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ABSTRACT

In real scenarios, state observations that an agent observes may contain measure-
ment errors or adversarial noises, misleading the agent to take suboptimal actions
or even collapse while training. In this paper, we study the training robustness
of distributional Reinforcement Learning (RL), a class of state-of-the-art methods
that estimate the whole distribution, as opposed to only the expectation, of the
total return. Firstly, we propose State-Noisy Markov Decision Process (SN-MDP)
in the tabular case to incorporate both random and adversarial state observation
noises, in which the contraction of both expectation-based and distributional Bell-
man operators is derived. Beyond SN-MDP with the function approximation,
we theoretically characterize the bounded gradient norm of histogram-based dis-
tributional loss, accounting for the better training robustness of distribution RL.
We also provide stricter convergence conditions of the Temporal-Difference (TD)
learning under more flexible state noises, as well as the sensitivity analysis by
the leverage of influence function. Finally, extensive experiments on the suite
of games show that distributional RL enjoys better training robustness compared
with its expectation-based counterpart across various state observation noises.

1 INTRODUCTION

Learning robust and high-performance policies for continuous state-action reinforcement learn-
ing (RL) domains is crucial to enable the successful adoption of deep RL in robotics, autonomy,
and control problems. However, recent works have demonstrated that deep RL algorithms are vul-
nerable either to model uncertainties or external disturbances (Huang et al., 2017; Pattanaik et al.,
2017; Ilahi et al., 2020; Chen et al., 2019; Zhang et al., 2020; Shen et al., 2020; Singh et al., 2020;
Guan et al., 2020). Particularly, model uncertainties normally occur in a noisy reinforcement learn-
ing environment where the agent often encounters systematic or stochastic measurement errors on
state observations, such as the inexact locations and velocity obtained from the equipped sensors of a
robot. On the other hand, external disturbances are normally adversarial in nature. For instance, the
adversary can construct adversarial perturbations on state observations to degrade the performance
of deep RL algorithms. These two factors lead to noisy state observations that influence the perfor-
mance of algorithms, precluding the success of reinforcement learning in real-world applications.

Existing works mainly focus on improving the robustness of algorithms in the test environment with
noisy state observations. Smooth Regularized Reinforcement Learning (Shen et al., 2020) intro-
duced a regularization to enforce smoothness in the learned policy, and thus improved its robustness
against measurement errors in the test environment. Similarly, the State-Adversarial Markov de-
cision process (SA-MDP) (Zhang et al., 2020) was proposed and the resulting principled policy
regularization enhances the adversarial robustness of various kinds of RL algorithms against adver-
sarial noisy state observations. However, both of these works assumed that the agent can access
clean state observations during training, which is normally not feasible when the environment is in-
herently noisy, such as unavoidable measurement errors. Thus, the maintenance and formal analysis
of policies robust to noisy state observations during training is a worthwhile area of research.

On the other hand, recent distributional reinforcement learning algorithms, including C51 (Belle-
mare et al., 2017), Quantile-Regression DQN (Dabney et al., 2018b), Implicit Quantile Net-
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works (Dabney et al., 2018a) and Moment-Matching DQN (Nguyen et al., 2020), constantly set
new records in Atari games, gaining huge attention in the research community. However, existing
literature mainly focuses on the performance of algorithms, other benefits, including the robustness
in the noisy environment, of distributional RL algorithms are less studied. As distributional RL can
leverage additional information about distribution that captures the uncertainty of the environment
more accurately, it is natural to expect that distributional RL with this better representation capability
can be less vulnerable to the noisy environment while training, which motivates our research.

In this paper, we investigate the robustness of distributional RL against various kinds of state ob-
servation noises encountered during training. Firstly, we propose a general State-Noisy MDP in the
tabular setting, in which we prove the convergence of distributional Bellman operator. We further
extend SN-MDP to the function approximation case by considering more complex noisy state ob-
servations. Notably, we characterize the Lipschitz continuity blessing resulting from the Histogram
distributional loss in distributional RL, which leads to a bounded gradient norm. This better be-
haved gradient mitigates the impact of noisy states on the objective function, accounting for the less
vulnerability of distributional RL while training. Moreover, we also provide the convergence condi-
tions of TD learning under noisy state observations as well as a sensitivity analysis of state noises on
the learning of the function approximator via the influence function. Finally, extensive experiments
demonstrate that distributional RL algorithms tend to achieve better robust performance in the pres-
ence of more complex state observation noises compared with its expectation-based counterpart that
may even diverge in some cases. These empirical results in Section 5 echo our previous theoreti-
cal results in both Section 3 and 4. Overall, the training robustness advantage of distributional RL
algorithms we revealed facilitates their deployment especially in the noisy environment.

2 BACKGROUND

2.1 DISTRIBUTIONAL REINFORCEMENT LEARNING

In the tabular setting without noisy states, the agent’s interaction with its environment can be nat-
urally modeled as a standard Markov Decision Process (MDP), a 5-tuple (S,A, R, P, γ). S and A
are the state and action spaces, P : S × A × S → [0, 1] is the environment transition dynamics,
R : S ×A× S → R is the reward function and γ ∈ (0, 1) is the discount factor.

Value Function vs Value Distribution. Firstly, we denote the return where st = s as Zπ(s) =∑∞
k=0 γ

krt+k+1, representing the cumulative rewards following a policy π, and rt+k+1 is reward
scalar obtained in the step t + k + 1. In the algorithm design, traditional expectation-based RL
normally focuses on value function V π(s), the expectation of the random variable Zπ(s):

V π(s) := E [Zπ(s)] = E

[ ∞∑
k=0

γkrt+k+1 | st = s

]
. (1)

In contrast, in the distributional RL setting, we focus on the value distribution, the full distribution of
Zπ(s), and the state-action value distribution Zπ(s, a) in the control problem where st = s, at = a.
Both of these distributions can better capture the uncertainty of returns in the MDP beyond just its
expectation (Dabney et al., 2018a; Mavrin et al., 2019).

Distributional Bellman Operator. In expectation-based RL, we update the value function via
the Bellman operator T π , while in distributional RL, the updating is on the value distribution via
the distributional Bellman operator Tπ . To derive Tπ , we firstly define the transition operator
Pπ : Z → Z:

PπZ(s, a) :
D
= Z (S′, A′) , S′ ∼ P (·|s, a), A′ ∼ π (·|S′) , (2)

where we use capital letters S′ and A′ to emphasize the random nature of both, and :
D
= indicates

convergence in distribution. For simplicity, we denote Zπ(s, a) by Z(s, a). Thus, the distributional
Bellman operator Tπ is defined as:

TπZ(s, a) :
D
= R(s, a, S′) + γPπZ(s, a). (3)

More importantly, Tπ is still a contraction for policy evaluation under the maximal form of the
Wasserstein metric dp (more details are given in Appendix A) over the true and parametric value
distributions (Bellemare et al., 2017; Dabney et al., 2018b).
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2.2 TWO KINDS OF NOISY STATE OBSERVATIONS

We investigate both random and adversarial training robustness, i.e., the performance of RL algo-
rithms under these two types of noisy state observations, between the expectation-based and distri-
butional RL algorithms. We consider continuous state observations with continuous noises. In the
random noisy state case, we apply Gaussian noises with mean 0 and different standard deviations to
state features to simulate the measurement error stemming from various sources.

In the adversarial state perturbation setting, we construct white-box adversarial perturbations on state
observations for the current policy during training, following the strategy proposed in (Huang et al.,
2017; Pattanaik et al., 2017) that leveraged the gradient information of an engineered loss function.
In particular, we denote atw as the “worst” action, with the lowest probability from the current policy
πt(a|s) in the training step t. Thus, the optimal adversarial perturbation ηt, constrained in an ε-ball,
can be derived by minimizing the objective function J :

min
η
J(st + η, πt) = −

n∑
i=1

pti log πt(ai|st + η), s.t.‖η‖ ≤ ε, (4)

where pti = 1 if i corresponds to the index of the least-chosen action, i.e. the w-th index in the
vector a, otherwise pti = 0. In other words, we construct a target one-hot action pt with 1 assigned
to the index of the least-chosen action. Through this minimization in the form of the cross entropy
loss, we can construct the state perturbations ηt that can force the policy to choose the least-chosen
action atw in each t step.

3 TABULAR CASE: STATE-NOISY MARKOV DECISION PROCESS
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Figure 1: State-Noisy Markov Decision Process.
v(st) is perturbed by the noise mechanism N .

In this section, we extend State-Adversarial
MDP (Zhang et al., 2020) to a more gen-
eral State-Noisy Markov Decision Process (SN-
MDP), and particularly provide a proof of the
convergence and contraction of distributional
Bellman operator in this setting.

3.1 DEFINITIONS

As shown in Figure 1, SN-MDP is a 6-tuple
(S,A, R, P, γ,N ), where the noise generating
mechanism N(·|s) maps the state from s to v(s) using either random or adversarial noise with the
Markovian and stationary probability N(v(s)|s). It is worthwhile to note that the explicit definition
of the noise mechanismN here is based on discrete state transitions, but the analysis can be naturally
extended to the continuous case if we let the state space go to infinity. Moreover, let B(s) be the set
that contains the allowed noise space for the noise generating mechanism N , i.e., v(s) ∈ B(s).

Following the setting in (Zhang et al., 2020), we only manipulate state observations but do not
change the underlying environment transition dynamics based on s or the agent’s actions directly. As
such, our SN-MDP is more suitable to model the random measurement error, e.g., sensor errors and
equipment inaccuracies, and adversarial state observation perturbations in safety-critical scenarios.

3.2 ANALYSIS OF SN-MDP FOR EXPECTATION-BASED RL

We define the value function Ṽπ◦N given π in SN-MDP. The Bellman Equations are given by:

Ṽπ◦N (s) =
∑
a

∑
v(s)

N(v(s)|s)π(a|v(s))
∑
s′

p(s′|s, a) ·
[
R(s, a, s′) + γṼπ◦N (s′)

]
. (5)

The random noise transits s into v(s) with a certain probability and the adversarial noise is the
special case ofN(v(s)|s) whereN(v∗(s)|s) = 1 if v∗(s) is the optimal adversarial noisy state given
s, and N(v(s)|s) = 0 otherwise. We denote Bellman operators under random noise mechanism
Nr(·|s) and adversarial noise mechanism N∗(·|s) as T πr and T πa , respectively. This implies that
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T πr Ṽπ◦N = Ṽπ◦Nr and T πa Ṽπ◦N = Ṽπ◦N∗ . We extend Theorem 1 in Zhang et al. (2020) to both
random and adversarial noise scenario, and immediately obtain that both T πr and T πa are contraction
operators in SN-MDP. We explain this in Theorem 5 of Appendix B.

The pivotal conclusion from Theorem 5 is T πa Ṽπ◦N = minN Ṽπ◦N . This implies that the adversary
attempts to minimize the value function, forcing the agent to select the worse-case action among the
allowed transition probability space N(·|s) for each state s. The main proof idea is that Bellman
updates in SN-MDP result in the convergence to the value function for another “merged” policy π′
where π′(a|s) =

∑
v(s)N(v(s)|s)π(a|v(s)). The value function for the merged policy might ba far

away from that for the original policy π, which tends to worsen the performance of RL algorithms.

3.3 ANALYSIS OF SN-MDP IN DISTRIBUTIONAL RL

In the SN-MDP setting for distributional RL, the new distributional Bellman equations use new
transition operators in place of Pπ in Eq. 2. The new transition operators Pπr and Pπa , for the
random and adversarial settings, are defined as:

Pπr ZN (s, a) :
D
= ZNr (S

′, A′), A′ ∼ π(·|V (S′)), and PπaZN (s, a) :
D
= ZN∗(S

′, A′), A′ ∼ π(·|V ∗(S′)),
(6)

where V (S′) ∼ Nr(·|S′) is the state random variable after the transition, and V ∗(S′) is attained
from N∗(·|S′) under the optimal adversary. Besides, S′ ∼ P (·|s, a). Thus, the corresponding new
distributional Bellman operators Tπr and Tπa are:

TπrZN (s, a) :
D
= R(s, a, S′) + γPπr ZN (s, a), and TπaZN (s, a) :

D
= R(s, a, S′) + γPπaZN (s, a).

(7)
In this sense, four sources of randomness define the new compound distribution in the SN-MDP: (1)
randomness of reward, (2) randomness in the new environment transition dynamics Pπr or Pπa that
additionally includes (3) the stochasticity of the noisy transition N , and (4) the random next-state
value distribution Z(S′, A′). Besides, the premise of the robustness of distributional RL against
noisy state observations lies in the convergence of the new derived distribution Bellman Operators
in SN-MDP setting. We proved this convergence and contraction for policy evaluation in Theorem 1.
Theorem 1. (Convergence and Contraction of Distributional Bellman operators in the SN-MDP)
Given a policy π, we define the distributional Bellman operators Tπr and Tπa in Eq. 7, and consider
the Wasserstein metric dp, the following results hold.

(1) Tπr is a contraction under the maximal form of dp.

(2) Tπa is also a contraction under the maximal form of dp, following the greedy adversarial rule,
i.e., N∗(·|s′) = arg minN(·|s′) E [Z(s′, a′)] where a′ ∼ π(·|V (s′)) and V (s′) ∼ N(·|s′).

We provide the proof in Appendix C. The convergence of distributional Bellman operators in the SN-
MDP is one of our main contributions. This result allows us to deploy distributional reinforcement
learning algorithms comfortably even in settings with noisy state observations.

4 FUNCTION APPROXIMATION CASE: NOISY SETTINGS BEYOND SN-MDP

In real scenarios, especially safety-critical cases, perturbations on state observations can be more
complicated. For instance, the adversary might perform attacks at certain intervals, yielding unbal-
anced state observation pairs with a perturbed current state and a benign next state and vice versa.
This type of unbalanced perturbations is outside the scope of State-Noisy MDP we analyzed in the
last section and can have different impacts on the convergence of expectation-based and distribu-
tional RL algorithms. In this section, we firstly characterize the robustness blessing of distributional
RL based on Histogram distributional loss (Imani & White, 2018), and then analyze the impact of
more complex state observations on TD convergence and further conduct a sensitivity analysis by
the influence function.

Notation. We derive theoretical results with the linear function approximator. For the expectation-
based RL, the value estimate v̂ : S × Rd → R is formed simply as the inner product between state
features x(s) and weights w ∈ Rd, given by v̂(s,w)

def
= w>x(s). At each step, the state feature

can be rewritten as xt
def
= x (St) ∈ Rd. The distributional RL setting is given in Section 4.1.
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4.1 ROBUSTNESS BLESSING FOR DISTRIBUTIONAL RL

We show that in the function approximation setting, the distributional loss in distributional RL can
additionally yield Lipschitz continuity regarding state features, thus leading to more stable gradients
relatively to expectation-based RL. Simply, in distributional RL our goal is to minimizeL (Zθ,TZθ),
where T is the distributional Bellman operator. Here we leverage histogram to parameterize the dis-
tribution Zθ based on KL divergence as L, yielding the histogram distributional loss (Imani &
White, 2018). The histogram distributional loss L(Zθ,TZθ) between Zθ and TZθ can be derived
as Lθ = −

∑k
i=1 pi log fθi (x(s)), where the support of x(s) is uniformly partitioned into k bins.

We let function f : X → [0, 1]k provide k-dimensional vector f(x(s)) of the coefficients indicating
the probability the target is in that bin given x(s), and use softmax based on the linear approxi-
mation x(s)>θi to express f , i.e., fi(x(s)) = exp

(
x(s)>θi

)
/
∑k
j=1 exp

(
x(s)>θj

)
. Moreover,

θ = {θ1, ..., θk} and the target probability pi is the cumulative probability increment of target distri-
bution TZθ within the i-th bin. Details of the histogram distributional loss are given in Appendix D.

Based on this histogram distributional loss in distribution RL, we obtain Theorem 2 (proof in Ap-
pendix D), which reveals that the distribution loss can result in additional Lipschitz continuity prop-
erty that bounds the norm of gradient over state features x(s):

Theorem 2. (Lipschitz Continuity of distributional RL) Consider the histogram distributional loss
Lθ = −

∑k
i=1 pi log fθi (x(s)), where fi(x(s)) = exp

(
x(s)>θi

)
/
∑k
j=1 exp

(
x(s)>θj

)
parame-

terized by θ = {θ1, ..., θk}. Assume ‖θi‖ ≤ l for ∀i = 1, .., k, then Lθ is kl-Lipschitz continuous

w.r.t. x(s), yielding a bounded norm of its gradient, i.e.,
∥∥∥ ∂
∂x(s)

∑k
j=1 pj log fθj (x(s))

∥∥∥ ≤ kl.
Note that the norm of gradient in expectation-based RL with the linear function approximation
can be written as |Ut − w>t xt|‖wt‖, where the target Ut can be evaluated by either Monte Carlo
method or TD learning (Sutton & Barto, 2018). However, this upper bound can be arbitrary large
as there is no restriction on |Ut − w>t xt|. In conclusion, Theorem 2 shows that distributional loss
in distributional RL can additionally enjoy kl-Lipschitz continuity compared with the expectation-
based RL. The bounded norm of gradient regarding state features mitigates the impact of noisy state
observations on the objective function while training, therefore yielding better training robustness.

4.2 TD CONVERGENCE UNDER NOISY STATE OBSERVATIONS

Let µ(s) be the stationary distribution under the policy π and p(s′|s) be the transition probability
from s to s′ satisfying p(s′|s) =

∑
a π(a|s)p(s′|s, a). We analyze conditions of TD convergence

when exposing state observation noises. Firstly, we recall the classical TD update at step t:

wt+1 ← wt + αt(Rt+1 + γw>t xt+1 −w>t xt)xt (8)

where αt is the step size at time t. Once the system has reached the steady state for any wt,
then the expected next weight vector can be written as E[wt+1|wt] = wt + αt(b −Awt), where
b = E(Rt+1xt) ∈ Rd and A

.
= E

[
xtd
>
t

]
∈ Rd×d. The TD fixed point wTD to the system

satisfies AwTD = b. From (Sutton & Barto, 2018), we know that the matrix A determines the
convergence in the linear TD setting. In particular, wt converges with probability one to the TD
fixed point if A is positive definite. However, if we add state noises η on either xt or xt+1 in Eq. 8,
the convergence condition will be different. Theorem 3 (proof in Appendix E) provides conditions
for TD convergence in three different noisy state observation settings.

Theorem 3. (Conditions for TD Convergence under Noisy State Observations) Define P as the
|S|× |S| matrix forming from p(s′|s), D as the |S|× |S| diagonal matrix with µ(s) on its diagonal,
and X as the |S| × d matrix with x(s) as its rows, and E is the |S| × d perturbation matrix with
each perturbation vector e(s) as its rows. The stepsizes αt ∈ (0, 1] satisfy

∑∞
t=0 αt = ∞ and∑∞

t=0 α
2
t = 0. For noisy states, we consider the following three cases: (i) e(s) on current state

features, i.e., xt ← xt + et, (ii) e(s′) on next state features, i.e., xt+1 ← xt+1 + et+1, (iii) the
same e on both state features. We can attain that wt converges to TD fixed point if the following
conditions are satisfied, respectively.

Case (i): both A and (X + E)>DPE are positive definite. Case (ii): both A and −X>DPE are
positive definite. Case (iii): A is positive definite.
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From the convergence conditions for the three cases in Theorem 3, it is clear that (iii) is the mildest.
This is the same condition as that in the normal TD learning without noisy state observations. Note
that the case (iii) can be viewed as the SN-MDP setting, whose convergence has been already rigor-
ously analyzed in Section 3. In Section 5, our experiments demonstrate that both expectation-based
and distribution RL are more likely to converge in case (iii) compared with case (i) and (ii).

In cases (i) and (ii), the positive definiteness of X>DPE+E>DPE and−X>DPE is crucial. We
partition (X + E)>DPE into X>DPE + E>DPE, where the first term has the opposite positive
definiteness to −X>DPE, and the second term is positive definite (Sutton & Barto, 2018). Based
on these observations, we discuss the subtle convergence relationship in cases (i) and (ii):

(1) If −X>DPE is positive definite, which indicates that TD is convergent in case (ii), TD can still
converge in case (i) unless the positive definiteness of E>DPE dominates in X>DPE+E>DPE.

(2) If −X>DPE is negative definite, TD is likely to diverge in case (ii). By contrast, TD will
converge in case (i).

In summary, there exists a subtle trade-off of TD convergence in case (i) and (ii) if we approxi-
mately ignore the term E>DPE in case (i). The key of it lies in the positive definiteness of the
matrix X>DPE, which heavily depends on the task. In Section 5, we empirically verify that the
convergence situations for current and next state observations are normally different. Which situa-
tion is superior is heavily dependent on the task.

4.3 SENSITIVITY ANALYSIS BY INFLUENCE FUNCTION

Next, we conduct an outlier analysis by the influence function, a key facet in the robust statistics (Hu-
ber, 2004). The influence function characterizes the effect that the noise in particular observation
has on an estimator, and can be utilized to investigate the impact of one particular state observa-
tion noise on the training of reinforcement learning algorithms. Specifically, suppose that Fε is the
contaminated distribution function that combines the clear data distribution F and an outlier x. The
distribution Fε can be defined as

Fε = (1− ε)F + εδx, (9)

where δx is a probability measure assigning probability 1 to x. Let θ̂ be a regression estimator. The
influence function of θ at F , ψ : X → Γ is defined as

ψθ̂,F (x) = lim
ε→0

θ̂ (Fε(x))− θ̂(F )

ε
. (10)

Mathematically, the influence function is the Gateaux derivative of θ at F in the direction δx. Owing
to the fact that traditional value-based RL algorithms, e.g., DQN (Mnih et al., 2015), can be viewed
as a regression problem (Fan et al., 2020), the linear TD approximator also has a strong connection
with regression problems. Based on this correlation, in the following Theorem 4, we quantitatively
evaluate the influence function of TD learning in the case of linear function approximation.
Theorem 4. (Influence Function Analysis in TD Learning with linear function approximation) De-
note dt = xt−γxt+1 ∈ Rd, and A

.
= E

[
xtd
>
t

]
∈ Rd×d. Let Fπ be the data distribution generated

from the environment dynamics given a policy π. Consider an outlier pair (xt,xt+1) with the reward
Rt+1, the influence function ψ of this pair on the estimator w is derived as

ψw,Fπ (xt,xt+1) = E(A>A)−1dtx
>
t xt(Rt+1 − d>t w). (11)

Please refer to Appendix F for the proof. Theorem 4 shows the quantitative impact of an outlier pair
(xt,xt+1) on the learned parameter w. Moreover, a corollary can be immediately obtained to make
a precise comparison of the impacts of perturbations on current and next state features.
Corollary 1. Given the same perturbation η on either current or next state features, i.e., xt, and
xt+1, at the step t, if we approximate ηη>xt and ηη>w as 0 as η is small enough, the following
relationship between the resulting variations of influence function, ∆xtψ and ∆xt+1

ψ, holds:

γ∆xtψ + ∆xt+1ψ = 2γdtηx
>
t (Rt+1 − d>t w). (12)

We provide the proof of Corollary 1 in Appendix F. Under this equation, the sensitivity of noises on
xt and xt+1, measured by ∆xtψ and ∆xt+1ψ, present a trade-off relationship as their weighted sum
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is definite. However, there is not an ordered relationship between ∆xtψ and ∆xt+1
ψ. In summary,

we conclude that the sensitivity of current and next state features against perturbations is normally
divergent, and the degree of sensitivity is heavily determined by the task. These conclusions are
similar to those we derived in the TD convergence part.

Remark. The Lipschitz continuity blessing derived in Section 4.1 explains the less vulnerability of
distributional RL than expectation-based RL, while in Section 4.2 and 4.3 we characterize the con-
vergence conditions and sensitivity of different noisy state observations albeit being in expectation-
based case. Our following experiment observation coincide with our theoretical results.

5 EXPERIMENTS

We make a comparison between expectation-based and distributional RL algorithms against various
noisy state observations. We select DQN (Mnih et al., 2015) as the baseline, and QR-DQN (Dabney
et al., 2018b) as its distributional counterpart. The previous analysis is either for policy evaluation
or linear function approximation, but there are natural—though in some cases heuristic—extensions
to the control setting and to non-linear function approximation.

Experimental Setup. We perform our algorithms on Cart Pole, Mountain Car, Breakout and Qbert
games. We followed the procedure in (Ghiassian et al., 2020; Zhang & Yao, 2019). All the experi-
mental settings, including parameters, are identical to the distributional RL baselines implemented
by Zhang (2018); Dabney et al. (2018b). Please refer to Appendix G for more details.

Noisy State Observations. For the random noise, we use Gaussian noise with different standard
deviations. For the adversarial noise, we followed (Zhang et al., 2020), where the set of noises B(s)
is defined as an `∞ norm ball around swith a radius ε, given by `∞B(s) := {ŝ : ‖s− ŝ‖∞ ≤ ε}. We
apply Projected Gradient Descent (PGD) version in (Pattanaik et al., 2017), with 3 fixed iterations
while adjusting ε to control the perturbation strength.

5.1 PERFORMANCE ON CART POLE

We select the standard deviations as 0.05 and 0.1 in the random noisy state setting, and the pertur-
bation sizes ε as 0.05 and 0.1 in the adversarial noisy state case. Figure 2 shows the tendency of
average return with standard deviation over 200 runs on Cart Pole during the whole training pro-
cess for both DQN and QRDQN under the adversarial state observation noises. A similar result in
random setting is provided in Appendix H with more experimental details in Appendix G.

Firstly, Figure 2 reveals that QRDQN (solid lines) consistently outperforms DQN (dashed lines)
in the same color under different state noise strengths, although the performance of QRDQN can
degenerate to that of DQN when exposed to strong perturbations shown in the left plot. This con-
clusion agrees with Theorem 2 in Section 4.1. Secondly, under the same perturbations, next state
observations (in the middle plot) are less vulnerable than current states (in the left plot). Both DQN
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Figure 2: Average returns of DQN and QRDQN against adversarial state observation noises on Cart
Pole over 200 runs with smooth size 20. QRDQN (solid lines) almost consistently outperforms
DQN (dashed lines) in the same color, demonstrating better robustness.
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and QRDQN converge more easily and achieve better performance in the SN-MDP setting (in the
right plot). These observations are consistent of the subtle trade-off relationship of current and next
states, and the mildest TD convergence condition analyzed in Section 4.2 and 4.3.

5.2 PERFORMANCE ON MOUNTAIN CAR

From the experimental results in Cart Pole, some may contend that the robust performance of
QRDQN can be largely attributed to its superiority in this task. To more rigorously explore the
robustness of distributional RL, we select Mountain Car task where QRDQN can only achieve com-
parable performance relative to DQN and even worse in the early stage of training. We select the
standard deviations as 0.01 and 0.0125 in the random setting, and the perturbation sizes ε as 0.01
and 0.1 in the adversarial case. We provide the result in the random setting in Figure 3, and a similar
result in the adversarial setting is provided in Appendix H.
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Figure 3: Average returns of DQN and QRDQN against random state observation noises on Moun-
tain Car over 200 runs with smooth size 100. QRDQN (solid lines) almost consistently outperforms
DQN (dashed lines) in the same color, demonstrating better robustness.

Similar to Cart Pole, Figure 3 shows that QRDQN is capable of achieving significantly better perfor-
mance under most noisy scenarios relative to DQN, except the comparable results when imposing
random noises on the next state observations (in the middle plot). The next state is still less vul-
nerable than the current state. These results demonstrate that QRDQN enjoys better robustness than
DQN, regardless of whether QRDQN outperforms DQN under the noise-free environment.

5.3 PERFORMANCE ON BREAKOUT

To further verify the superior robustness of QRDQN over DQN, we conduct more realistic exper-
iments on the Atari game: Breakout. In this environment, QRDQN eventually achieves similar
performance as DQN, although QRDQN significantly reduces the sample efficiency. Thus, it is a
fair comparison to investigate the robust performance on the Breakout environment. We set the num-
ber of quantiles in QRDQN to 200 and report the average return over 3 runs for each noisy setting.
We choose the standard deviations as 0.01 and 0.05 in the random setting, and the perturbation sizes
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Figure 4: Average returns of DQN and QRDQN against adversarial state observation noises on
Breakout over 3 runs with smooth size 1000. QRDQN (solid lines) almost consistently outperforms
DQN (dashed lines) in the same color, demonstrating better robustness.
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ε as 0.005 and 0.01 in the adversarial case. We present results in the adversarial setting as shown in
Figure 4 and provide the similar results under random noises in Appendix H.

A key observation from Figure 4 is that both QRDQN and DQN converge around 430 average re-
turns, though the former outperforms the latter across the vast majority of the training process. Con-
sistently, the relationships we revealed in the previous two tasks still exist in Breakout. Firstly, the
solid lines (QRDQN) are always above the dashed (DQN) counterpart across various noisy scenar-
ios. The phenomenon in the left figure is of vital importance as it shows the case when distributional
RL converges to a satisfactory point while expectation-based RL algorithm even diverges. More-
over, in the middle part both DQN and QRDQN are overly sensitive to noises imposed on next state
observations, ultimately failing to converge. This result further demonstrates the divergent sensitiv-
ity of current and next states. It is worthwhile to mention that the sensitivity ordering of current and
next state observations in Breakout is opposite to those on both Cart Pole and Mountain Car. This
result is still consistent with our analysis in Section 4.2 and 4.3, where the sensitivity ordering of
both states heavily depends on the task. The milder convergence of both DQN and QRDQN in the
SN-MDP (in the right plot) is also exhibited in Breakout, matching our analysis in Theorem 3.

5.4 PERFORMANCE ON QBERT

Furthermore, we conduct another realistic experiment on the Atari game Qbert. For convenience,
we choose the one standard deviation 0.05 in the random setting and one perturbation size ε as 0.005
in the adversarial case. Similarly, QRDQN also achieves similar performance as DQN in the end in
this environment. We elaborate results in the adversarial setting as shown in Figure 5 and provide
the similar results in the random setting in Appendix H.
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Figure 5: Average returns of DQN and QRDQN against adversarial state observation noises on
Qbert environment over 3 runs with smooth size 1000. QRDQN (solid lines) almost consistently
outperforms DQN (dashed lines) in the same color, demonstrating better robustness.

The results in Qbert are closely to those in Breakout. Briefly speaking, QRDQN (solid lines)
achieves better or at least comparable robustness relative to DQN (dashed lines). In addition, the
next state is more sensitive to noises where both DQN and QRDQN diverge, compared with the
current state, and both DQN and QRDQN converge more easily in the SN-MDP setting (in the right
plot). Most importantly, Figure 5 also illustrates the case when distributional RL algorithm attains
a relatively desirable return while the expectation-based counterpart is divergent. This result further
demonstrates the robustness advantage of distributional RL over the expectation-based RL.

6 DISCUSSION AND CONCLUSION

The Lipschitz continuity blessing is based on the histogram distributional loss, but it is more ex-
pected that similar conclusions can be made under Wasserstein or Crammer distance as these dis-
tances are more approachable in real distributional RL algorithms. We leave it as future works.

In this paper, we explored the training robustness of distributional RL against noisy state observa-
tions. After the convergence analysis of distributional RL in the SN-MDP, we proved the Lipschitz
continuity property of distributional RL, accounting for its less vulnerability. We also provided the
TD convergence conditions and a sensitivity analysis on more complex noisy settings. Experimental
observations coincides with our theoretical results.
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Ethics Statement. Our works reveals that distributional RL can enjoy the training robustness
against noisy state observations. The advantage is useful to defend against the poisoning attacks,
thus contributing to the privacy of algorithms. Based on our experience, there is no other ethic
concerns of our work.

Reproducibility Statement. For the theoretical part, we clearly state the related assumption and
detailed proof process in the appendix. In terms of the algorithm, our implementation is directly
adapted from the public RL algorithms, including DQN and QR-DQN.
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A CONVERGENCE UNDER p-WASSERSTEIN METRIC

We provide more detailed introduction of the convergence of distributional Bellman operator. Firstly, the p-
Wasserstein metric Wp is defined as

dp = Wp(Z
∗, Zθ) =

(∫ 1

0

∣∣F−1
Z∗ (ω)− F−1

Zθ
(ω)
∣∣p dω)1/p

, (13)

which minimizes the distance between the true value distribution Z∗ and the parametric distribution Zθ . F−1

is the inverse cumulative distribution function of a random variable with the cumulative distribution function as
F . In the control setting, the distributional analogue of the Bellman optimality operator converges to the set of
optimal value distributions, although it is in a weak sense and requires more involved arguments (Dabney et al.,
2018b).

B THEOREM 5 WITH PROOF

Theorem 5. (Convergence and Contraction of Bellman operators in the SN-MDP) Given a policy π, define the
Bellman operator T : R|S| → R|S| under random and adversarial states noises by T πr and T πa , respectively.
Denote a “merged” policy π′ where π′(a|s) =

∑
v(s)N(v(s)|s)π(a|v(s)) and S(π) is a policy set given π.

Then we have:

(1) T πr is a contraction operator and can converge to Vπ′ , i.e., T πr Ṽπ◦N = Ṽπ◦N = Vπ′ , where multiple
policies πr ∈ S(π) might exist with

∑
v(s)N(v(s)|s)πr(a|v(s)) = π′(a|s).

(2) T πa is a contraction with the convergence satisfying T πa Ṽπ◦N∗ = minN Ṽπ◦N = Vπ◦N∗ , where N∗ is the
optimal adversarial noise strategy. If the optimal policy πa exists, it satisfies πa(a|v∗(s)) = π(a|s) for each s
and a, where v∗(s) is the adversarial noisy state manipulated by N∗(·|s).

Proof. Our proof is partly based on Theorem 1 and 2 in (Zhang et al., 2020), but adds more analysis on the
converged policy especially under the random noisy states setting. The most important insight in the following
proof is that the noise transition can be merged into the agent’s policy, resulting in a new “merged” policy π′.

Proof of (1) Firstly, as the Bellman Equation under the random noisy states is right the general form in Eq. 5,
it automatically satisfies that T πr Ṽπ◦N = Ṽπ◦N when it converges. As for the proof of contraction, based on
our insight about the new “merged” policy π′ where π′(a|s) =

∑
v(s)N(v(s)|s)π(a|v(s)), we can rewrite

our Bellman Operator as:

T πr Ṽπ◦N (s)

=
∑
a

π′(a|s)
∑
s′

p(s′|s, a)
[
R(s, a, s′) + γṼπ◦N (s′)

]
= R(s) + γ

∑
s′

P ′s,s′ Ṽπ◦N (s′)

(14)

where R(s) =
∑
a π
′(a|s)

∑
s′ p(s

′|s, a)R(s, a, s′), and P ′s,s′ =
∑
a π
′(a|s)p(s′|s, a) determined by the

“merged” policy π′. Then for two different value function Ṽ 1
π◦N and Ṽ 2

π◦N we have:

‖T πr Ṽ 1
π◦N − T πr Ṽ 2

π◦N‖∞

= max
s
|γ
∑
s′

P ′s,s′ Ṽ
1
π◦N (s′)− γ

∑
s′

P ′s,s′ Ṽ
2
π◦N (s′)|

≤ γmax
s

∑
s′

P ′s,s′ |Ṽ 1
π◦N (s′)− Ṽ 2

π◦N (s′)|

≤ γmax
s

∑
s′

P ′s,s′ max
s′
|Ṽ 1
π◦N (s′)− Ṽ 2

π◦N (s′)|

= γmax
s

∑
s′

P ′s,s′‖Ṽ 1
π◦N − Ṽ 2

π◦N‖∞

= γ‖Ṽ 1
π◦N − Ṽ 2

π◦N‖∞

(15)

Then according to the Banach fixed-point theorem, since γ ∈ (0, 1), Ṽπ◦N converges to a unique fixed-point
Vπ′ . However, even though the obtained policy π′ satisfies that π′(a|s) =

∑
v(s)N(v(s)|s)π(a|v(s)) for

each s, a, these equations can not necessarily guarantee a unique π especially when these equations behind
this condition are underdetermined. In such scenario, multiple policies πr will exist as long as they satisfy the
equations above.
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Proof of (2) Firstly, based on Theorem 1 (Zhang et al., 2020) that shows an optimal policy does not always
exist, we assume that an optimal policy exists in the adversarial noisy state setting for the convenience of
following analysis. Based on this assumption, we need to derive the explicit value function under the adversary.
Inspired by (Zhang et al., 2020), the proof insight is that the behavior of optimal adversary can be also viewed as
finding another optimal policy, yielding a zero-sum two player game. Specifically, in the SN-MDP setting, the
adversary selects an action â ∈ S satisfying â = v(s), attempting to maximize its state-action value function
Q̃πa(s, â). Then the adversary’s value function V̂πa(s) can be formulated as:

V̂πa(s) = max
â

Q̂πa(s, â)

= max
â

∑
s′

p̂(s′|s, â)(R̂(s, â, s′) + γV̂πa(s′))

= max
v(s)

∑
s′

∑
a

π(a|v(s))p(s′|s, a)(−R(s, a, s′)

+ γV̂πa(s′))

(16)

where p̂(s′|s, â) is the transition dynamics of the adversary, satisfying p̂(s′|s, â) =
∑
a π(a|v(s))p(s′|s, a)

from the perspective of the agent. R̂(s, â, s′) is the adversary’s reward function while taking action â, which is
the opposite number of R(s, a, s′) given the action a. In addition, since both the adversary and agent can serve
as a zero-sum two-player game, it indicates that Ṽπa(s) = −V̂πa(s) for the agent’s value function Ṽπa in the
adversary setting. Then we rearrange the equation above as follows:

Ṽπa(s) = −V̂πa(s)

= − min
N(·|s)

∑
s′

∑
a

π′(a|s)p(s′|s, a)(−R(s, a, s′)

− γṼπa(s′))

= min
v(s)

∑
s′

∑
a

π′(a|s)p(s′|s, a)(R(s, a, s′)

+ γṼπa(s′))

= min
N(·|s)

∑
s′

∑
a

π′(a|s)p(s′|s, a)(rt+1 + γmin
N

Eπ◦N

[
∞∑
k=0

rt+k+2|st+1 = s′
]

)

= min
N

Ṽπ◦N (s)

(17)

Note that we optimize over N , which means we consider N(·|s) for each state s. Further, we derive the
contraction of the Bellman operator T πa . We rewrite our Bellman Operator T πa as:

T πa Ṽπ◦N (s) = min
N

Ṽπ◦N (s)

= min
N

R(s) + γ
∑
s′

P ′s,s′ Ṽπ◦N (s′)
(18)

We firstly assume T πa Ṽ 1
πa(s) ≥ T πa Ṽ 2

πa(s), then we have:

T πa Ṽ 1
π◦N (s)− T πa Ṽ 2

π◦N (s)

≤ max
N(·|s)

{γ
∑
s′

P ′s,s′ Ṽ
1
π◦N (s′)− γ

∑
s′

P ′s,s′ Ṽ
2
π◦N (s′)}

≤ γ max
N(·|s)

∑
s′

P ′s,s′ |Ṽ 1
π◦N (s′)− Ṽ 2

π◦N (s′)|

≤ γ max
N(·|s)

∑
s′

P ′s,s′ max
s
|Ṽ 1
π◦N (s′)− Ṽ 2

π◦N (s′)|

= γ max
N(·|s)

∑
s′

P ′s,s′‖Ṽ 1
π◦N − Ṽ 2

π◦N‖∞

≤ γ‖Ṽ 1
π◦N − Ṽ 2

π◦N‖∞

(19)

where the first inequality holds as minx1 f(x1) − minx2 g(x2) ≤ maxx(f(x) − g(x)) and we extends this
inequality into the Wasserstein distance in the proof of convergence of distributional RL setting in Appendix C.
The last inequality holds since only P ′s,s′ depends on N(·|s) while the infinity norm is a constant, which is
independent with the current N(·|s). Similarly, the other scenario can be still proved. Thus, we have:

‖T πa Ṽ 1
π◦N − T πa Ṽ 2

π◦N‖∞ ≤ γ‖Ṽ 1
π◦N − Ṽ 2

π◦N‖∞ (20)
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Thus, we proved that T πa is still a contraction and converge to minN Ṽπ◦N . We denote it as Ṽπ◦N∗ In addition,
based on the insight of the “merged” policy π′a, we have π′a =

∑
v(s)N

∗(v(s)|s)π(a|v(s)) = π(a|v∗(s))
where the deterministic state v∗(s) is the adversarial noisy state from the state s.

C PROOF OF THEOREM 1

Proof. Firstly, we will provide the properties of Wassertein distance dp in Lemma 1 that we leverage in our
following convergence proof.

Lemma 1. (Properties of Wasserstein Metric) We consider the distribution distance between the random vari-
able U and V . Denote dp as the Wasserstein distance between two distribution defined in Eq. 13. For any
scalar a and random variable A independent of U and V , the following relationships hold:

dp(aU, aV ) ≤ |a|dp(U, V )

dp(A+ U,A+ V ) ≤ dp(U, V )

dp(AU,AV ) ≤ ‖A‖pdp(U, V )

(21)

Further, let A1, A2, ... be a set of random variables describing the a partition of ω, when the partition lemma
holds:

dp(U, V ) ≤
∑
i

dp(AiU,AiV ). (22)

Then, the following contraction proof is in the maximal form of dp and we denote it as d̄p.

Proof of (1) This contraction proof is similar to the original one (Bellemare et al., 2017) in the distributional
RL without state observation noises. The only difference lies in the new transition operator Pπr , but it dose not
change the main proof process. For two different random variables Z1

N and Z2
N about returns, we have:

d̄p(T
π
rZ

1
N ,T

π
rZ

2
N )

= sup
s,a

dp(T
π
rZ

1
N (s, a),TπrZ

2
N (s, a))

= sup
s,a

dp(R(s, a, S′) + γPπr Z1
N (s, a), R(s, a, S′) + γPπr Z2

N (s, a))

≤ γ sup
s,a

dp(Pπr Z1
N (s, a),Pπr Z2

N (s, a))

≤ γ sup
s,a

sup
s′,a′

dp(Z
1
N (s′, a′), Z2

N (s′, a′))

= γ sup
s′,a′

dp(Z1(s′, a′), Z2(s′, a′))

= γ sup
s,a

dp(Z
1
N (s, a), Z2

N (s, a))

= γd̄p(Z
1
N , Z

2
N ).

(23)

Thus, we conclude that Tπr : Z → Z is a γ-contraction in d̄p.

Proof of (2) Firstly, we define the distributional Bellman optimality operator T in MDP as

TZ(s, a) :
D
= R

(
s, a, S′

)
+ γZ(S′, πZ(s′)) (24)

where S′ ∼ P (·|s, a) and πZ(S′) = arg maxa′ E [Z(S′, a′)]. By contrast, in SN-MDP, Our greedy adversar-
ial ruleN∗(·|s′) is based on the greedy policy rule in distributional Bellman optimality operator, which attempts
to find adversarial N∗(·|s′) in order to minimize E [ZN (s′, a′)], where a′ ∼ π(·|V (s′)) and V (s′) ∼ N(·|s′).
We assume N∗(·|s′) yields a deterministic state s∗, and thus the agent always takes action based on s∗, which
we denote as A∗ ∼ π(·|s∗). Therefore, we can obtain the state-action function QπN∗(s, a) under the adversary
as

QπN∗(s, a) = min
N

E [ZπN (s, a)]

= E
[
Zπ
∗
(s, a)

] (25)

where π∗(·|s) = π(·|s∗) for ∀s that follows the adversarial policy A∗.
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Next, to derive the contractive property of Tπa , we denote two state-action valued distributions as Z1
N (s, a) and

Z2
N (s, a). Then we have:

d̄p(T
π
aZ

1
N ,T

π
aZ

2
N )

= sup
s,a

dp(T
π
aZ

1
N (s, a),TπaZ

2
N (s, a))

= sup
s,a

dp(R(s, a, S′) + γPπaZ1
N (s, a), R(s, a, S′) + γPπaZ2

N (s, a))

≤ γ sup
s,a

∑
s′

P (s′|s, a)dp(Z
1
N (s′, A∗), Z2

N (s′, A∗))

= γ
∑
s′

P (s′|s, a)dp(Z
1
N (s′, A∗), Z2

N (s′, A∗))

≤ γ sup
s′
dp(Z

1
N (s′, A∗), Z2

N (s′, A∗))

= γ sup
s′
dp(
∑
a′∗

π(a′∗|s∗)Z1
N (s′, a′∗),

∑
a′∗

π(a′∗|s∗)Z2
N (s′, a′∗))

≤ γ sup
s′

∑
a′∗

π(a′∗|s∗)dp(Z1
N (s′, a′∗), Z

2
N (s′, a′∗))

≤ γ sup
s′,a′∗

dp(Z
1
N (s′, a′∗), Z

2
N (s′, a′∗))

= γ sup
s,a

dp(Z
1
N (s, a), Z2

N (s, a))

= d̄p(Z
1
N , Z

2
N )

(26)

Thus, we conclude that Tπa is still a γ-contraction in d̄p.

D PROOF OF THEOREM 2

Proof. Firstly, we show the derivation details of the Histogram distribution loss starting from KL divergence
between p and qθ . pi is the cumulative probability increment of target distribution TZθ within the i-th bin, and

qθ corresponds to a (normalized) histogram, and has density values fθi (x(s))

wi
per bin. Thus, we have:

L(Zθ,TZθ) = −
∫ b

a

p(y) log qθ(y)dy

= −
k∑
i=1

∫ li+wi

li

p(y) log
fθi (x(s))

wi
dy

= −
k∑
i=1

log
fθi (x(s))

wi
(FTZθ (li + wi)− FTZθ (li))︸ ︷︷ ︸

pi

.
= −

k∑
i=1

pi log fθi (x(s))

(27)

where the last equality holds because the width parameter wi can be ignored for this minimization problem.
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Next, we compute the gradient of the Histogram distributional loss.

∂

∂x(s)

k∑
j=1

pj log fθj (x(s))

=

k∑
j=1

pj
1

fθj (x(s))
∇fθj (x(s))

=

k∑
j=1

pj
1

fθj (x(s))
fθj (x(s))

k∑
i=1

exp(x(s)>θi)∑k
p=1 exp(x(s)>θp)

(θj − θi)

=

k∑
j=1

pj

k∑
i=1

fθi (x(s))(θj − θi)

=

k∑
j=1

pjθj −
k∑
i=1

fθi (x(s))θi

=
k∑
i=1

(pi − fθi (x(s)))θi

(28)

Then, as we have ‖θi‖ ≤ l for ∀i, we bound the norm of its gradient

‖ ∂

∂x(s)

k∑
j=1

pj log fθj (x(s))‖

≤
k∑
i=1

‖(pi − fθi (x(s)))θi‖

=

k∑
i=1

|pi − fθi (x(s))|‖θi‖

≤ kl

(29)

The last equality satisfies because |pi − fθi (x(s))| is less than 1 and even smaller. By contrast, in the
expectation-based RL, our objective function can be viewed as a least squared optimization, and the updat-
ing rule regarding parameter w is

wt+1 = wt + α [vπ (St)− v̂ (St,wt)]∇v̂ (St,wt)

= wt + α
(
Ut −w>t xt

)
xt

(30)

where Ut can be evaluated by either Monte Carlo method or TD learning. Based on the updating rule, we
can immediately obtain the gradient of loss, i.e.,

(
Ut −w>t xt

)
wt. Thus, its norm is |Ut − w>t xt|‖wt‖ ≤

|Ut − w>t xt|l. However, this upper bound can be arbitrary large as there is no restriction on |Ut − w>t xt|.
In summary, compared with the least squared loss in expectation-based RL, the histogram distributional loss in
distributional RL can additionally enjoy kl-Lipschitz continuity with bounded gradient norm regarding the state
features x(s). This upper bound of gradient norm can mitigate the impact of the noises on state observations
on the loss function, therefore yielding training robustness for distributional RL.

E PROOF OF THEOREM 3

Proof. To prove the convergence of TD under the noisy states, we use the results from (Borkar & Meyn, 2000)
that require the condition about stepsizes αt holds:

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t = 0. Based on (Sutton

& Barto, 2018), the positive definiteness of A will determine the TD convergence. For linear TD(0), in the
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continuing case with γ < 1, A can be re-written as:

A =
∑
s

µ(s)
∑
a

π(a|s)
∑
r,s′

p(r, s′|s, a)xt (xt − γxt+1)>

=
∑
s

µ(s)
∑
s′

p(s′|s)xt (xt − γxt+1)>

=
∑
s

µ(s)xt(xt − γ
∑
s′

p(s′|s)xt+1)>

= X>DX−X>DγPX

= X>D(I− γP)X

(31)

Then we use At to present the convergence matrix in the case (i) where the perturbation vector et is added onto
the current state features, i.e., xt ← xt + et, while we use At+1 and At,t+1to present the counterparts in the
case (ii) and (iii), respectively. Based on Eq. 31, in the case (iii), we have:

At,t+1 = (X + E)>D(X + E)− (X + E)>DγP(X + E)

= (X + E)>D(I− γP)(X + E)
(32)

From (Sutton & Barto, 2018), we know that the inner matrix D(I − γP) is the key to determine the positive
definiteness of A. If we assume that A is positive definite, which also indicates that D(I − γP) is positive
definite equivalently. As such, At,t+1 is positive definite automatically, and thus the liner TD would converge
to the TD fixed point. Next, in the case (i) we have:

At = (X + E)>D(X + E)− (X + E)>DγPX

= A + X>DE + E>DX + E>DE−E>DγPX

= (X + E)>D(I− γP)(X + E) + (X + E)>DγPE

= At,t+1 + γ(X + E)>DPE

= At,t+1 + γ(X>DγPE + E>DγPE)

(33)

Similarly, in the case (ii), we can also attain:

At+1 = X>DX−X>DγP(X + E)

= A− γX>DPE
(34)

We know that the positive definiteness of A and At,t+1 is only determined by the positive definiteness of the
inner matrix D(I − γP). If we assume the positive definiteness of A, i.e., the positive definiteness of At,t+1

and D(I−γP), as γ > 0, what we only need to focus on are the positive definiteness of X>DPE+E>DPE
and −X>DPE. If they are positive definite, TD learning will converge under their cases, respectively.

F PROOF OF THEOREM 4 AND COROLLARY 1

Proof. We combine the proof of Theorem 4 and Corollary 1 together. The TD fixed point wTD to the system
satisfies AwTD = b. Thus, the TD convergence point, i.e., TD fixed point, can be attained by solving the
following regression problem:

min
w
‖b−Aw‖2 (35)

To derive the influence function, consider the contaminated distribution which puts a little more weight on the
outlier pair (xt,xt+1):

ŵ = arg min
w

(1− ε)E[(b−Aw)>(b−Aw)]+

ε(yb − x>Aw)>(yb − x>Aw),
(36)

where yb = Rt+1xt and xb = dtx
>
t . We take the first condition:

(1− ε)E(2A>Aw − 2A>b)− 2εxA(yb − x>Aw) = 0. (37)

Then we arrange this equality and obtain:

(1− ε)E(A>A + xAx
>
A)wε = (1− ε)E(A>b) + εxAyb. (38)

Then we take the gradient on ε and let ε = 0, then we have:

(−E(A>A) + xAx
>
A)wε + E(A>A)ψw,Fπ = −E(A>b)

+xAyb.
(39)
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We know that under the least square estimation, the closed-form solution of wε is E(A>A)−1E(A>b). Thus,
after the simplicity, we finally attain:

ψw,Fπ (xt,xt+1) = E(A>A)−1xA(yb − x>Aw)

= E(A>A)−1dtx
>
t xt(Rt+1 − d>t w).

(40)

Next, we prove the Corollary. We only need to focus on the item dtx
>
t xt(Rt+1 − d>t w), which we denote

as ψ0. Then we use ∆xtψ and ∆xt+1ψ to represent the change of ψ after adding perturbations η on xt and
xt+1, respectively. In particular, since we approximate ηη>xt and ηη>w as 0, then we have that the change
of influence function for the perturbation η on the current state feature xt:

∆xtψ ≈ (dt + η)(x>t xt + 2η>xt)(Rt+1 − d>t w − η>w)− ψ0

≈ −dtx>t xtη>w + 2dtη
>xt(Rt+1 − d>t w) + η · x>t xt(Rt+1 − d>t w)

= 2dtη
>xt(Rt+1 − d>t w)− 1

γ
(γdtx

>
t xtη

>w − γηx>t xt(Rt+1 − d>t w)).

(41)

Then the influence function for the perturbation η on the next state feature xt+1 is:

∆xt+1ψ = (dt − γη)x>t xt(Rt+1 − d>t w + γη>w)− ψ0

≈ γdtx>t xtη>w − γηx>t xt(Rt+1 − d>t w).
(42)

Finally, it is easy to observe that the following relationship holds:

γ∆xtψ = 2γdtηx
>
t (Rt+1 − d>t w)−∆xt+1ψ. (43)

G EXPERIMENTAL SETUP

After a linear search, in the QR-DQN, We set κ = 1 for the Huber quantile loss across all tasks due to its
smoothness.

Cart Pole After a linear search, in the QR-DQN, we set the number of quantiles N to be 20, and evaluate
both DQN and QR-DQN on 200,000 training iterations.

Mountain Car After a linear search, in the QR-DQN, we set the number of quantiles N to be 2, and
evaluate both DQN and QR-DQN on 100,000 training iterations.

Breakout and Qbert After a linear search, in the QR-DQN, we set the number of quantiles N to be 200,
and evaluate both DQN and QR-DQN on 12,000,000 training iterations.

H MORE EXPERIMENT RESULTS

We provide the results of robust performance under random noisy state observations in Figure 6 in Cart Pole.

We provide the results of robust performance under adversarial noisy state observations in Figure 7 in Mountain
Car.

We provide the results of robust performance under random noisy state observations in Figure 8 in Breakout.

We provide the results of robust performance under random noisy state observations in Figure 9 in Qbert.
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Figure 6: Average returns of DQN and QRDQN against random state observation noises on Cart
Pole environment over 200 runs with smooth size 20. QRDQN (solid lines) almost consistently
outperforms DQN (dashed lines) in the same color, demonstrating better robustness.
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Figure 7: Average returns of DQN and QRDQN against adversarial state observation noises on
Mountain Car environment over 200 runs with smooth size 100. QRDQN (solid lines) almost con-
sistently outperforms DQN (dashed lines) in the same color, demonstrating better robustness.
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Figure 8: Average returns of DQN and QRDQN against random state observation noises on Break-
out environment over 200 runs with smooth size 100. QRDQN (solid lines) almost consistently
outperforms DQN (dashed lines) in the same color, demonstrating better robustness.
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Figure 9: Average returns of DQN and QRDQN against random state observation noises on Qbert
environment over 3 runs with smooth size 1000. QRDQN (solid lines) almost consistently outper-
forms DQN (dashed lines) in the same color, demonstrating better robustness.
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