000 SUPPLEMENTARY MATERIAL: **STARJOB**: DATASET 001 FOR LLM-DRIVEN JOB SHOP SCHEDULING 002 003 004 Anonymous authors Paper under double-blind review 006 007 800 009 010 **TRAINIG DETAILS** 1 011 012 MODEL OVERVIEW 013 014 The model being fine-tuned is LLaMA 3.1, an 8 billion parameter model from MetaAI@Meta 015 (2024), using a 4-bit quantized version to reduce memory usage. Finetning was conducted using 016 Stabilized Low-Rank Adaptation (RsLoRA) with rank r = 64 to introduce learnable parameters 017 specifically in targeted layers. Kalajdzievski (2023) Compared to LoraHu et al. (2022) RsLoRa improves the stability of training by modifying the rank during adaptationKalajdzievski (2023). The 018 target modules include: 019 target_modules = {q_proj,k_proj,v_proj,o_proj,gate_proj,up_proj,down_proj} 021 The LoRA-specific parameters are configured as follows: 022 • Rank (r): 64 • LoRA Alpha (α): 64 • LoRA Dropout: 0 025 026 • Bias: none 027 This resulted in number of trainable parameters = 167, 772, 160 or 0.02 % of the entire Llama 8B 028 model's parameters. 029 031 QUANTIZATION AND MEMORY EFFICIENCY The model is loaded in 4-bit precision to reduce memory consumption during training. Gradient 034

checkpointing is enabled using the unsloth Unslothai (2024) method, allowing the model to fit
 longer sequences by saving memory. This reduces the VRAM usage by approximately 30%, en abling larger batch sizes.

038 TRAINING PARAMETERS

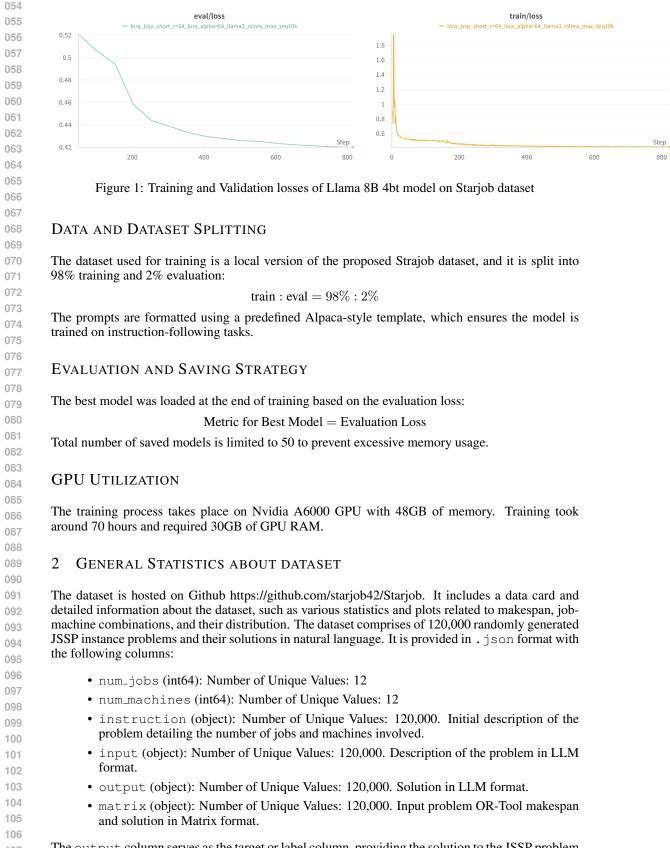
037

040 041

042

043 044

045


046

047

048

051

- The fine-tuning process is controlled by the following parameters:
 - Batch size per device: 4
 - Gradient accumulation steps: 4
 - Max sequence length: 10,000 tokens
 - Number of epochs: 1
 - Warmup steps: 5
 - Learning rate: 2×10^{-4}
 - Optimizer: AdamW with 8-bit precision
- Weight decay: 0.01
 - Learning rate scheduler: Linear decay
- FP16 precision:True
 - Number of Epochs: 1
- 1

107 The output column serves as the target or label column, providing the solution to the JSSP problem in natural language and the associated makespan.

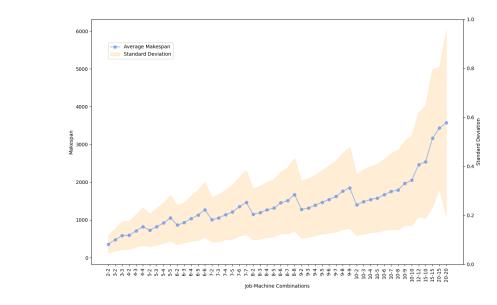


Figure 2: Makespan metrics across different job-machine combinations. The x-axis represents the combinations of jobs and machines (e.g., a 3-2 instance refers to 3 jobs and 2 machines), the right y-axis shows the standard deviation, while the left y-axis shows the makespan values.

EVALUATION METRICS

Table 1: Comparison of PDRs against L2D gainist Finetuned Llama on Starjob dataset and the average Gaps on Tai Benchmark Dataset. The lower the value, the closer the schedule is to the optimal solution, thus representing better performance.

137	J	М	Instance	SPT	MWKR	FDD/WKR	MOPNR	L2D	Optimal	Llama-Finetuned-Ours
138	15	15	Ta01	1872 (52.1%)	1786 (45.1%)	1841 (49.6%)	1864 (51.4%)	1443 (17.2%)	1231.0	1453.0 (18.0%)
	15	15	Ta02	1709 (37.4%)	1944 (56.3%)	1895 (52.3%)	1680 (35.0%)	1544 (24.1%)	1244.0	1440.0 (15.8%)
139	15	15	Ta03	2009 (64.9%)	1947 (59.9%)	1914 (57.1%)	1558 (27.9%)	1440 (18.2%)	1218.0	1521.0 (24.9%)
140	15	15	Ta04	1825 (53.3%)	1694 (44.2%)	1653 (40.7%)	1755 (49.4%)	1637 (39.3%)	1175.0	1387.0 (18.0%)
140	15	15	Ta05	2044 (67.0%)	1892 (54.6%)	1787 (46.0%)	1605 (31.1%)	1619 (32.3%)	1224.0	1461.0 (19.4%)
141	15	15	Ta06	1771 (43.1%)	1976 (59.6%)	1748 (41.2%)	1815 (46.6%)	1601 (29.3%)	1238.0	1499.0 (21.1%)
142	15	15	Ta07	2016 (64.3%)	1961 (59.8%)	1660 (35.3%)	1884 (53.5%)	1568 (27.8%)	1227.0	1473.0 (20.0%)
142	15	15	Ta08	1654 (35.9%)	1803 (48.2%)	1839 (51.1%)	1839 (51.1%)	1468 (20.6%)	1217.0	1475.0 (21.2%)
143	15	15	Ta09	1962 (54.0%)	2215 (73.9%)	1848 (45.1%)	2002 (57.1%)	1627 (27.7%)	1274.0	1534.0 (20.4%)
4.4.4	15	15	Ta10	2164 (74.4%)	2057 (65.8%)	1937 (56.1%)	1821 (46.7%)	1527 (23.0%)	1241.0	1465.0 (18.0%)
144	20	15	Ta11	2212 (63.0%)	2117 (56.0%)	2101 (54.8%)	2030 (49.6%)	1794 (32.2%)	1357.0	1691.0 (24.6%)
145	20	15	Ta12	2414 (76.6%)	2213 (61.9%)	2034 (48.8%)	2117 (54.9%)	1805 (32.0%)	1367.0	1677.0 (22.7%)
	20	15	Ta13	2346 (74.7%)	2026 (50.9%)	2141 (59.4%)	1979 (47.4%)	1932 (43.9%)	1343.0	1749.0 (30.2%)
146	20	15	Ta14	2190 (56.8%)	2164 (60.9%)	1841 (36.9%)	2036 (51.4%)	1664 (23.7%)	1345.0	1660.0 (23.4%)
147	20	15	Ta15	2163 (61.5%)	2180 (62.6%)	2187 (63.3%)	1939 (44.8%)	1730 (29.2%)	1339.0	1770.0 (32.2%)
	20	15	Ta16	2232 (64.1%)	2528 (85.9%)	1926 (41.6%)	1980 (45.6%)	1710 (25.7%)	1360.0	1731.0 (27.3%)
148	20	15	Ta17	2185 (49.5%)	2015 (37.8%)	2093 (43.2%)	2211 (51.2%)	1897 (29.8%)	1462.0	1846.0 (26.3%)
149	20	15	Ta18	2267 (62.4%)	2275 (63.0%)	2064 (47.9%)	1981 (44.9%)	1794 (28.5%)	1396.0	1706.0 (22.2%)
149	20	15	Ta19	2238 (68.0%)	2201 (65.2%)	1958 (47.0%)	1899 (42.6%)	1682 (26.3%)	1332.0	1685.0 (26.5%)
150	20	15	Ta20	2370 (75.8%)	2188 (62.3%)	2195 (62.8%)	1986 (47.3%)	1739 (29.0%)	1348.0	1802.0 (33.7%)
4.5.4	20	20	Ta21	2836 (72.7%)	2622 (59.7%)	2455 (49.5%)	2320 (41.3%)	2252 (37.1%)	1642.0	2077.0 (26.5%)
151	20	20	Ta22	2672 (67.0%)	2554 (59.6%)	2177 (36.1%)	2415 (50.9%)	2102 (31.4%)	1600.0	2443.0 (52.7%)
152	20	20	Ta23	2397 (53.9%)	2408 (54.7%)	2514 (61.5%)	2194 (40.9%)	2085 (33.9%)	1557.0	2086.0 (34.0%)
	20	20	Ta24	2787 (69.5%)	2553 (55.3%)	2391 (45.4%)	2250 (36.9%)	2200 (33.8%)	1644.0	2135.0 (29.9%)
153	20	20	Ta25	2513 (57.6%)	2582 (61.0%)	2267 (42.1%)	2146 (43.4%)	2201 (38.0%)	1595.0	2304 (44.4%)
154	20	20	Ta26	2649 (61.2%)	2506 (52.5%)	2484 (60.9%)	2284 (50.9%)	2176 (32.4%)	1643.0	2195.0 (33.6%)
	20	20	Ta27	2707 (61.1%)	2768 (64.8%)	2514 (49.6%)	2298 (36.8%)	2132 (26.9%)	1680.0	2172.0 (29.3%)
155	20	20	Ta28	2654 (65.0%)	2370 (47.8%)	2330 (45.0%)	2259 (40.4%)	2146 (33.9%)	1603.0	2088.0 (30.3%)
156	20	20	Ta29	2681 (65.0%)	2399 (47.6%)	2322 (37.4%)	2367 (45.7%)	1952 (20.1%)	1625.0	2209 (35.9%)
	20	20	Ta30	2662 (68.1%)	2424 (53.0%)	2348 (48.2%)	2370 (49.6%)	2035 (28.5%)	1584.0	2038.0 (28.7%)
157										

J	М	Instance	SPT	MWKR	FDD/WKR	MOPNR	L2D	Optimal	Llama-Finetuned-Our
20	15	Dmu01	4516 (76.2%)	3988 (55.6%)	3535 (37.9%)	3882 (51.5%)	3323 (29.7%)	2563.0	3064 (19.5%)
20	15	Dmu02	4593 (69.7%)	4555 (68.3%)	3847 (42.2%)	3884 (43.5%)	3630 (34.1%)	2706.0	3233 (19.5%)
20	15	Dmu03	4438 (62.5%)	4117 (50.8%)	4063 (48.8%)	3979 (45.7%)	3660 (34.0%)	2731.0	3296 (20.7%)
20	15	Dmu04	4533 (69.8%)	3995 (49.7%)	4160 (55.9%)	4079 (52.8%)	3816 (43.0%)	2669.0	3299 (23.6%)
20	15	Dmu05	4420 (60.8%)	4977 (81.0%)	4238 (54.2%)	4116 (49.7%)	3897 (41.8%)	2749.0	3458 (25.8%)
20	15	Dmu41	5283 (62.7%)	5377 (65.5%)	5187 (59.7%)	5070 (56.1%)	4316 (32.9%)	3248.0	4137 (27.4%)
20	15	Dmu42	5354 (57.9%)	6076 (79.2%)	5583 (64.7%)	4976 (46.8%)	4858 (43.3%)	3390.0	4169 (23.0%)
20	15	Dmu43	5328 (54.8%)	4938 (43.5%)	5086 (47.8%)	5012 (45.7%)	4887 (42.0%)	3441.0	4634 (34.7%)
20	15	Dmu44	5745 (64.7%)	5630 (61.4%)	5550 (59.1%)	5213 (49.5%)	5151 (47.7%)	3488.0	4429 (27.0%)
20	15	Dmu45	5305 (62.1%)	5446 (66.4%)	5414 (65.5%)	4921 (50.4%)	4615 (41.0%)	3272.0	4423 (35.2%)
20	20	Dmu06	6230 (92.0%)	5556 (71.3%)	5258 (62.1%)	4747 (46.3%)	4358 (34.3%)	3244.0	4173 (28.6%)
20	20	Dmu07	5619 (84.5%)	4636 (52.2%)	4789 (57.2%)	4367 (43.4%)	3671 (20.5%)	3046.0	3821 (25.4%)
20	20	Dmu08	5239 (64.3%)	5078 (59.3%)	4817 (51.1%)	4480 (40.5%)	4048 (27.0%)	3188.0	3982 (24.9%)
20	20	Dmu09	4874 (57.6%)	4519 (46.2%)	4675 (51.2%)	4519 (46.2%)	4482 (45.0%)	3092.0	4376 (41.5%)
20	20	Dmu10	4808 (61.1%)	4963 (66.3%)	4149 (39.0%)	4133 (38.5%)	4021 (34.8%)	2984.0	3853 (29.1%)
20	20	Dmu46	6403 (58.7%)	6168 (52.9%)	5778 (43.2%)	6136 (52.1%)	5876 (45.6%)	4035.0	5447 (35.0%)
20	20	Dmu47	6015 (52.7%)	6130 (55.6%)	6058 (53.8%)	5908 (50.0%)	5771 (46.5%)	3939.0	4899 (24.4%)
20	20	Dmu48	5345 (42.0%)	5701 (51.5%)	5887 (56.4%)	5384 (43.1%)	5034 (33.8%)	3763.0	4854 (29.0%)
20	20	Dmu49	6072 (63.7%)	6089 (64.1%)	5807 (56.5%)	5469 (47.4%)	5470 (47.4%)	3710.0	4674 (26.0%)
20	20	Dmu50	6300 (68.9%)	6050 (62.2%)	5764 (54.6%)	5380 (44.3%)	5314 (42.5%)	3729.0	4515 (21.1%)
		Machine 9 Machine 1 Machine 1 Machine 1 Machine 1 Machine 1 Machine 1 Machine 1	; jo, j21, j22, j25, ; J10, J22, J24, J26, ; J11, J23, J22, J27, ; J11, J23, J22, J27, ; J11, J23, J25, J27, J2 ; J14, J26, J28, J3 ; J15, J27, J29, J3 ; J15, J27, J29, J3 ; J16, J28, J30, J3 ; J16, J28, J30, J3 ; J19, J31, J3 ; J20, J32, J34, J3	, J29, J31, J33, J35 8, J30, J32, J34, J3 9, J31, J33, J35, J3 0, J32, J34, J36, J3 1, J33, J35, J37, J3 2, J34, J36, J38, J4 3, J35, J37, J39, J4 4, J36, J38, J40, J4	, J37, J39 6, J38, J40 77, J39, J41 8, J40, J42 9, J41, J43 0, J42, J44 1, J43, J45 1, J43, J45 2, J44, J46				
		Machine 1 Machine 2	8: J20, J32, J34, J3 9: J21, J33, J35, J3 0: J22, J34, J36, J3	7, J39, J41, J43, J4 8, J40, J42, J44, J4	5, J47, J49 6, J48, J50				
		nimizec t	dule minimizes the m he idle time between	iohe The schedule	can be further impro	wed by considering c	ther optimization cu	itoria such	ac minimizi
		ng the ma oftext ># The pr <u>obl</u>	ximum completion tim # Step 1: Understand em is to optimize th	e of any machine. Ho the problem and the e schedule for <u>100 j</u>	wever, this schedule input data. obs (denoted a <u>s J) a</u>	e provides a good sta across 20 machin <u>es (c</u>	lenoted as M) t <u>o mini</u>	mer optimizat mize the <u>mak</u> e	span, which
		is the c interrup	completion time of the	e last operation in	the schedule. Each M	I can process only or	e J at a time, and o	nce started,	J cannot be
		## Step 2 The input	: Read and understan data consists of 10 J0 to J99, and the m	d the input data. 0 jobs, each represe	nted by a list of ma	chines and their cor	responding processir	q times. The	jobs are de
					as M1 to M20.				
		The NEH (: Choose an optimiza Non-Enumerative Heur ucting a feasible sc	istic) algorithm is	a popular choice for	solving the flow sh	op scheduling proble	m. It works t	y iterative
		cy constr	accung a reasible sc	neadle and improving	Te through a series	- or exchanges.			
			Fi	igure 3: Zer	o Shot infe	rence on LL	ama 8B 4bt		
				<u></u>					
n –			~						

Table 2: Comparison of PDRs against L2D gainist Finetuned Llama on Starjob dataset and the
 average Gaps on DMU Benchmark Dataset. The lower the value, the closer the schedule is to the
 optimal solution, thus representing better performance.

References

- AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/ llama3/blob/main/MODEL_CARD.md.
- Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con- ference on Learning Representations*, 2022. URL https://openreview.net/forum?
 id=nZeVKeeFYf9.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora, 2023. URL https://arxiv.org/abs/2312.03732.

Unslothai. Unsloth: Finetune llama 3.2, mistral, phi-3.5 gemma 2-5x faster with 80 https:
 //github.com/unslothai/unsloth, 2024. Accessed: 2024-08-02.

213

200

201

202

203

- 214
- 215