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A APPENDIX

A.1 PROOF OF LEMMA 4.2.

Proof. Notice that for any scalar w € R™ and | < w < wu, by the definition of M(.;[,u), one can
verify that E[M (w;(,u)] = w, therefore E[M (w; [, u)] = w. Furthermore,

E[|M(w;l,u) = wl*] = Y E[([M(w;l,u)); - [w];)?]

= (BlM(w;l,w)]2] — [w]?)

Moreover,

A.2 PROOF OF THEOREM 4.2.

Before proving the Theorem 4.2, a standard probability bound is required.

Lemma A.1. Let {X;}}' | be a sequence of i.i.d continuous random variables, whose support is on
R. Then for any b € R

P (maxXi > b) < nP(X; > b).

i€[n]

Proof.

P(mfm]()g 2b> =1 - Blmax X, < 8) = 1 B(X; b Xy <)
1en 1€|n
n
=1-J]P(X; <b)=1-(1—-P(X; >b))" for any j
j=1
Let f(t):=1—nt— (1 —t)" fort € [0,1]. As f/(t) < 0and f(0) =0, f(¢t) <Oforallt e [0,1].
Therefore, 1 — (1 —¢)™ < nt. Take t = P(X; > b), we arrive

P (maxXi > b) < nP(X; > b).
i€[n]

Now we are ready to prove Theorem 4.2.
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Proof. For any j € [d], |[w']; — [w',];| < u' — " and Var ([@']; — [w’,];) < (u’ —1%)?/4 due
to Lemma 4.1. By Bernstein inequality, for any j € [d] and e > 0

¢ _t Ke?
Pﬂ“”b[ww&W2€)§26m’<zézzgﬁw@rawﬂj—hmwh>+§emt—n>>

<2exp | — ¢
< 2exp -
Ciklio 2l ) + ge(ut =1

By Lemma A.1,
Ké?
P | max |[w!]; — [w',]; 26) < 2dexp | ———
(1m0, - fwhl T
ut -1t /1o, 2d
Therefore, for any 8 > 0, there exists ¢ = O (m) such that
P (max;eq) [[w']; — [w!];| < €) holds with probability at least 1 — 3. O

A.3 PROOF OF THEOREM 4.3

Proof. Due to the weight discretization mechanism, the adversary can only return « or [ for each
coordinate of the model weight. In order to not return the correct information, the adversary could
choose to return the opposite feedback to attack the model, i.e., return w if the original return is [,
and vice versa. Therefore, we denote, for any I < w < u,

I, wp.u=t
Madv(w) = {h w.p ﬁ—w
» WP

Under the scenario that there are F attackers, for any j € [d],

&(i}M@@b+ Ej[Mw@MJ]
+1

[Elwal; = E

=1 i=N—F
1 N—-F 1 N
=5 2 (wili+t > ((h+D) —[wil)) )
=1 i=N—F+1
1 (" al F
=1 i=N—F+1

A.4 PROOF OF THEOREM 4.4

Proof. The proof is inspired by the analysis in Theorem 4 of (Li et al., 2020).

To proceed with the analysis, we first introduce some notations. At the tth round, for the all ¢ €
S, define @'t = w' + g Y (wiT - wh), W = w4 3y pi(wi T — w'), and
Wit = argming, by (w;w') := Fi(w) + & [w — w'||*. @' is the ghost global model as if the
discretization mechanism is not applied to the local model weights; w’*! is another ghost global
model as if all clients participate in the ¢th round training and no discretization mechanism is applied
; ﬁ)f“ is the exact minimizer of the strongly convex function h;(w). These points reference points
are crucial for the analysis. Define the gradient residual e! ™' = VF;(w!™") 4 p(w!™ — w'), then
wi ™ —w! = —LVF(w;™) + Lef ! Therefore,

_ 1 1
@ —w' =) pilw - wh) = =2 Y p VR + 2 ) pel™ ©)
i€ [n]

i€[n] i€[n]
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Since y is chosen to satisfy g > Amin, then h; (w; w?) is fi-strongly convex. By the strong convexity
of hi,

(w! ! — @) T (Vhi(w! ™) — Vhi(! )

K2

IN

waﬂ _wf+1H2

IN
T~ T~

|witt — @i || VR (wit) — VR (i)

7 9

which, together with the fact that w H'l is the minimizer of h;(w), implies

. 1
H,w;_H»l _ wEJrlH < ﬁ thz(warl) Vh ( t+1))H
= < VR )] = = VR ) + alwf ™ — )|

< 1||VE ()| @
i
Again use the same analysis, one has Hli)f“ —wt || < %VFZ-(wt). Therefore, together with Eq. 7,

o™ — || < i — @i +

D wt| < HTV IVE; (w?)]) . (®)

Therefore, one can bound the distance from the ghost global model w!*! to the current global
weight as

[+~ = | 3 piwf ™ —wh)| < 3 gt - o]
i€[N] i€[N]
1
LY n|[ VA (by Eq. §)
i€[N]
< Hf’y Z i HVFi(wt)H (Jensen’ Inequality)
1€[N]
= L2 YRAA @
< B(H’Y |V f (w")]] (by Assumption 4.1 (3)) 9)
Note that
> pi (VE(w™) —ef sz ([VE:(wi™) = VE (w")]| + [l ]])
i€[n]

< z pi (L [Jwl* = w!| + [lef*])
16[ ]
LD ) S vaw)
H i€[n]
- (M2 e o)

PLp (L(ll:”) + 7) 1V ()] (10)
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By Assumption 4.1 (1), one has

FOE) < (') + V)T (@ w) + e
Ez(i v 1 VF(w t+1 t+1 t+1 t)2
< flw )Jr flw sz sz Hw w”
ze[n ZE[”]
= f(w') + Vf(w ( > pi (VEi(wi™h) = eft! — VF;(w")) — ivf(wt))
ze[n]
L 2
3 [ =]
2
< ) = )| = )T [ 3 b (V) — e - VR @)
H H i€[n]
=ttt
2
< (') = )|+ | ') (VE(wl) vmmt»”
£ —t4+1 o t]|2
Lt~ |
Eq. 10,Eq. 9 1 B (L(1+ LBl
" )~ 4 P+ 2 (FEE ) 9 st (P s
1D
1-vB LB(1+ L 2p?
sty - (A2 - EEOED BB st )
By mean-value theorem and triangular inequality, for some « € [0, 1]
FY) < f(@t) + va( B4 (1 - @)@t H H S+l 7t+1H
< @) + ([[Vf @™ + (1 = a)w"™) = Vf(w')|| + ||V f(w)]]) [|o" — ™|
< F@ ) (L o+ (1 0w — |+ [V (w)) [+ -
< @) + (L([|@" = 'l + [0 —w'[]) + |V f(wh)]]) | — o™
(13)
Taking expectation with respect to the random index set S;, one gets
Eg{[f(,d}t-&-l)] < fwtth) + (LHu_)t‘H _th + va(wt)H)ESt’ il _,U—Jt+1H
gt ] [ |
< @) + (L@ —w|[ + |V (w)]) Eg; [0 - ™|
+ LEs; ([ — @ + [[w" = w[]) [J@" — @]
= f@") + L[0! —w'l| + [ VF(w")]]) Es; [0 — @
+LE3£[ wit — ’lIJt-HHQ] (14)
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By the sampling scheme, one has

Es; Wit — ,u—]t+1||2 < 1 ‘ ||wt+1 ,t+1H2]

t

< gl = o = 2w ) ! )
t

< Bl P oy Bt = o)

Fes 1 (1+’y
e ||V Fi (w

< w e I
2

= é/‘ a HVf k H2 (by Assumption 4.1 (3)). (15)
t

Combining Eq. 14, Eq. 15, and Eq. 9, together with the fact that Eg;

t+1 _ qptt! H

N _ 2 . .
\/ Es; [|wt+! — w'*1||” as a result of the Jesen’s inequality, one reaches to

Es [F(" )] < f(w'+) + <2L B? (1+7)2+ B (1+7)Jr B? (1+7> |V (wt)||?

ST ﬂ2 VIS B IS &2

= f(w') + <LB Chs 2\/\?+1 \1/%)> 1V £t (16)

Combine Eq. 16 and Eq. 11, one reaches to

1—9yB LB(1+4+1) L(1+7)*B*>

Eg[f(@)] < flw') - (

I [ 202
LB%(1 +~)? B(1
— s VIS D)+ ——= a7
( |S{|,u2 ( | t| ) |S’ H H
Taking the expectation with respect to the discretization mechanism, Ep[w'*!] = w!T! by

Lemma 4.1. Since f is L-smooth,
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EM[f(wt—i-l)] < f(’lf)t-‘rl) 4 gEM[Hwt+1 —’lIJt+1H2]

2

- L 1
= f@*) + S o B | [ (Ml — w) — (wlt — w))
25| ieS!
2
Sf("th)JFSlé,'Q Z(’wﬁﬂf’w) (by Lemma 4.1)
t

- L
Sf=(wt+1)+8|$£|2 ZHth w” Jrz t+1 — w) §+1 w)
[n] i#£]

< J )+ g [ 3 ot = w3l — [t

Sy S
< @) + g | 3 ot —wl* | Gy 20l 00 < ol + )
)+ G | 2 P ™
<)+ o | 3wl -
< 1@+ g — | 3 s R

i€ln)
LN B2 (1+’y

< flaptt! \V/ 18
T i Deell 1o
Put Eq. 18 and Eq. 17 together, we reach to
1—9B LB+~ L(1++v)?B?
Bl < fut) - (1222 - B MR
1% Jof 2

LB2(1+ )2 S B(1+7) LNB?(1 +v)?
( sz VISR U 1S ) 8ISiPpminit? v st
(19)

When there is no adversary, then |S’| = K, then
2
Ensi[f(w™)] < f(w') = 5 [[Vf(w")]|

Finally, taking the total expectation with respect to all randomness and by telescoping, one reaches

T-1
KBV F(w)|]? < flwo) — fw”).
t=0
Divide T on both sides, then
T—1
1 f(wo) — f(w*)
Juin, BV @)l < 7 3 BNV Sl =
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