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A Results visualization

To intuitively compare model performance across modalities, we visualize results for Human Activity
Recognition (HAR) and 3D Human Pose Estimation (HPE). Figure E] shows the confusion matrix
for a representative subset of 10 HAR activities, while Figure [2|displays results for all 62 activities.
For HPE, Figure [3illustrates performance across modalities. All visualizations compare the top-
performing baseline models across each of the 11 tested modalities, quantifying their individual
contributions to task performance.

A.1 HAR task details

We evaluate OctoNet using both a representative 10-activity subset (covering body-motion, ob-
ject/computer/human interactions, and medical conditions) and the full 62 activities. Figures [I(1)
and [2[1) show the activity labels and color-coded categorization respectively. The consistent perfor-
mance of baseline models across modalities demonstrates OctoNet’s utility as: (1) a comprehensive
multi-modal HAR benchmark, and (2) a testbed for identifying modality-specific challenges in
cross-modal generalization and fine-grained activity recognition.
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Figure 1: Confusion matrices for 10 representative activities across 11 modalities. Rows represent
ground truth labels, columns show predictions, with color intensity indicating classification accuracy.
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Figure 2: Confusion matrices for all 62 activities across 11 modalities. Activities are color-coded by
category, revealing modality-specific recognition patterns.

A.2 HPE task details

Figure [3| demonstrates representative examples of ground truth versus predicted 3D human poses
from the best-performing baseline model across different input modalities. The selected samples
showcase diverse poses that effectively highlight model performance characteristics. Due to varying
original sampling rates across modalities, the results exhibit slight temporal misalignment.



Notably, modalities with lower spatial resolution (IRA, SFCW, and Acoustic) show reduced HPE
accuracy, quantitatively demonstrating the importance of spatial information for pose estimation.
These systematic performance variations across modalities establish OctoNet as a rigorous benchmark
for evaluating sensor-specific capabilities in 3D human pose estimation.
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Figure 3: 3D human pose estimation results comparing ground truth (blue) and predicted (orange)
skeletons across modalities. Each row shows predictions from models trained with a different
input modality, demonstrating both reconstruction accuracy and modality-specific performance
characteristics.



B Data annotation

Temporal segment annotation process. During each experimental session, participants repeated
the 62 fixed activities continuously (excluding relatively static activities such as sleeping and conver-
sation), with brief pauses of approximately 3 seconds. Before each set of repetitions, the specific
activity label was recorded to ensure correct annotation. Although we initially considered using
existing activity recognition models to automate pause detection and segmentation, these models
lacked sufficient coverage for our diverse, untrimmed multi-action scenarios with subtle behavioral
differences [3]]. Consequently, we used the motion-capture system’s speed profiles of body markers
to identify the 3-second pause intervals, resulting in over 8.76k segmented samples.

C Sensor details and data processing

Figure [4] shows the physical sensor units used in our multimodal data collection. The following
subsections document each sensor type’s (1) hardware specifications, including form factor and
operating ranges; (2) data acquisition settings such as sampling rates and resolutions; and (3)
preprocessing steps covering calibration and noise reduction procedures.
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Figure 4: All sensor hardware used for data collection.

C.1 RGB-D camera details

We employ three Intel RealSense Depth Cameras D455C to record synchronized RGB and depth
frames at a resolution of 640 x 480 pixels and an average frame rate of 29.95 Hz. The D455C cameras
utilize stereoscopic depth technology, featuring a depth field of view (FOV) of 87° horizontal by 58°
vertical and an RGB FOV of 90° horizontal by 65°, which provides comprehensive environmental
coverage. The minimum depth distance is approximately 52 cm, and the depth accuracy is less
than 2% at 4 m [}, ensuring precise depth measurements within the operational range. To optimize
data collection efficiency, the RGB data are compressed using the .mp4 format, which offers high
compression ratios while maintaining visual quality, and the depth data are stored in . png format,
utilizing its near-lossless compression capabilities to preserve the integrity of the depth measurements
for accurate post-processing and analysis. The RGB data are collected into a 5D tensor structured
as (Nyode, F, H, W, C'), where Npoqe = 3 is the number of camera nodes, F is the number of frames,
H = 480 is the height of the pixel array, W = 640 is the width of the pixel array, and C' = 3 is the
number of color channels. This results in a tensor of size 3 x F' x 480 x 640 x 3. The depth data are
collected into a 4D tensor structured as (Nyoge, F, H, W), with the same Nyoqe = 3, F' is the number
of frames, H = 480, and W = 640, resulting in a tensor of size 3 X F' x 480 x 640.

C.2 Time-of-Flight (ToF) sensor details

We employ a commercially available Single Photon Avalanche Diode (SPAD) sensor (STMicroelec-
tronics VL53L8CH) and refer to the same setting as ToFace [4] to capture depth information. This
sensor operates by emitting modulated infrared pulses and measuring the time taken for these pulses
to reflect from objects back to the sensor, enabling accurate distance measurements. The VL53L8CH
provides a FOV of approximately 45° x 45°, allowing focused distance sensing within the area of
Interest.

Data acquisition from the ToF sensor is managed by an STM32 microcontroller, which records depth
measurements at an average frame rate of 7.32 Hz. The raw sensor output comprises impulse-response



histograms organized into 18 discrete bins per spatial location. The ToF data are collected into a 5D
tensor structured as (Nyoqe, F, H, W, C'), where Nyoqe = 1 is the number of sensor nodes, F is the
number of frames, I = 8 is the height of the spatial array, W = 8 is the width of the spatial array,
and C' = 18 is the number of histogram bins. This results in a tensor of size 1 X F' x 8 x 8 x 18.

C.3 Thermal camera details

We employ two Seek Thermal S304SP Mosaic Core thermal cameras to capture high-precision
thermal data. Each camera features an uncooled vanadium oxide microbolometer with a pixel pitch
of 12 pm and operates within a spectral response range of 7.8 to 14 ym. The sensors provide a
resolution of 320 x 240 pixels, totaling 76,800 pixels per frame, which allows for detailed thermal
imaging of the subjects.

The cameras operate at a frame rate of approximately 9 Hz, complying with export regulations for
thermal imaging devices. They have a FOV of 56° horizontal by 42° vertical, enabling comprehensive
coverage of the subjects. With a thermal sensitivity of less than 100 mK at 25°C, the cameras ensure
accurate temperature measurements within an imaging range of —40°C to +330°C. They perform
automatic non-uniformity correction (NUC) using an internal shutter, enhancing image quality by
compensating for sensor artifacts.

For data acquisition, the cameras interface via USB and provide 16-bit thermal data before automatic
gain control (AGC). We store these raw images as . png files, applying near-lossless compression to
reduce file size while preserving temperature accuracy. Over a recording period of ¢ seconds, the
thermal data are collected into a 4D tensor structured as (Nyode, F, H, W), where Nyoqe = 2 is the
number of camera nodes, F' is the number of frames, I = 240 is the height of the pixel array, and
W = 320 is the width of the pixel array. This results in a tensor of size 2 x F' x 240 x 320, reflecting
the capture of thermal data over time from two cameras.

C.4 Infrared array sensor details

We employ five MLX90640 infrared array sensors to capture two-dimensional thermal maps of the
environment. Each sensor comprises a grid of thermopile detectors arranged in a 32 x 24 pixel
matrix, generating temperature data of objects within its FOV. The MLX90640 sensors feature an
FOV of 110° x 75°, enabling wide-area coverage for thermal sensing. With a temperature precision
of £1.5°C, these sensors exceed the clinically relevant limit of +0.5°C [20], thereby mitigating
concerns about user privacy related to precise temperature measurements.

Data acquisition is performed by interfacing the sensors with an ESP32, which collects the temperature
data from each pixel at an average frame rate of 6.91 Hz and transfers it to a PC node for storage and
processing. The emissivity setting of the sensors is configurable and is set to € = 1. The collected
data are organized into a 4D tensor structured as (Nyoqe, ', H, W), where N,oge = 5 is the number
of sensor nodes, F' is the number of frames, /1 = 24 is the height of the pixel array, and W = 32 is
the width of the pixel array. This results in a tensor of size 5 X F' x 24 x 32, reflecting the capture
of thermal data over time from five strategically placed sensors providing comprehensive thermal
coverage of the environment.

C.5 FMCW millimeter-wave radar details

We employ Texas Instruments IWR1843Boost mmWave radar [17] with frequency-modulated
continuous-wave (FMCW) sensing with multiple transmit and receive antennas, which is widely
used in micro motion detection [13} 22], and macro human activity recognition [3]]. It transmits
linearly frequency-swept chirps, then applies standard range-FFT, Doppler-FFT, and angle-estimation
pipelines to extract target range, velocity, and azimuth/elevation. Combined with the known antenna
array geometry, these estimates form a three-dimensional point cloud that captures object position
and motion. A constant-false-alarm-rate (CFAR) stage suppresses noise and spurious detections,
yielding a cleaner point cloud. Data acquisition and processing are performed by connecting the radar
to a PC node via a UART interface. The radar data are collected at an average frame rate of 8.81 Hz,
generating a set of point-cloud points {(z,y, z,v)} per frame. For uniform batch processing, each
frame’s points are either padded or truncated to a fixed number P. These frames are then collected
into a 4D tensor structured as (Npode, F, Npoint, S ), where F' is the number of frames, Nyoge = 5



is the number of radar nodes, Npoine = P is the number of points, and S = 4 is the number of
features, representing P points each with 4 coordinates (z, y, 2, v). This results in a tensor of size
5 x F x P x 4, reflecting the capture of point-cloud data.

C.6 SFCW millimeter-wave radar details

We use a Vayyar IMAGEVK-74 mmWave radar to acquire 3D imagery of object positions and motion.
The sensor operates in Stepped Frequency Continuous Wave (SFCW) mode, essentially a discrete
form of FMCW, in which the channel response is sampled at N uniformly spaced continuous wave
tones rather than along a continuous chirp, yielding precise frequency-domain measurements [2]].
Data capture and preprocessing are carried out on a ThinkPad T14 laptop (Intel Core i7-1260P,
Windows 11) via MATLAB, using the official SDK to interface with the radar and log raw data.

The key configurations are as follows: the start frequency is 63 GHz, and the stop frequency is 67
GHz, resulting in a bandwidth of 4 GHz. We utilize N = 100 frequency steps between the start and
stop frequencies, offering fine resolution in the frequency domain. The radar is equipped with 20
transmit (Tx) antennas and 20 receiver (Rx) antennas, creating a virtual antenna array of 400 unique
Tx-Rx pairs (i.e., 20 x 20). This extensive antenna configuration enhances spatial resolution and
enables detailed imaging capabilities.

The radar operates at an average frame rate of 3.20 Hz, sufficient for capturing human movements
and gestures. Over a recording period of ¢ seconds, the radar data are collected into a 4D tensor
structured as (Npode, F, Tt - Ry, S), where Npoge = 1 is the number of radar nodes, F is the number
of frames, T}, - R, = 400 is the number of virtual antenna pairs (with 7}, = 20 transmit antennas and
R, = 20 receiver antennas), and S = 100 is the number of frequency steps (ADC samples). This
results in a tensor of size 1 x F' x 400 x 100, reflecting the capture of radar responses. We then
convert this array into a PyTorch tensor for downstream processing.

C.7 Ultra-Wideband radar details

For ultra-wideband sensing, we employ Novelda XeThru X4M200 radar with co-located transmitter
and receiver antennas. The radar operates at a center frequency of 7.29 GHz with a bandwidth of
around 2.5 GHz, and with a sampling rate of 23.328 GS/s [9]. The maximum detection range of the
radar is approximately 9.9 m, with a range resolution (bin-to-bin distance) of 6.4 mm, enabling high
temporal and spatial resolution that facilitates fine-grained motion detection.

We utilize the official Python wrapper to acquire low-level control of the hardware. We disable
the on-chip downconversion of received data, thus real-valued Channel Impulse Response (CIR) is
obtained. The Digital-to-Analog Converter (DAC) settings are configured with a minimum sweeping
threshold of 900 and a maximum threshold of 1150 Hz, and each DAC sweep consists of 16 iterations.
At each timestamp, the radar outputs a real vector of size 1535, representing the CIR across different
range bins. With an average frame rate of 17.07 Hz, the radar data are collected into a 3D time-domain
tensor structured as (Nyode, F, S), where Npoge = 1 is the number of radar nodes, F is the number of
frames, and S' = 1535 is the number of CIR range bins. This results in a tensor of size 1 x F' x 1535.

C.8 Wi-Fi details

We use one Xiaomi Router AX6000 as the Wi-Fi transmitter and four Raspberry Pi Compute Module
4 devices, each equipped with an Intel AX200 network interface card (NIC), as the Wi-Fi receivers.
Inspired by the sensor placement methodology of Widar3.0 [23]], the receiver units are strategically
positioned at the four corners of the sensing area. This arrangement creates a larger rectangular
sensing area conducive to capturing comprehensive movement data.

Each receiver sends ping packets independently to the transmitter, resulting in an average packet rate
of 75.62 packets per second. We utilize a modified driver for CSI recording on the AX200 NICs to
conduct channel estimation and obtain the CSI of 114 subcarriers. Consequently, over a recording
period of ¢ seconds, the CSI data are collected into a 4D tensor structured as (Nyoge, F, Ty - Ry, S),
where F' is the number of frames, N, o4 = 4 is the number of receiver nodes, 7, = 1 is the number
of transmitter antennas, R, = 2 is the number of receiver antennas per node, and S = 114 is the
number of subcarriers. This results in a tensor of size 4 x F' x 2 x 114.



C.9 Audio details

We use a sampling rate of 48 kHz for audio recording with two microphones. Simultaneously, we play
back the probing signals using one speaker. The rationale behind it is that inaudible ultrasonic signals
can provide additional sensing abilities, including speech enhancement [15, [19], localization [7],
pose estimation [18]], gesture recognition [[16]], and speed estimation [6} [21]]. Specifically, we leverage
Kasami, a pseudo-noise signal that provides good orthogonality. We adhere to the preprocessing
methodology outlined in ASE [6] to modulate these signals, ensuring they remain inaudible to humans
while avoiding interference with low-frequency features.

All recordings are saved as .wav files in our dataset. For baseline training, we convert the raw
waveforms into Mel-spectrograms, which are then organized into (Nyoqge, C, M, T'), where Nyoge = 2
represents the number of sensor nodes (microphones), C' = 1 is the number of channels per node,
M = 128 is the number of Mel-frequency bands used, and 7" denotes the temporal dimension. This
results in a tensor of size 2 x 1 x 128 x T..

C.10 Inertial-magnetic measurement unit (IMU) details

To capture detailed motion data, the Xsens Awinda Research Kit is utilized, comprising 17 MTw
Awinda wireless motion trackers and an Awinda Station serving as the master interface. Each IMU in-
tegrates a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer, enabling comprehensive
sensing of linear accelerations, angular velocities, and magnetic field vectors. The sensors provide
raw output data, including sensor free acceleration, magnetic field vectors, quaternion representation
of orientation, and Euler representation of orientation, which are essential for calculating joint quater-
nions and fully specifying body pose and movement. The MTw trackers wirelessly connect to the
Awinda Station, which interfaces with the host PC running the Xsens MVN Analyze software (version
2024.2) [8]. Data are sampled at a rate of 60 Hz, ensuring high temporal resolution for capturing
dynamic movements. The Awinda Station ensures that data from each MTw are synchronized within
10 ps, crucial for accurate temporal alignment across all sensors. Sensors are securely affixed to
the subjects using the provided straps and calibrated following the procedures outlined in the Xsens
whitepaper [14]. The IMU data are collected into a 3D tensor structured as (F, D, Ny ), where F
is the number of frames, Npy = 17 is the number of IMU sensors, and D = 13 is the dimension
of the feature vector, comprising: (1) sensor free acceleration (x, ¥y, z), (2) magnetic field vectors
(z, y, ), (3) Euler angle representation of orientation (z, y, z), and (4) quaternion representation of
orientation (qo, q1, g2, q3). This results in a tensor of size F' x 13 x 17.

C.11 OptiTrack motion-capture system details

We use the OptiTrack motion-capture system [[11]] to generate high-precision 3D human skeletal data,
which serves both as ground truth for our HPE baselines and as a foundation for future research
exploring multimodal data relationships. The system includes 12 Prime* 13 cameras that emit and
receive infrared light for precise motion capture. During data collection, 50 reflective markers are
placed on each subject to define their skeletal structure. The marker placement strategy is detailed
in [10]], and additional skeletal information (e.g., 4D rotations) is recorded in the released dataset’s
.csv files. According to the manufacturer, each camera achieves positional errors within +0.20 mm
and rotational errors within 0.5° [[12]. Motion data is captured at a sampling rate of 120 Hz, ensuring
high temporal resolution in Scenarios 1-3. For the benchmarks, we extract a subset of 20 key skeletal
markers stored in . csv format, ultimately forming an (¥ x 20 x 3) tensor of 3D coordinates, which
we saved in .npy format.
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