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A APPENDIX

A.1 PROOF OF LEMMA 4.2.

Proof. Notice that for any scalar w 2 Rn and l  w  u, by the definition of M(.; l, u), one can
verify that E[M(w; l, u)] = w, therefore E[M(w; l, u)] = w. Furthermore,
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A.2 PROOF OF THEOREM 4.2.

Before proving the Theorem 4.2, a standard probability bound is required.

Lemma A.1. Let {Xi}
n
i=1 be a sequence of i.i.d continuous random variables, whose support is on

R. Then for any b 2 R

P
✓
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i2[n]

Xi � b

◆
 nP(Xi � b).

Proof.
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◆
= 1� P(max

i2[n]
Xi  b) = 1� P(X1  b, · · · , Xn  b)

= 1�
nY

j=1

P(Xj  b) = 1� (1� P(Xj � b))n for any j

Let f(t) := 1� nt� (1� t)n for t 2 [0, 1]. As f 0(t)  0 and f(0) = 0, f(t)  0 for all t 2 [0, 1].
Therefore, 1� (1� t)n  nt. Take t = P(Xj � b), we arrive

P
✓
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◆
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Now we are ready to prove Theorem 4.2.
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Proof. For any j 2 [d], |[w̄t]j � [w̄t
M]j |  ut

� lt and Var ([w̄t]j � [w̄t
M]j)  (ut

� lt)2/4 due
to Lemma 4.1. By Bernstein inequality, for any j 2 [d] and ✏ > 0
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By Lemma A.1,

P
✓
max
j2[d]

��[w̄t]j � [w̄t
M]j

�� � ✏

◆
 2d exp

 
�

K✏2

(ut�lt)2

2 + 2
3✏(u

t � lt)

!

Therefore, for any � > 0, there exists ✏ = O
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holds with probability at least 1� �.

A.3 PROOF OF THEOREM 4.3

Proof. Due to the weight discretization mechanism, the adversary can only return u or l for each
coordinate of the model weight. In order to not return the correct information, the adversary could
choose to return the opposite feedback to attack the model, i.e., return u if the original return is l,
and vice versa. Therefore, we denote, for any l  w  u,
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(
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Under the scenario that there are F attackers, for any j 2 [d],
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A.4 PROOF OF THEOREM 4.4

Proof. The proof is inspired by the analysis in Theorem 4 of (Li et al., 2020).

To proceed with the analysis, we first introduce some notations. At the tth round, for the all i 2

S
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2. w̃t+1 is the ghost global model as if the

discretization mechanism is not applied to the local model weights; w̄t+1 is another ghost global
model as if all clients participate in the tth round training and no discretization mechanism is applied
; ŵt+1

i is the exact minimizer of the strongly convex function hi(w). These points reference points
are crucial for the analysis. Define the gradient residual et+1
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Since µ is chosen to satisfy µ > �min, then hi(w;wt) is µ̄-strongly convex. By the strong convexity
of hi,
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Again use the same analysis, one has
��ŵt+1
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µ̄rFi(wt). Therefore, together with Eq. 7,
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Therefore, one can bound the distance from the ghost global model w̄t+1 to the current global
weight as
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By Assumption 4.1 (1), one has
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By mean-value theorem and triangular inequality, for some ↵ 2 [0, 1]
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Taking expectation with respect to the random index set S 0
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By the sampling scheme, one has
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Combining Eq. 14, Eq. 15, and Eq. 9, together with the fact that ES0
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Combine Eq. 16 and Eq. 11, one reaches to
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Taking the expectation with respect to the discretization mechanism, EM[wt+1] = w̃t+1 by
Lemma 4.1. Since f is L-smooth,
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Put Eq. 18 and Eq. 17 together, we reach to
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When there is no adversary, then |S
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| = K, then
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