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Abstract

We study gradient descent-ascent learning dynamics with timescale separation
(τ -GDA) in unconstrained continuous action zero-sum games where the minimizing
player faces a nonconvex optimization problem and the maximizing player opti-
mizes a Polyak-Łojasiewicz (PŁ) or strongly-concave (SC) objective. In contrast
to past work on gradient-based learning in nonconvex-PŁ/SC zero-sum games,
we assess convergence in relation to natural game-theoretic equilibria instead of
only notions of stationarity. In pursuit of this goal, we prove that the only locally
stable points of the τ -GDA continuous-time limiting system correspond to strict
local minmax equilibria in each class of games. For these classes of games, we
exploit timescale separation to construct a potential function that when combined
with the stability characterization and an asymptotic saddle avoidance result gives a
global asymptotic almost-sure convergence guarantee for the discrete-time gradient
descent-ascent update to a set of the strict local minmax equilibrium. Moreover, we
provide convergence rates for the gradient descent-ascent dynamics with timescale
separation to approximate stationary points.

1 Introduction

We study continuous action zero-sum games of the form

min
x∈X

max
y∈Y

f(x, y)

where f ∈ C2(X × Y,R) and X = Rd1 and Y = Rd2 denote the individual action spaces and
d = d1 + d2. In particular, we focus on unconstrained, continuous strategy space zero-sum games
in which f(·, y) is potentially nonconvex in x ∈ X and f(x, ·) satisfies the Polyak-Łojasiewicz
(PŁ) condition [47] or is strongly-concave (SC) in y ∈ Y . We refer to these classes of games as
nonconvex-PŁ and nonconvex-SC zero-sum games, respectively.

This general formulation has a broad spectrum of applications such as fair classification [45], distribu-
tionally robust optimization [44, 48, 53], and adversarial training [38]. Consequently, there has been a
surge of interest in recent years toward developing methods for solving these problems efficiently. So
far, existing work on gradient-based learning in nonconvex-PŁ/SC zero-sum games has exclusively
focused on providing global convergence rates to approximate stationary points with no attention
given to the characterization in terms of game-theoretic equilibrium concepts [33, 34, 36, 45, 48, 62].

In contrast, a common theme in the study of general nonconvex-nonconcave zero-sum games is to
assess the types of stationary points an algorithm locally converges toward in terms of their higher
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order structure [10, 15, 16, 23, 40, 41, 58, 64]. The purpose of this analysis is generally to determine
whether commonly deployed algorithms can guarantee local convergence to only game-theoretic
equilibria or to design algorithms that achieve this objective.

The goal of this paper is to close the gap between the two problem classes and determine whether
gradient-based learning algorithms in nonconvex-PŁ/SC zero-sum games can be shown to globally
converge to only game-theoretically meaningful equilibria (local minmax/Stackelberg or Nash).
We focus our attention on the canonical gradient descent-ascent learning dynamics with timescale
separation between players. In this algorithm, timescale separation is manifested in the different (yet
constant) learning rates of the maximizing and minimizing players. The description of this system,
which we refer to as τ -GDA, where the ratio of learning rates denoted by τ > 0 parameterizes the
timescale separation between players, is provided in Algorithms 1–2 for deterministic and stochastic
settings respectively. Simply put, τ -GDA (Algorithm 1) corresponds to each player following their
individual gradient in a noiseless setting, while stochastic τ -GDA (Algorithm 2) describes each player
following their individual stochastic gradient. The τ -GDA update only requires first-order gradients
and thus is a computationally efficient method for machine learning problems formulated as games.

1.1 Contributions

We show that τ -GDA has global convergence guarantees in nonconvex-PŁ/SC zero-sum games to the
natural game-theoretic solution concept for this problem class of strict local minmax equilibria.1 The
specific contributions of this work are now summarized.

1) In Theorem 1, we prove the only critical points that are locally stable with respect to the τ -GDA
continuous-time limiting system are strict local minmax equilibrium in nonconvex-PŁ/SC zero-
sum games. A key implication of this is that any critical point which is not a strict local minmax
equilibrium is a saddle point of the continuous-time limiting system.

2) In Theorem 2, we combine Theorem 1 with a potential function construction (Lemma 1) and an
asymptotic saddle avoidance result (Lemma 2) to prove that the τ -GDA update in deterministic
settings (Algorithm 1) globally asymptotically converges to strict local minmax equilibria almost
surely in the class of nonconvex-PŁ/SC zero-sum games.

3) In Corollary 1, using the potential function from Lemma 1, we show that τ -GDA in deterministic
settings reaches an ε-critical point in Õ(ε−2) steps in nonconvex-PŁ/SC zero-sum games. More-
over, specific to nonconvex-SC zero-sum games, Lemma 3 shows there exists learning rates for
τ -GDA such that the cost function of the game itself can be made a potential. Corollary 2 then uses
the potential function from Lemma 3 to show that τ -GDA reaches an ε-critical point in Õ(ε−2)

and Õ(ε−6) steps in deterministic and stochastic problems, respectively.

Prior to moving on, we briefly comment on and provide context for each contribution of this paper.
As we discuss later on in Remark 1, beyond its importance toward proving Theorem 2, Theorem 1
is potentially of independent interest given the implications it also has for the local stability of
τ -GDA around critical points in the more general setting of nonconvex-nonconvave zero-sum games.
Furthermore, to our knowledge, Theorem 2 provides the broadest existing global convergence
guarantee for gradient-based algorithms to game-theoretically meaningful equilibria in zero-sum
continuous games. Finally, while there exists known convergence rates for gradient-based learning
algorithms to ε-critical points in nonconvex-PŁ/SC zero-sum games, we are unaware of such a result
in nonconvex-PŁ zero-sum games for τ -GDA, and the fact that we derive a rate in nonconvex-SC
zero-sum games using the cost function itself as a potential function has practical implications given
that it can easily be monitored when running the algorithm to evaluate progress toward a solution.

1.2 Practical Motivation

The study of nonconvex-PŁ/SC zero-sum games has often been motivated by machine learning
problems formulated as games. We remark that given the problem formulations, it is natural from
both game-theoretic and machine learning perspectives to seek notions of minmax equilibria. Indeed,
notions of stationarity are not guaranteed to reflect a meaningful solution to the underlying problem.
Consequently, it is critical to give convergence guarantees to minmax equilibrium as we pursue in

1Strict local minmax equilibria characterized by gradient-based sufficient conditions are also known as
differential Stackelberg equilibria in the literature [15, 16] and we use the terms interchangeably in this work.
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this work. We now provide examples from the literature of machine learning applications that are
relevant to the class of games studied in this paper. Note that the following application problems are
illustrative in nature and do not immediately fall into the classes of games we study. However, as is
elaborated on shortly, each of the problems can be transformed into unconstrained nonconvex-PŁ/SC
zero-sum games while retaining the optimization objectives after simple, standard modifications.
Example 1. In fair classification [45] and learning from multiple distributions, the objective is to
minimize the maximum loss over multiple categories. An example formulation is the problem

minw∈Rd maxi∈{1,...,K} `i(w)

where `i(w) represents the loss on category i with w denoting neural network parameters. A
reformulation of this problem [45] with T is the simplex in RK is given by the zero-sum game

minw∈Rd maxt∈T
∑N
i=1 ti`i(w). (1)

Example 2. To train a neural network classifier robust against adversarial attacks, a common approach
is to formulate training as a robust minmax optimization problem of the form

minw∈Rd
∑N
i=1 maxδi:|δi|∞≤ε `(xi + δi, yi, w),

where `(xi + δi, yi, w) represents the loss on sample xi perturbed by δi with budget ε and label yi as
a function of the parameter weights w [38]. A reformulation of this problem [45] is given by

minw∈Rd
∑N
i=1 maxt∈T

∑K
j=1 tj`(x̂ij , yi, w) (2)

where x̂ij is the result of a targeted attack on the sample xi seeking to change the output of the
network to label j and T is the simplex in RK .
Example 3. Distributionally robust optimization often results in a zero-sum game of the form

minw∈Rd maxt∈T
∑N
i=1 ti`i(w)− r(t) (3)

where `i(x) is the loss of a model w on the i–th data point, T is the simplex in RN , and r(t) is
carefully selected convex regularizer [44, 48, 53].

The machine learning problem formulations in (1)–(3) from Examples 1–3 represent nonconvex-
concave zero-sum games in which the strategy space of the minimizing player is unconstrained
and the strategy space of the maximizing player is constrained to the simplex. These problems are
naturally adapted to the unconstrained nonconvex-PŁ/SC zero-sum game setting considered in this
paper by removing the constraint on the strategy space of the maximizing player and including a
suitable PŁ/SC regularization penalty on the choice variable of the maximizing player.

1.3 Organization

The rest of the paper is organized as follows. Section 2 details related work and Section 3 presents
game-theoretic, mathematical, and algorithmic preliminaries for our results. Section 4 is devoted to
studying the local stability properties around critical points of the continuous-time limiting system
for the τ -GDA learning dynamics. In Section 5, we present our study of the convergence properties of
τ -GDA in nonconvex-PŁ/SC zero-sum games. We conclude with a discussion in Section 6. Finally,
the supplementary material (appendix) contains the proofs of theoretical results.

2 Related Work

We now cover the most relevant related work with further discussion provided in Appendix A.

Nonconvex-Nonconcave Zero-Sum Games. A common theme in analyzing gradient descent-ascent
with or without timescale separation in nonconvex-nonconcave zero-sum games has been to assess the
local stability around critical points of the continuous-time limiting system and draw connections to
local Nash and Stackelberg equilibrium notions characterized by gradient-based sufficient conditions
(see Definition 4) [10, 15, 16, 23, 40, 42, 43, 63]. Importantly, it has been shown that unless the
timescale separation is chosen very carefully, the stable critical points of gradient descent-ascent
may not be game-theoretically meaningful and game-theoretically meaningful critical points may
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Table 1: The gradient complexity of gradient descent (GD) and its perturbed variant (PGD), gradient
descent-ascent with timescale separation (τ -GDA), and alternating (including multi-step) gradient
descent-ascent (AGDA) in deterministic and stochastic nonconvex optimization, nonconvex-SC zero-
sum games, and nonconvex-PŁ zero-sum games. We state the complexity in terms of the ε tolerance
of the guarantee with the notation Õ(·) hiding logarithmic factors in ε.

Problem Algorithm & Reference
Complexity

Guarantee
Deterministic Stochastic

Nonconvex GD [24] Õ(ε−2) Õ(ε−4) ε–Stationarity

Optimization PGD [24] Õ(ε−2) Õ(ε−4) ε–Local Min

Nonconvex τ -GDA, τ -AGDA [33] Õ(ε−2) Õ(ε−5) ε–Stationarity

SC Zero-Sum Theorem 2 (τ -GDA) Asymptotic – DSE
Corollary 1, Corollary 2 (τ -GDA) Õ(ε−2) Õ(ε−6) ε–Stationarity

Nonconvex AGDA [45],[62, Appendix D] Õ(ε−2) – ε–Stationarity

PŁ Zero-Sum Theorem 2 (τ -GDA) Asymptotic – DSE
Corollary 1 (τ -GDA) Õ(ε−2) – ε-Stationarity

not be stable [15, 23]. We obtain stronger stability characterizations (see Theorem 1) for τ -GDA in
nonconvex-PŁ/SC zero-sum games using the structure imposed on the game cost function. The result
of Theorem 1 also has novel implications for the local stability of τ -GDA around critical points in
the more general setting of nonconvex-nonconvave zero-sum games (see Remark 1). Moreover, it
is fundamental toward proving the global almost sure asymptotic convergence guarantee for τ -GDA
in deterministic settings to strict local minmax equilibria in nonconvex-PŁ/SC zero-sum games
(Theorem 2). Further discussion of this topic is given in Section 4.

Nonconvex-PŁ and Nonconvex-SC Zero-Sum Games. Table 1 provides a comprehensive compar-
ison between our convergence results and existing convergence results for gradient descent variants in
nonconvex optimization and nonconvex-PŁ/SC zero-sum games. We leave discussion of research on
these classes of games with other algorithmic methods to Appendix A. The key distinction between
this paper and past work is that instead of assessing convergence in terms of only reaching an approx-
imate stationary point of the dynamics or a surrogate function, we obtain convergence guarantees in
regards to differential Stackelberg equilibria (equivalently strict local minmax equilibria). Despite
this being a much stricter and meaningful notion of solving the problem, Theorem 2 shows that global
asymptotic convergence guarantees for τ -GDA in deterministic settings to this type of solution remain
obtainable in nonconvex-PŁ/SC zero-sum games. This is the main result of the paper. While we
do not prove a rate of convergence to differential Stackelberg equilibria or an approximate notion,
Corollary 1 shows τ -GDA in deterministic settings with parameter choices satisfying the conditions of
Theorem 2 reaches an ε-critical point in Õ(ε−2) steps in nonconvex-PŁ/SC zero-sum games. We
are unaware of an existing rate for τ -GDA in deterministic settings in nonconvex-PŁ zero-sum games.
Finally, as a complementary result, Lemma 3 shows there exists learning rates for τ -GDA such that the
cost function of the game itself can be made a potential in nonconvex-SC zero-sum games, which is a
desirable property given that this potential function can be monitored while running the algorithm.
Corollary 2 then uses this potential function to show that τ -GDA reaches an ε-critical point in Õ(ε−2)

and Õ(ε−6) steps in deterministic and stochastic nonconvex-SC zero-sum games, respectively.

Escaping Saddle Points. Saddle avoidance results for variants of gradient descent in nonconvex
optimization are asymptotic or finite-time. The former states that almost surely the algorithm does
not converge to saddles points [28, 29], while the latter gives rates of escape to conclude convergence
to approximate local minimum [17, 20, 24]. A primary assumption in the aforementioned works is
what is known as the strict saddle property, which ensures directions of escape exists from a saddle
point. The methods for showing gradient descent escapes saddle points almost surely in nonconvex
optimization have more recently been extended to gradient descent-ascent in the setting of continuous
games under an analogous strict saddle assumption [10, 40]. A key component of proving the global
asymptotic convergence guarantee to strict local minmax for τ -GDA turns out to be ensuring that the
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update escapes saddle points of the continuous-time limiting system almost surely. To show this
property holds for τ -GDA in nonconvex-PŁ/SC zero-sum games, we are able to invoke existing saddle
avoidance results for gradient-based learning in continuous games [40].

3 Preliminaries

In the zero-sum games we study, we refer to the minimizing player controlling x as player 1 and
the maximizing player controlling y as player 2. The set of players is denoted by I = {1, 2}. We
consider objective functions f ∈ C2(Z,R) where the joint strategy space is denoted by Z = X × Y
where X = Rd1 and Y = Rd2 denote the individual action spaces and d = d1 + d2. We often denote
a joint strategy using the shorthand notation z = (x, y) ∈ Z = X × Y .

Notation. We denote∇f as the total derivative of f , ∇if as the derivative of f with respect to the
choice variable of player i, ∇ijf as the partial derivative of∇if with respect to the choice variable
of player j, and ∇2

i f as the partial derivative of ∇if with respect to the choice variable of player
i. We let ‖ · ‖ denote the 2-norm of vectors unless otherwise specified, spec(·) denote the set of
eigenvalues of a matrix, Re(·) denote the real part of a complex number, and C◦− and C◦+ denote the
open left-half and right-half complex plane, respectively. Let λmin(A) denote the eigenvalue of A
with the minimum real part, and λmax(A) the eigenvalue of A with the maximum real part. Finally,
we indicate A is positive and negative definite using the notation A � 0 and A ≺ 0, respectively.

Classes of Games. We study and analyze both nonconvex-PŁ and nonconvex-SC zero-sum games.
To begin, we state a standard smoothness assumption that is needed throughout.
Assumption 1. Given a zero-sum game (f,−f) defined by f ∈ C2(Z,R),∇1f(x, y) and∇2f(x, y)
are L1 and L2 Lipschitz, respectively. That is, ∀ x, x′ ∈ X , y, y′ ∈ Y ,

‖∇1f(x, y)−∇1f(x′, y′)‖ ≤ L1(‖x− x′‖+ ‖y − y′‖),
‖∇2f(x, y)−∇2f(x′, y′)‖ ≤ L2(‖x− x′‖+ ‖y − y′‖).

This assumption immediately implies that the vector of individual gradients denoted by

g(x, y) := (∇1f(x, y),−∇2f(x, y))

is also Lipschitz with parameter L = L1 + L2.

We now define a nonconvex-PŁ zero-sum game [45]. This class of games allows for the objective to
be nonconvex in x ∈ X , but it needs to satisfy the Polyak-Łojasiewicz (PŁ) condition [47] in y ∈ Y .
Definition 1 (Nonconvex-PŁ Game). Consider a zero-sum game (f,−f) defined by f ∈ C2(Z,R).
The game is called nonconvex-PŁ if f(x, ·) is µ-PŁ with respect to the argument y ∈ Y . That is, for
µ > 0 and for all z = (x, y) ∈ Z ,

‖∇2f(x, y)‖2 ≥ 2µ(maxy′∈Y f(x, y′)− f(x, y)),

where for any fixed x ∈ X , maxy′∈Y f(x, y′) has a nonempty solution set and a finite optimal value.

In nonconvex-PŁ zero-sum games, the solution set of argmaxy′∈Y f(x∗, y′) for any fixed x∗ ∈ X
may not be a singleton and the maximizing player’s objective may be nonconcave. However,
by Definition 1 it follows immediately that any (x∗, y∗) such that ‖∇2f(x∗, y∗)‖ = 0 satisfies
f(x∗, y∗) = maxy′∈Y f(x∗, y′) so any stationary point with respect to y is a global maximum.

The following provides a definition for what we call a nonconvex-SC zero-sum game. In this class of
games, the function that defines the game may be nonconvex in x ∈ X , but it must be SC in y ∈ Y .
Definition 2 (Nonconvex-SC Game). Consider a zero-sum game (f,−f) defined by f ∈ C2(Z,R).
The game is nonconvex-SC if f(x, ·) is µ-SC with respect to the argument y ∈ Y . That is, given any
x ∈ X and for all y, y′ ∈ Y ,

f(x, y′) ≤ f(x, y) + 〈∇2f(x, y), y′ − y〉 − µ

2
‖y′ − y‖22.

It is important to note that nonconvex, µ-SC zero-sum games are nonconvex, µ-PŁ zero-sum games,
but nonconvex-PŁ zero-sum games may not be nonconvex-SC zero-sum games, which follows from
the relationship between PŁ and SC functions [25]. This is to say that the class of nonconvex-PŁ
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Algorithm 1 τ -GDA

Input: x0 ∈ Rd1 , y0 ∈ Rd2
for k = 0, 1, . . . do
xk+1 ← xk − γ∇1f(xk, yk)
yk+1 ← yk + γτ∇2f(xk, yk)

end for

Algorithm 2 Stochastic τ -GDA

Input: x0 ∈ Rd1 , y0 ∈ Rd2
for k = 0, 1, . . . do
xk+1 ← xk − γg1(xk, yk; θ1,k)
yk+1 ← yk + γτg2(xk, yk; θ2,k)

end for

zero-sum games is a superset of the class of nonconvex-SC zero-sum games. Thus, results we state
for nonconvex-PŁ zero-sum games immediately hold for nonconvex-SC zero-sum games.

Learning Dynamics. We study gradient descent-ascent with timescale separation. Let γ be the
learning rate of player 1 and τ > 0 be the timescale parameterization so that the learning rate of
player 2 is given by τγ. The deterministic τ -GDA dynamics are presented in Algorithm 1 and the
stochastic τ -GDA dynamics are given in Algorithm 2 (see Section 5.2 for the relevant notation). The
key distinction between this study of gradient descent-ascent with timescale separation and past work
is how we assess convergence as we now begin to formalize.

Stationarity Notions. We call critical points strategy profiles at which the individual gradient of
each player is equal to zero; that is (x, y) ∈ Z such that ∇1f(x, y) = 0 and ∇2f(x, y) = 0. Critical
points correspond to stationary points of the τ -GDA dynamics. The nonconvex-PŁ/SC zero-sum game
literature has generally assessed convergence in terms of the complexity of finding an ε-critical point
(see, e.g., [45, 62]). We formally define an ε-critical point now for later reference.

Definition 3 (ε-Critical Point.). The joint strategy (x∗, y∗) ∈ Z is an ε-critical point when the
conditions ‖∇1f(x∗, y∗)‖ ≤ ε and ‖∇2f(x∗, y∗) ≤ ε hold.

A closely related and common notion of convergence in this body of work (see e.g., [33]) is that
of finding an ε-critical point of the function maxy∈Y f(·, y). This criterion amounts to seeking to
achieve the condition ‖∇1 maxy∈Y f(x, y)‖ ≤ ε.
In contrast, we assess convergence with connections to the equilibrium notions that are commonly
studied in the nonconvex-nonconcave zero-sum game literature. Since either stationarity notion may
lack any game-theoretic meaning, we consider a strictly harder notion of solving a game.

Equilibrium Notions. The typical solution concept in game theory when an implicit or explicit order
of play is present in the structure of the game is the (local) Stackelberg (equivalently minmax in
zero-sum games) equilibrium concept [6].2 Informally, in nonconvex-PŁ/SC zero-sum games, a local
minmax equilibrium corresponds to a strategy pair (x∗, y∗) ∈ Z such that x∗ is a local minimum
of the function f(x, y∗(x)) where y∗(x) ∈ argmaxy∈Y f(x, y) is a local maximum of the function
f(x∗, y). When the function f is bounded or when f(·, y) is bounded and f(x, ·) is strongly concave,
a minmax equilibrium is guaranteed to exist.

We characterize the local minmax (Stackelberg) equilibrium notion in terms of sufficient conditions on
player costs as is typical in learning in games (see, e.g., [15, 16, 23, 40, 58, 64]). Toward presenting
this definition, we denote by J(x, y) the Jacobian of the individual gradient vector g(x, y) given by

J(x, y) =

[
∇2

1f(x, y) ∇12f(x, y)
−∇>12f(x, y) −∇2

2f(x, y)

]
. (4)

Let S1(·) denote the Schur complement of (·) with respect to the d2 × d2 block in (·). The following
definition is characterized by sufficient conditions for a local minmax equilibrium in zero-sum games.

Definition 4 (Differential Stackelberg/Strict Local Minmax Equilibrium [16, 23]). The joint strat-
egy (x∗, y∗) ∈ Z is a differential Stackelberg equilibrium when the conditions ∇1f(x∗, y∗) = 0,
∇2f(x∗, y∗) = 0 and S1(J(x∗, y∗)) � 0, ∇2

2f(x∗, y∗) ≺ 0 hold.

We remark that in nonconvex-PŁ/SC zero-sum games, S1(J(x∗, y∗)) as in Definition 4 is well-defined
at any critical point (x∗, y∗) since det(∇2

2f(x∗, y∗)) 6= 0 (see Lemma 8 in Appendix B.3).

2By implicit order of play, we mean the min and max order are not interchangeable.
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4 Local Stability Analysis

To characterize the convergence of τ -GDA, we begin by studying its continuous-time limiting system

ż = −Λτg(z) (5)

where ż = (ẋ, ẏ), Λτ = blockdiag(Id1 , τId2), and g(z) is the vector of individual gradients. The
Jacobian of this system is given by

Jτ (z) = ΛτJ(z). (6)
We analyze the stability of the continuous-time system around critical points z∗ = (x∗, y∗) as a
function of the timescale separation τ using the Jacobian Jτ (z∗) in this section toward drawing
conclusions about the stability and convergence of the discrete time system τ -GDA. A critical point is
said to be locally (exponentially) stable when the spectrum of−Jτ (z∗) is in the open left-half complex
plane C◦− (cf. Theorem 3, Appendix B.2). Simply put, a critical point z∗ is locally exponentially
stable if and only if the real parts of the eigenvalues of −Jτ (z∗) are strictly negative. Throughout,
we use the broader term “stable" to mean the following.
Definition 5 (Stability). A critical point z∗ = (x∗, y∗) ∈ Z is locally exponentially stable for
ż = −Λτg(z) if and only if spec(−Jτ (z∗)) ⊂ C◦− (≡ spec(Jτ (z∗)) ⊂ C◦+).

Stability with respect to the continuous-time τ -GDA dynamics guarantees that the system asymptoti-
cally converges at an exponential rate to the critical point in a local neighborhood. Moreover, given a
suitable choice of learning rates, equivalent insights hold for the discrete-time dynamics [8].

Stability in Nonconvex-Nonconcave Zero-Sum Games. Given the implications regarding con-
vergence, a number of papers in the past several years study the stability of τ -GDA around critical
points and the connections to differential Nash and Stackelberg equilibrium in zero-sum games
[10, 15, 16, 23, 40]. However, this body of research focuses on general nonconvex-nonconcave
zero-sum games. In general across the spectrum of nonconvex-nonconcave zero-sum games, the
stable critical points of τ -GDA coincide with the set of differential Stackelberg equilibria only when
the timescale separation τ →∞ [23]. Given that such a choice of timescale separation requires the
learning rate γ → 0 in order to retain stability of the discrete-time system, it is not clear how to derive
a practical algorithm from this insight.

Toward remedying this problem, Fiez and Ratliff [15] provide stability results in terms of the
timescale separation concerning a given critical point, rather than across the space of nonconvex-
nonconcave zero-sum games. In particular, they prove a stability and instability result as a function
of the timescale separation in the τ -GDA dynamics. The stability results say that given a differential
Stackelberg equilibrium z∗, there exists a finite τ∗ ∈ (0,∞) that can be constructed such that z∗
is stable for all τ ∈ (τ∗,∞). On the other hand, the instability results says that given a critical
point which is not a differential Stackelberg equilibrium, there exists a finite τ0 ∈ (0,∞) that can be
constructed such that z∗ is not stable for all τ ∈ (τ0,∞).

Stability in Nonconvex-PŁ/SC Zero-Sum Games. To our knowledge, the connection between
the stability (and instability) of critical points with respect to τ -GDA dynamics and game-theoretic
equilibrium notions in the semi-structured problems of nonconvex-PŁ and nonconvex-SC zero-sum
games has not been fully characterized. We show in the following result that when a nonconvex-
nonconcave game is specialized to a nonconvex-PŁ zero-sum game as from Definition 1, significantly
more general stability characterizations can be obtained by exploiting the fact that ∇2

2f(x∗, y∗) ≺ 0
at any critical point z∗ = (x∗, y∗) (see Lemma 8 in Appendix B.3). Notably, any critical point
z∗ = (x∗, y∗) that is not a differential Stackelberg equilibrium is not stable (“unstable”) for all τ > 0.
In other words, τ -GDA does not admit spurious stable points in nonconvex-PŁ zero-sum games. This
is in stark contrast to the known fact that 1-GDA admits spurious stable points in the more general class
of nonconvex-nonconcave games as has been shown in previous literature [10, 23, 40]. Moreover, if
z∗ is a differential Stackelberg equilibrium, then z∗ is stable for all τ larger than the minimum τ∗ for
which z∗ is stable and such a finite τ∗ is guaranteed to exist. This result implies that in practice, one
can select a finite value of τ to run τ -GDA with, and all stable critical points (if they exist) will be
differential Stackelberg equilibria, and if τ is scaled up and the set of stable points grows, then only
differential Stackelberg equilibria can be introduced to the set.
Theorem 1. Consider a nonconvex-PŁ/SC zero-sum game (f,−f) where f ∈ C2(Z,R). Then, the
following hold: 1) Any critical point z∗ ∈ Z that is not a differential Stackelberg equilibrium is
unstable with respect to τ -GDA for all τ ∈ (0,∞); 2) If z∗ is a differential Stackelberg equilibrium,

7



then spec(−Jτ (z∗)) ⊂ C◦− for all τ ∈ [τ∗,∞) where τ∗ is the minimum τ ∈ (0,∞) such that
spec(−Jτ (z∗)) ⊂ C◦− and a finite τ∗ is guaranteed to exist.

In comparison to the stability results for nonconvex-nonconcave zero-sum games of Fiez and Ratliff
[15], we obtain the stronger results in nonconvex-PŁ zero-sum games that (i) τ0 = 0 for any critical
point that is not a differential Stackelberg equilibrium and (ii) a differential Stackelberg equilibrium
is never unstable after it becomes stable as a function of the timescale separation τ .
Remark 1. The proof of Theorem 1 also reveals novel insights into the local stability of τ -GDA
around critical points in nonconvex-nonconcave zero-sum games. In particular, given any critical
point z∗ = (x∗, y∗) in a nonconvex-nonconcave zero-sum game (f,−f) where f ∈ C2(Z,R) such
that ∇2

2f(x∗, y∗) ≺ 0, if z∗ is not a differential Stackelberg equilibrium, then it is unstable with
respect to τ -GDA for all τ ∈ (0,∞). This observation follows from the proof of Theorem 1 relying
on the fact that∇2

2f(x∗, y∗) ≺ 0 holds at any critical point in nonconvex-PŁ/SC zero-sum games.

5 Convergence Analysis

Theorem 1 in the previous section characterizes the local behavior of the continuous-time τ -GDA
dynamics around critical points. However, ultimately we are most interested in the convergence
properties of the discrete-time τ -GDA dynamics. This forms the focus of this section. Specifically,
Section 5.1 is devoted to showing that τ -GDA in deterministic settings almost surely asymptotically
converges to strict local minmax equilibria in nonconvex-PŁ/SC zero-sum games and Section 5.2
develops convergence rates to ε-critical points in these classes of games.

5.1 Asymptotic Convergence to Strict Local Minmax Equilibrium

We prove in Theorem 2 of this subsection that the deterministic τ -GDA (Algorithm 1) update almost
surely converges to a differential Stackelberg equilibrium in nonconvex-PŁ/SC zero-sum games.
Despite this result being asymptotic, to our knowledge it is the most general class of zero-sum games
in which a global convergence guarantee to established game-theoretic equilibria has been given.

To begin, observe that the continuous-time τ -GDA dynamics do not necessarily correspond to a gradient
flow of a function, which can be observed from the fact that the Jacobian Jτ is not guaranteed to
be symmetric. As a consequence, there may exist complex limiting behavior beyond convergence
to a critical point such as non-trivial limit cycles or periodic orbits. To rule out this phenomenon,
we prove that there exists a bounded potential function that decreases along the iterates of τ -GDA
and only stops decreasing at critical points of τ -GDA. In what follows, y∗(x) denotes an element of
argmaxy∈Y f(x, y) and we define κ := L1/µ. Moreover, as an implication of Assumption 1 and
Definition 1,∇maxy∈Y f(·, y) is L4 = (L1 + κL2) Lipschitz (see Lemma 7 in Appendix B.3).

Lemma 1. Consider a nonconvex-PŁ/SC zero-sum game defined by f ∈ C2(Z,R) satisfying
Assumption 1. For any Γ ∈ (0, 1/7], suppose that τ ≥ Γ−1κ2 and γ < min{ 1

2L ,
1

2τL ,
1

2L4
}, then

Φ(x, y) = f(x, y∗(x))− Γf(x, y) is a potential function for τ -GDA.

The function f(x, y∗(x)) can be seen as the function the x player would minimize if the y player
was playing a best-response y∗(x). The potential function Φ(x, y) essentially captures that along
trajectories of τ -GDA, either the value of f(x, y∗(x)) should decrease, or the value of f(x, y∗(x))−
f(x, y) should decrease since the y-player converges at a fast rate to y∗(x) given the time-scale
separation. Indeed, this potential function implicitly guarantees that the maximizing player tracks
the best response set, and that the minimizing player essentially ends up minimizing f(x, y∗(x)) as
desired. The choice of τ and the learning rate γ allow us to guarantee that this occurs.

Given the potential function in Lemma 1, we can conclude that Algorithm 1 converges to critical
points. The critical points may correspond to stable points of the continuous-time τ -GDA dynamics
(Definition 5) or saddle points of the continuous-time τ -GDA dynamics, which are defined as follows.
Definition 6 (Saddle Point). The critical point z∗ = (x∗, y∗) ∈ Z is a saddle point of the τ -
GDA continuous-time dynamics ż = −Λτg(z) if Re(λmax(−Jτ (z∗))) ≥ 0 and a strict saddle if
Re(λmax(−Jτ (z∗))) > 0 and Re(λ) 6= 0 ∀ λ ∈ spec(−Jτ (z∗)).

Recall that Theorem 1 indicates the only stable points of the continuous-time τ -GDA dynamics are
differential Stackelberg equilibria. Thus, if we can show that the discrete-time τ -GDA dynamics
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avoid saddle points of the continuous-time τ -GDA dynamics, then we can conclude that Algorithm 1
converges to only differential Stackelberg equilibria. The following result of Mazumdar et al. [40]
states that the discrete-time τ -GDA dynamics avoid strict saddle points of the continuous-time limiting
system almost surely.3

Lemma 2 (Theorem 4.1 [40]). Consider a zero-sum game defined by the nonconvex-nonconcave
function f ∈ C2(Z,R) satisfying Assumption 1. The set of initial conditions z ∈ Z from which
τ -GDA with γ < min{ 1

L ,
1
τL} converges to strict saddle points of ż = −Λτg(z) is of measure-zero.

Lemma 2 can be combined with the existence of a potential function (Lemma 1) and the guarantee
all stable points of the τ -GDA continuous-time system are strict local minmax (Theorem 1) to arrive at
a desirable global convergence guarantee for τ -GDA when given the following assumption.

Assumption 2 (Strict Saddle Property). Given a zero-sum game (f,−f) defined by f ∈ C2(Z,R),
we assume every saddle point of the continuous-time τ -GDA dynamics given by the system ż =
−Λτg(z) from (5) is a strict saddle point for the choice of τ ∈ (0,∞).

Assumption 2 can be seen as an analogue for gradient dynamics in nonconvex zero-sum games to the
commonly assumed strict saddle property in nonconvex optimization [17, 20, 24]. A key distinction
is that in nonconvex optimization, strict saddles of the function and strict saddles of the gradient
dynamics are equivalent, whereas this property does not carry over to the zero-sum game setting and
instead the assumption needs to be explicitly made on saddle points of the gradient dynamics. Given
this assumption, we are now ready to the state main result of this paper.

Theorem 2. Consider a nonconvex-PŁ/SC zero-sum game (f,−f) defined by f ∈ C2(Z,R) that
satisfies Assumptions 1–2. Then, τ -GDA with τ ≥ Γ−1κ2, and γ < min{ 1

2L ,
1

2τL ,
1

2L4
} for Γ ∈

(0, 1/7] asymptotically converges to the set of strict local minmax that are stable for ż = −Λτg(z)
almost surely. That is, for almost all initial conditions, τ -GDA will converge to a strict local minmax.

If we fix a τ satisfying the assumptions of the above theorem, then if we consider the set of stable
critical points for ż = −Λτg(z), we know that by Theorem 1 this set only contains differential
Stackelberg (and hence, strict local minmax) points. It is precisely this set of strict local minmax
to which τ -GDA converges almost surely. Note that a stable differential Stackelberg equilibrium
is ensured to exist for the choice of τ and γ. Moreover, by Theorem 1, as we increase τ , no new
spurious non-minmax points are introduced to the set of stable critical points; only additional strict
local minmax points can be added to this set. Thus, this result provides a novel convergence guarantee
to not just ε-stationary points but those that are game theoretically meaningful.

5.2 Convergence Rates to Approximate Stationary Points

While Theorem 2 implies a global convergence guarantee to a strict local minmax equilibrium, a
global convergence rate to the same set does not easily follow. This is due to the fact that obtaining
such a result requires the dynamics to escape strict saddle points not just asymptotically, but efficiently.
In lieu of pursuing such a result, in this subsection, we derive global complexity bounds for τ -GDA
reaching an ε-critical point. To begin, we have the following convergence result for τ -GDA, which
follows rather directly from the potential function given in Lemma 1.

Corollary 1. Consider a nonconvex-PŁ/SC zero-sum game (f,−f) defined by f ∈ C2(Z,R) that sat-
isfying Assumption 1. Then, τ -GDA from any initialization with τ ≥ Γ−1κ2, γ < min{ 1

2L ,
1

2τL ,
1

2L4
}

for Γ ∈ (0, 1/7], has at least one iterate that is an ε-critical point after Õ(ε−2) iterations.

We remark that we are unaware of an existing convergence result to a ε-critical point for τ -GDA in
nonconvex-PŁ zero-sum games. Moreover, it is worth noting that this convergence guarantee holds
for choices of τ and γ that satisfy the conditions of Theorem 2. Thus, together, we have shown
that τ -GDA finds an approximate stationary point efficiently, and then asymptotically is guaranteed
to converge to a strict local minmax equilibrium. It is also known that τ -GDA locally converges

3The strict saddle avoidance result of Mazumdar et al. [40, Theorem 4.1] holds more generally for simul-
taneous gradient descent with heterogeneous learning rates in n-player general-sum nonconvex games. For
simplicity, we only state the result in the context of this work. We also remark that Daskalakis and Panageas [10,
Theorem 2.2] show an analogous strict saddle avoidance result for τ -GDA in nonconvex-nonconcave zero-sum
games, but restricted to τ = 1, hence the reason it is not referenced in Lemma 2.
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exponentially fast around stable strict local minmax equilibrium in nonconvex-nonconcave zero-sum
games [15] and thus in this class of games as well.

We now restrict our focus to nonconvex-SC zero-sum games and provide a complimentary conver-
gence analysis. In the existing literature on convergence in the nonconvex-SC literature [35, 59, 62],
the proposed potential function has a structure closely related to the potential function in Lemma 1; in
particular, it takes the form f(x, y)+r(x, y) where r(x, y) is a tracking term of the form ‖y−y∗(x)‖2
or f(x, y∗(x)). Yet, perhaps surprisingly, despite the fact that the game cost depends on the sequences
generated by two separate gradient updates—one from minimizing f and one from maximizing
it—we show below that there are choices of τ and γ for τ -GDA such that it is decreasing along trajec-
tories of τ -GDA. The benefit of knowing that the cost function is a potential is that it is a computable
quantity that can be monitored to evaluate progress during training in machine learning problems
formulated as zero-sum games in this class. For this set of results, we consider both the deterministic
and stochastic settings. In the stochastic setting, for any (x, y), a gradient query to an oracle returns
g1(x, y; θ1) and g2(x, y; θ2) to the two players respectively, where each θi is a random variable drawn
from distribution Di with i ∈ I and the stochastic gradients satisfy the following assumptions.4

Assumption 3. For any (x, y) ∈ Z and each i ∈ I , Eθi∼Di [gi(x, y; θi)] = ∇if(x, y) and ∀ t ∈ R:

P(‖gi(x, y; θ)−∇if(x, y)‖ ≥ t) ≤ 2 exp(− t2

2σ2
i
).

Given this assumption and defining ` := L1 + 3κ′L2 and κ′ := L2/µ, we have the following result.
Lemma 3. Consider a nonconvex-SC zero-sum game (f,−f) defined by f ∈ C2(Z,R) satisfying
Assumption 1 and Assumption 3. If γ ≤ 1/` and τ = Γ/(µγ) for any constant Γ ≥ 4, then with
probability at least 1− δ for any δ ∈ (0, 1), f(xk, yk) is a (stochastic) potential function for τ -GDA
in the stochastic and deterministic settings.

This result then leads to the following convergence guarantee to ε-critical points, given that there is a
finite minimum value f∗ of the game cost function.
Corollary 2. Consider a nonconvex-SC zero-sum game (f,−f) defined by f ∈ C2(Z,R) satisfying
Assumption 1 and Assumption 3. For any δ ∈ (0, 1), there exists γ and τ satisying the conditions
of Lemma 3 such that, with probability at least 1− δ, starting from any initialization, at least half
the iterates of (stochastic) τ -GDA will be ε-critical points after Õ(ε−2) and Õ(ε−6) iterations in the
deterministic and stochastic settings, respectively.

6 Discussion

To the best of our knowledge, our results are the first to guarantee global convergence of gradient-
based algorithms to game theoretically meaningful equilibria in nonconvex-PŁ/SC zero-sum games.
We believe an interesting direction of future work in these classes of games would be to obtain an
equivalent guarantee in the setting with constraints. Moreover, in the unconstrained setting, it would be
desirable to show not only does a τ -GDA variant provably converge in an almost sure asymptotic sense
to strict local minmax equilibria, but that there is also finite-time guarantee (preferably matching the
rates from nonconvex optimization) to an appropriate approximate notion. The difficulty in showing
this stems from possibility that the game dynamics can get stuck in a region around a non-game
theoretically meaningful strict saddle. This problem has been observed in the nonconvex single
player setting [12] with gradient descent and trivially extends to τ -GDA in the zero-sum game setting.
A body of work in nonconvex optimization has developed algorithmic methods that address this
issue [9, 14, 17, 20, 24] including by injecting artificial noise to perturb the updates away from strict
saddle points. Yet, to our knowledge, such methods have not yet been extended to the zero-sum game
setting. Notably, escaping strict saddles is more of nuanced issue in this setting since strict saddles of
the dynamics are not always strict saddles of the function and vice versa.
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determining the stability of dynamical systems using the local linearization. Appendix B.3 contains useful properties
of PŁ functions and nonconvex-PŁ zero-sum games that help in both the stability analysis in Appendix C and for
proving the results from Section 5. Appendix B.4 contains a technical result that is needed for the stability analysis in
Appendix C. Appendix B.5 includes concentration inequalities for norm-subGaussian random vectors needed for the
stochastic convergence result in Appendix E.

C Stability Analysis: Proof of Theorem 1 23
Appendix C contains the proof of Theorem 1 from Section 4 regarding the local stability of critical points in nonconvex-
PŁ zero-sum games.

D Convergence Analysis for Nonconvex-PŁ Zero-Sum Games 24
Appendix D contains the proofs for the results from Section 5 on the convergence of τ -GDA in nonconvex-PŁ zero-sum
games, which also immediately generalize to nonconvex-SC zero-sum games. In particular, this Appendix D includes
the proofs of Lemma 1 (potential function), Theorem 2 (global asymptotic equilibrium convergence guarantee) and
Corollary 1 (convergence rate).

E Convergence Analysis for Nonconvex-SC Zero-Sum Games 30
Appendix E contains the proofs for the results from Section 5 specific to nonconvex-SC zero-sum games. In particular,
Appendix E contains the proofs of Lemma 3 (potential function) and Corollary 2 (convergence rates).

A Related Work

We now cover related work in further detail. We begin by discussing past work on nonconvex-nonconcave zero-sum
games with a focus on papers that analyze the local stability of critical points using the continuous-time limiting system
as we do in Section 4 for nonconvex-PŁ/SC zero-sum games. Then, we compare our convergence results in nonconvex-
PŁ/SC zero-sum games presented in Section 5 to existing guarantees in the literature for various gradient-based
learning algorithms. We remark that there are a number of papers analyzing gradient-based learning in strongly-convex-
strongly-concave, strongly-convex-linear, strongly-convex-concave, convex-concave, and nonconvex-concave zero-sum
games. Since each of the aforementioned problems are fundamentally different in terms of the structure compared to
nonconvex-PŁ/SC zero-sum games, we do not discuss each body of work in detail and instead refer the reader to the
detailed discussion of work on such problems provided in the paper of Lin et al. [34]. Finally, we review techniques
and results for escaping saddle points in nonconvex optimization relevant to our analogous methods and guarantees in
classes of nonconvex games.

Nonconvex-Nonconcave Zero-Sum Games. In general nonconvex-nonconcave zero-sum games, global convergence
guarantees to traditional game-theoretic equilibrium notions are effectively unobtainable as a result of computational
hardness results [11] and the emergence of non-trivial limit cycles and periodic orbits [19, 30]. Consequently, the
analysis of gradient-based learning algorithms in nonconvex-nonconcave zero-sum games has commonly focused
on determining the local stability of the continuous-time limiting system around critical points. Typically, the goal
is to determine the relationship between the set of stable critical points and the critical points that correspond to
game-theoretic equilibrium.
The prototypical equilibrium notions in game theory are the (local) Nash and Stackelberg equilibrium concepts [6].
The aforementioned equilibrium notions have been characterized in terms of gradient-based sufficient conditions and

16



critical points satisfying the conditions have sometimes been termed differential Nash (strict local Nash) and differential
Stackelberg (strict local Stackelberg) equilibria. The differential characterization of local Nash equilibria was reported
by Ratliff et al. [49, 51], while the differential characterization of local Stackelberg equilibria was given concurrently
by Fiez et al. [16] and Jin et al. [23] where the conditions presented by the former extend to general-sum games.
Moreover, Fiez et al. [16] and Jin et al. [23] show that differential Nash equilibria are a subset of differential Stackelberg
equilibria. A series of works analyze the properties of the equilibrium notions defined in terms of gradient-based
sufficient conditions. In particular, Ratliff et al. [50] and Mazumdar and Ratliff [39] prove the genericity and structural
stability of differential Nash equilibria in general-sum and zero-sum games, respectively. Analogously, Fiez et al. [16]
prove the genericity and structural stability of differential Stackelberg equilibria in zero-sum games.
Several past works study the local stability of τ -GDA without timescale separation (equal learning rates, τ = 1) around
critical points [10, 40]. In this direction, each of the aforementioned works prove there can exist stable critical points of
τ -GDA with τ = 1 that are not differential Nash equilibria. Moreover, they each show that differential Nash equilibria
are stable critical points of τ -GDA with τ = 1.
Building on this line of work, the local stability of τ -GDA with timescale separation around critical points has been
analyzed [15, 23]. We begin by commenting on the results of Jin et al. [23]. It is shown by the authors that differential
Nash equilibria are stable critical points of τ -GDA with any timescale separation parameter τ > 0. Moreover, they prove
that given any fixed timescale separation τ > 0, there exists a game with a differential Stackelberg equilibrium that
is not stable with respect to the τ -GDA system. Finally, they show that as τ →∞, the stable critical points of τ -GDA
coincide with the set of differential Stackelberg equilibria. Fiez and Ratliff [15] provide complimentary results by
focusing on the stability properties of any given critical point as a function of the timescale separation τ , rather than
considering stability properties across the space of nonconvex-nonconcave zero-sum games. In particular, they show a
stability and instability result. The stability result says that given a differential Stackelberg equilibrium (x∗, y∗), there
exists a finite τ∗ ∈ (0,∞) that can be constructed such that (x∗, y∗) is stable for all τ ∈ (τ∗,∞) with respect to the
τ -GDA dynamics. The instability results says that given a critical point (x∗, y∗) which is not a differential Stackelberg
equilibrium, there exists a finite τ0 ∈ (0,∞) that can be constructed such that (x∗, y∗) is not stable for all τ ∈ (τ0,∞)
with respect to the τ -GDA dynamics. It is important to observe that the constructions of a τ∗ or τ0 depend on the
properties of a given critical point.
The results we provide regarding the local stability of τ -GDA around critical points in nonconvex-PŁ/SC zero-sum
games in Section 4 strengthen the stability characterizations of Fiez and Ratliff [15] by exploiting the structure of these
classes of games. In comparison, we obtain the stronger results in nonconvex-PŁ zero-sum games that (i) τ0 = 0 for
any critical point that is not a differential Stackelberg equilibria and (ii) a differential Stackelberg equilibria is never
unstable after it becomes stable as a function of τ . That is, we obtain insights that apply to the class of games rather
than specific critical points, which are easily quantifiable instead of depending on properties of a given critical point.
We remark that another line of work studies the local stability of τ -GDA without timescale separation (τ = 1) in
generative adversarial networks under certain assumptions [42, 43]. The results are generalized to the study of τ -GDA
with timescale separation [15] to show that equivalent conclusions hold for any choice of timescale separation τ > 0.
Finally, there is a line of work developing gradient-based learning algorithms using second order information in
nonconvex-nonconcave zero-sum games such that the only locally stable critical points correspond to game-theoretic
equilibrium notions. In particular, Adolphs et al. [1] and Mazumdar et al. [41] develop algorithms under which a critical
point is locally stable if and only if it is a differential Nash equilibrium. Moreover, Fiez et al. [16], Wang et al. [58],
and Zhang et al. [64] construct algorithms under which a critical point is locally stable if and only if it is a differential
Stackelberg equilibria.

Nonconvex-PŁ and Nonconvex-SC Zero-Sum Games. We now expand our discussion of existing work on
nonconvex-PŁ and nonconvex-SC zero-sum games. As discussed in Section 2, in comparison to past works in
this area, the key distinction of this work is that we give global convergence guarantees to game-theoretic equilibria,
whereas existing work only considers convergence to notions of stationarity.
In the class of nonconvex-PŁ zero-sum games, the closest works to this paper are [45] and [62]. Each of the
aforementioned works show that an ε-approximate stationary point of the game function f(·, ·) can be found in Õ(ε−2)
gradient calls by variants of alternating gradient descent-ascent with timescale separation (τ -AGDA) in the deterministic
setting. In comparison, we show in Theorem 2 that simultaneous gradient descent-ascent with timescale separation
(τ -GDA) globally asymptotically converges to a differential Stackelberg equilibrium (local minmax equilibrium) almost
surely. Moreover, we also provide a global convergence guarantee to an ε-critical point in Õ(ε−2) gradient calls in
the deterministic setting. We remark that the primary focus of [62] is on two-sided PŁ games, which is a class with a
unique equilibrium and the convergence guarantees given for this class are to the equilibrium.
In the class of nonconvex-SC zero-sum games, there is an extensive amount of recent work. In terms of existing
results on variants of gradient descent-ascent, Lin et al. [33] shows for both simultaneous and alternating gradient
descent-ascent (τ -GDA and τ -AGDA) that with Õ(ε−2) and Õ(ε−5) gradient calls an ε–approximate stationary point
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of the function f(·, ·) or the function φ(·) = maxy∈Y f(·, y) can be obtained in the deterministic and stochastic
settings, respectively. For this class of games, we show in Theorem 2 that τ -GDA globally asymptotically converges to
a differential Stackelberg equilibrium (local minmax equilibrium) almost surely. Obtaining this result requires both
fully characterizing the local stability around critical points (Theorem 1) and then combining asymptotic saddle escape
results with a potential function. Moreover, we also show that there exists τ and γ such that the game cost function is a
potential function and using this derive convergence rates to ε-critical points of Õ(ε−2) and Õ(ε−6) in deterministic
and stochastic settings, respectively.
Before moving on, we remark that there is a number of works that develop algorithms that improve the complexity
of finding stationary points in terms of the dependence on the condition number and polylogarithmic dependencies.
This focus is separate from our work, but we refer the reader to [34, 36, 48] and the references therein. We believe an
interesting direction of future work is strengthening the results along this direction to the stronger notions of solving
the problem considered in this work. Furthermore, there is also recent work developing lower bounds for this class of
games [32, 65]. Finally, there are several works in this class of games with zeroth order feedback [35, 59, 60].

Escaping Saddle Points. In this paper we present asymptotic convergence results to differential Stackelberg equi-
librium in nonconvex-PŁ and nonconvex-SC zero-sum games. To obtain such results it is necessary to escape saddle
points asymptotically. We build on methods from nonconvex-nonconcave games and nonconvex optimization to prove
that τ -GDA has this guarantee. In what follows, we provide background on these methods.
A common assumption in the body of work on escaping saddle points in nonconvex optimization is what is known as
the strict saddle property (see, e.g., [17, 20, 28]). Informally, if a function class satisfies the strict saddle property, every
saddle point of the gradient descent dynamics has a strictly negative eigenvalue in the Jacobian evaluated at the critical
point. This assumption ensures that there is a direction of escape from every saddle point. We make an analogous
assumption adapted to the classes of nonconvex zero-sum games we analyze (Assumption 2) following the definition
from the work of Mazumdar et al. [40]. For nonconvex-PŁ/SC zero-sum games, if the game satisfies the strict saddle
property, every saddle point of the τ -GDA dynamics has an eigenvalue with strictly negative real part and no eigenvalue
has a real part equal to zero in the Jacobian Jτ (x∗, y∗) evaluated at the critical point for the given choice of timescale
separation τ . We remark that there is some distinction between the definition of a strict saddle between nonconvex
optimization and nonconvex games. This stems from the fact that in nonconvex optimization, saddles of the function
and saddles of the dynamics are equivalent, whereas this does not carry over to the zero-sum game setting. In this paper,
the terminology of a saddle point is with respect to the dynamics.
There exists both asymptotic and finite-time saddle avoidance results in nonconvex optimization. The asymptotic saddle
avoidance results in nonconvex optimization state that gradient descent dynamics almost surely avoid strict saddle
points [28, 29]. This result has been extended to show that gradient descent dynamics almost surely avoid saddle points
even for functions with non-isolated critical points [46] in nonconvex optimization. The drawback of this style of result
is that it fails to preclude that gradient descent could spend an arbitrarily long time stuck in the neighborhood of a saddle
point. In fact, it has been shown that gradient descent can take exponential time to escape from saddle points [12].
A series of works present asymptotic results on escaping saddle points in continuous action games analogous to that
from nonconvex optimization. In particular, Mazumdar et al. [40] prove that in N -player general-sum games, if each
player follows the gradient descent learning rule then the dynamics avoid strict saddles of the dynamics almost surely.
This result allows for players to employ distinct learning rates. Translated to nonconvex-nonconcave zero-sum games,
the result ensures that τ -GDA dynamics avoid strict saddles of the dynamics almost surely for any timescale separation
τ > 0 as is presented in Lemma 2. The aforementioned result is key to the asymptotic convergence guarantee to
differential Stackelberg equilibria we provide in Theorem 2 for τ -GDA for nonconvex-PŁ/SC zero-sum games. In a
related line of work, Daskalakis and Panageas [10] show that in nonconvex-nonconcave zero-sum games the τ -GDA
dynamics with τ = 1 (without timescale separation) avoid strict saddle points including when critical points are not
isolated. We remark that the result demonstrating that gradient descent can take exponential time to escape from saddle
points [12] immediately carries over to gradient descent-ascent in zero-sum games since the game could be completely
decoupled an correspond to separate nonconvex-optimization problems.
The study of finite-time saddle avoidance results in nonconvex optimization generally focuses on designing variants
of gradient descent that not only avoid saddle points of the dynamics almost surely, but escape from them efficiently.
The methods of greatest relevance to this paper are the existing works analyzing the rates at which ‘simple’ variants of
gradient descent escape saddle points in nonconvex optimization. This line of research dates back to the work of Ge
et al. [17], who proved that stochastic gradient descent with injected noise perturbations finds an approximate local
minimum in a number of gradient class that depends polynomially on the dimension. Since the initial work on escaping
saddle points efficiently, there have been many follow-up works. The most relevant to our results and techniques are
the works of Jin et al. [20] and Jin et al. [24]. Indeed, Jin et al. [20] prove that a perturbed variant of gradient descent
with deterministic gradients finds approximate local minima under the strict saddle assumption with only a logarithmic
dimension dependence, meaning the result is almost dimension free and near equivalent to the complexity needed to
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find a critical point using gradient descent. Moreover, Jin et al. [24] generalize such proof techniques to show that
variants of gradient and stochastic gradient descent with injected noise achieve an analogous guarantee with a unified
analysis. For future work, it would be interesting to see if these methods could be extended to a perturbed variant of
τ -GDA toward seeking a finite-time convergence guarantee to an approximate local minmax equilibrium. There is an
extensive literature on methods for escaping saddle points efficiently in nonconvex optimization beyond the works
that have been mentioned thus far. This includes analysis of dynamics using normalized gradients [31], stochastic
gradient descent without artificial noise injections [9], negative curvature search methods [2–4, 61], variance reduced
methods [13, 66], cubic regularization [56], and adaptive acceleration methods [7, 21, 54, 57]. Finally, there is also a
recent, sharper analysis of stochastic gradient descent [14].

B Preliminaries
We now review preliminaries on game-theory concepts, dynamical systems theory, PŁ functions and nonconvex-PŁ
zero-sum games, linear algebra, and concentration inequalities. The sections on PŁ functions and nonconvex-PŁ
zero-sum games, linear algebra, and concentration inequalities include a number of technical lemmas that are needed
throughout the rest of the appendix.

B.1 Game Theory

The focus of this work is on developing convergence guarantees for gradient descent-ascent with timescale separation
(τ -GDA) to game-theoretically meaningful equilibrium. In the class of games under consideration, the natural solution
concept from game theory is a minmax or equivalently Stackelberg equilibrium. Given the nonconvex nature of the
minimizing players objective, we consider a local refinement of this historically standard equilibrium concept. In
the nonconvex-nonconcave zero-sum game literature, recent work [16, 23] develops sufficient conditions for local
Stackelberg equilibrium and points satisfying the conditions correspond to strict local Stackelberg equilibrium. We refer
to strict local Stackelberg equilibrium as differential Stackelberg equilibrium following the terminology of [16]. This is
the the basis for the equilibrium concept we consider that is given in Definition 4. The fact we focus our attention on
strict local equilibrium is standard [15, 16, 23, 40, 58]).
For completeness, we now present a formal local Stackelberg equilibrium definition characterized in terms of the costs.
This definition has appeared in past work [15, 16] and it is a simple refinement to a local concept from the standard
Stackelberg equilibrium definition in continuous action space games [6]. We emphasis that the equilibrium we consider
in Definition 4 is characterized by sufficient conditions for the following local Stackelberg equilibrium definition.
Definition 7 (Local Minmax/Stackelberg Equilibrium). Consider Ux ⊂ X and Uy ⊂ Y where, without loss of
generality, player 1 (controlling x ∈ X ) is minimizing player and player 2 (controlling y ∈ Y) is the maximizing player.
The strategy x∗ ∈ Ux is a local Stackelberg solution for the minimizing player if, ∀x ∈ Ux,

sup
y∈rUy (x∗)

f(x∗, y) ≤ sup
y∈rUy (x)

f(x, y),

where rUy (x) = {y′ ∈ Uy|f(x, y′) ≥ f(x, y),∀y ∈ Uy} is the reaction curve. Moreover, for any y∗ ∈ rUy (x∗), the
joint strategy profile (x∗, y∗) ∈ Ux × Uy is a local Stackelberg equilibrium on Ux × Uy .

B.2 Dynamical Systems Theory

In this section, we provide relevant background as it pertains to the local stability analysis we presented in Section 4.
We begin by formally describing what is meant by local stability of a continuous-time dynamical system as used in this
paper. In particular, we provide a formal definition for the stability definition that was presented in Definition 5. The
following well-known result provides equivalent characterizations of local stability for a critical point (stationary point)
of a continuous-time dynamical system of the form ż = −g(z) in terms of the Jacobian matrix J(z) = Dg(z).
Theorem 3 ([26, Theorem 4.6, Corollary 4.3]). Consider a critical point z∗ of g(z). The following are equivalent: (a)
z∗ is a locally exponentially stable equilibrium of ż = −g(z); (b) spec(−J(z∗)) ⊂ C◦−; (c) there exists a symmetric
positive-definite matrix P = P> � 0 such that P J(z∗) + J(z∗)>P � 0.

Before moving on, we provide a brief discussion of the implications of determining stability using the local linearization
(Jacobian of the dynamical system) around critical points. The Hartman-Grobman theorem [52, Theorem 7.3]; [55,
Theorem 9.9] asserts that it is possible to continuously deform all trajectories of a nonlinear system onto trajectories of
the linearization at a fixed point of the nonlinear system. Informally, the theorem states that the qualitative properties of
the nonlinear system ż = −g(z) in the vicinity (which is determined by the neighborhood U ) of an isolated equilibrium
z∗ are determined by its linearization if the linearization has no eigenvalues on the imaginary axes in the complex plane.
We also remark that Hartman-Grobman can also be applied to discrete time maps (cf. Sastry [52, Thm. 2.18]) with the
same qualitative outcome.
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In the context of this work, this means that by determining stability using the local linearization around critical points,
the behavior of the nonlinear system in a neighborhood of the critical point can be inferred. In particular, given that a
critical point is determined to be stable by the local linearization, then there is a neighborhood on which the dynamics
converge to the critical point. This observation also applies to the discrete-time system with proper learning rates.

B.3 Polyak-Łojasiewicz Functions and Nonconvex-Polyak-Łojasiewicz Zero-Sum Games
In this section, we state properties of PŁ functions in the context of nonconvex-PŁ zero-sum games. Specifically, we
state additional properties of nonconvex-PŁ zero-sum games that follow from properties of PŁ functions (see Lemma 4
and Lemma 5). Moreover, we present additional smoothness properties (see Lemma 6 and Lemma 7) that follow from
properties of nonconvex-PŁ zero-sum games and Assumption 1. Finally, we characterize the curvature around critical
points of PŁ functions (see Lemma 8). These properties will be used in both the proofs for the local stability and the
global convergence in nonconvex-PŁ zero-sum games.
We begin by stating a known property [25] that µ-PŁ functions satisfy a quadratic growth condition [5] also with
parameter µ. For clarity of presentation, we state this condition in the context of the nonconvex-PŁ zero-sum games
we study. Recall from Definition 1 that given a zero-sum game (f,−f) defined by f ∈ C2(Z,R), the game is called
nonconvex-PŁ if f(x, ·) is µ-PŁ with respect to the argument y ∈ Y . That is, for µ > 0 and for all z = (x, y) ∈ Z ,

‖∇2f(x, y)‖2 ≥ 2µ(maxy′∈Y f(x, y′)− f(x, y)), (7)
where for any fixed x ∈ X , maxy′∈Y f(x, y′) has a nonempty solution set and a finite optimal value.
Lemma 4 ([25, Theorem 2, Appendix A]). Consider a nonconvex, µ-PŁ zero-sum game defined by f ∈ C2(Z,R)
satisfying Assumption 1. For all x ∈ X , the function f(x, ·) satisfies the following quadratic growth condition:

max
y′∈Y

f(x, y′)− f(x, y) ≥ µ

2
‖yp − y‖2, ∀ y ∈ Y (8)

where yp is the projection onto the set argmaxy∈Y f(x, y).

It is also known that µ-PŁ functions satisfy an error bound condition [37] also with parameter µ. Again, for clarity of
presentation, we state this condition in the context of the nonconvex-PŁ zero-sum games we study.
Lemma 5 ([25, Theorem 2, Appendix A]). Consider a nonconvex, µ-PŁ zero-sum game defined by f ∈ C2(Z,R)
satisfying Assumption 1. For all x ∈ X , the function f(x, ·) satisfies the following error bound condition:

‖∇2f(x, y)‖ ≥ µ‖yp − y‖, ∀ y ∈ Y (9)
where yp is the projection onto the set argmaxy∈Y f(x, y).

We now state additional smoothness properties that follow from properties of nonconvex-PŁ zero-sum games and
Assumption 1. These properties are known for this class of games. For nonconvex-PŁ zero-sum games, given any fixed
x ∈ X , the set of maximizers of f(x, ·) may not be a singleton. For any fixed x ∈ X , we denote by y∗(x) an element
of argmaxy∈Y f(x, y). When necessary, we point out to which specific element y∗(x) corresponds. The following
result shows that the mapping y∗(x) satisfies a stability property.
Lemma 6 (Stability of Best-Response Map in PŁ functions [45, Lemma A.3]). Consider a nonconvex, µ-PŁ zero-sum
game defined by f ∈ C2(Z,R) satisfying Assumption 1 and let L3 := L2/µ. For all x, x′ ∈ X and y∗(x) ∈
argmaxy∈Y f(x, y), there exists a y∗(x′) ∈ argmaxy∈Y f(x, y) such that

‖y∗(x)− y∗(x′)‖ ≤ L3‖x− x′‖.

Danskin’s theorem in optimization provides conditions under which the total derivative∇f(x, y∗(x)) where
y∗(x) ∈ argmax

y∈Y
f(x, y)

is equivalent to∇1f(x, y∗(x)). That is, it gives conditions when the gradient of the function f(x, y∗(x)) is equal to
the gradient of f(x, y)|y=y∗(x) evaluated directly at the optimum. Typically this requires the maximizer to be unique.
However, it has been shown that for nonconvex-PŁ zero-sum games, this property carries over even without a unique
solution. This is stated in the following result along with a smoothness property of the function maxy∈Y f(x, y).
Lemma 7 (Danskin-Type Property for PŁ functions [45, Lemma A.5]). Consider a nonconvex, µ-PŁ zero-sum game
defined by f ∈ C2(Z,R) satisfying Assumption 1. Then,

∇f(x, y∗(x)) = ∇1f(x, y∗(x)) where y∗(x) ∈ argmax
y∈Y

f(x, y).

Moreover, ∇f(x, y∗(x)) is L4 = (L1 + L1L2

µ )–Lipschitz. That is, for all x, x′ ∈ X ,

‖∇f(x, y∗(x))−∇f(x′, y∗(x
′))‖ ≤ L4‖x− x′‖.
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We remark that L3 and L4 from Lemma 6 and Lemma 7 slightly deviate from that values in the work of Nouiehed
et al. [45]. This is a result of the fact that a correction was made in the work of Karimi et al. [25] after the publication
of the work of Nouiehed et al. [45], which showed that µ-PŁ functions satisfy the quadratic growth condition with
parameter µ whereas previously it was stated that µ-PŁ functions satisfy the quadratic growth condition with parameter
4µ. Consequently, L3 and L4 are stated in Lemma A.3 and Lemma A.5 in the work of Nouiehed et al. [45] (in our
notation) as L2/(2µ) and L1 + (L1L2)/(2µ), respectively. Incorporating the fix to the constant from the most recent
version of Karimi et al. [25] into Lemma A.3 and Lemma A.5 in the work of Nouiehed et al. [45] gives the values of
L3 and L4 stated in Lemma 6 and Lemma 7, respectively.
We now show that the quadratic growth property of PŁ functions implies that the eigenvalues of ∇2

2f(x∗, y∗) are
upper-bounded by −µ at any critical point (x∗, y∗) of a µ-PŁ zero-sum game. This means that at any critical point
of the game, player 2 must be at a maximum. It is in fact known that all critical points of PŁ functions are global
minimum [25], which in the context of this work implies that all critical points of nonconvex-PŁ zero-sum games,
player 2 must be not only at a local maximum, but a global maximum. This can be observed by the definitions of a
critical point and nonconvex-PŁ zero-sum games we have at any critical point (x∗, y∗):

0 = ‖∇2f(x∗, y∗)‖2 ≥ 2µ(max
y′∈Y

f(x∗, y′)− f(x∗, y∗)) ≥ 0.

The following property will be used in the proof of Theorem 1 in Appendix C. Note that given the inequality above it is
primary needed to show that det(∇2

2f(x∗, y∗)) 6= 0 at critical points (x∗, y∗).

Lemma 8. Consider a nonconvex, µ-PŁ zero-sum game defined by f ∈ C2(Z,R). At any critical point (x∗, y∗) of the
game, that is where∇1f(x∗, y∗) = 0 and ∇2f(x∗, y∗) = 0, the individual Hessian of the maximizing player given by
∇2

2f(x∗, y∗) is negative definite and eigenvalues bounded above by −µ.

Proof. Let us consider any critical point (x∗, y∗) of the game so that ∇1f(x∗, y∗) = 0 and ∇2f(x∗, y∗) = 0. Taking
a Taylor expansion of −f(x∗, ·) about the point y∗, we and get that

−f(x∗, y) = −f(x∗, y∗)−∇2f(x∗, y∗)>(y − y∗)− 1

2

∫ z

y∗
(y − z)>∇2

2f(x∗, z)(y − z)dz.

This is equivalent to

−f(x∗, y) = −f(x∗, y∗)−∇2f(x∗, y∗)>(y − y∗)

− 1

2

∫ 1

τ=0

(y∗ + τ(y − y∗)− y)>∇2
2f(x∗, y∗ + τ(y − y∗))(y∗ + τ(y − y∗)− y)dτ

Let By∗(‖y − y∗‖) be a ball of radius ‖y − y∗‖ centered at y∗. Then,

−f(x∗, y) = −f(x∗, y∗)−∇2f(x∗, y∗)>(y − y∗)

− 1

2

∫ 1

τ=0

(y∗ + τ(y − y∗)− y)>∇2
2f(x∗, y∗ + τ(y − y∗))(y∗ + τ(y − y∗)− y)dτ

≤ −f(x∗, y∗)−∇2f(x∗, y∗)>(y − y∗)− 1

2
max

z∈By∗ (‖y−y∗‖)
(z − y∗)>∇2

2f(x∗, z)(z − y∗)

so that

f(x∗, y) ≥ f(x∗, y∗) +
1

2
max

z∈By∗ (‖y−y∗‖)
(z − y∗)>∇2

2f(x∗, z)(z − y∗)

≥ f(x∗, y∗) +
1

2
(z − y∗)>∇2

2f(x∗, z)(z − y∗), ∀z ∈ By∗(‖y − y∗‖).

Hence, by the quadratic growth property of PŁ functions from Lemma 4,

µ

2
‖y − y∗‖ ≤ f(x∗, y∗)− f(x∗, y) ≤ −1

2
(z − y∗)>∇2

2f(x∗, z)(z − y∗), ∀z ∈ By∗(‖y − y∗‖)

which gives the desired result.
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B.4 Linear Algebra

In this section, we state a property regarding matrix inertia that is important for the proof of Theorem 1 in Appendix C.
The following result from Lancaster and Tismenetsky [27, Theorem 2, Chapter 13.1] is needed for the proof of
Theorem 1 given in Appendix C. We include it here for ease of reference. For a given matrix A ∈ Rn×n, υ+(A),
υ−(A), and ζ(A) are the number of eigenvalues of the argument that have positive, negative and zero real parts,
respectively.
Lemma 9 ([27, Theorem 2, Chapter 13.1]). Consider a matrix A ∈ Rn×n.
(a) If P is a symmetric matrix such that AP + PA> = Q where Q = Q> � 0, then P is nonsingular and P and A

have the same inertia, meaning that

υ+(A) = υ+(P ), υ−(A) = υ−(P ), ζ(A) = ζ(P ). (10)

(b) On the other hand, if ζ(A) = 0, then there exists a matrix P = P> and a matrix Q = Q> � 0 such that
AP + PA> = Q, and P and A have the same inertia (i.e., (10) holds).

B.5 Concentration Inequalities

In this section, we presentation concentration inequalities for norm-subGaussian random vectors. Each of the following
technical lemmas are from the works of Jin et al. [22, 24] and we reproduce them here for clarity of presentation and
easy reference. These concentration inequalities will be used in Appendix E to obtain Lemma 3 and Corollary 2 from
Section 5.2.
The following defines a norm-subGaussian random vector.
Definition 8. A random vector x ∈ Rd is norm-subGaussian if there exists σ so that:

P(‖x− E[x]‖ ≥ t) ≤ 2e−
−t2

2σ2 ∀ t ∈ R.

The next result shows that a bounded random vector and a subGaussian random vector are special cases of a norm-
subGaussian random vector.
Lemma 10. There exists an absolute constant c so that the following random vectors are cσ-norm-subGaussian:

1. A bounded random vector x ∈ Rd such that ‖x‖ ≤ σ.
2. A random vector x ∈ Rd, where x = ψe1 and the random variable ψ ∈ R is σ-subGaussian.
3. A random vector x ∈ Rd that is (σ/

√
d)-subGaussian.

We now define the properties of norm-subGaussian martingale difference sequences.
Condition 1. Consider random vectors x1, . . . , xn ∈ Rd and the corresponding filtrations Fi = σ(x1, . . . , xi) for
i ∈ [n] such that xi|Fi−1 is zero-mean σi-norm-subGaussian with σi ∈ Fi−1. That is:

E[Xi|Fi−1] = 0, P(‖xi‖ ≥ t|Fi−1) ≤ 2e
− t2

2σ2
i , ∀t ∈ R,∀i ∈ [n].

The next results give concentration inequalities for the sum of norm squares of norm-subGaussian random vectors and
the sum of inner products of norm-subGaussian random vectors with another set of random vectors.
Lemma 11. Given random vectors x1, . . . , xn ∈ Rd that satisfy condition 1 with fixed σ1 = · · · = σn = σ, then for
any ι > 0 there exists an absolute constant c such that with probability at least 1− e−ι:

n∑
i=1

‖xi‖2 ≤ cσ2(n+ ι).

Lemma 12. Given random vectors x1, . . . , xn ∈ Rd that satisfy condition 1 and random vectors {ui} that satisfy
ui ∈ Fi−1 for all i ∈ [n], then for any ι > 0 and λ > 0 there exists an absolute constant c such that with probability at
least 1− e−ι:

n∑
i=1

〈ui, xi〉 ≤ cλ
n∑
i=1

‖ui‖2σ2
i +

1

λ
ι.
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C Stability Analysis: Proof of Theorem 1

This appendix is devoted to providing the proof of Theorem 1. For ease of reference, we restate the result now before
providing the proof.
Theorem 1. Consider a nonconvex-PŁ/SC zero-sum game (f,−f) where f ∈ C2(Z,R). Then, the following hold: 1)
Any critical point z∗ ∈ Z that is not a differential Stackelberg equilibrium is unstable with respect to τ -GDA for all
τ ∈ (0,∞); 2) If z∗ is a differential Stackelberg equilibrium, then spec(−Jτ (z∗)) ⊂ C◦− for all τ ∈ [τ∗,∞) where τ∗
is the minimum τ ∈ (0,∞) such that spec(−Jτ (z∗)) ⊂ C◦− and a finite τ∗ is guaranteed to exist.

Proof of Theorem 1. We begin by proving the first claim of the theorem statement.

Proof of 1. Let us first consider the case that a given a critical point z∗ could be such that S1(J1(z∗)) or −∇2
2f(z∗)

are singular. By Lemma 8 we know that for any critical point z∗, −∇2
2f(z∗) � 0 so that −∇2

2f(z∗) is non-singular.
Observe that at any critical point z∗, since −τ∇2

2f(z∗) is positive definite for all τ ∈ (0,∞), the following identity
holds for any τ ∈ (0,∞):

det(Jτ (z)) = det(S1(J(z∗))) det(−τ∇2
2f(z∗)).

From the fact that det(−τ∇2
2f(z∗)), it then easily follows that det(Jτ (z∗)) = 0 if and only if det(S1(J(z∗))) = 0.

Note that det(Jτ (z∗)) = 0 if and only if 0 ∈ spec(Jτ (z∗)) since eigenvalues of a real square matrix are either
purely real or come in complex conjugate pairs. Hence, given any critical point such that det(S1(J(z∗))) = 0, then
0 ∈ spec(Jτ (z∗)) and spec(−Jτ (z∗)) 6⊂ C◦− for all τ ∈ (0,∞). Hence, any critical point such that S1(J1(z∗)) is
singular is a saddle point and thus not stable for all τ ∈ (0,∞) and such a point is not a differential Stackelberg
equilibrium.
Now, suppose that z∗ is a critical point such that S1(J1(z∗)) and −∇2

2f(z∗) are non-singular. Let spec(−Jτ0(z∗)) ⊂
C◦− for some τ0 ∈ (0,∞). We know that−∇2

2f(z∗) � 0 by Lemma 8. We argue by contradiction that S1(J1(z∗)) � 0.
Towards this end, suppose not. That is, assume for the sake of contradiction that S1(J1(z∗)) has at least one negative
eigenvalue, or equivalently that −S1(J1(z∗)) has at least one positive eigenvalue.
Since det(S1(J1(z∗))) 6= 0 and det(−∇2

2f(z∗)) 6= 0, by Lemma 9.b, there exists non-singular Hermitian matri-
ces P1, P2 and positive definite Hermitian matrices Q1, Q2 such that − S1(J1(z∗))P1 − P1 S1(J1(z∗)) = Q1 and
∇2

2f(z∗)P2 + P2∇2
2f(z∗) = Q2.

Furthermore, − S1(J1(z∗)) and P1 have the same inertia, meaning

υ+(− S1(J1(z∗))) = υ+(P1), υ−(− S1(J1(z∗))) = υ−(P1), ζ(− S1(J1(z∗))) = ζ(P1)

where for a given matrix A, υ+(A), υ−(A), and ζ(A) are the number of eigenvalues of the argument that have positive,
negative and zero real parts, respectively. Similarly,∇2

2f(z∗) and P2 have the same inertia:

υ+(∇2
2f(z∗)) = υ+(P2), υ−(∇2

2f(z∗)) = υ−(P2), ζ(∇2
2f(z∗)) = ζ(P2).

Since − S(J1(z∗)) has at least one strictly positive eigenvalue by assumption for the sake of contradiction, υ+(P1) =
υ+(− S(J1(z∗))) ≥ 1.
Define

P =

[
I L>0
0 I

] [
P1 0
0 P2

] [
I 0
L0 I

]
(11)

where L0 = (∇2
2f(z∗))−1∇>12f(z∗). Since P is congruent to blockdiag(P1, P2), by Sylvester’s law of inertia [18,

Thm. 4.5.8], P and blockdiag(P1, P2) have the same inertia, meaning that

υ+(P ) = υ+(blockdiag(P1, P2)), υ−(P ) = υ−(blockdiag(P1, P2)), ζ(P ) = ζ(blockdiag(P1, P2)).

Consider the matrix equation −PJτ0(z∗)− J>τ0(z∗)P = Qτ0 for −Jτ0(z∗) where

Qτ0 =

[
I L>0
0 I

]
Bτ0

[
I 0
L0 I

]
(12)

with

Bτ0 =

[
Q1 P1∇12f(z∗)− S(J1(z∗))L>0 P2

(P1∇12f(z∗)− S(J1(z∗))L>0 P2)> P2L0∇12f(z∗) + (P2L0∇12f(z∗))> + τ0Q2

]
which can be verified by straightforward calculations. The matrix Bτ0 is a symmetric matrix, and it is positive definite.
Indeed, first observe that Q1 � 0 and Q2 � 0. Then showing Bτ0 � 0 reduces to showing

P2L0∇12f(z∗) + (P2L0∇12f(z∗))> � 0.
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To see this, note that it is sufficient to choose P2 = ∇2
2f(z∗) ≺ 0 so that

Q2 = P2∇2
2f(z∗) +∇2

2f(z∗)P2 = 2∇2
2f(z∗)2 � 2µ2I.

Observe that we have used the fact that the eigenvalues of ∇2
2f(z∗)2 are the square of the eigenvalues of ∇2

2f(z∗) and
the eigenvalues of ∇2

2f(z∗) are bounded between −µ and −L2 by Lemma 8 and the Lipschitz assumption.
Then, with this choice of P2, we have that

P2(∇2
2f(z∗))−1∇>12f(z∗)∇12f(z∗) + (P2(∇2

2f(z∗))−1∇>12f(z∗)∇12f(z∗))> = 2∇>12f(z∗)∇12f(z∗) � 0.

Now, since Bτ0 � 0 so is Qτ0 since they are congruent. Since spec(−Jτ0(z∗)) ⊂ C◦−, Qτ0 � 0 implies that
P = P> ≺ 0 (by Lyapunov’s theorem). Hence, P1 and P2 must be negative definite since P is congruent to
diag(P1, P2), but this gives us a contradiction with the fact that P1 has the same inertia as − S1(J1(z∗)) which we
assumed to have at least one positive eigenvalue. Hence, if spec(−Jτ0(z∗)) ⊂ C◦− for some τ0 ∈ (0,∞), then it
must be the case that S1(J1(z∗)) � 0 which means z∗ is a differential Stackelberg equilibrium since we also have
−∇2

2f(z∗) � 0 by Lemma 8.
Thus, we can finish the proof of part 1 as follows. Consider any critical point z̃ that is not a differential Stackelberg
equilibrium and is unstable for the nominal τ0. Then, we claim that spec(−Jτ (z̃)) 6⊂ C◦− for all τ ≥ τ0. Suppose not.
That is, there is some τ1 ≥ τ0 such that spec(−Jτ1(z̃)) ⊂ C◦−. But by our argument above, since −∇2

2f(x̃) � 0, this
implies that S1(J1(z̃)) � 0 which contradicts that z̃ is not a differential Stackelberg equilibrium. Hence, any critical
point z∗ that is not a differential Stackelberg equilibrium is unstable for all τ ∈ (0,∞).

Proof of 2. We note that the fact there exists a finite τ∗ ∈ (0,∞) such that a differential Stackelberg is stable is
known [15]. Let τ∗ denote the minimum τ∗ such that a differential Stackelberg equilibrium z∗ is stable. To see that
spec(−Jτ (z∗)) ⊂ C◦− for all τ ≥ τ∗ given that spec(−Jτ∗(z∗)) ⊂ C◦−, we can again examine the Lyapunov equation
under the congruent transformation. We define the matrix P as above in equation (11) where P1 ≺ 0 and P2 ≺ 0 since
− S(J1(z∗)) ≺ 0 and ∇2

2f(z∗) ≺ 0 with Q1, Q2 � 0. With

Qτ =

[
I L>0
0 I

]
Bτ

[
I 0
L0 I

]
and

Bτ =

[
Q1 P1∇12f(z∗)− S(J1(z∗))L>0 P2

(P1∇12f(z∗)− S(J1(z∗))L>0 P2)> P2L0∇12f(z∗) + (P2L0∇12f(z∗))> + τQ2

]
we again can see thatQτ � 0 for the same reason as above for any τ ≥ τ∗. This, in turn, implies that spec(−Jτ (z∗)) ⊂
C◦− for all τ ≥ τ∗ since we constructed a Lyapunov function for z∗. Thus, we conclude that if z∗ is a differential
Stackelberg equilibrium, then spec(−Jτ (z∗)) ⊂ C◦− for all τ ∈ [τ∗,∞) where τ∗ is the minimum τ ∈ (0,∞) such
that spec(−Jτ (z∗)) ⊂ C◦− and a finite τ∗ is guaranteed to exist.

D Convergence Analysis for Nonconvex-PŁ Zero-Sum Games

We now provide the proofs pertaining to the results presented in Section 5 for nonconvex-PŁ zero-sum games. To help
the presentation, Table 2 includes the relevant game and smoothness parameters needed in the proofs.

Parameter Meaning/Value
µ f(x, ·) is µ-PŁ or µ-SC for all x ∈ X
L1 ∀ x, x′ ∈ X , y, y′ ∈ Y : ‖∇1f(x, y)−∇1f(x′, y′)‖ ≤ L1(‖x− x′‖+ ‖y − y′‖)
L2 ∀ x, x′ ∈ X , y, y′ ∈ Y : ‖∇2f(x, y)−∇2f(x′, y′)‖ ≤ L2(‖x− x′‖+ ‖y − y′‖)
L L = L1 + L2 and ∀ x, x′ ∈ X , y, y′ ∈ Y : ‖g(x, y)− g(x′, y′)‖ ≤ L(‖x− x′‖+ ‖y − y′‖)
L3 L3 = L2/µ and ∀ x, x′ ∈ X : ‖y∗(x)− y∗(x′)‖ ≤ L3‖x− x′‖
L4 L4 = L1 + κL2 and ∀ x, x′ ∈ X : ‖f(x, y∗(x))− f(x′, y∗(x

′))‖ ≤ L4‖x− x′‖
κ L1/µ
κ′ L2/µ
` L1 + 3κ′L2

Table 2: Table of Lipschitz Parameters
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D.1 Proof of Lemma 1

This appendix is devoted to proving Lemma 1. To be clear, we restate the result before proving it.
Lemma 1. Consider a nonconvex-PŁ/SC zero-sum game defined by f ∈ C2(Z,R) satisfying Assumption 1. For any
Γ ∈ (0, 1/7], suppose that τ ≥ Γ−1κ2 and γ < min{ 1

2L ,
1

2τL ,
1

2L4
}, then Φ(x, y) = f(x, y∗(x)) − Γf(x, y) is a

potential function for τ -GDA.

Proof of Lemma 1. Let the best response be denoted by

y∗(x) ∈ argmax
y∈Y

f(x, y).

Since the function f(x, ·) is PŁ, the set maximizers may not be a singleton. Hence, y∗(x) is an element of the set of
maximizers. Recall that

Φ(x, y) := f(x, y∗(x))− Γf(x, y).

We claim that for any Γ ∈ (0, 1/7],

Φ(xk+1, yk+1)− Φ(xk, yk) = Γ (f(xk, yk)− f(xk+1, yk+1))︸ ︷︷ ︸
(i)

+ f(xk+1, y∗(xk+1))− f(xk, y∗(xk))︸ ︷︷ ︸
(ii)

< 0.

To show this, we need to bound each of the two terms (i) and (ii).

Bounding term (i): f(xk, yk) − f(xk+1, yk+1). To begin, we add and subtract f(xk, yk+1) to (i) and get

f(xk, yk)− f(xk+1, yk+1) = f(xk, yk)− f(xk, yk+1) + f(xk, yk+1)− f(xk+1, yk+1). (13)

From a Taylor expansion of −f(xk, yk+1) with respect to yk+1 we obtain

−f(xk, yk+1) ≤ −f(xk, yk)− 〈∇2f(xk, yk), yk+1 − yk〉+
L2

2
‖yk+1 − yk‖2

= −f(xk, yk)− τγ〈∇2f(xk, yk),∇2f(xk, yk)〉+
τ2γ2L2

2
‖∇2f(xk, yk)‖2

= −f(xk, yk)−
(
τγ − τ2γ2L2

2

)
‖∇2f(xk, yk)‖2.

Hence, rearranging this bound and combining with (13), we get

f(xk, yk)− f(xk+1, yk+1) ≤ −
(
τγ − τ2γ2L2

2

)
‖∇2f(xk, yk)‖22 + f(xk, yk+1)− f(xk+1, yk+1). (14)

Now, from a Taylor expansion of −f(xk+1, yk+1) with respect to xk+1, we get

−f(xk+1, yk+1) ≤ −f(xk, yk+1)− 〈∇1f(xk, yk+1), xk+1 − xk〉+
L1

2
‖xk+1 − xk‖2

= −f(xk, yk+1) + γ〈∇1f(xk, yk+1),∇1f(xk, yk)〉+
L1γ

2

2
‖∇1f(xk, yk)‖2.

We now add and subtract γ‖∇1f(xk, yk)‖2 to obtain

f(xk, yk+1)− f(xk+1, yk+1) ≤ γ〈∇1f(xk, yk+1),∇1f(xk, yk)〉+
L1γ

2

2
‖∇1f(xk, yk)‖2

− γ〈∇1f(xk, yk),∇1f(xk, yk)〉+ γ‖∇1f(xk, yk)‖22

= γ〈∇1f(xk, yk+1)−∇1f(xk, yk),∇1f(xk, yk)〉+
L1γ

2 + 2γ

2
‖∇1f(xk, yk)‖2.

(15)

Next, we combine this with (14) to get

f(xk, yk)− f(xk+1, yk+1) ≤ −
(
τγ − τ2γ2L2

2

)
‖∇2f(xk, yk)‖2

+ γ〈∇1f(xk, yk+1)−∇1f(xk, yk),∇1f(xk, yk)〉+
L1γ

2 + 2γ

2
‖∇1f(xk, yk)‖2

≤ −
(
τγ − τ2γ2L2

2

)
‖∇2f(xk, yk)‖2 +

L1γ
2 + 2γ

2
‖∇1f(xk, yk)‖2

+ γ‖∇1f(xk, yk+1)−∇1f(xk, yk)‖‖∇1f(xk, yk)‖.
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Note that the final inequality is a result of applying Cauchy-Schwartz. Applying Young’s inequality on the last term in
the inequality above, we have that

f(xk, yk)− f(xk+1, yk+1) ≤ −
(
τγ − τ2γ2L2

2

)
‖∇2f(xk, yk)‖2 +

L1γ
2 + 2γ + γ

2
‖∇1f(xk, yk)‖2

+
γ

2
‖∇1f(xk, yk+1)−∇1f(xk, yk)‖2

≤ −
(
τγ − τ2γ2L2

2
− γ(τγ)2L2

1

2

)
‖∇2f(xk, yk)‖2 +

L1γ
2 + 2γ + γ

2
‖∇1f(xk, yk)‖2.

(16)

Observe that the final inequality is a result of applying the Lipschitz bound

γ

2
‖∇1f(xk, yk+1)−∇1f(xk, yk)‖2 ≤ γL2

1

2
‖yk+1 − yk‖2 =

γ(τ2γ2)L2
1

2
‖∇2f(xk, yk)‖2.

Bounding (ii): f(xk+1, y∗(xk+1)) − f(xk, y∗(xk)). To bound (ii), we take a Taylor expansion of
f(xk+1, y∗(xk+1)) to get that

f(xk+1, y∗(xk+1))− f(xk, y∗(xk)) ≤ 〈∇f(xk, y∗(xk)), xk+1 − xk〉+
L4

2
‖xk+1 − xk‖2

= −γ〈∇f(xk, y∗(xk)),∇1f(xk, yk)〉+
L4γ

2

2
‖∇1f(xk, yk)‖2 (17)

where L4 is the gradient Lipschitz bound on the total derivative of f(x, y∗(x)) from Lemma 7.

Combining bounds. We now combine the bounds on (i) and (ii) from (16) and (17) to give that

Φ(xk+1, yk+1)− Φ(xk, yk) = Γ (f(xk, yk)− f(xk+1, yk+1))︸ ︷︷ ︸
(i)

+ f(xk+1, y∗(xk+1))− f(xk, y∗(xk))︸ ︷︷ ︸
(ii)

≤ −Γ
(
τγ − τ2γ2L2

2
− γ(τγ)2L2

1

2

)
‖∇2f(xk, yk)‖2 + Γ

(L1γ
2 + 2γ + γ

2

)
‖∇1f(xk, yk)‖2

− γ〈∇f(xk, y∗(xk)),∇1f(xk, yk)〉+
L4γ

2

2
‖∇1f(xk, yk)‖2

= −γ〈∇f(xk, y∗(xk)),∇1f(xk, yk)〉+
γ

2
(ΓL1γ + 3Γ + L4γ)‖∇1f(xk, yk)‖2

− Γ
(
τγ − τ2γ2L2

2
− γ(τγ)2L2

1

2

)
‖∇2f(xk, yk)‖2. (18)

To further bound the above expression, we start by bounding the first two terms. Towards this end, define

V := −γ〈∇f(xk, y∗(xk)),∇1f(xk, yk)〉+
γ

2
(ΓL1γ + 3Γ + L4γ)‖∇1f(xk, yk)‖2. (19)

Recall that γ < 1/(2L4) and γ < 1/(2L) and observe that this implies γ < 1/(2L1) since L = L1 + L2 > L1. Thus,
since Γ ≤ 1/7,

γΓL1 + 3Γ + γL4 ≤
Γ

2
+ 3Γ +

1

2
=

1

2
+

7Γ

2
≤ 1.

Thus, applying this fact, we can bound (19) as follows:

V ≤ −γ〈∇f(xk, y∗(xk)),∇1f(xk, yk)〉+
γ

2
‖∇1f(xk, yk)‖2. (20)

Now, by adding and subtracting γ
2 ‖∇f(xk, y∗(xk))‖2 in (20) and then simplifying, we have that

V ≤ −γ
2
‖∇f(xk, y∗(xk))‖2 +

γ

2
‖∇f(xk, y∗(xk))‖2 − γ〈∇f(xk, y∗(xk)),∇1f(xk, yk)〉+

γ

2
‖∇1f(xk, yk)‖2

= −γ
2
‖∇f(xk, y∗(xk))‖2 +

γ

2

(
‖∇f(xk, y∗(xk))‖2 − 2〈∇f(xk, y∗(xk)),∇1f(xk, yk)〉+ ‖∇1f(xk, yk)‖2

)
= −γ

2
‖∇f(xk, y∗(xk))‖2 +

γ

2
‖∇f(xk, y∗(xk))−∇1f(xk, yk)‖2. (21)
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Moreover, we can continue to bound (21) in the following way that is explained below:

V ≤ −γ
2
‖∇f(xk, y∗(xk))‖2 +

γ

2
‖∇1f(xk, y∗(xk))−∇1f(xk, yk)‖2 (22)

≤ −γ
2
‖∇f(xk, y∗(xk))‖2 +

γL2
1

2
‖y∗(xk)− yk‖2 (23)

≤ −γ
2
‖∇f(xk, y∗(xk))‖2 +

γκ2

2
‖∇2f(xk, yk)‖2. (24)

Observe that (22) is a result of applying the fact ∇f(xk, y∗(xk)) = ∇1f(x, y)|y=y∗(x) by Lemma 7 and gives an
equivalent formulation of (21). Then in (23) we used that∇1f(x, y) is L1-Lipschitz in y by Assumption 1. Furthermore,
in (24), we used the error bound property of µ-PŁ functions from Lemma 5 to get that

‖y∗(xk)− yk‖2 ≤
1

µ2
‖∇2f(xk, yk)‖2.

Finally, also in (24), we applied the condition number definition κ = L1/µ.
Now, by combining the bound on V from (24) with the remaining terms in (18), we have

Φ(xk+1, yk+1)− Φ(xk, yk) ≤ −γ
2
‖∇f(xk, y∗(xk))‖2 +

γκ2

2
‖∇2f(xk, yk)‖2

− Γ
(
τγ − τ2γ2L2

2
− γ(τγ)2L2

1

2

)
‖∇2f(xk, yk)‖2

= −γ
2
‖∇f(xk, y∗(xk))‖2 +

τγΓ

2

( κ2
τΓ

+ τγL2 + τγ2L2
1 − 2

)
‖∇2f(xk, yk)‖2. (25)

Let

C :=
κ2

τΓ
+ τγL2 + τγ2L2

1 − 2.

As long as C < 0, then the function Φ(·, ·) is decreasing along the trajectories of τ -GDA. To see this, we upper bound C
in the following manner that is explained below:

C =
κ2

τΓ
+ τγL2 + τγ2L2

1 − 2

≤ τγL2 + τγ2L2
1 − 1 (26)

≤ γL1

2
− 1

2
(27)

≤ −1/4. (28)

The inequality in (26) is obtained using the fact that Γ−1κ2 ≤ τ . Moreover, (27) follows from the fact that γ <
1/(2τL) < min{1/(2τL1), 1/(2τL2)}. Finally, (28) holds since γ < 1/(2L) < min{1/(2L1), 1/(2L2)}.
Hence, combining (25) and (28) gives

Φ(xk+1, yk+1)− Φ(xk, yk) ≤ −γ
2
‖∇f(xk, y∗(xk))‖2 − τγΓ

8
‖∇2f(xk, yk)‖2.

Thus, the function Φ(·, ·) only stops decreasing when we have both

‖∇f(xk, y∗(xk))‖2 = 0 and ‖∇2f(xk, yk)‖2 = 0.

By the error bound property of µ-PŁ functions from Lemma 5 we have

‖y∗(xk)− yk‖2 ≤
1

µ2
‖∇2f(xk, yk)‖2.

Hence, if ‖∇2f(xk, yk)‖2 → 0 then yk → y∗(xk). In particular, when ‖∇2f(xk, yk)‖2 = 0, we have that yk = y∗(xk)
so that ‖∇f(xk, y∗(xk))‖2 = 0 if and only if ‖∇1f(xk, yk)‖2 = 0. This implies that Φ(·, ·) only stops decreasing
along the τ -GDA iterates at critical points of τ -GDA. Moreover, observe that Φ(x, y) ≥ 0 for any (x, y) ∈ X × Y since
by definition of y∗(x) it immediately follows that f(x, y∗(x)) ≥ f(x, y) so that f(x, y∗(x))− Γf(x, y) ≥ 0 owing to
the fact that Γ ∈ (0, 1/7]. Thus, since Φ(·, ·) is bounded below, it must stop decreasing along the τ -GDA iterates. Thus,
Φ(·, ·) is a potential function as claimed.
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D.2 Proof of Theorem 2

In this appendix, we prove Theorem 2. To be clear, we restate the result before proving it.

Theorem 2. Consider a nonconvex-PŁ/SC zero-sum game (f,−f) defined by f ∈ C2(Z,R) that satisfies Assump-
tions 1–2. Then, τ -GDA with τ ≥ Γ−1κ2, and γ < min{ 1

2L ,
1

2τL ,
1

2L4
} for Γ ∈ (0, 1/7] asymptotically converges to

the set of strict local minmax that are stable for ż = −Λτg(z) almost surely. That is, for almost all initial conditions,
τ -GDA will converge to a strict local minmax.

Proof of Theorem 2. This result follows nearly immediately from Theorem 1, Lemma 1, and Lemma 2. In particular,
the potential function result from Lemma 1 guarantees that τ -GDA converges to a critical (stationary) point of the
update for the choice of γ and τ . Then, since the only stable points of the τ -GDA continuous-time ż = −Λτg(z)
dynamics are strict local minmax (differential Stackelberg) equilibrium by Theorem 1, τ -GDA avoids strict saddle points
of ż = −Λτg(z) almost surely for the choice of γ and τ by Lemma 2, and all saddle points of ż = −Λτg(z) are
assumed to be strict saddle points by Assumption 2 for the given choice of τ , we can conclude that τ -GDA almost surely
converges to a strict local minmax (differential Stackelberg) equilibrium.

D.3 Proof of Corollary 1

In this appendix, we prove Corollary 1. We restate the result and then provide the proof.

Corollary 1. Consider a nonconvex-PŁ/SC zero-sum game (f,−f) defined by f ∈ C2(Z,R) that satisfying Assump-
tion 1. Then, τ -GDA from any initialization with τ ≥ Γ−1κ2, γ < min{ 1

2L ,
1

2τL ,
1

2L4
} for Γ ∈ (0, 1/7], has at least

one iterate that is an ε-critical point after Õ(ε−2) iterations.

Proof of Corollary 1. For this proof, consider any ε > 0. Our approach will be to show that for

T ≥ 2Φ(x0, y0)

ε2γmin{1, τΓ/4}
,

we have that

min
0≤k≤T−1

max
{
‖∇f(xk, y∗(xk))‖, ‖∇2f(xk, yk)‖

}
:= max

{
‖∇f(xs, y∗(xs))‖, ‖∇2f(xs, ys)‖

}
≤ ε.

Then, we prove that given this fact

‖∇1f(xs, ys)‖ ≤
(

1 +
L1

µ

)
ε.

This will then allow us to conclude for

T ≥
2
(

1 + L1

µ

)2
Φ(x0, y0)

ε2γmin{1, τΓ/4}
, (29)

we have both

‖∇1f(xs, ys)‖ ≤ ε and ‖∇2f(xs, ys)‖ ≤ ε.

Then, by selecting the parameters to minimize the right-hand side of (29), we are able to conclude that at least one
iterate of the τ -GDA dynamics are an ε-critical point after

T ≥
2
(

1 + L1

µ

)2
Φ(x0, y0)

ε2γmin{1, τΓ/4}

iterations.
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We now formally prove this. Summing the bound on the potential function from Lemma 1, we get the following that is
justified below:

Φ(x0, y0) ≥ Φ(x0, y0)− Φ(xT , yT ) (30)

=

T−1∑
k=0

(
Φ(xk, yk)− Φ(xk+1, yk+1)

)
(31)

≥ γ

2

T−1∑
k=0

‖∇f(xk, y∗(xk))‖2 +
τγΓ

8

T−1∑
k=0

‖∇2f(xk, yk)‖2 (32)

≥ γ

2
min

{
1,
τΓ

4

} T−1∑
k=0

(
‖∇f(xk, y∗(xk))‖2 + ‖∇2f(xk, yk)‖2

)
(33)

≥ γ

2
min

{
1,
τΓ

4

} T−1∑
k=0

max
{
‖∇f(xk, y∗(xk))‖2, ‖∇2f(xk, yk)‖2

}
(34)

≥ γT

2
min

{
1,
τΓ

4

}
min

0≤k≤T−1
max

{
‖∇f(xk, y∗(xk))‖2, ‖∇2f(xk, yk)‖2

}
. (35)

Note that (30) holds since Φ(x, y) ≥ 0 for any (x, y) ∈ X × Y since by definition of y∗(x) it immediately follows
that f(x, y∗(x)) ≥ f(x, y) so that f(x, y∗(x))− Γf(x, y) ≥ 0 owing to the fact that Γ ∈ (0, 1/7]. Observe that (31)
follows from telescoping of the sum, (32) is a result of applying the bound on the potential function, (33) holds since it
is replacing a coefficient of a positive number with something smaller, (34) holds since the sum of positive numbers is
greater than the max, and (35) is obtained from the fact that the sum of T positive numbers is greater than T times the
minimum number.
From the previous steps, and also rearranging terms and then taking the square root, we have√

2Φ(x0, y0)

Tγmin{1, τΓ/4}
≥ min

0≤k≤T−1
max

{
‖∇f(xk, y∗(xk))‖, ‖∇2f(xk, yk)‖

}
.

We now want to find T such that

min
0≤k≤T−1

max
{
‖∇f(xk, y∗(xk))‖, ‖∇2f(xk, yk)‖

}
≤

√
2Φ(x0, y0)

Tγmin{1, τΓ/4}
≤ ε. (36)

By moving terms around, we find that the inequality in (36) holds for any T such that

T ≥ T ∗ :=
2Φ(x0, y0)

ε2γmin{1, τΓ/4}
. (37)

This proves that there exists some iterate 0 ≤ s ≤ T − 1 such that for T ≥ T ∗, we have both

‖∇f(xs, y∗(xs))‖ ≤ ε and ‖∇2f(xs, ys)‖ ≤ ε.
We now show that this implies a bound on ‖∇1f(xs, ys)‖. In particular, by the error bound property of µ-PŁ functions
from Lemma 5 we have

‖ys − y∗(xs)‖2 ≤
1

µ2
‖∇2f(xs, ys)‖2.

Since ‖∇2f(xs, ys)‖ ≤ ε, we know that ‖ys − y∗(xs)‖ ≤ ε
µ .

Then, observe that we have the following bound explained below

‖∇1f(xs, ys)‖ = ‖∇1f(xs, ys)−∇f(xs, y∗(xs)) +∇f(xs, y∗(xs))‖
≤ ‖∇1f(xs, ys)−∇f(xs, y∗(xs))‖+ ‖∇f(xs, y∗(xs))‖ (38)
= ‖∇1f(xs, ys)−∇1f(xs, y∗(xs))‖+ ‖∇f(xs, y∗(xs))‖ (39)
≤ L1‖ys − y∗(xs)‖+ ‖∇f(xs, y∗(xs))‖ (40)

≤ L1ε

µ
+ ε =

(
1 +

L1

µ

)
ε. (41)

Observe that (38) follows from the triangle inequality, (39) is a result of applying the fact ∇f(xs, y∗(xs)) =
∇1f(xs, y)|y=y∗(xs) by Lemma 7, in (23) we used that ∇1f(x, y) is L1-Lipschitz in y by Assumption 1, and (41)
applies the inequality above that ‖ys − y∗(xs)‖ ≤ ε

µ .
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Thus, in order to determine the iteration complexity T needed to get that ‖∇1f(xs, ys)‖ ≤ ε, we can consider the T ∗
that ensures there exists some iterate 0 ≤ s ≤ T − 1 such that for T ≥ T ∗, we have both

‖∇f(xs, y∗(xs))‖ ≤ ε
(

1 +
L1

µ

)−1
and ‖∇2f(xs, ys)‖ ≤ ε

(
1 +

L1

µ

)−1
.

This amounts to replacing ε in (37) with ε(1 + L1

µ )−1 to get that for

T ≥ T ∗ :=
2
(

1 + L1

µ

)2
Φ(x0, y0)

ε2γmin{1, τΓ/4}
, (42)

we have both
‖∇1f(xs, ys)‖ ≤ ε and ‖∇2f(xs, ys)‖ ≤ ε.

This holds for τ > 7κ2, γ < min{ 1
2L ,

1
2τL ,

1
2L4
}, and any Γ ∈ (0, 1/7] by Lemma 1. Thus, we can see that the

complexity is Õ(ε−2) to reach an ε-critical point under the given parameter choices. To obtain an explicit bound
for fixed choices of τ , γ, and Γ, we can select the parameters to minimize the right hand side of (42). In particular,
selecting τ = 8κ2, Γ = 1/8, and γ = 1

2 min{ 1
2L ,

1
2τL ,

1
2L4
} gives an iteration complexity of

T ∗ =
32
(

1 + L1

µ

)2
max{L, 8κ2L,L4}Φ(x0, y0)

ε2 min{4, κ2}
.

This completes the proof.

E Convergence Analysis for Nonconvex-SC Zero-Sum Games

This appendix contains the analysis for the results from Section 5.2 on global convergence guarantees to ε-critical points
in nonconvex-SC zero-sum games. We present proofs for the stochastic descent in Appendix E.1, and convergence in
Appendix E.2. Before proceeding, we restate the stochastic τ -GDA update rule from Algorithm 2 and also recall relevant
notation.

Stochastic τ–GDA Dynamics. Recall from Algorithm 2 that the combined update at each time k of the τ -GDA
dynamics is given by

xk+1 = xk − γg1(xk, yk; θ1,k) = xk − γ(∇1f(xk, yk) + ζ1,k)

yk+1 = yk + γτg2(xk, yk; θ2,k) = yk + γτ(∇2f(xk, yk) + ζ2,k),

so that

xk+1 − xk = −γg1(xk, yk; θ1,k) = −γ(∇1f(xk, yk) + ζ1,k)

yk+1 − yk = γτγg2(xk, yk; θ2,k) = γτ(∇2f(xk, yk) + ζ2,k).

In particular, gi(xk, yk; θi,k) denotes the stochastic gradient at step k for player i ∈ I = {1, 2} with θi,k a random
variable drawn from the distribution Di such that (by Assumption 3)

Eθi,k∼Di [gi(xk, yk; θi,k)] = ∇if(xk, yk),

and for all t ∈ R,

P(‖gi(xk, yk; θi,k)−∇if(xk, yk)‖ ≥ t) ≤ 2 exp
(
− t2

2σ2
i

)
.

That is, the stochastic gradient for each player i ∈ I is σi-norm-subGaussian (see Definition 8). Moreover, for each
player i ∈ I, the noise in the stochastic gradient is denoted by

ζi,k := gi(xk, yk; θi,k)−∇if(xk, yk).

The noise in the stochastic gradient denoted by ζi,k is itself a σi-norm-subGaussian random vector for each player i ∈ I .
This observation follows immediately from the fact that the stochastic gradient gi(xk, yk; θi,k) is σi-norm-subGaussian
for each player i ∈ I and from the definition of a norm-subGaussian random vector (refer to Definition 8).
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E.1 Proof of Lemma 3

In this appendix, we prove Lemma 3. We restate it here more precisely. The decent lemma shows that for a nonconvex-
SC zero-sum game, the function f acts as a potential function for the τ -GDA dynamics. In particular, we show that the
function f can be decomposed into a component that is decreasing along trajectories of τ -GDA and a component that
exhibits a possible increase due to randomness in the stochastic gradients. The primary reason for the decrease is large
gradients in addition to the structure of the maximizing player’s problem and the timescale separation which we exploit
in the proof to ensure sufficient decrease of f along trajectories. Recall that ` := L1 + 3κ′L2 where κ′ := L2

µ .

Lemma 3 (Restatement of Lemma 3). Consider a nonconvex-SC zero-sum game (f,−f) defined by f ∈ C2(Z,R)
satisfying Assumption 1 and Assumption 3. There exists a absolute constant c such that with probability at least
1− 3e−ι for any ι > 0, the sequence generated by (stochastic) τ -GDA with parameters γ ≤ 1/` and τ = Γ/(µγ) for
an absolute constant Γ ≥ 4 satisfies

f(xk, yk)− f(x0, y0) ≤ −γ
8

k−1∑
t=0

(
‖∇1f(xt, yt)‖2 + τ‖∇2f(xt, yt)‖2

)
+ cγ

(
σ2
1(γ`k + ι) + τγσ2

2ι
)
.

Proof of Lemma 3. We first argue a one step descent bound. Towards this end, take the Taylor expansion of f(·, yk) to
get that

f(xk+1, yk)− f(xk, yk) ≤ 〈∇1f(xk, yk), xk+1 − xk〉+
L1

2
‖xk+1 − xk‖2

= −γ〈∇1f(xk, yk),∇1f(xk, yk) + ζ1,k〉+
γ2L1

2
‖∇1f(xk, yk) + ζ1,k‖2

≤ −γ〈∇1f(xk, yk),∇1f(xk, yk) + ζ1,k〉+
γ2L1

2

(3

2
‖∇1f(xk, yk)‖2 + 3‖ζ1,k‖2

)
(43)

= −
(
γ − 3γ2L1

4

)
‖∇1f(xk, yk)‖2 − γ〈∇1f(xk, yk), ζ1,k〉+

3γ2L1

2
‖ζ1,k‖2. (44)

Note that (43) follows from the Cauchy-Schwarz inequality and Young’s inequality for products. Specifically, for any
ε > 0, we have

‖∇1f(xk, yk) + ζ1,k‖2 = ‖∇1f(xk, yk)‖2 + 2〈∇1f(xk, yk), ζ1,k〉+ ‖ζ1,k‖2

≤ ‖∇1f(xk, yk)‖2 + 2‖∇1f(xk, yk)‖‖ζ1,k‖+ ‖ζ1,k‖2

≤ ‖∇1f(xk, yk)‖2 + 2
( 1

2ε
‖∇1f(xk, yk)‖2 +

ε

2
‖ζ1,k‖2

)
+ ‖ζ1,k‖2

≤ 1 + ε

ε
‖∇1f(xk, yk)‖2 + (1 + ε)‖ζ1,k‖2. (45)

Thus, selecting ε = 2 gives rise to the inequality in (43).
Now, since f(xk+1, y) is µ-strongly concave with respect to y, we have

f(xk+1, yk+1)− f(xk+1, yk) ≤ 〈∇2f(xk+1, yk), yk+1 − yk〉 −
µ

2
‖yk+1 − yk‖2. (46)

We now add and subtract 〈∇2f(xk, yk), yk+1 − yk〉 and then apply Cauchy-Schwarz to get that

f(xk+1, yk+1)− f(xk+1, yk) ≤ 〈∇2f(xk+1, yk), yk+1 − yk〉 −
µ

2
‖yk+1 − yk‖2 ± 〈∇2f(xk, yk), yk+1 − yk〉

= 〈∇2f(xk+1, yk)−∇2f(xk, yk), yk+1 − yk〉 −
µ

2
‖yk+1 − yk‖2

+ 〈∇2f(xk, yk), yk+1 − yk〉

≤ ‖∇2f(xk+1, yk)−∇2f(xk, yk)‖‖yk+1 − yk‖ −
µ

2
‖yk+1 − yk‖2

+ 〈∇2f(xk, yk), yk+1 − yk〉.
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By Young’s inequality with ε > 0 applied to the term ‖∇2f(xk+1, yk) − ∇2f(xk, yk)‖‖yk+1 − yk‖, the fact that
∇2f(x, y) is L2-Lipschitz in x by Assumption 1, and the update equation for the y-player, we have that

f(xk+1, yk+1)− f(xk+1, yk) ≤ 1

2ε
‖∇2f(xk+1, yk)−∇2f(xk, yk)‖2 +

ε

2
‖yk+1 − yk‖2 −

µ

2
‖yk+1 − yk‖2

+ 〈∇2f(xk, yk), yk+1 − yk〉

≤ L2
2

2ε
‖xk+1 − xk‖2 −

µ− ε
2
‖yk+1 − yk‖2 + 〈∇2f(xk, yk), yk+1 − yk〉

=
γ2L2

2

2ε
‖∇1f(xk, yk) + ζ1,k‖2 −

(µ− ε)(τγ)2

2
‖∇2f(xk, yk) + ζ2,k‖2

+ τγ〈∇2f(xk, yk),∇2f(xk, yk) + ζ2,k〉

≤ 3γ2L2
2

4ε
‖∇1f(xk, yk)‖2 +

3γ2L2
2

2ε
‖ζ1,k‖2 −

(µ− ε)(τγ)2

2
‖∇2f(xk, yk) + ζ2,k‖2

+ τγ‖∇2f(xk, yk)‖2 + τγ〈∇2f(xk, yk), ζ2,k〉. (47)

Observe that the final inequality above is a result of applying the estimate

‖∇1f(xk, yk) + ζ1,k‖2 ≤
3

2
‖∇1f(xk, yk)‖2 + 3‖ζ1,k‖2,

which follows from the Cauchy-Schwarz inequality and Young’s inequality for products as shown in (45).

To simplify the bound on f(xk+1, yk+1)− f(xk+1, yk) given in (47), we expand the term on the right-hand side with
‖∇2f(xk, yk) + ζ2,k‖2 and then group common terms as follows:

f(xk+1, yk+1)− f(xk+1, yk) ≤ 3γ2L2
2

4ε
‖∇1f(xk, yk)‖2 +

3γ2L2
2

2ε
‖ζ1,k‖2 −

(µ− ε)(τγ)2

2
‖∇2f(xk, yk) + ζ2,k‖2

+ τγ‖∇2f(xk, yk)‖2 + τγ〈∇2f(xk, yk), ζ2,k〉

=
3γ2L2

2

4ε
‖∇1f(xk, yk)‖2 +

3γ2L2
2

2ε
‖ζ1,k‖2 + τγ‖∇2f(xk, yk)‖2 + τγ〈∇2f(xk, yk), ζ2,k〉

− (µ− ε)(τγ)2

2

(
‖∇2f(xk, yk)‖2 + 2〈∇2f(xk, yk), ζ2,k〉+ ‖ζ2,k‖2

)
=

3γ2L2
2

4ε
‖∇1f(xk, yk)‖2 +

3γ2L2
2

2ε
‖ζ1,k‖2 +

(
τγ − (µ− ε)(τγ)2

2

)
‖∇2f(xk, yk)‖2

+
(
τγ − (µ− ε)(τγ)2

)
〈∇2f(xk, yk), ζ2,k〉 −

(µ− ε)(τγ)2

2
‖ζ2,k‖2. (48)

We next combine the bound on f(xk+1, yk+1)− f(xk+1, yk) from (48) with the bound on f(xk+1, yk)− f(xk, yk)
from (44) to get a bound on f(xk+1, yk+1)−f(xk, yk). Towards this end, let ε = 1

3µ, then by combining (44) and (48),
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and finally simplifying by grouping terms, we have the following:

f(xk+1, yk+1)− f(xk, yk) ≤ −
(
γ − 3γ2L1

4

)
‖∇1f(xk, yk)‖2 − γ〈∇1f(xk, yk), ζ1,k〉+

3γ2L1

2
‖ζ1,k‖2

+
3γ2L2

2

4ε
‖∇1f(xk, yk)‖2 +

3γ2L2
2

2ε
‖ζ1,k‖2 +

(
τγ − (µ− ε)(τγ)2

2

)
‖∇2f(xk, yk)‖2

+
(
τγ − (µ− ε)(τγ)2

)
〈∇2f(xk, yk), ζ2,k〉 −

(µ− ε)(τγ)2

2
‖ζ2,k‖2

= −
(
γ − 3γ2L1

4
− 3γ2L2

2

4ε

)
‖∇1f(xk, yk)‖2 − γ〈∇1f(xk, yk), ζ1,k〉

+
(3γ2L1

2
+

3γ2L2
2

2ε

)
‖ζ1,k‖2 +

(
τγ − (µ− ε)(τγ)2

2

)
‖∇2f(xk, yk)‖2

+
(
τγ − (µ− ε)(τγ)2

)
〈∇2f(xk, yk), ζ2,k〉 −

(µ− ε)(τγ)2

2
‖ζ2,k‖2

≤ −
(
γ − 3γ2L1

4
− 9γ2L2

2

4µ

)
‖∇1f(xk, yk)‖2 − γ〈∇1f(xk, yk), ζ1,k〉

+
(3γ2L1

2
+

9γ2L2
2

2µ

)
‖ζ1,k‖2 +

(
τγ − µ(τγ)2

3

)
‖∇2f(xk, yk)‖2

+
(
τγ − 2µ(τγ)2

3

)
〈∇2f(xk, yk), ζ2,k〉. (49)

Observe that the inequality in (49) follows from the inequality

− (µ− ε)(τγ)2

2
‖ζ2,k‖2 = −µ(τγ)2

3
‖ζ2,k‖2 ≤ 0.

To proceed in bounding f(xk+1, yk+1) − f(xk, yk), we derive upper bounds on coefficients on the right-hand side
of (49). Define ` := L1 + 3κ′L2 where κ′ := L2

µ and recall that γ ≤ 1
` and τγ ≥ 4/µ. From the fact that γ ≤ 1/`, we

have that

−
(
γ − 3γ2L1

4
− 9γ2L2

2

4µ

)
= −γ +

3γ2

4

(
L1 +

3L2
2

µ

)
= −γ +

3γ2`

4
≤ −γ +

3γ

4
= −γ

4
.

This implies

−
(
γ − 3γ2L1

4
− 9γ2L2

2

4µ

)
‖∇1f(xk, yk)‖2 ≤ −γ

4
‖∇1f(xk, yk)‖2. (50)

Moreover, from a direct simplification,

3γ2L1

2
+

9γ2L2
2

2µ
=

3γ2

2

(
L1 +

3L2
2

µ

)
=

3γ2`

2
.

Hence, (3γ2L1

2
+

9γ2L2
2

2µ

)
‖ζ1,k‖2 =

3γ2`

2
‖ζ1,k‖2. (51)

Finally, using that τγ ≥ 4/µ, we also have

τγ − µ(τγ)2

3
= τγ − µτγ(τγ)

3
≤ τγ − 4τγ

3
= −τγ

3
≤ −τγ

4
.

Thus, (
τγ − µ(τγ)2

3

)
‖∇2f(xk, yk)‖2 ≤ −τγ

4
‖∇2f(xk, yk)‖2. (52)

Combining (49) with (50), (51), and (52) gives the following one-step bound on the τ -GDA update rule:

f(xk+1, yk+1)− f(xk, yk) ≤ −γ
4
‖∇1f(xk, yk)‖2 − τγ

4
‖∇2f(xk, yk)‖2

− γ〈∇1f(xk, yk), ζ1,k〉+
(
τγ − 2µ(τγ)2

3

)
〈∇2f(xk, yk), ζ2,k〉+

3γ2`

2
‖ζ1,k‖2.
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Summing this inequality on both sides, we have that

f(xk, yk)− f(x0, y0) ≤ −γ
4

( k−1∑
t=0

‖∇1f(xt, yt)‖2 + τ

k−1∑
t=0

‖∇2f(xt, yt)‖2
)

− γ
k−1∑
t=0

〈∇1f(xt, yt), ζ1,t〉+
(
τγ − 2µ(τγ)2

3

) k−1∑
t=0

〈∇2f(xt, yt), ζ2,t〉+
3γ2`

2

k−1∑
t=0

‖ζ1,t‖2.

(53)

Now, using the fact that ζi,0, . . . , ζi,k−1 satisfy Condition 1 with norm-subGaussian parameter σi for i ∈ I, by
Lemma 12 for each player i ∈ I and any ι > 0 and λi > 0, there exists an absolute constant ci such that with
probability at least 1− e−ι we have:

k−1∑
t=0

〈∇if(xt, yt), ζi,t〉 ≤ ciσ2
i λi

k−1∑
t=0

‖∇if(xt, yt)‖2 +
ι

λi
. (54)

Thus, as a result of (54), there exists an absolute constant c1 such that with probability at least 1− e−ι for any ι > 0,
we have

−γ
k−1∑
t=0

≤ ∇1f(xt, yt), ζ1,t〉 ≤ γ
∣∣∣ k−1∑
t=0

〈∇1f(xt, yt), ζ1,t〉
∣∣∣

≤ γ
(
c1σ

2
1λ1

k−1∑
t=0

‖∇1f(xt, yt)‖2 +
ι

λ1

)
=
γ

8

k−1∑
t=0

‖∇1f(xt, yt)‖2 + 8c1γσ
2
1ι (55)

=
γ

8

k−1∑
t=0

‖∇1f(xt, yt)‖2 + c′1γσ
2
1ι. (56)

Note that in (55) λ1 is being chosen as λ1 = 1/(8c1σ
2
1) and in (56) the constant c′1 is being defined as c′1 := 8c1.

Now, using that τγ = Γ/µ where Γ > 4 is an absolute constant, we have

|τγ − 2µ(τγ)2

3
| ≤ τγ

∣∣3− 2Γ

3

∣∣.
Combining this inequality with (54), there exists an absolute constant c2 such that with probability at least 1− e−ι for
any ι > 0, we have(

τγ − 2µ(τγ)2

3

) k−1∑
t=0

〈∇2f(xt, yt), ζ2,t〉 ≤
∣∣∣τγ − 2µ(τγ)2

3

∣∣∣∣∣∣ k−1∑
t=0

〈∇2f(xt, yt), ζ2,t〉
∣∣∣

≤ τγ
∣∣∣3− 2Γ

3

∣∣∣∣∣∣ k−1∑
t=0

〈∇2f(xt, yt), ζ2,t〉
∣∣∣

≤ τγ
∣∣∣3− 2Γ

3

∣∣∣(c2σ2
2λ2

k−1∑
t=0

‖∇2f(xt, yt)‖2 +
ι

λ2

)
=
τγ

8

k−1∑
t=0

‖∇2f(xt, yt)‖2 + 8c2

∣∣∣3− 2Γ

3

∣∣∣2τγσ2
2ι. (57)

=
τγ

8

k−1∑
t=0

‖∇2f(xt, yt)‖2 + c′2τγσ
2
2ι. (58)

Note that in (57), λ2 is being chosen as λ2 = 1/(8c2σ
2
2 |(3− 2Γ)/3|), and in (58) the constant c′2 is being defined as

c′2 := 8c2|(3− 2Γ)/3|2.
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Now, using the fact that ζ1,0, . . . , ζ1,k−1 satisfy Condition 1 with norm-subGaussian parameter σ1, by Lemma 11 there
exists an absolute constant c3 such that with probability at least 1− e−ι for any ι > 0,

k−1∑
t=0

‖ζ1,t‖2 ≤ c3σ2
1(k + ι). (59)

Hence, by (59), there exists an absolute constant c′3 := 3c3/2 such that with probability at least 1− e−ι for any ι > 0,

3γ2`

2

k−1∑
t=0

‖ζ1,t‖2 ≤ c′3γ2`σ2
1(k + ι). (60)

Finally, using (56), (58), and (60) in (53), we have that there exists an absolute constant c := max{c′1, 2c′2, 2c′3} such
that with probability at least 1− 3e−ι for any ι > 0,

f(xk, yk)− f(x0, y0) ≤ −γ
4

( k−1∑
t=0

‖∇1f(xt, yt)‖2 + τ

k−1∑
t=0

‖∇2f(xt, yt)‖2
)

− γ
k−1∑
t=0

〈∇1f(xt, yt), ζ1,t〉+
(
τγ − 2µ(τγ)2

3

) k−1∑
t=0

〈∇2f(xt, yt), ζ2,t〉+
3γ2`

2

k−1∑
t=0

‖ζ1,t‖2

≤ −γ
4

( k−1∑
t=0

‖∇1f(xt, yt)‖2 + τ

k−1∑
t=0

‖∇2f(xt, yt)‖2
)

+
γ

8

( k−1∑
t=0

‖∇1f(xt, yt)‖2 + τ

k−1∑
t=0

‖∇2f(xt, yt)‖2
)

+ c′1γσ
2
1ι+ c′2τγσ

2
2ι+ c′3γ

2`σ2
1(k + ι)

≤ −γ
8

( k−1∑
t=0

‖∇1f(xt, yt)‖2 + τ

k−1∑
t=0

‖∇2f(xt, yt)‖2
)

+ cγ
(
σ2
1(γ`k + ι) + τσ2

2ι
)
.

Note the final inequality is obtained using that c := max{c′1, 2c′2, 2c′3} and γ ≤ 1/` to get

c′1γσ
2
1ι+ c′3γ

2`σ2
1(k + ι) = max{c′1, c′3}γσ2

1(ι+ γ`k + γ`ι) ≤ max{2c′1, 2c′3}γσ2
1(γ`k + ι),

so that

c′2τγσ
2
2ι+ c′1γσ

2
1ι+ c′3γ

2`σ2
1(k + ι) ≤ c′2τγσ2

2ι+ max{2c′1, 2c′3}γσ2
1(γ`k + ι) ≤ cγ

(
σ2
1(γ`k + ι) + τσ2

2ι
)
.

Finally, we remark that in the deterministic case that σ2
1 = σ2

2 = 0, the bound holds deterministically and simply
reduces to

f(xk, yk)− f(x0, y0) ≤ −γ
8

( k−1∑
t=0

‖∇1f(xt, yt)‖2 + τ

k−1∑
t=0

‖∇2f(xt, yt)‖2
)
.

This completes the proof.

E.2 Proof of Corollary 2

In this appendix, we prove Corollary 2. We restate the result and then provide the proof.
Corollary 2. Consider a nonconvex-SC zero-sum game (f,−f) defined by f ∈ C2(Z,R) satisfying Assumption 1 and
Assumption 3. For any δ ∈ (0, 1), there exists γ and τ satisying the conditions of Lemma 3 such that, with probability
at least 1− δ, starting from any initialization, at least half the iterates of (stochastic) τ -GDA will be ε-critical points
after Õ(ε−2) and Õ(ε−6) iterations in the deterministic and stochastic settings, respectively.

Proof of Corollary 2. This proof primarily follows from Lemma 3. Specifically, Lemma 3 gives us a bound on the
iterates of τ -GDA decreasing the function value that will be used in a proof by contradiction. In particular, we assume
that more than half the iterates after running the algorithm for T steps are not ε-critical points. We then invoke Lemma 3
to conclude that if this was the case, then the function value would have decreased beyond the global minimum. Since
this is not possible, it yields a contradiction, which then allows us to conclude that at least half of the iterates must be
ε-critical points. We prove this result for the deterministic and stochastic settings independently following this general
template.
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Deterministic Setting. Suppose that γ and τ are chosen as follows:

γ = 1/` and τ = 4/(µγ).

Let the number of steps that the algorithm runs for be defined by

T :=
32(f(x0, y0)− f∗)

γε2
=

32`(f(x0, y0)− f∗)
ε2

= Õ(ε−2).

For the sake of contradiction, suppose that within T steps, we have more than T/2 iterates for which
max{‖∇1f(xk, yk)‖, ‖∇2f(xk, yk)‖} ≥ ε. Then, by Lemma 3, taking σ2

1 = σ2
2 = 0, we have that:

f(xT , yT )− f(x0, y0) ≤ −γ
8

T−1∑
k=0

(
‖∇1f(xk, yk)‖2 + τ‖∇2f(xk, yk)‖2

)
≤ −γ

8

T−1∑
k=0

(
‖∇1f(xk, yk)‖2 + ‖∇2f(xk, yk)‖2

)
(61)

≤ −γ
8

T−1∑
k=0

max{‖∇1f(xk, yk)‖2, ‖∇2f(xk, yk)‖2} (62)

≤ −γTε
2

16
. (63)

Observe that in (61) we have applied the fact that τ ≥ 1, in (62) we have used that the sum of positive numbers is
greater than the max of the numbers, and in (63) we have invoked the assumption that at least T/2 iterates satisfy
max{‖∇1f(xk, yk)‖, ‖∇2f(xk, yk)‖} ≥ ε.
We now show that this implies a contradiction. In particular, the bound in (63) implies that

f(xT , yT ) ≤ f(x0, y0)− γTε2

16
= f(x0, y0)− γε2

16

32(f(x0, y0)− f∗)
γε2

< f(x0, y0)− f(x0, y0)− f∗ = f∗.

This is not possible and yields a contradiction to the assumption that we have more than T/2 it-
erates for which max{‖∇1f(xk, yk)‖, ‖∇2f(xk, yk)‖} ≥ ε. Hence, at most T/2 iterates have
max{‖∇1f(xk, yk)‖, ‖∇2f(xk, yk)‖} ≥ ε and thus at least T/2 iterates must be ε-critical points if the algorithm runs
for T = Õ(ε−2) iterations.

Stochastic Setting. Suppose that γ and τ are chosen as follows:

γ :=
1

ι2`R
and τ =

4

µγ
where R := 1 +

max{σ2
1 , σ

2
2}

ε2
.

Moreover, ι > 0 is an absolute constant to be chosen later. Let the number of steps that the algorithm runs for be
defined by

T :=
τ(f(x0, y0)− f∗)

`γε2
=

(f(x0, y0)− f∗)`ι4R2

µε2
= Õ(ε−6). (64)

For the sake of contradiction, suppose that within T steps, we have more than T/2 iterates for which
max{‖∇1f(xk, yk)‖, ‖∇2f(xk, yk)‖} ≥ ε. Then, by Lemma 3, there exists an absolute constant c such that with
probability at least 1− 3e−ι for any ι > 0, we have that:

f(xT , yT )− f(x0, y0) ≤ −γ
8

T−1∑
k=0

(
‖∇1f(xk, yk)‖2 + τ‖∇2f(xk, yk)‖2

)
+ c

(
γσ2

1(γ`T + ι) + τγσ2
2ι
)

≤ −γ
8

T−1∑
k=0

(
‖∇1f(xk, yk)‖2 + ‖∇2f(xk, yk)‖2

)
+ c

(
γσ2

1(γ`T + ι) + τγσ2
2ι
)

(65)

≤ −γ
8

T−1∑
k=0

max{‖∇1f(xk, yk)‖2, ‖∇2f(xk, yk)‖2}+ c
(
γσ2

1(γ`T + ι) + τγσ2
2ι
)

(66)

≤ −γTε
2

16
+ cγ

(
σ2
1(γ`T + ι) + τσ2

2ι
)
. (67)
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Observe that in (65) we have applied the fact that τ ≥ 1, in (66) we have used that the sum of positive numbers is
greater than the max of the numbers, and in (67) we have invoked the assumption that at least T/2 iterates satisfy
max{‖∇1f(xk, yk)‖, ‖∇2f(xk, yk)‖} ≥ ε.
Define σ2 := max{σ2

1 , σ
2
2}. We now continue upper bounding (67) the latter term on the right-hand side. To begin,

using that σ2 := max{σ2
1 , σ

2
2} and τ ≥ 1, we have

cγ
(
σ2
1(γ`T + ι) + τσ2

2ι
)
≤ cγσ2(γ`T + ι+ τι) ≤ cγσ2τι

(γ`T
τι

+ 2
)
.

Observe that sinceR = 1 + σ2/ε2 ≥ σ2/ε2, we have

γτσ2ι =
τσ2ι

`ι2R
=
τσ2

ι`R
≤ τε2

`ι
.

Hence, combining the previous inequalities, we get

cγ
(
σ2
1(γ`T + ι) + τσ2

2ι
)
≤ cτε2

`ι

(γ`T
τι

+ 2
)

=
cγTε2

ι2
+

2cτε2

`ι
=
cγTε2

ι2
+

2cτγε2

`γι
.

Now, since
τ

γ`
≤ τ(f(x0, y0)− f∗)

γ`ε2
= T,

by choosing ι as a sufficiently large absolute constant, we get

cγ
(
σ2
1(γ`T + ι) + τσ2

2ι
)
≤ cγTε2

ι2
+

2cτγε2

`γι
≤ cγTε2

ι2
+

2cγTε2

ι
≤ γTε2

32
.

Thus, returning to (67), we have that

f(xT , yT )− f(x0, y0) ≤ −γTε
2

16
+ cγ

(
σ2
1(γ`T + ι) + τσ2

2ι
)
≤ −γTε

2

16
+
γTε2

32
= −γTε

2

32
.

We now show that this implies a contradiction. In particular, this bound implies that

f(xT , yT ) ≤ f(x0, y0)− γTε2

32

≤ f(x0, y0)− γε2

32

τ(f(x0, y0)− f∗)
`γε2

= f(x0, y0)− 4ι2`R
32µ

(f(x0, y0)− f∗)

< f(x0, y0)− f(x0, y0)− f∗

= f∗.

This is not possible and yields a contradiction to the assumption that we have more than T/2 iterates for which
max{‖∇1f(xk, yk)‖, ‖∇2f(xk, yk)‖} ≥ ε. Hence, with probability at least 1 − 3e−ι, at most T/2 iterates have
max{‖∇1f(xk, yk)‖, ‖∇2f(xk, yk)‖} ≥ ε. Thus, with probability at least 1 − 3e−ι, at least T/2 iterates must be
ε-critical points if the algorithm runs for T = Õ(ε−6) iterations. This statement then holds with probability at least
1− δ for the given δ ∈ (0, 1) by selecting a sufficient large constant ι > 0. This completes the proof.
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