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Abstract

Distributional reinforcement learning has gained significant attention in recent years due to its abil-
ity to handle uncertainty and variability in the returns an agent will receive for each action it takes.
A key challenge in distributional reinforcement learning is finding a measure of the difference be-
tween two distributions that is well-suited for use with the distributional Bellman operator, a function
that takes in a value distribution and produces a modified distribution based on the agent’s current
state and action. In this paper, we address this challenge by introducing the multiquadric kernel to
moment-matching distributional reinforcement learning. We show that this kernel is both theoreti-
cally sound and empirically effective. Our contribution is mainly of a theoretical nature, presenting
the first formally sound kernel for moment-matching distributional reinforcement learning with good
practical performance. We also provide insights into why the RBF kernel has been shown to provide
good practical results despite its theoretical problems. Finally, we evaluate the performance of our
kernel on a number of standard benchmarks, obtaining results comparable to the state-of-the-art.

1 Introduction

Reinforcement learning is a type of machine learning that involves training agents to take actions in an environment
in order to maximize a reward signal. In traditional reinforcement learning, the agent learns a value function that
estimates the expected future cumulative discounted reward (value) for each state-action pair. The value function tells
the agent how “good” a particular state-action pair is, and the agent uses this information to make decisions about
which actions to take in order to maximize its value. However, this approach can be problematic in some cases, such
as when the environment is highly stochastic or when the reward signal is noisy.

Distributional reinforcement learning is a variation of reinforcement learning that addresses these challenges by learn-
ing a distribution of future cumulative discounted rewards (value distribution), rather than a single expected value, for
each state-action pair. This distributional approach allows the agent to consider the uncertainty or variability in the
rewards it may receive, and can lead to more robust and accurate decision-making.

Algorithms for distributional reinforcement learning can be separated along two axis: the representation of the value
distribution for a given state-action pair and the measurement of the difference between distributions. Some algorithms
utilize a discrete set of samples to represent the distribution (Bellemare et al., 2017; Dabney et al., 2017; Nguyen-Tang
et al., 2021), while others employ implicit distributions parameterized by a neural network (Dabney et al., 2018; Yang
et al., 2019). Additionally, the agent must have the ability to measure the difference between the predicted value dis-
tribution for a given state-action pair and the actual value distribution received, in order to update its predictions. This
difference measure is crucial for the agent to learn and adapt. The Kullbach-Leibler divergence is widespread in the
probabilistic machine learning field but possesses some undesirable properties for use in distributional reinforcement
learning. Instead, measures such as the Wasserstein metric, the Cramér distance, and the maximum mean discrepancy
have shown better results (Bellemare et al., 2017; Dabney et al., 2017; Nguyen-Tang et al., 2021; Dabney et al., 2018;
Yang et al., 2019).

The distributional Bellman operator is a key component of distributional reinforcement learning algorithms. It is
used to update the value distribution for a given state-action pair based on the observed rewards and transitions in
the environment. The distributional Bellman operator is a contraction under certain conditions, which means that
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it guarantees that the distance between the updated and original value distribution will always be non-increasing,
converging to the true value distribution in the limit (with convergence properties similar to those of the usual Bellman
operator used, e.g., in Q-learning).

Our main contribution in this paper is a theoretical analysis and extension of the work by Nguyen-Tang et al. (2021)
on on moment matching for distributional RL. Additionally, our results may also be of theoretical interest for under-
standing the properties of the distributional Bellman operator.

2 Background

This section introduces the necessary background in both classical reinforcement learning, and distributional rein-
forcement learning, and describe some current state-of-the-art distributional reinforcement learning methods.

2.1 Reinforcement Learning

We consider the standard reinforcement learning (RL) setting, where interaction between an agent and its environment
is modeled as a Markov Decision Process (S,A, R, P, γ) (Puterman, 1994), where S ⊆ Rd and A denote the state
and action space respectively. The stochastic reward function R : S × A → R is a function that maps the state and
action of an agent to a reward value with some element of randomness or uncertainty. P (·|x, a) denotes the transition
probabilities starting in state x ∈ S and doing a ∈ A, and γ ∈ [0, 1) is the discount factor. A policy π(·|x) maps
states to distributions over actions.

The Bellman equation is often used as the foundation for algorithms that solve MDPs, such as Q-learning. In general,
the equation describes a necessary condition for an optimal solution in dynamic programming optimization. In the
context of reinforcement learning, it is often used to describe the optimal state-action value function Q∗. According
to the Bellman equation, described by (1), the accumulated discounted reward, or value, of a state-action pair is equal
to the sum of the immediate reward from the current action and the discounted expected reward from future actions:

Q∗(x, a) = E [R(x, a)] + γEx′∼P

[
max
a′∈A

Q∗(x′, a′)
]
. (1)

A common approach to solving the Bellman equation uses the Bellman operator. The Bellman operator, T π , maps
state-action values to their next state-action values. The Bellman operator for a policy π is defined as follows:

T πQ(x, a) := E [R(x, a)] + γEx′∼P,a′∼π [Q(x′, aπ)] . (2)

Alternatively, we can define the Bellman operator for an optimal policy, also known as the Bellman optimality operator
as

T ∗Q(x, a) := E [R(x, a)] + γEx′∼P

[
max
a′∈A

Q(x′, a′)
]
. (3)

The significance of the Bellman operators is that they are contraction mappings wrt the supremum norm. In other
terms, for some k ∈ (0, 1), we have

∥T πQ1 − T πQ2∥∞ ≤ k ∥Q1 −Q2∥∞ . (4)

According to the Banach fixed-point theorem Banach (1922), that means that we have the following properties:

lim
k→∞

(T π)kQ = Qπ, (5)

lim
k→∞

(T ∗)kQ = Q∗. (6)

Deep Q-Network (DQN) (Mnih et al., 2013) approximates Q using a neural network, which we will denote Qθ. Mnih
et al. (2013) proceed to approximate Q∗ using gradient descent to minimize the distance
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L(θ) = d (T πQθ(xt, at), Qθ(xt, at)) . (7)

More specifically, they let d be the ℓ2 distance, in which case this is also called the squared temporal difference.

2.2 Distributional Reinforcement Learning

Distributional reinforcement learning focuses on learning the distribution of cumulative discounted reward, rather than
just the expected value. In distributional reinforcement learning, the algorithm typically uses a function to approximate
the distribution over returns for each state-action pair. This function is updated over time based on the rewards received
and the predicted distribution of rewards for each state-action pair. By doing this, the algorithm can learn to anticipate
the range of possible cumulative discounted rewards and make decisions that maximize the expected value.

For an agent following policy π, Zπ , or value distribution (Bellemare et al., 2017), is the sum of discounted rewards
along the agent’s trajectory:

Zπ(x, a) :=
∞∑

t=0
γtR(xt, at), (8)

starting in state x0 = x, with a0 = a, at ∼ π(·|xt), and xt ∼ P (·|xt−1, at−1). The objective of RL can be
summarized as finding the optimal policy, that is the sequence of actions that an agent should take, in order to maximize
the reward signal Qπ(x, a) := EP,R,π [Zπ(x, a)] of a given state-action pair. In other words, we look for the strategy
that the agent should follow to achieve the best possible outcome in expectation.

The distributional Bellman operator is a mathematical operator used in distributional reinforcement learning to esti-
mate the probability distribution of future rewards for each state-action pair in an environment. This operator is based
on the Bellman equation. The distributional Bellman operator extends the Bellman equation to estimate the probability
distribution of future rewards, rather than just the expected value. This allows the operator to capture the uncertainty
and variability of the rewards in the environment, and to make predictions about the range of possible outcomes. Given
a random variable Zπ denoting the value distribution, the operator is defined as

T πZπ(x, a) : D=R(x, a) + γZπ(x′, a′), (9)

where A D=B denotes equality in distribution, i.e. random variable A and B have the same distribution, and a′ ∼
π,x′ ∼ P (x′|x, a′).

The distributional version of Equation 7 is

L(θ) = d (T πZθ(xt, at), Zθ(xt, at)) , (10)

but in this case, because we are operating on distributions and not values, we can no longer use the ℓ2 metric. There
are many distance measures for distributions to choose between, but not all of them are suitable for this use-case. It is
important for distributional Q-learning that the distributional Bellman operator is a contraction in d. What this means
is that for some k ∈ (0, 1), we have that

d (T πZ1, T πZ2) ≤ kd (Z1, Z2) . (11)

We can then use d, or some estimator of d, as a loss function and our algorithm will converge.

Bellemare et al. (2017) show that the distributional Bellman operator for a fixed policy (T π) is a contraction in the
p-Wasserstein metric and Cramér distance, but not in KL-divergence, total variation or Kolomogrov distance. Nguyen-
Tang et al. (2021) further show that T π is a contraction in maximum mean discrepancy for carefully selected kernels.

3



Under review as submission to TMLR

2.2.1 Learning Categorical Distributions

One popular approach to distributional reinforcement learning is to approximate the distribution of values, Z, by a
discretized or categorical variable. C51 was introduced by Bellemare et al. (2017) as an extension of DQN. Like
DQN, C51 uses a neural network to approximate the action-value function, but instead of outputting a single value for
each action, it outputs a distribution over the possible returns. This distribution is represented using a set of discrete
“atoms”, which allows the agent to represent a wide range of possible returns. 51 discrete atoms per action were used
in their Atari 2600 experiments, hence the name C51.

In C51, the distance between two distributions is calculated using the Kullback-Leibler (KL) divergence. One issue
with using the KL divergence as a measure of the difference between two distributions in distributional reinforcement
learning is that the distributional Bellman operator is not a contraction in KL divergence (Bellemare et al., 2017).
Because the Bellman operator is not a contraction in KL-divergence, there is no fixed-point, hence it cannot be used
for TD-learning.

For this reasons, KL divergence is generally not considered a good measure of the difference between two distribu-
tions in distributional reinforcement learning. Instead, other methods typically use measures such as the Wasserstein
distance or the Cramér distance, which do satisfy the contraction property Bellemare et al. (2017).

2.2.2 Quantile Regression

Quantile Regression DQN (QR-DQN) is a variant of DQN introduced by Dabney et al. (2017). To learn the value dis-
tribution, QR-DQN uses quantile regression Q-learning, which is based on quantile regression, a statistical technique
for estimating the conditional quantile function of a random variable.

One advantage of QR-DQN is that it uses the Wasserstein distance, also known as the Earth Mover’s distance, as a
measure of the difference between two distributions. The Wasserstein distance is a well-known metric in the field of
probability theory and statistics, and it has several desirable properties that make it a good choice for distributional
reinforcement learning:

• The Wasserstein distance is a true metric, meaning that it satisfies the triangle inequality and is symmetric.
This makes it a more consistent and reliable measure of the difference between two distributions than the
Kullback-Leibler (KL) divergence, which does not satisfy these properties.

• The Wasserstein distance is a smooth, continuous function, which makes it well-suited for use with gradient-
based optimization methods. This is important in reinforcement learning, where algorithms often rely on
gradient-based optimization to learn the value function.

• The distributional Bellman operator is a contraction in Wasserstein distance.

2.2.3 Implicit Quantile Regression

Implicit quantile regression DQN (IQR-DQN) (Dabney et al., 2018) is a variant of the QR-DQN (Dabney et al., 2017)
algorithm. Unlike QR-DQN, which uses an explicit quantile regression model to estimate the distribution of returns,
IQR-DQN uses an implicit quantile model, which is a neural network that directly maps states and actions to quantiles
of the return distribution.

Work on IQR-DQN (Dabney et al., 2018; Yang et al., 2019) has focused on developing efficient and effective algo-
rithms for learning the implicit quantile model, as well as on demonstrating the performance of IQR-DQN on a variety
of reinforcement learning tasks. Results have shown that IQR-DQN can learn more accurate value distributions than
other distributional reinforcement learning methods and that it can achieve better performance.

2.2.4 Moment-matching

Nguyen-Tang et al. (2021) proposed to minimize the maximum mean discrepancy (MMD), rather than the Wasserstein
distance. The squared maximum mean discrepancy between two distributions p and q relative to a kernel k is defined
as
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MMD2(p, q; k) = E [k(X,X ′)] + E [k(Y, Y ′)]− 2E [k(X,Y )] , (12)

where X,X ′ are independent random variables with distribution p and Y, Y ′ are independent random variables with
distribution q. Given two sets of samples {xi}m

i=1 ∼ p and {yi}m
i=1 ∼ q, Gretton et al. (2012) introduced the following

unbiased estimator of MMD

M̂MD
2
u({xi}, {yi}; k) := 1

m(m− 1)
∑
i ̸=j

k(xi,xj) + k(yi,yj)− 2k(xi,yj).

Nguyen-Tang et al. (2021) use a biased estimator M̂MDb of MMD, but justify the choice by noting that the estimator
in practice shows lower variance than its unbiased counterpart. This biased estimator, also introduced by Gretton et al.
(2012), is defined as

M̂MD
2
b({xi}, {yi}; k) := 1

m2

∑
i,j

k(xi,xj) + k(yi,yj)− 2k(xi,yj).

Kernels One set of interesting kernels are those on the form k(x,y) = −∥x − y∥β
2 . Nguyen-Tang et al. (2021)

call this class of kernels unrectified kernels. MMD with the unrectified kernel and β = 2 is zero as long as the two
distributions are equal in expectation (Székely & Rizzo, 2013). This means that we will not see the convergence in
distribution, but rather in expectation, essentially reducing it to classical Q-learning. Nguyen-Tang et al. (2021) look
at the practical performance of this kernel, and finds it performs unfavorably compared to some other kernels.

Székely & Rizzo (2013) showed that with kernels of the form k(x,y) = −∥x−y∥β
2 for β ∈ (0, 2), then MMD(µ, ν; k)

is zero if and only if µ and ν are equal in distribution. Nguyen-Tang et al. (2021) further show that the distributional
Bellman operator is a contraction in these kernels. Practical performance was evaluated for β = 1, but the results were
not promising.

The RBF kernel is a common choice in Gaussian processes and other applications. It is defined as

kh(x,y) = exp
(
−h2∥x− y∥2

2
)
, (13)

where h is a free parameter. Nguyen-Tang et al. (2021) showed by counterexample that the distributional Bellman
operator is not a contraction under MMD with the RBF kernel, but also found that the RBF kernel performs favorably
compared to the unrectified kernels when using a mixture of RBF kernels with different length-scale values, defined
as

k(x,y) =
10∑

l=1
exp

(
−l−1∥x− y∥2

2
)
. (14)

In this paper we will investigate the performance of the multiquadric kernel (MQ) (Hardy, 1971) for moment matching
distributional reinforcement learning. Given a free parameter h, the multiquadric kernel is defined as

kh(x,y) = −
√

1 + h2∥x− y∥2
2. (15)

Note that the term kernel is often used as a short hand for positive-definite kernels. We will not make this restriction,
and instead refer to a kernel as any symmetric real-valued function of two variables. The MQ, unlike the RBF, is not
positive definite, but is in a class called conditionally positive definite. In Section 3 we look at the properties of this
kernel.
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Radial Kernel ψ(t) 1 2 3 4
Multiquadric −

√
1 + h2t2

RBF exp(−h2t2)
Unrectified −|t|
Unrectified −t2

Table 1: Property 1 - 4 for various radial kernels.

Pseudo-samples MMDQN (Nguyen-Tang et al., 2021) use the QR-DQN network structure to approximate Z. They
define the N outputs per action to be pseudo-samples from Zθ, and then minimize MMD2

b between the pseudo-
samples from Zθ and T Zθ. This means that true samples from the value distribution are never drawn, and that the
approximation is completely deterministic. There is no underlying restrictions with the algorithm that would suggest
that a sampling based approach would not also work.

Open question Nguyen-Tang et al. (2021) pose a question on what the sufficient conditions on the kernels are for the
Bellman operator to be a contraction in MMD. They further question whether scale sensitivity is a necessary condition.
In Section 3 we show by counterexample that scale sensitivity is not a necessary condition for contraction in MMD.

3 Theoretical Work

In this paper, we propose to use the multiquadric kernel for moment-matching distributional reinforcement learning.
Figure 1 provides an illustrative comparison between the multiquadric kernel and the kernels discussed in section 2.2.4.
Our choice of the multiquadric kernel, kh, is motivated by several desirable properties it possesses:

1. MMD(·, ·; kh) is a metric on probability distributions,

2. The Bellman operator is a contraction in MMD with kh,

3. MMDb(·, ·; kh) is smooth,

4. supx∈Rn∥ ∂
∂x MMD2

b(x,y; kh)∥2≤ Ch <∞ for some constant Ch dependent on h.

Table 1 shows property 1 - 4 for a range of radial kernels, i.e. kernels on the form k(x,y) = ψ(∥x−y∥2). We observe
that only the multiquadric kernel possesses all the aforementioned properties. As far as we know, the MQ kernel is
the only kernel that satisfies all properties 1 - 4 and is the first non-scale-sensitive kernel with the contraction property.
Proofs for property 1 and 2 will follow. Proofs for property 3 and 4 are available in the appendix as Lemma A.1 and
Lemma A.2 respectively.

First, we show that under the multiquadric kernel, maximum mean discrepancy (MMD) is a metric in the family of
valid distributions. In other words, it satisfies the triangle inequality, is symmetric, non-negative, and is zero if and
only if the distributions are equal. This is important in the context of distributional reinforcement learning, as it ensures
that the distance measure used to compare the predicted and true distributions of returns is consistent and reliable.

Second, we demonstrate that the distributional Bellman operator is a contraction in MMD with the multiquadric kernel.
This property is important in reinforcement learning, as it ensures that the agent’s estimate of the distribution of returns
will necessarily get closer to the true distribution as it takes more actions and gathers more experiences. This can help
the agent to more accurately learn the distribution of returns and make good decisions based on that distribution.

Furthermore, the multiquadric kernel has smoothness properties, resulting in a smooth maximum mean discrepancy
when using the multiquadric kernel. In many practical scenarios, it is commonly observed that a smoothness property
in the loss function tends to lead to gradients that exhibit a greater degree of stability and better performance (Gokcesu
& Gokcesu, 2021; Patterson et al., 2023). In the context of reinforcement learning, this can ultimately lead to faster
convergence and better performance of the model. This is one of the motivations behind the use of the ℓ2 metric and
the Huber loss over ℓ1 metric in deep learning.
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Figure 1: The multiquadric (MQ) kernel compared to the kernels discussed in section 2.2.4 as a function of the
Euclidean distance between two points. h = 1 was chosen for both MQ and RBF.

Finally, the magnitude of the gradient of the kernel is upper bounded by a constant. If the magnitude of the gradient is
not upper-bounded, the learning algorithm may oscillate or diverge, rather than converge to a stable and accurate so-
lution. By upper bounding the magnitude of the gradient, it is possible to ensure that the learning algorithm converges
to a stable and accurate solution in a reasonable amount of time. This is one of the reasons the Huber loss has become
so popular in reinforcement learning, and why we often see gradient clipping being performed when the ℓ2 metric is
used as a loss function.

Our proof that the distributional Bellman operator is a contraction in MMD with the multiquadric kernel requires a
few definitions and existing lemmas. We begin by defining completely monotonic functions and conditionally (strictly)
positive definite kernels.

Definition 3.1. f(x) is a completely monotonic function (Schilling et al., 2012, Definition 1.3) if it is infinitely
differentiable and

(−1)nf (n)(x) ≥ 0 for x > 0 and n = 0, 1, 2, . . .

Definition 3.2. A real-valued kernel k is called conditionally positive definite if it is symmetric, i.e. k(x,y) =
k(y,x), and satisfies

m∑
i=1

m∑
j=1

cicjk(xi,xj) ≥ 0 (16)

for any c ∈ Rm with
m∑

i=1
ci = 0.

It is called conditionally strictly positive definite if the greater or equal sign in Equation 16 can be replaced by a
greater-sign.

The following three lemmas provide a basis for our main results in Theorem 3.1 and Theorem 3.2.

Lemma 3.1 (Székely & Rizzo, 2013, Proposition 3). MMD(·, · ; k) is a metric on P(X ) if and only if k is a condi-
tionally strictly positive definite kernel.

Lemma 3.2 (Micchelli, 1986, Theorem 2.1). Let g(t) := f(
√
t). Then f is conditionally positive definite if and only

if −g′(t) is completely monotonic.

Lemma 3.3 (Wendland, 2004, Corollary 8.20). f is conditionally strictly positive definite if and only if it is condi-
tionally positive definite and not a polynomial of order 2 or less.

Theorem 3.1 formally states property 1 of the multiquadric kernel.

Theorem 3.1. MMD(·, · ; kh) is a metric on P(X ) for the multiquadric kernel kh(x,y) = −
√

1 + h2∥x− y∥2
2
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Proof. By utilizing Lemma 3.1, we only need to show that the multiquadric kernel is conditionally strictly positive
definite.

We rewrite kh(x,y) as f(h2∥x − y∥2). We can directly show that for g(t) = f(
√
t) = −

√
1 + t with t > 0, then

−g′(t) = 1
2

√
1+t

is completely monotonic. By induction, we see that its n-th derivative

dn

dtn
1

2
√

1 + t
=
√
π(x+ 1)−n−1/2

2Γ
( 1

2 − n
)

has an oscillating sign on (0,∞), due to the sign of the gamma function for strictly negative values. By Lemma 3.2, we
conclude that f(t) is conditionally positive definite. By Lemma 3.3, f(t) is conditionally strictly positive definite.

Lemma 3.4 is the basis for our proof that the distributional Bellman operator is a contraction in MMD with the
multiquadric kernel (Theorem 3.2).

Lemma 3.4. f(t; a, b) :=
√
a+ t2 −

√
b+ t2 is positive definite for a > b.

In order to establish the positive definiteness of f(t), we begin by taking the n-th derivative of f(
√
t) and demon-

strating that it is completely monotonic. Utilizing Lemma 3.4, we can then conclude that f(t) is positive definite. A
comprehensive proof can be found in the appendix.

Theorem 3.2. The distributional Bellman operator is a contraction in MMD with the multiquadric kernel.

The detailed proof of Theorem 3.2 is given in the appendix. The main step is to show that it is sufficient to prove that
the kernel

k(x,y) =
√

1
γ2 + h2∥x− y∥2

2 −
√

1 + h2∥x− y∥2
2

is conditionally positive definite. As a result of Lemma 3.4 the kernel is positive definite, hence it is also conditionally
positive definite.

4 Limitations of the Radial Basis Function for MMD

In this section, we aim to investigate the sensitivity of MMDQN (Nguyen-Tang et al., 2021) performance on Atari
problems to RBF kernel parameters. While MMDQN has achieved remarkable performance across all 57 games,
questions remain regarding how sensitive this performance is to changes of the kernel. The use of a single mixture
kernel for all 57 games, may give the impression that the method is relatively insensitive to the kernel, however, we will
show that this is not the case. We will also identify settings where the optimal RBF parameters are more challenging
to find. It is worth noting that the authors do not claim that these parameters will generalize to different environments;
quite the contrary, they state that the kernel’s role in performance is crucial. They also state that identifying a kernel
that performs well on all games is challenging. In this context, we explore the impact of the RBF bandwidth parameter
on MMDQN performance in simple toy settings.

It is interesting to see whether there exist settings where the RBF kernel does possess the contraction property. Using
a similar proof to that of Theorem 3.2, we can show that for two distributions ν, µ with bounded support, the distri-
butional Bellman operator is a contraction in MMD with the RBF kernel under certain bounds for h. Corollary 3.1
defines the bounds. The proof is given in the appendix.

Corollary 4.1. Let k(x,y) = exp(−h2∥x − y∥2
2). Then the distributional Bellman operator is a contraction in

MMD2(µ, ν; k) for distributions µ, ν with support Sµ, Sν if for some α ∈ (0, 2)

sup
x∈Sµ,y∈Sν

∥x− y∥2 ≤
log(γ2−α)
(γ2 − 1)h2 .
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The implication of the corollary is that when the approximation of the value distribution has a bounded support, RBF’s
h-parameter can be chosen such that convergence is guaranteed. Conversely, if the support is unbounded, there is no
guarantee of convergence. With finite rewards and γ ∈ [0, 1) the true value distribution will always have a bounded
support. This means that a model with bounded support does not necessarily limit the model’s ability to approximate
the true value distribution. Choosing h small enough to satisfy this condition, however, makes the kernel very flat near
0, hence reducing the kernels power to differentiate between samples close together.

We noticed that for all the Atari games that MMDQN (Nguyen-Tang et al., 2021) released videos of the Z-distribution
was uni-modal. Multi-model modelling of the Z-distribution is important when making risk-adjusted actions, where
it may be worth choosing an action with a slightly lower expected return, if it means not risking a really low return.
Although our experiments does not take risk into account when performing actions, we hypothesize a uni-modal
approximation could still be a limiting factor for performance in the Atari benchmarks. Therefore, we designed a
procedure to evaluate MMDs ability to fit multi-modal distributions with the RBF kernel. The procedure is described
in Algorithm 1.

Algorithm 1 Procedure for evaluating the ability of MMD with kernel k to approximate a distribution.

Require: k, P, {x}1:N , T
AD-statistics← Array[1 : T ]
for t = 1 : T do

yi ∼ P for i = 1, . . . , N
{∆x}1:N ← ∇xM̂MDb ({x}1:N , {y}1:N ; k)
{x}1:N ← Optimiser({x}1:N , {∆x}1:N )
AD-statistics[t]← Anderson-Darling({x}1:N , P )

end for
return AD-statistics

The procedure starts with some pseudo-samples {x}1:N and a target distribution P . Over T gradient updates, the
distribution represented by the pseudo samples should move closer to P . The Anderson-Darling test (Anderson &
Darling, 1952) tests whether a given sample comes from a distribution. We use this test to evaluate the effectiveness
of the kernels to fit the distribution. The test scores samples on a scale of 0 to 1, where a low score indicates that it is
unlikely that the samples come from the target distribution.

For the Anderson-Darling test experiment, we chose a Gaussian mixture model with two components, N (−2, 0.2)
and N (2, 0.2) with weights 0.2 and 0.8 respectively. For comparison, we tested the multiquadric kernel (MQ) with
h = 1, h = 10, and h = 100. For the RBF we used the same kernel that Nguyen-Tang et al. (2021) used in their
Atari experiments, viz. Equation 14. Search for a more effective RBF yielded no positive results. Even though such
a kernel may exist, our results show that it is not trivial to find such a kernel, and suggest that performance can suffer
as a result. The results of the experiment is shown in Figure 2. A learning rate of 0.1 was used for MQ and a learning
rate of 0.01 was used for RBF. MQ was scaled by h−1 to avoid the magnitude of the gradients growing significantly
with h.

5 Experiments

To evaluate the performance of the multiquadric kernel, we conducted experiments on 8 Atari games from the Arcade
Learning Environment (ALE). Our goal was to see whether our algorithm was able to achieve results similar to those
obtained by MMDQN with the RBF kernel, a state-of-the-art distributional reinforcement learning algorithm, while
also demonstrating the benefits of using a kernel with theoretical guarantees.

To show that we are not handpicking games that the multiquadric kernel performs better on, we use the 6 Atari games
Nguyen-Tang et al. (2021) used for tuning (Breakout, Assault, Asterix, MsPacman, Qbert, and BeamRider). We have
selected two additional games, one where MMDQN performed significantly better than QR-DQN (Tutankham), and
one where it performed significantly worse (SpaceInvaders). We are interested in whether the multiquadric kernel,
with its contraction property, will outperform the RBF kernel in environments where the RBF kernel struggles. By
inspecting the original results presented in the MMDQN paper Nguyen-Tang et al. (2021), we see that most of the

9
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Figure 2: Figure showing target distribution and p-value for the Anderson-Darling test with the null-hypothesis that
the samples are drawn from P against the alternative hypothesis that the samples are not drawn from P .

environments in which MMDQN significantly outperforms QR-DQN are part of the 6 games used for tuning. This
suggests that appropriate kernel parameters are important for performance.

To ensure that we do not involuntarily skew the experiments in favor of the multiquadric kernel, we used the original
implementation of MMDQN by Nguyen-Tang et al. (2021), and all except the kernel parameters remained the same.
Equation 14 defines the parameters used for the RBF mixture kernel. We investigate two parameter values for the
multiquadric kernel, h = 1 and h = 10. The results in Figure 3 show similar performance between the multiquadric
and RBF kernel, despite the hyperparameter optimization that has been done for the RBF kernel parameters over
these games. This could explain the slightly worse performance in Asterix and Assault. Interestingly, the RBF kernel
performed significantly worse on SpaceInvaders. Although no definitive conclusions can be made from this, it does
support our argument that the performance is more sensitive to RBF kernel parameters. Raw result data for MQ is
available at http://example.com1. The numbers for RBF and QR-DQN are taken from Nguyen-Tang et al. (2021),
and are available along with the implementation of MMDQN at https://github.com/thanhnguyentang/mmdrl.

For more evidence that MQ performs on par with RBF, we have presented human-normalized agregates in Figure 4.
As suggested by Agarwal et al. (2021), we have used the more robust interquartile mean (IQM) as an aggregate, rather
than a the mean or median. Although these results suggest that MQ performs significantly better, because we are
only evaluating the methods on 8 environments, the results for RBF are heavily punished by its poor performance on
SpaceInvaders, despite the use of the more robust IQM statistic. In combination with the results presented in Figure 3,
we believe these results show that MQ performs at least on par with RBF.

6 Discussion and Conclusions

We have explored the use of the multiquadric kernel for distributional reinforcement learning in this paper. We have
shown that the multiquadric kernel has several key theoretical properties that have been studied in this context:

1. The distributional Bellman operator is a contraction in MMD with the multiquadric kernel.

2. MMD is a metric under the multiquadric kernel, which means the MMD between two random variables can
only be zero when they are equal in distribution.

There are several reasons why a theoretically sound kernel might be preferred over a kernel that performs similarly but
lacks theoretical guarantees:

1The URL to a repository containing all our results will be made available once the article is accepted for publication.
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Figure 3: Training curves for QR-DQN and MMDQN with the MQ and RBF on 8 Atari 2600 games. Curves for
MMDQN are averaged over 3 seeds and smoothed over a sliding window of 5 iterations. QR-DQN is averaged over
2 seeds. 95% confidence intervals are shown. Reference values for QR-DQN and RBF are from Nguyen-Tang et al.
(2021).
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• The contraction property provides a rigorous foundation for the algorithm and can give us confidence in
the performance and behavior of the algorithm under different conditions. This is especially important in
reinforcement learning, where the agent is learning to interact with and make decisions in a complex and
potentially unknown environment.

• The properties discussed in section 3 can help to ensure the algorithm is well-behaved and robust and can
help to avoid pathological or degenerate cases that might arise with kernels that lack the metric or contraction
property.

• The discussed properties, particularly the metric and contraction property can facilitate the development of
new techniques and variations on the algorithm, by providing a clear set of assumptions and guarantees that
can be built upon or modified.

• MMD with MQ kernel’s improved ability to model bimodal distribution can be critical for risk-sensitive
policies where low returns are particularly detrimental, such as in investment management.

Overall, while it is certainly important to consider the practical performance of a kernel, a theoretically sound kernel
can offer a number of additional benefits that can make it a compelling choice for moment-matching distributional
reinforcement learning. Additionally, our experimental results show that the multiquadric kernel is stable with regards
to parameter-changes, and that a mixture kernel is not necessary to achieve good results.

Furthermore, through Corollary 4.1, we have provided insight into the practical performance of the RBF kernel.
The relationship between convergence, the parameter h, and the support of value distributions can provide insight
into tuning h for each task. Alternatively, it could provide the basis for an algorithm that learns and changes h
during training. Such an algorithm was proposed as future work by Nguyen-Tang et al. (2021). It is possible that the
RBF kernel may encounter difficulties in such a scenario due to the absence of a convergence guarantee and that the
multiquadric kernel may be a more suitable alternative.

Finally, our results demonstrate the potential of the multiquadric kernel for distributional reinforcement learning. Its
contraction and metric property make it a promising choice for a wide range of reinforcement learning tasks. Further
research is needed to fully explore the capabilities of the multiquadric kernel and to compare its performance to other
kernels in more diverse and challenging environments.
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Lemma A.1. Let kh be the multiquadric kernel, then M̂MDb(·, ·; kh) is smooth.

Proof. The multiquadric is infinitely smooth, i.e. is infinitely differentiable. We can see this by looking at its deriva-
tives. First, for n = 1 we have

d

dx
−

√
1 + h2x2 = −h2x(1 + h2x2)− 1

2 ,
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and for n > 1
dn

dxn
−

√
1 + h2x2 = hnPn−2(x)(1 + h2x2)−n+ 1

2 ,

where Pn is a polynomial of degree n. Since MMD2
b(·, ·; kh) is a finite sum of infinitely smooth functions, it is also

infinitely smooth.

According to Alekseevsky et al. (1998), non-negative infinitely smooth functions always have a smooth square root.
MMD2

b(·, ·; kh) is non-negative (Gretton et al., 2012) and as shown above, infinitely smooth, hence MMDb(·, ·; kh)
must be smooth.

Lemma A.2. Let kh be the MQ, and M̂MD
2
b({xi}n, {yi}n; kh) : A×B → R, where A and B are sets of real values

x1:n ∈ Rd and y1:n ∈ Rd respectively. Then M̂MD
2
b is Lipschitz continuous wrt A and B.

Proof. The first derivative of the MQ kernel is bounded,∥∥∥∥ ∂

∂x
−

√
1 + h2∥x− y∥2

2

∥∥∥∥
2

=
∥∥∥−h2(x− y)

(
1 + h2(x− y)2)− 1

2
∥∥∥

2
≤ ∥−h1d∥2 =

√
dh.

Because M̂MD
2
b({xi}, {yi}; kh) is a finite sum of functions with bounded gradient, its gradient is necessarily also

bounded.

Lemma A.3. f(t; a, b) :=
√
a+ t2 −

√
b+ t2 is positive definite for a > b.

Proof. Let g(t) := f(
√
t) =

√
a+ t −

√
b+ t. We use that a function f(t) is positive definite if and only if g(t) is

completely monotonic. By induction, it follows that

dn

dtn
√
c+ t = (c+ t)1/2−n

(
3
2 − n

)
n

,

where (·)n is the Pochhammar symbol. Hence,

dn

dtn
√
a+ t−

√
b+ t

= (a+ t)1/2−n

(
3
2 − n

)
n

− (b+ t)1/2−n

(
3
2 − n

)
n

=
(

(a+ t)1/2−n − (b+ t)1/2−n
) (

3
2 − n

)
n

.

The first term is positive for n = 0 and negative otherwise. The second term is positive for n = 0 and has sign (−1)n+1

otherwise. It is therefore evident that g(t) is completely monotonic and thus f(t) is positive definite (Lemma 3.2).

Definition A.1. (f)#µ is the distribution of a random variable f(X), with X ∼ µ. This is known as the pushforward
measure of µ by f .

Theorem A.1. The distributional Bellman operator is a contraction in MMD with the multiquadric kernel.

Proof. Let k be the multiquadric kernel, i.e.

k(x,y) = ψ(x− y) = −
√

1 + h2∥x− y∥2
2.

Nguyen-Tang et al. (2021) prove that for the distributional Bellman operator to be a contraction it is sufficient to show
that for all γ ∈ (0, 1)

MMD2
(

(fr,γ)#µ, (fr,γ)#ν; k
)
≤ γMMD2(µ, ν; k),

14
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where (fr,γ)#µ denotes the pushforward measure of µ by (fr,γ)#. Nguyen-Tang et al. (2021, Lemma 4) states that
this holds with equality for all scale sensitive and shift-invariant kernels k, i.e. whenever k(r+γx, r+γy) = γαk(x, y)
for some α > 0. We will show that this condition holds for the multiquadric kernel.

First, we will define

ψ̃γ(z) := −
√

1
γ2 + h2∥z∥2

2,

with
k̃γ(x,y) := ψ̃γ(x− y).

Note that ψ(γz) = γψ̃γ(z).

MMD2
(

(fr,γ)#µ, (fr,γ)#ν; k
)

=
∫ ∫

k(z, z′)(fr,γ)#µ(dz)(fr,γ)#µ(dz′)

+
∫ ∫

k(w,w′)(fr,γ)#ν(dw)(fr,γ)#ν(dw′)

− 2
∫ ∫

k(w,w′)(fr,γ)#µ(dz)(fr,γ)#ν(dw)

=
∫ ∫

k(r + γz, r + γz′)µ(dz)µ(dz′) +
∫ ∫

k(r + γw, r + γw′)ν(dw)ν(dw′)

− 2
∫ ∫

k(r + γz, r + γw)µ(dz)ν(dw)

=
∫ ∫

ψ(γz − γz′)µ(dz)µ(dz′) +
∫ ∫

ψ(γw − γw′)ν(dw)ν(dw′)

− 2
∫ ∫

ψ(γz − γw)µ(dz)ν(dw)

=
∫ ∫

γψ̃γ(z − z′)µ(dz)µ(dz′) +
∫ ∫

γψ̃γ(w −w′)ν(dw)ν(dw′)

− 2
∫ ∫

γψ̃γ(z −w)µ(dz)ν(dw)

= γMMD2(µ, ν; k̃γ)

Showing that MMD2(µ, ν; k̃γ) ≤ MMD2(µ, ν; k), or equivalently MMD2(µ, ν; k)−MMD2(µ, ν; k̃γ) ≥ 0 is there-
fore sufficient.

MMD2(µ, ν; k)−MMD2(µ, ν; k̃γ) =
( ∫ ∫

ψ(z − z′)µ(dz)µ(dz′) +
∫ ∫

ψ(w −w′)ν(dw)ν(dw′)

− 2
∫ ∫

ψ(z −w)µ(dz)ν(dw)
)
−

( ∫ ∫
ψ̃γ(z − z′)µ(dz)µ(dz′)

+
∫ ∫

ψ̃γ(w −w′)ν(dw)ν(dw′)− 2
∫ ∫

ψ̃γ(z −w)µ(dz)ν(dw)
)

=
∫ ∫

ψ(z − z′)− ψ̃γ(z − z′)µ(dz)µ(dz′)

+
∫ ∫

ψ(w −w′)− ψ̃γ(w −w′)ν(dw)ν(dw′)

− 2
∫ ∫

ψ(z −w)− ψ̃γ(z −w)µ(dz)ν(dw)

= MMD2(µ, ν; k − k̃γ)

15
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Since MMD2 is non-negative for conditionally positive definite kernels, it is sufficient to show that

ψ(z)− ψ̃γ(z)

is conditionally positive definite for γ ∈ (0, 1). Lemma 3.4 shows that

ψ(z)− ψ̃γ(z) =
√

1
γ2 + h2∥z∥2

2 −
√

1 + h2∥z∥2
2

is positive definite for γ ∈ (0, 1), and therefore conditionally positive definite, which concludes the proof.

Corollary A.1. Let k(x,y) = exp(−h2∥x − y∥2
2). Then the distributional Bellman operator is a contraction in

MMD2(µ, ν; k) for distributions µ, ν with support Sµ, Sν such that for some 0 < α < 2

sup
x∈Sµ,y∈Sν

∥x− y∥2 ≤
log(γ2−α)
(γ2 − 1)h2 . (17)

Proof. Utilizing the proof for Theorem 3.1, we note that all we have to do is show that

γαk(x,y)− k(γx, γy)

is conditionally positive definite when Equation (17) holds.

By Lemma 3.2, this means that

− d

dz
γα exp(−h2z)− exp(−h2γ2z) = γαh2 exp(−h2z)− h2γ2 exp(−h2γ2z)

is conditionally positive definite. Let us begin by showing that the first derivative is negative.

h2γαh2 exp(−h2z)− γ2 exp(−h2γ2z) ≥ 0
⇐⇒ exp(−h2z)− γ2−α exp(−h2γ2z) ≥ 0
⇐⇒ − h2z ≥ log(γ2−α)− h2γ2z

⇐⇒ h2γ2z − h2z ≥ log(γ2−α)
⇐⇒ h2(γ2 − 1)z ≥ log

(
γ2−α

)
⇐⇒ z ≤ log(γ2−α)

(γ2 − 1)h2 (This is the requirement in Equation 17)

Now we show that for n ≥ 1
(−1)n d

dzn
γα exp(−h2z)− exp(−h2γ2z) ≥ 0

whenever
− d

dz
γα exp(−h2z)− exp(−h2γ2z) ≥ 0.

For γ ∈ (0, 1) we have

(−1)n d

dzn
γα exp(−h2z)− exp(−h2γ2z) = γαh2n exp(−h2z)− h2nγ2n exp(−h2γ2z)

= h2n−1 (
γαh2 exp (−h2z)− h2γ2n exp (−h2γ2z)

)
≥ h2n−1 (

γαh2 exp (−h2z)− h2γ2 exp (−h2γ2z)
)
.

Given that γαh2 exp (−h2z)−h2γ2 exp (−h2γ2z) ≥ 0 this shows that the (−1)n dn

dzn γ
α exp(−h2z)− exp(−h2γ2z)

is also greater than or equal to zero.
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