𝑗 )/𝑇 )

, (12)

where 𝑠𝑖𝑚(.) represents the cosine similarity, 𝑇 is the temperature
factor, and 𝐾 is the number of shared prototypes. We then define
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the data-to-proxy alignment loss via the cross-entropy loss as:

𝐿𝑙𝑝𝑟 = − 1
𝑁𝑙

𝑁𝑙∑︁
𝑖=1

𝐾∑︁
𝑗=1

1(𝑦𝑖 = 𝑗) log(𝑆𝑖 𝑗 ), (13)

where 𝐾 is the number of classes and 𝑁𝑙 denotes the number of
labeled data. Analogously, to effectively leverage a large amount of
unlabeled data, we generalize Eq. (13) to unlabeled unpaired image
and text data, establishing their matching associations with shared
semantic prototypes, which can be calculated as follows:

𝐿𝑢𝑝𝑟 = − 1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

𝐾∑︁
𝑗=1

1(𝑃𝑖 𝑗 = 𝑗) log(𝑆𝑖 𝑗 ), (14)

where 𝑃𝑖 𝑗 is the optimal transport plan obtained by Eq. (9). To
obtain a more reliable prototype assignment, we use a prototype-
based reliability measurement method. The reliability of the 𝑃𝑖 𝑗
is measured according to the similarity between the sample and
its class prototype, and we select the threshold of unpaired image
and text similarity 𝑅(𝑃) to be greater than 𝜏 to train the DOTPA
module, where 𝑅(𝑃𝑖 𝑗 ) = 𝑑 (𝑧𝑟𝑖 ,𝑚 𝑗 ), 𝑟 = {𝑣, 𝑡}. The DOTPA method
is well-suited for our proposed partially aligned cross-modal re-
trieval for the following reasons: (1) We align unlabeled unpaired
images and texts with the prototypes to which they belong. Com-
pared with directly aligning unlabeled unpaired images with texts,
it can effectively reduce storage space and calculation amount.
(2) Prototype-based alignment loss can further reduce intra-class
variation and increase inter-class distance, which is conducive to
learning semantic discriminative representations on both labeled
and unlabeled data.

3.4 Prototype-based Neighborhood Feature
Completion

As an extension of this paper and equally important, we delve
into another partially aligned cross-modal retrieval method, as il-
lustrated in Fig. 2 (b). The unlabeled incomplete data consists of
two types: solely image data where the corresponding text is inac-
cessible, and solely text samples where the corresponding image
samples are inaccessible. To address the aforementioned issue of
unlabeled incomplete data, we propose the Prototype-based Neigh-
borhood Feature Completion (PNFC) method (Fig. 3) to reconstruct
the missing modality features and further improve the robustness
of partially aligned cross-modal retrieval. The idea behind PNFC
is that instances from similar semantics are expected to be con-
sistent in modality-shared space. By incorporating neighborhood
feature information with semantic prototypes, both modality com-
plementary information and prototype semantic information can
be preserved in the recovered data. To reconstruct the missing text
features �̃�𝑡

𝑖
for available image features 𝑧𝑣

𝑖
and preserve seman-

tic consistency between incomplete modality data, we first design
𝑁𝑘 (𝑧𝑣𝑖 ) as a list of the 𝑘 nearest neighbors in the corresponding
image modality, by using 𝑧𝑣

𝑖
as the query to rank their distances as:

𝑁𝑘 (𝑧𝑣𝑖 ) =
[
𝑧𝑣1, ..., 𝑧

𝑣
𝑘

]
, (15)

where 𝑘 is a hyper-parameter. We transfer the nearest neighbors’ re-
lation to text modality and can infer missing text feature neighbors
𝑁𝑘 (�̃�𝑡𝑖 ) =

[
𝑧𝑡1, ..., 𝑧

𝑡
𝑘

]
from 𝑁𝑘 (𝑧𝑣𝑖 ). Since the prototypes are trained

with the discrimination loss, they can provide shared semantic in-
formation across modalities. Thus, we leverage the prototype and
nearest neighbor features to complete the missing text features:

�̃�𝑡𝑖 = 𝜑 (𝑚 𝑗 , 𝑁𝑘 (𝑧𝑣𝑖 ), 𝑁𝑘 (�̃�
𝑡
𝑖 );𝜃𝑤), (16)

where 𝜃𝑊 is the trainable parameters. 𝜑 denotes the cross-modal
self-attention encoder that attends to the correlations between the
complete modality feature and neighbor samples. The self-attention
encoder can be expressed as:

𝑧𝑡𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ), (17)

𝑧𝑡𝑖 = 𝐹𝐹𝑁 (𝐿𝑁 (𝑧𝑡𝑖 )) + 𝐿𝑁 (𝑧𝑡𝑖 ), (18)

𝑧𝑡𝑖 = 𝐿𝑁 (𝑧𝑡𝑖 ), (19)
where 𝑄 = 𝑧𝑣

𝑖
𝑊𝑄 , 𝐾 = 𝑍 𝑣𝑊𝐾 and 𝑉 = 𝑍 𝑡𝑊𝑉 , 𝑧𝑣𝑖 is corresponding

image feature of the missing modality feature �̃�𝑡
𝑖
. 𝑍 𝑣 and 𝑍 𝑡 are

sets of 𝑁𝑘 (𝑧𝑣𝑖 ) and 𝑁𝑘 (�̃�
𝑡
𝑖
) neighbor sample features, and 𝑁𝑘 (�̃�𝑡𝑖 )

of �̃�𝑡
𝑖
can be inferred from 𝑁𝑘 (𝑧𝑣𝑖 ). 𝐿𝑁 () is the layer normalization.

𝐹𝐹𝑁 () is a feed-forward network [32]. Finally, we perform a fully-
connected decoder to generate missing feature as follows:

�̃�𝑡𝑖 = 𝐷 (𝑧𝑡𝑖 ;𝜃𝐷 ), (20)

where 𝐷 (.;𝜃𝐷 ) denotes the fully-connected decoder. To maintain
representation consistency between the completion features and
the corresponding available features, we propose the missing modal
feature completion loss computed as:

𝐿𝑀𝐹𝐶 = ∥�̃�𝑡𝑖 − 𝑧
𝑣
𝑖 ∥

2
2 + ∥�̃�𝑣𝑖 − 𝑧

𝑡
𝑖 ∥

2
2 . (21)

Overall Loss Function. The overall objective 𝐿 is combined with
three losses, including the discrimination loss 𝐿𝑀𝐶𝐼𝐴 , prototype
alignment loss 𝐿𝑃 and missing feature completion loss 𝐿𝑀𝐹𝐶 :

𝐿 = 𝐿𝑀𝐶𝐼𝐴 + 𝛼𝐿𝑃 + 𝐿𝑀𝐹𝐶 , (22)

where 𝛼 is the hyper-parameter to balance the different losses. The
prototype alignment loss 𝐿𝑃 is the sum of 𝐿𝑙𝑝𝑣 , 𝐿𝑙𝑝𝑡 , 𝐿

𝑢
𝑝𝑣 and 𝐿𝑢𝑝𝑡 .

4 EXPERIMENTS
4.1 Datasets and New Data Splitting
We undertake comprehensive experiments on four widely used
cross-modal retrieval benchmarks including NUS-WIDE-10K [4],
Wikipedia [26], XmediaNet [22], and Pascal-Sentence [25].
Data type-1: In our proposed partially aligned cross-modal re-
trieval, we randomly select 20%, 40% and 60% instances from the
multi-modal training set as labeled aligned data, while the rest are
designated as unlabeled unaligned data (Fig. 2 (a)). In the labeled
aligned data, images and texts are aligned and annotated with class
information. Meanwhile, in unlabeled unaligned data, images and
texts are not aligned. Note that having only 20% labeled aligned and
80% unlabeled unaligned training data poses the greatest challenge
in partially aligned cross-modal retrieval.
Data type-2:As shown in Fig. 2 (b), in unlabeled unaligned data, the
image sample is available but the corresponding text is missing, or
the text is accessible but the corresponding image is missing. For ex-
ample, we denote 10% as labeled aligned data and 90% as unlabeled
unaligned data, where 90% of unlabeled unaligned data comprises
45% image-only samples and 45% text-only samples represented as
(10%L, 45%I, 45%T). Similarly, we also define various other ratios.
Note that (10%L, 45%I, 45%T) is also the most challenging.
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Table 1: Retrieval performance for mAP scores compared to existing methods on the NUS-WIDE-10K dataset with data type-1.

Type Methods Venue 20% Label data 40% Label data 60% Label data
I2T T2I Avg I2T T2I Avg I2T T2I Avg

US-CMR
DCCA [39] arXiv15 0.462 0.471 0.466 0.469 0.483 0.476 0.470 0.484 0.477
DCCAE [35] PMLR15 0.461 0.473 0.467 0.469 0.488 0.478 0.471 0.487 0.479

S-CMR

DSCMR [47] CVPR19 0.591 0.594 0.592 0.609 0.603 0.606 0.618 0.614 0.616
DAVAE [14] MM20 0.541 0.517 0.529 0.518 0.550 0.534 0.552 0.566 0.559
PAN [43] SIGIR21 0.580 0.590 0.585 0.590 0.603 0.596 0.596 0.608 0.602

C3CMR [34] MM22 0.574 0.580 0.577 0.584 0.597 0.590 0.596 0.604 0.600
ICMR-DCT [29] TOMM23 0.551 0.511 0.531 0.559 0.553 0.556 0.572 0.571 0.571

SS-CMR
SMLN [12] AAAI20 0.578 0.598 0.588 0.591 0.609 0.600 0.600 0.627 0.613
SCL𝑠𝑠 [17] TMM22 0.607 0.613 0.610 0.611 0.619 0.615 0.612 0.622 0.617
OTPAL - 0.631 0.639 0.635 0.636 0.638 0.637 0.635 0.645 0.640

Table 2: Retrieval performance for mAP scores compared to existing methods on the Wikipedia dataset with data type-1.

Type Methods Venue 20% Label data 40% Label data 60% Label data
I2T T2I Avg I2T T2I Avg I2T T2I Avg

US-CMR
DCCA [39] arXiv15 0.444 0.437 0.440 0.453 0.443 0.448 0.466 0.447 0.456
DCCAE [35] PMLR15 0.433 0.418 0.425 0.445 0.437 0.441 0.449 0.441 0.445

S-CMR

DSCMR [47] CVPR19 0.541 0.528 0.534 0.576 0.563 0.569 0.590 0.573 0.581
DAVAE [14] MM20 0.431 0.383 0.407 0.533 0.507 0.520 0.547 0.511 0.529
PAN [43] SIGIR21 0.541 0.525 0.533 0.562 0.548 0.555 0.577 0.561 0.569

C3CMR [34] MM22 0.499 0.481 0.490 0.530 0.518 0.524 0.553 0.535 0.544
ICMR-DCT [29] TOMM23 0.452 0.399 0.425 0.548 0.520 0.534 0.560 0.539 0.549

SS-CMR
SMLN [12] AAAI20 0.545 0.528 0.536 0.605 0.581 0.593 0.608 0.579 0.593
SCL𝑠𝑠 [17] TMM22 0.562 0.538 0.550 0.599 0.577 0.588 0.613 0.579 0.596
OTPAL - 0.570 0.556 0.563 0.609 0.589 0.599 0.614 0.600 0.607

Table 3: Retrieval performance for mAP scores compared to existing methods on the XmediaNet dataset with data type-1.

Type Methods Venue 20% Label data 40% Label data 60% Label data
I2T T2I Avg I2T T2I Avg I2T T2I Avg

US-CMR
DCCA [39] arXiv15 0.206 0.226 0.216 0.239 0.226 0.232 0.243 0.229 0.236
DCCAE [35] PMLR15 0.205 0.226 0.215 0.209 0.227 0.218 0.209 0.231 0.220

S-CMR

DSCMR [47] CVPR19 0.663 0.682 0.672 0.686 0.702 0.694 0.706 0.719 0.712
DAVAE [14] MM20 - - - - - - - - -
PAN [43] SIGIR21 0.451 0.485 0.468 0.456 0.486 0.471 0.457 0.491 0.474

C3CMR [34] MM22 0.542 0.548 0.545 0.576 0.586 0.581 0.595 0.601 0.598
ICMR-DCT [29] TOMM23 0.573 0.544 0.558 0.610 0.567 0.588 0.586 0.595 0.590

SS-CMR
SMLN [12] AAAI20 0.609 0.654 0.631 0.619 0.638 0.628 0.608 0.638 0.623
SCL𝑠𝑠 [17] TMM22 0.636 0.648 0.642 0.672 0.682 0.677 0.675 0.685 0.680
OTPAL - 0.726 0.706 0.716 0.731 0.744 0.737 0.738 0.752 0.745

4.2 Implementation Details
We follow the image and text encoder networks utilized by CLIP
[24] methods. Specifically, the visual encoder utilizes ResNet50 [9]
as its base framework, integrating the style of the Transformer
architecture [32]. Through a linear projection layer, it produces
1024-dimensional image representations. For the text transformer
encoder, we first employ a lower-cased Byte Pair Encoding (BPE)
with a vocabulary size of 49,152 words [27] to tokenize the textual
descriptions. The textual descriptions are enclosedwithin [SOS] and
[EOS] tokens indicating the beginning and end of the text sequence.
The tokenized text is then fed into the transformer’s module, and
the textual features at the [EOS] position are normalized and pro-
cessed by using a linear projection layer to output 1024-dimensional

textual representations. To learn modality-shared features and ob-
tain classification predictions for image and text modalities, we
employ four fully connected layers with GELU activation function
[10] for each modality, i.e., 1024 → 2048 → 1024 → 𝐾 . The en-
tire network is optimized by the Adam update rule [15] with the
learning rate 10−3 and batch size 128. The training epoch is set to
400 for the XmediaNet dataset and 200 for the other datasets. In
addition, we set the dropout ratio to 0.5, and the early stop to 20.
For the hyper-parameters in OTPAL, we set 𝛼 , 𝛽 , 𝜏 to {10, 5, 0.9} on
XmediaNet, {15, 1, 0.5} on NUS-WIDE-10K, Wikipedia and Pascal
Sentence. For other hyper-parameters, 𝑇 = 0.5, and the number
of nearest neighbors 𝑘 is set to 3 and 5 for Pascal-Sentence, and
XMediaNet, respectively. The proposed model is trained on one
24GB Nvidia RTX A5000 GPU in PyTorch.
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Table 4: Average mAP scores for training data type-2 on two
benchmark datasets.

Percentage Pascal-Sentence XmediaNet
SCL𝑠𝑠 OTPAL1 OTPAL SCL𝑠𝑠 OTPAL1 OTPAL

10%L, 45%I, 45%T 0.561 0.560 0.579 0.596 0.640 0.673
20%L, 40%I, 40%T 0.633 0.635 0.650 0.642 0.692 0.710
30%L, 35%I, 35%T 0.672 0.673 0.687 0.660 0.703 0.720
40%L, 30%I, 30%T 0.678 0.679 0.692 0.677 0.716 0.729
60%L, 20%I, 20%T 0.679 0.683 0.697 0.680 0.729 0.740

Table 5: Ablation study: mAP scores of OTPAL and its three
components on two datasets with 20 % labeled paired data.

Methods NUS-WIDE-10K XmediaNet
I2T T2I Avg I2T T2I Avg

OTPAL 0.631 0.639 0.635 0.726 0.706 0.716
OTPAL w/o L𝑀𝐶𝐼𝐴 0.615 0.624 0.619 0.710 0.712 0.711
OTPAL w/o L𝑙𝑝𝑣+L𝑙𝑝𝑡 0.586 0.603 0.594 0.680 0.682 0.681
OTPAL w/o L𝑢𝑝𝑣+L𝑢𝑝𝑡 0.608 0.614 0.611 0.691 0.691 0.691

4.3 Evaluation Metric and Compared Methods
We evaluate the retrieval performance with the mean Average Pre-
cision (mAP), which is a widely-used performance evaluation crite-
rion in cross-modal retrieval tasks [11, 13, 19]. In our experiments,
we take images and texts as queries to calculate the cosine similar-
ity to retrieve the relevant text and image samples, which can be
denoted as Image2Text (I2T) and Text2Image (T2I). To evaluate the
effectiveness of the OTPAL, we compare the proposed method with
nine representative cross-modal retrieval baseline methods: unsu-
pervised cross-modal methods (US-CMR): DCCA [39] and DCCAE
[35], supervised methods (S-CMR): DSCMR [47], DAVAE [14] PAN
[43], C3CMR [34], and ICMR-DCT [29], semi-supervised methods
(SS-CMR): SMLN [12], SCL [17] and our method OTPAL. Notice
that all methods use the same feature encoder as our method.

4.4 Comparison with State-of-the-Art Methods
Given that OTPAL is designed for partially aligned cross-modal
retrieval, its performance is evaluated based on data type-1, where a
certain proportion of labeled image-text pairs is retained, while the
rest is randomly shuffled to construct unlabeled unpaired data. Ta-
bles 1-3 present the retrieval mAP scores under varying label ratios
on three datasets, respectively. We use “- ” for methods that do not
provide source codes or results. As shown in these results, we can
draw the following conclusions: 1) Training with partially aligned
data may significantly harm the performance of cross-modal re-
trieval. As the proportion of labeled paired data decreases, the mAP
scores of these methods will drop rapidly. 2) When labeled paired
data is scarce, the retrieval performance of unsupervised meth-
ods does not surpass that of supervised methods. This is because,
in partially aligned cross-modal retrieval, unsupervised methods
are unable to utilize unlabeled aligned data to learn aligned repre-
sentations between paired data. 3) Although the semi-supervised
methods SMLN and SCL can achieve good performance, their im-
provement is limited.Mainly because they do not sufficiently exploit
the discrimination and intrinsic correlations when encountering
unlabeled unpaired data. Hence, their performance may be worse
than some supervised methods. 4) Our method outperforms all
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Figure 4: Visual comparison of total OTPAL and Baseline on
XmediaNet with 20% labeled paired data.

existing SOTA methods on all datasets with varying proportions
of labeled paired data, demonstrating the outstanding robustness
of OTPAL in handling partially aligned data. Moreover, when the
labeled paired data ratio is lower, the improvement of OTPAL is
more evident, which can be observed in XmediaNet Table 3. In
conclusion, the effectiveness of our approach can be attributed to
the intrinsic connection established between labeled paired data
and unlabeled unpaired data, which can further minimize the intra-
class distance and improve model discrimination through optimal
transport-based prototype alignment.

4.5 Ablation Studies
To validate the effectiveness of each module of our method, we con-
duct ablation studies for these modules, including the Dual Optimal
Transport-based Prototype Alignment (DOTPA), and Prototype-
based Neighborhood Feature Completion (PNFC). Experiments are
conducted on Pascal-Sentence, NUS-WIDE-10K, and XmediaNet.
Effectiveness of DOTPA. Specifically, we ablate the contributions
of three key components in our OTPAL, i.e., 𝐿𝑀𝐶𝐼𝐴 , 𝐿𝑙𝑝𝑣 + 𝐿𝑙𝑝𝑡 , and
𝐿𝑢𝑝𝑣 + 𝐿𝑢𝑝𝑡 . All compared methods are trained under 20% labeled
paired data using the same settings as our OTPAL. The experimen-
tal results are reported in Table 5. From the results, the following
observations can be drawn: 1) We can observe that the full OTPAL
achieves the best performance, showing that all three components
are important to improve the performance towards partially aligned
data. Furthermore, in the visualization comparison between total
OTPAL and Baseline (𝐿𝑀𝐶𝐼𝐴), we can observe that the former con-
verges to the best performance faster than the baseline in Fig. 4.
2) Both 𝐿𝑙𝑝𝑣 + 𝐿𝑙𝑝𝑡 and 𝐿𝑢𝑝𝑣 + 𝐿𝑢𝑝𝑡 help to improve the performance.
They are complementary to each other. 𝐿𝑙𝑝𝑣 + 𝐿𝑙𝑝𝑡 can make the
features more discriminative so that samples of different categories
are easier to distinguish on labeled paired data, while 𝐿𝑢𝑝𝑣 + 𝐿𝑢𝑝𝑡 can
significantly minimize intra-class distances to improve the discrim-
inability and modal invariance on unlabeled unpaired data.
Effectiveness of PNFC. To evaluate the robustness of our OTPAL
towards incomplete partially aligned data, we compare it with the
SOTA method SCL under data type-2. The experimental results
are reported in Table 4. OTPAL1 represents the OTPAL without
the Prototype-based Neighborhood Feature Completion module
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Figure 5: Parameter analysis of 𝛼 , 𝛽 and 𝜏 in partially aligned cross-modal retrieval with 20% labeled pairs on XmediaNet.
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Figure 6: Visualization for testing data on NUS-WIDE-10K by t-SNE [31]. Triangles denote image features, circles denote text
features, and stars denote shared semantic prototypes. Features of the same class are indicated with the same color.

(PNFC). By comparing OTPAL and OTPAL1, it is shown that ex-
ploring incomplete modality data is very important for incomplete
part-aligned cross-modal retrieval. By comparing OTPALwith other
methods, it shows that our method leverages cross-modal neighbors
guiled by shared prototype information to generate completion fea-
tures, alleviate the impact of performance degradation caused by
missing data, and further improve the robustness of our OTPAL.

4.6 Parametric Sensitivity Analysis
The main hyper-parameters involved are 𝛼 , 𝛽 and 𝜏 . The objective
function contains two parameters 𝛼 and 𝛽 , which control the con-
tributions of different loss functions. We evaluate their influences
on the XmediaNet dataset, and report the results in Fig. 5 (𝑎) − (𝑐).
These experiments are conducted under the 20% labeled paired
multi-modal data scenario. Specifically, to accurately reflect the per-
formance variations affected by hyper-parameters, we verify the ef-
fect of one hyper-parameter while keeping other hyper-parameters
unchanged. For 𝛼 , we set the range of the hyper-parameter in Eq.
(22) as {0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}, and we can observe
that the mAP scores in both directions tend to be stable when
1 < 𝛼 < 10000. This also proves that OTPAL can keep high per-
formance over a wide range of 𝛼 . For 𝛽 in Eq. (7), the changing
trend of mAP score is opposite to 𝛼 . The performance is stable in a
larger range of {0.001 100}, and it drops sharply when it exceeds
100. For 𝜏 below Eq. (14), the mAP first increases with the growth
of 𝜏 , and then begins to decrease after 𝜏 surpasses a threshold 0.9,
which shows that a suitable threshold can effectively select reliable
prototypes that perform accurate alignment between instances and
prototypes. In conclusion, OTPAL is relatively insensitive to the
selection of 𝛼 and 𝛽 , but sensitive to the choice of 𝜏 .

4.7 Feature Visualization
We visualize the learned visual and textual representations pro-
duced by the modality-specific layer using t-SNE in Fig. 6. The
original image and text features are from the testing set of NUS-
WIDE-10K. We contrast t-SNE 1024-dimensional embeddings of the
original features (Fig. 6 (𝑎) − (𝑏)) and the learned visual and textual
features (Fig. 6 (𝑐) − (𝑒)). We can clearly see that the original fea-
tures of different modalities present different spatial distributions,
and instances from different categories cannot be separated (Fig.
6 (𝑎) − (𝑏)). Besides, we can observe that both the image and text
features of OTPAL exhibit consistent semantic distribution and are
aligned closely (Fig. 6 (𝑐) − (𝑒)), which validates the effectiveness of
our method in learning modality invariance and semantic discrim-
ination. This can be attributed to the fact that shared prototypes
can establish intrinsic correlations between images and texts and
better characterize global semantic information (Fig. 6 (𝑐) stars).

5 CONCLUSION
To tackle the challenges of partially aligned cross-modal retrieval in
real-world scenarios, we propose a novel optimal transport-based
prototype alignment learning for robust cross-modal retrieval. In
particular, to learn modality discriminative and invariant repre-
sentations while minimizing intra-class distance, we propose a
dual optimal transport-based prototype alignment strategy. Further,
to deal with the problem of incomplete partially aligned data, a
prototype-based neighbor feature completion is proposed, which
can extend our method to more realistic scenarios. Extensive exper-
iment results demonstrate the superiority of our model in partially
aligned cross-modal retrieval by comparing it with SOTA methods.
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