
Finally, we provide some more insight on our work. In particular, it consists of:529

• Appendix A Algorithm, shows the pseudocode of our method.530

• Appendix B Benchmarks, explains the different comparison environments in more detail.531

• Appendix C Ablations, We study the effect of changing key parts of our algorithm or532

certain hyperparameters.533

• Appendix D Hyperparameters, depicts the hyperparameters used in the different runs.534

A Algorithm535

We reproduce some of the learning objectives here for posterity. The following is the objective for536

training the goal selector with human provided comparative feedback:537

Lrank(θ) = −E(si,sj ,g),∼D

[
1i<j

[
log

exp−dϕ(si, g)
exp−dϕ(si, g) + exp−dϕ(sj , g)

]
+ (1)

(1− 1i<j)
[exp−dϕ(sj , g)
exp−dϕ(si, g) + exp−dϕ(sj , g)

]]
(2)

The density model pψ(st, gsub) can be trained on a datasetD = {(sit, gisub)}Ni=1 of relabeled (st, gsub)538

tuples via the following objective:539

max
ψ

E(st,gsub)∼D [log pψ(st, gsub)] (3)

Different choices of family for pψ(st, gsub) yield different variants. We leverage tabular density540

models and autoregressive. Policies trained via hindsight self supervision optimize the following541

objective:542

argmax
π

Eτ∼Eg [π̄(·|g),g∼p(g)]

[
T∑
t=0

log π(at|st,G(τ))

]
(4)

To sample goals from the learned proximity metric, we can sample gsub ∼ p(gsub|s, g), where543

p(gsub|s, g) =
exp−dϕ(s, g)∑

s′∈D exp−dϕ(s′, g)
(5)

Below, we show our algorithm in pseudo-code format.544

Algorithm 1 METHOD NAME
1: Input: HumanH, goal g, starting position s
2: Initialize policy π, density model dθ, proximity model fθ, data bufferD, proximity model buffer
G

3: while True do
4: p ∼ p(g)
5: Dτ ← PolicyExploration(π,G, g,D)
6: D ← D ∪Dτ
7: π ← TrainPolicy(π,D) (hindsight relabeling [17], Eq 4)
8: G ← G ∪ CollectFeedback(D,H) (Sec 4.2)
9: fθ ← TrainGoalSelector(fθ,G) (Eq 1 via the Bradley-Terry model [48])

10: dθ ← TrainDensityModel(dθ,G) (Eq 3, [50, 51, 52])
11: end while

14

Algorithm 2 PolicyExploration
1: Input: policy π, goal selector fθ, goal g, data buffer D
2: Dτ ← {}
3: s← s0
4: for i = 1, 2, . . . , N do
5: every k timesteps:
6: S ∼ ObtainReachableStates(dθ, s,D)(Sec 4.2, [50, 51])
7: gb ∼ SampleClosestState(fθ, g,S)(Sec 4.2, Eq 5)
8: while NOT stopped do
9: Take action a ∼ π(a|s, gb)

10: end while
11: Execute πrandom for H timesteps
12: Add τ to Dτ without redundant states
13: end for
14: return Dτ

B Evaluation Environments545

We briefly discussed the evaluation environments we used to compare our method to previous work.546

In this section we will go through the details of each of them.547

• Pointmass navigation:548

As mentioned before, this is a holonomic navigation task in an environment with four549

rooms, where the objective is to move between the two farthest rooms. This is modification550

of a benchmark proposed in [17].551

In this benchmark, the observation space consists of the position of the agent, that is,552

(x, y) ∈ R2, while the action space is discrete of cardinality 9. In particular there are553

8 actions corresponding to moving a fixed amount relative to the current position, the di-554

rections are the ones parallel to the axis and their diagonals. Finally, there is an action that555

encodes no-movement.556

The number of timesteps given to solve this task is 50. Finally, as for a human proxy, we557

use the distance to the commanded goal, taking into account the walls, i.e., we consider to558

shortest distance according to the restrictions of the environment.559

• LoCoBot navigation:560

This benchmark is similar to the previous one, since it also tackles 2D navigation. The main561

difference is that, in this one, we are working simulation a LoCoBot, in a real-life-looking562

environment, and dealing with differential driving instead of holonomic. The environment563

tries to resemble the one we do in the real world with a TurtleBot, so that results obtained564

in simulation are, to a certain extent, informative about how our robot would perform with565

the different algorithms in the real world.566

This benchmark is similar to the Four Rooms one since we are also dealing with 2D nav-567

igation. The main difference is that we are working with a simulated robot in Mujoco, in568

particular a LoCoBot, in a real-life-like environment, in which there is a kitchen and a living569

room, thus presenting some obstacles for the robot such as tables or a couch. Additionally,570

the robot works with differential driving, as a LoCoBot or Turtlebot would do.571

In this environment the goals the robot should be able to learn how to reach are the lower572

right and the upper left corners. In this environment, the state space is the absolute position573

of the robot, together with its angle (x, y, θ) ∈ R3. As we are working with differential574

drive, the action space is discrete encoding 4 actions: rotate clockwise, rotate counterclock-575

wise, move forward and no movement.576

The LoCoBot should reach the given goal within 40 timesteps. As before, for the proxy577

human we just use the distance to the goal, accounting for obstacles.578

15

• Block Pusher:579

This is a robotic manipulation problem, where a Sawyer robotic arm pushes an obstacle to580

a given location. This benchmark is also a modification of one of the benchmarks proposed581

by [17]582

In this environment the state space consists of the position of the puck and the position of583

the arm (x1, y1, x2, y2) ∈ R4. The actions space is the same as in the Pointmass navigation584

benchmark (i.e. discrete with 9 possible actions).585

The arm should push the object to the desired location in at most 75 timesteps. As for the586

human proxy, the reward function we use is the following:587

r = max(distance puck finger, 0.05) + distance puck goal

• TurtleBot navigation in the Real World:588

This benchmark is similar to the LoCoBot navigation one, the major difference between589

the two being that this one takes place in the real world instead of a simulation.590

The goal is to learn how to navigate between two opposite corners in a home-looking591

environment, with a lot of obstacles. The action and the observation space are the same592

than in the LoCoBot navigation environment. That is, the action space is discrete with 4593

possible actions (move clockwise, counterclockwise, forward and don’t move), while the594

state space consists of the absolute position of the TurtleBot and its angle (x, y, θ) ∈ R3.595

In order to get this state, we have a top-down camera and the TurtleBot has a blue and red596

semispheres, whose position can be detected by the camera, thus obtaining the position of597

the TurtleBot, and its angle (by computing the direction of the vector between the blue and598

red semispheres of the locobot). Finally, we do collision avoidance by leveraging the depth599

sensor of the top-down camera.600

The TurtleBot should reach any goal in 25 timesteps. And for the human proxy we just use601

the euclidean distance to the goal.602

• Real World Pusher with Franka Panda: This benchmark is relatively similar to the603

pusher environment in simulation, except it is with a Franka Emika panda robot in the real604

world. The goal is to learn how to push an object in the plane between two different corners605

of an arena. The challenge here is that the pusher is a cylindrical object and planar pushing606

in this case needs careful feedback control, otherwise it is quite challenging. The action607

space is 9 dimensional denoting motion in each direction, diagonals and a no-op. The state608

space consists of the position of the robot end effector and the object of interest. In order609

to get this state we use a calibrated camera and an OpenCV color filter, although this could610

be replaced with any more sophisticated state-estimation system. The system is provided611

very occasional intervention when the object is stuck in corners, roughly one nudge every612

30 minutes. Success is measured by resetting the object to one corner of the arena and613

measuring success at reaching another corner.614

In this environment, we leverage a synthetic replacement for a human supervisor. We sim-615

ulate the feedback that would have been given by the human by designing a labelling func-616

tion. This one will give preferences for having the cylindrical object close to the target goal617

and for having the end effector close to the object. Furthermore, we will give preferences618

based on the direction from which the end effector is reaching the object. The formula is619

indicated below:620

r = max(distance puck finger, 0.05) + distance puck goal

C Ablations621

To better understand the details of which design decisions affect the performance of GEAR, we con-622

duct ablation studies to understand the impact of various design decisions on learning progress.623

Specifically, we aim to understand the impact of (1) the threshold ϵ for likelihood at which a state is624

considered ”reachable”, (2) the frequency at which new intermediate subgoals are sampled during625

16

(a) Reachable Threshold (b) Sampling Frequency

(c) Buffer Initalization (d) Redundant Steps

Figure 6: Ablations of GEAR: We studied the ablations of GEAR with four different setups. In a),
we modify the reachable threshold with a parameter of 1, 5, 10, 20. In b), we verify the effects of
sampling frequency. In c), we use a different number of offline data to initialize the buffer. The
offline data are collected by driving the agent randomly explore the environment. In d), we evaluate
the performance of our algorithm by removing and not removing the redundant exploration steps at
each end of the trajectories.

exploration, (3) the algorithm removes redundant exploration steps during exploration, we ablate626

how important this step is in performance, and (4) we ablate how much pre-training data is required627

for learning and how this affects learning progress. We find that 1) choosing the right threshold628

for the success of our algorithm is critical. The best reachable threshold used for the pointmass629

navigation task is 5. Larger (threshold = 10, 20) or smaller (threshold = 1) would not make the630

algorithm work better. 2) the ablation for sampling frequency shows that right sampling frequency631

would help boost the performance. We tried sampling frequency with 1, 5, 10 and 20. The results632

show that 5 and 10 have a similar performance. Too small (sampling frequency = 1) or too large633

(sampling frequency = 20) do not work well. If the sampling frequency is too small, the agent634

might not be able to reach the subgoal and too frequent subgoal selection would make the perfor-635

mance drop. If the sampling frequency is too large, there would have more redundant wandering636

steps which make the learning less efficient. 3) We found that removing the redundant steps would637

help training significantly. Without removing the redundant steps in the trajectory sampling, there638

would be stationary states when the agent is stuck in the environment which could lead to the drop639

of performance. 4) More random pre-trained data would help build up the reachable set and further640

improve the performance.641

17

D Hyperparameters642

In this section we state the primary hyperparameters used across the different experiments. All the643

values are shown in Table 1644

Parameter Value

default (to those that apply)
Optimizer Adam [56]
Learning rate 5 · 10−4

Discount factor (γ) 0.99
Reward model architecture MLP(400, 600, 600, 300)
Use Fourier Features in reward model True
Use Fourier Features in policy True
Use Fourier Features in density model True
Batch size for policy 100
Batch size for reward model 100
Epochs policy 100
Epochs goal selector 400
Train policy freq 10
Train goal selector freq 10
goal selector num samples 1000
Stop threshold 0.05

LoCoBot navigation
Stop threshold 0.25

TurtleBot navigation in Real World
Stop threshold 0.1
policy updates per step 50

Oracle Densities
reachable threshold 5

VICE
reward model epochs 20

Human Preferences
reward model epochs 20

Autoregressive
reachable threshold 0.25
Epochs density model 30000
Train autoregressive model freq 300
Batch size for the density model 4096

Table 1: Hyperparameters used when GEAR

18

E Web Interface for Providing Feedback645

Here we show an example interface for providing feedback for the TurtleBot navigation task:646

Figure 7: Visualization of the human supervision web interface to provide feedback asynchronously during
robot execution. Users are able to label which of two states is closer to a goal or say they are unable to judge.

19

	Introduction
	Related Work
	Preliminaries
	GEAR: A System for Autonomous Robotic Reinforcement Learning with Asynchronous Human Feedback
	Reset-Free Learning via Goal-Conditioned Policy Learning
	Guided Exploration and Policy Learning via Asynchronous Human Feedback
	System Overview

	Experimental Evaluation
	Evaluation Domains
	Baselines and Comparisons
	Does GEAR learn behaviors autonomously in simulation?
	Does GEAR learn behaviors autonomously in the real world from human feedback?

	Conclusion and Limitations
	Algorithm
	Evaluation Environments
	Ablations
	Hyperparameters
	Web Interface for Providing Feedback

