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ABSTRACT

In this study, we explore the robustness of cooperative multi-agent reinforcement
learning (c-MARL) against Byzantine failures, where any agent can enact arbitrary,
worst-case actions due to malfunction or adversarial attack. To address the uncer-
tainty that any agent can be adversarial, we propose a Bayesian Adversarial Robust
Dec-POMDP (BARDec-POMDP) framework, which views Byzantine adversaries
as nature-dictated types, represented by a separate transition. This allows agents to
learn policies grounded on their posterior beliefs about the type of other agents,
fostering collaboration with identified allies and minimizing vulnerability to adver-
sarial manipulation. We define the optimal solution to the BARDec-POMDP as an
ex interim robust Markov perfect Bayesian equilibrium, which we proof to exist
and the corresponding policy weakly dominates previous approaches as time goes
to infinity. To realize this equilibrium, we put forward a two-timescale actor-critic
algorithm with almost sure convergence under specific conditions. Experiments
on matrix game, Level-based Foraging and StarCraft II indicate that, our method
successfully acquires intricate micromanagement skills and adaptively aligns with
allies under worst-case perturbations, showing resilience against non-oblivious
adversaries, random allies, observation-based attacks, and transfer-based attacks.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (c-MARL) (Rashid et al., 2018; Yu et al., 2021; Kuba
et al., 2021) has shown remarkable efficacy in managing groups of agents with aligned interests in
complex tasks (Vinyals et al., 2019; Berner et al., 2019). Nevertheless, real-world applications often
deviates from the presumption of full cooperation. In robot swarm control (Hüttenrauch et al., 2019),
individual robots may act unpredictably due to hardware or software malfunctions, or even display
worst-case adversarial actions if compromised by a non-oblivious adversary (Gleave et al., 2019; Lin
et al., 2020; Dinh et al., 2023; Liu et al., 2019; 2020a;b; 2023; Wang et al., 2021). Such uncertainty
of allies undermine the cooperative premise of c-MARL, rendering the learned policy non-robust.

In single-agent reinforcement learning (RL), robustness under uncertainty is addressed through a
maximin optimization between an uncertainty set and a robust agent within the framework of robust
Markov Decision Processes (MDPs) (Nilim & El Ghaoui, 2005; Iyengar, 2005; Wiesemann et al.,
2013; Pinto et al., 2017; Tessler et al., 2019; Zhang et al., 2020a). However, ensuring robustness in
c-MARL when dealing with uncertain allies presents a greater challenge. This is largely due to the
potential for Byzantine failure (Yin et al., 2018; Xue et al., 2021), situations where defenders are left
in the dark regarding which ally may be compromised and what their resulting actions might be.

To address Byzantine failures, we employ a Bayesian game approach, which treats Byzantine
adversaries as types assigned by nature, with each agent operating unaware of others’ type. We
formalize robust c-MARL as a Bayesian Adversarial Robust Dec-POMDP (BARDec-POMDP),
where existing robust MARL researches (Li et al., 2019; Sun et al., 2022; Phan et al., 2020; 2021)
can be reinterpreted as pursuing an ex ante equilibrium (Shoham & Leyton-Brown, 2008), viewing
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all other agents as potential adversaries. However, these methods might not yield optimal outcomes
as they can mask the trade-offs between the equilibria that cooperative and robustness-focused agents
aim for. Moreover, this approach can result in overly conservative strategies (Li et al., 2019; Sun
et al., 2022), given the low likelihood of adversaries taking control of all agents.

Instead, we seek an ex interim mixed-strategy robust Markov perfect Bayesian equilibrium, which
weakly dominates the policy of ex ante equilibrium in previous robust MARL studies as time goes to
infinity. Agents in our ex interim equilibrium makes decisions based on its inferred posterior belief
over other agents, enhancing cooperation with allies and defense against adversaries concurrently. To
realize this equilibrium, we derive a robust Harsanyi-Bellman equation for value function update and
introduce a two-timescale actor-critic algorithm, with almost sure convergence under certain assump-
tions. Experiments in matrix game, Level-based Foraging and StarCraft II shows our defense exhibits
intricate micromanagement skills and adaptively aligns with allies under worst-case perturbations.
Consequently, our defense outperforms existing baselines under non-oblivious adversaries, random
allies, observation-based attacks and transfer-based attacks by large margins.

Contribution. Our contributions are two-fold: first, we theoretically formulate Byzantine adver-
saries in c-MARL as a BARDec-POMDP, and concurrently pursues robustness and cooperation by
targeting an ex interim equilibrium. Secondly, to achieve this equilibrium, we devise an actor-critic
algorithm that ensures almost sure convergence under certain conditions. Empirically, our method
exhibits greater resilience against a broad spectrum of adversaries on three c-MARL environments.

Related Work. Our research belongs to the field of robust RL, theoretically framed as robust
MDPs (Nilim & El Ghaoui, 2005; Iyengar, 2005; Tamar et al., 2013; Wiesemann et al., 2013). This
framework trains a defender to counteract a worst-case adversary amid uncertainty, which can stem
from environment transitions (Pinto et al., 2017; Mankowitz et al., 2019), actions (Tessler et al.,
2019), states (Zhang et al., 2020a; 2021) and rewards (Wang et al., 2020). In robust MARL, action
uncertainty has been a central focus. M3DDPG (Li et al., 2019) enhances robustness in MARL
through agents taking jointly worst-case actions under a small perturbation budget. Evaluation
was done via one agent consistently introducing worst-case perturbations. This is later known as
adversarial policy (Gleave et al., 2019) or non-oblivious adversary (Dinh et al., 2023), a practical
and detrimental form of attack. Follow-up works either enhanced M3DDPG (Sun et al., 2022) or
defended against uncertain adversaries by presupposing each agent as potentially adversarial (Nisioti
et al., 2021; Phan et al., 2020; 2021), which our BARDec-POMDP formulation interprets as seeking
a conservative ex ante equilibrium. Another approach by Kalogiannis et al. (2022) studies a special
case that the adversary is known. Besides action perturbation, studies have also explored robust
MARL under uncertainties in reward (Zhang et al., 2020c), environmental dynamics (Zhao et al.,
2020), and observations (Han et al., 2022; He et al., 2023; Zhou & Liu, 2023).

Bayesian games and their MARL applications represents another relevant field. With roots in
Harsanyi’s pioneering work (Harsanyi, 1967), Bayesian games have been used to analyze games with
incomplete information by transforming them into complete information games featuring chance
moves made by nature. Within MARL, Bayesian games have been utilized to coordinate varying
agent types, a concept known as ad hoc coordination (Albrecht & Ramamoorthy, 2015; Albrecht
et al., 2016; Stone et al., 2010; Barrett et al., 2017). This problem was theoretically framed as a
stochastic Bayesian game and solved using the Harsanyi-Bellman ad hoc coordination algorithm
(Albrecht & Ramamoorthy, 2015). Subsequent research has concentrated on agents with varying
types (Ravula, 2019), open ad hoc teamwork (Rahman et al., 2022), and human coordination (Tylkin
et al., 2021; Strouse et al., 2021). Our work differs from these works by assuming a worst-case,
non-oblivious adversary with conflicting goals, whereas in ad hoc coordination, agents have common
goals and non-conflicting secondary objectives (Grosz & Kraus, 1999; Mirsky et al., 2022).

2 PROBLEM FORMULATION

2.1 COOPERATIVE MARL AND ITS FORMULATION

The problem of c-MARL can be formulated as a Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) (Oliehoek & Amato, 2016), defined as a tuple:

G := ⟨N ,S,O, O,A,P, R, γ⟩,
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where N = {1, ..., N} is the set of N agents, S is the global state space, O = ×i∈NOi is the
observation space, with O the observation emission function. A = ×i∈NAi is the joint action space,
P : S ×A → ∆(S) is the state transition probability, mapping from current state and joint actions
to a probability distribution over the state space. R : S ×A → R is the shared reward function for
cooperative agents and γ ∈ [0, 1) is the discount factor.

At time t and global state st ∈ S, each agent i adds current observation oit to its history and gets
Hi
t = [oi0, a

i
0, ...o

i
t]. Then, each agent i selects its action ait ∈ Ai using its policy πi(·|Hi

t), which
maps current history to its action space. The global state then transitions to st+1 according to
transition probability P(st+1|st,at), with at = {a1t , ..., aNt } the joint actions. Each agent receives
a shared reward rt = R(st,at). The goal of all agents is to learn a joint policy π =

∏
i∈N πi that

maximize the long-term return J(π) = E [
∑∞
t=0 γ

trt|s0,at ∼ π(·|Ht)].

2.2 BAYESIAN ADVERSARIAL ROBUST DEC-POMDP

In numerous real-world situations, some allies may experience Byzantine failure (Yin et al., 2018;
Xue et al., 2021) and thus, not perform cooperative actions as expected. This includes random actions
due to hardware/software error and adversarial actions if being controlled by an adversary, which
violates the fully cooperative assumption in Dec-POMDP. We propose Bayesian Adversarial Robust
Dec-POMDP (BARDec-POMDP) to cope with uncertainties in agent actions, defined as follows:

Ĝ := ⟨N ,S,Θ,O, O,A,Pα,P, R, γ⟩,
where N , S, O, O, A, γ represent the number of agents, global state space, observation space,
observation emission function, joint action space and discount factor, following Dec-POMDP.

Environment

AgentsAction Perturbation

Figure 1: Framework of c-MARL with Byzantine
adversaries. The action taken by agents with θi =
1 are replaced by the adversary policy π̂i.

As depicted in Fig. 1, BARDec-POMDP views
the Byzantine adversary as an uncertain tran-
sition characterized by type θ and adversarial
policy π̂. At the start of each episode, a type θ
is selected from the type space Θ = ×i∈NΘi,
with θi = {0, 1}. θi = 0 indicates the agent
is cooperative and Θi = 1 signifies adversaries.
At time t, if agent i is assigned θi = 1, the ac-
tion ait taken by cooperative agent i with policy
πi(·|Hi

t) is replaced by action âit sampled from
an adversary with policy π̂i(·|Hi

t , θ). The attack
process is characterized by action perturbation
probability Pα(at|at, π̂, θ) =

∏
i∈N π̂i(·|Hi

t , θ) · θi+ δ(ait−ait) · (1− θi) that maps joint actions at
to joint actions with perturbations at, where δ(·) is the Dirac delta function. Note that the actions of
cooperative agents and adversaries are taken simultaneously. Finally, the state transition probability
P(st+1|st,at) takes the perturbed actions and output the state of next timestep. The shared reward
rt = R(st,at) for (cooperative) agents is defined over perturbed actions. Given type θ, the value
function can be defined as Vθ(s) = E [

∑∞
t=0 γ

trt|s0 = s,at ∼ π(·|Ht), ât ∼ π̂(·|Ht, θ)]. We leave
the goal of adversary and robust agents to Section. 2.3 and 2.4 below.

Our BARDec-POMDP formulation is flexible and draws close connection with current literature.
Regarding type space, Dec-POMDP can be viewed as a BARDec-POMDP with Θ = 0N . Robust
MARL approaches, such as M3DDPG (Li et al., 2019) and ROMAX (Sun et al., 2022) assumes agents
are entirely adversarial, which refers to type space Θ = 1N . Subsequent robust MARL researchs
(Phan et al., 2020; 2021; Nisioti et al., 2021), though not explicitly defining the type space, can be
integrated in our BARDec-POMDP. Our formulation also draws inspiration from state-adversarial
MDP (Zhang et al., 2020a) which considers adversary as a part of decision making process, and
probabilistic action robust MDP (Tessler et al., 2019) by their formulation of action perturbation.

2.3 THREAT MODEL

The robustness towards action perturbations in both single and multi-agent RL has gained prominence
since the pioneering works of (Tessler et al., 2019; Li et al., 2019). Action uncertainties, formulated
as a type of adversarial attack known as adversarial policy (Gleave et al., 2019; Wu et al., 2021; Guo
et al., 2021), or non-oblivious adversary (Dinh et al., 2023), represent a pragmatic and destructive
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form of attack that is challenging to counter. In line with these works, we propose a practical threat
model with certain assumptions on attackers and defenders.

Assumption 2.1 (Attacker’s capability and limitations). At the onset of an episode, the attacker can
select θ and arbitrarily manipulate the actions of agents with type θi = 1. Within an episode, the
type cannot be altered and we assume there is only one attacker.

Our main focus in this paper is to model action uncertainties of unknown agents in c-MARL as types
shaped by nature and to advance corresponding solution concept. In line with (Li et al., 2019), we
assume one agent is vulnerable to action perturbations in each episode. In real-world, the type space
can be more complicated, potentially involving adversaries controlling multiple agents (Nisioti et al.,
2021), perturbing actions intermittently (Lin et al., 2017), or featuring a non-binary type space (Xie
et al., 2022). These variations can be viewed as straightforward extensions of our work.

Proposition 2.1 (Existence of worst-case adversary). For any robust c-MARL with fixed agent policy,
a worst-case (i.e., most harmful) adversary exists.

Proof sketch. Since defender policies are fixed, they can be considered part of the environment
transitions for attackers. Thus, the attackers solve an RL problem. See full proof in Appendix. A.1.

Assumption 2.2 (Defender’s capability and limitations). The defender can use all available informa-
tion during training stage, including global state and information of other agents. However, during
testing, the defender relies solely on partial observations and is agnostic of the type of other agents.
The defender’s policy is fixed during an attack and must resist the worst-case adversary π̂∗.

2.4 SOLUTION CONCEPT

(a) ex ante

Expectation

Attack

(b) ex interim

Adaptive 
Adjustment

Attack

Cooperative
Equilibrium

Robust
Equilibrium

Adversarial
Attack

Uncertainty
Set

Figure 2: ex ante RMPBE obscures differences between each
type by taking expectation, while our ex interim RMPBE
adapts to current type.

In this section, we first introduce
the non-optimal solution concept seek
by existing robust c-MARL methods,
then pose our optimal solution con-
cept for BARDec-POMDP. Specifi-
cally, existing robust c-MARL meth-
ods blindly maximize reward without
considering the type of others. This
is akin to an ex ante equilibrium in
Bayesian game (Shoham & Leyton-
Brown, 2008), where agents make de-
cisions based on the prior belief about
the types of other agents.

Definition 2.1 (ex ante robustness). A joint cooperative policy πEA∗ = (πEA,i∗ )i∈N and adversarial
policy π̂EA∗ = (π̂EA,i∗ )i∈N forms an ex ante robust Markov perfect Bayesian equilibrium (RMPBE),
if for all p(θ), s ∈ S, H ∈ (O ×A)∗,

(πEA∗ (·|H), π̂EA∗ (·|H, θ)) ∈ argmax
π(·|H)

Ep(θ)
[

min
π̂(·|H,θ)

Vθ(s)
]
, (1)

with Vθ(s) =
∑

a∈A Pα(a|a, π̂, θ)
∏
i∈N πi(ai|Hi)(R(s,a) + γ

∑
s′∈S P(s′|s,a)Vθ(s′)).

By maximizing the expected value under prior p(θ) over types, as illustrated in Fig. 2, the policy
might struggle to balance the different equilibrium corresponding to cooperation and robustness
against different agents as (Byzantine) adversaries. In contrast, we propose a more refined ex interim
robustness concept, such that under current history, each agent make optimal decisions to maximize
their expected value from their posterior belief of current type, with following assumptions:

Assumption 2.3. Assume belief and policy are updated under following conditions: (1) Consistency.
At each timestep t, each agent updates its belief bit = p(θ|Hi

t) of the current type by Bayes’ rule. (2)
Sequential rationality. Each policy maximizes the expected value function under belief bi.

Here we use πi(·|Hi, bi) to denote the explicit dependence on belief bi. The two conditions are
common in dynamic games with incomplete information (Shoham & Leyton-Brown, 2008).
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Definition 2.2 (ex interim robustness). Under Assumption 2.3 and let b = (bi)i∈N , a joint cooperative
policy πEI∗ = (πEI,i∗ )i∈N and adversarial policy π̂EI∗ = (π̂EI,i∗ )i∈N forms an ex interim robust
Markov perfect Bayesian equilibrium, if ∀s ∈ S, H ∈ (O ×A)∗,

(πEI∗ (·|H, b), π̂EI∗ (·|H, θ)) ∈ argmax
π(·|H,b)

Ep(θ|H)

[
min

π̂(·|H,θ)
Vθ(s))

]
. (2)

Note that both ex ante and ex interim RMPBE requires optimality of each individual agent i. To
reduce notation complexity, we use joint policy and belief instead.
Proposition 2.2 (Existence of RMPBE). Assume a BARDec-POMDP of finite agents, finite set of
state, observation and action space, agents use stationary policies, the type space Θ is a compact set,
then ex ante and ex interim mixed strategy robust Markov perfect Bayesian equilibrium exists.

Proof sketch. The proof is done by first showing the policy and its corresponding value function,
with uncertainties of the current type and presence of the adversaries, satisfy the requirements of
Kakutani’s fixed point theorem. Next, by Kakutani’s fixed point theorem, there always exists an
optimal fixed point corresponding to a mixed strategy RMPBE. See full proof in Appendix. A.2.

Unlike c-MARL with optimal deterministic policies (Oliehoek et al., 2008), in robust c-MARL,
a pure-strategy equilibrium is not guaranteed to exist. This is intuitive since zero-sum games do
not always have a pure-strategy equilibrium. The finding suggests the optimal policies for robust
c-MARL are stochastic. Next, we show the relation between ex ante and ex interim equilibrium.
Proposition 2.3. Under Assumption 2.3, given finite type space and the prior of each type is not zero,
as t→∞, πEI∗ (·|Ht, bt) weakly dominates πEA∗ (·|Ht) under the worst-case adversary.

Proof sketch. As t → ∞, by the consistency of Bayes’ rule, the belief converges to the true type.
Thus, ex interim policies that maximize the value function under the true type are guaranteed to
weakly dominate (i.e., have value higher or equal to) ex ante policies. See full proof in Appendix A.3.

3 ALGORITHM

In this section, we explain how to find the optimal solution in Definition 2.2. We start by defining the
robust Harsanyi-Bellman equation, an update rule of value function which converges to a fixed point.
Then, we develop a two-timescale actor-critic algorithm that considers belief of others’ type, which
ensures almost sure convergence under assumptions in stochastic approximation theory.

3.1 ROBUST HARSANYI-BELLMAN EQUATION

We first define the Bellman-type update of value functions for our ex interim equilibrium. Considering
the Q function before and after action perturbation, we can formulate the Q function via cumulative
reward, with posterior belief bi = p(θ|Hi) over type:

Qi(s,a, bi) =Ep(θ|Hi)

[
E

[ ∞∑
t=0

γtrt

∣∣∣∣s0 = s,a0 = a,at ∼ π(·|Ht, bt), ât ∼ π̂(·|Ht, θ)

]]
, (3)

Qi(s,a, bi) =Ep(θ|Hi)

[
E

[ ∞∑
t=0

γtrt

∣∣∣∣s0 = s,a0 = a,at ∼ π(·|Ht, bt), ât ∼ π̂(·|Ht, θ)

]]
, (4)

The two Q functions are defined with different purpose. Qi(s,a, bi) is the expected Q function before
action perturbation, suitable for decision making of defenders, such as fictitious self-play (Heinrich &
Silver, 2016) and soft actor-critic (Haarnoja et al., 2018). In this way, the action perturbation can be
viewed as part of the environment transition, resulting in P(s′|s,a, π̂, θ) = P(s′|s,a) ·Pα(a|a, π̂, θ).
On the other hand, Qi(s,a, bi) is the Q function with actions taken by the adversary, suitable for
policy gradients (Sutton & Barto, 2018) and decision making of the adversary. For Qi(s,a, Hi),
the action perturbation is integrated into the policy of robust agents, resulting in a mixed policy
π(â|H, b, θ) = Pα(a|a, π̂, θ) · π(a|H, b) = (1 − θ) · π(a|H, b) + θ · π̂(â|H, θ). The relationship
between the two Q functions is as follows:

Qi(s,a, bi) =
∑
θ∈Θ

p(θ|Hi)
∑
â∈A

Pα(at|at, π̂, θ)Qi(s,a, bi). (5)
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Next, we formulate the Bellman-type equation for the two Q functions, which we call the robust
Harsanyi-Bellman equation. This update differs from the conventional approach by considering the
posterior belief over other agents and the worst-case adversary.
Definition 3.1. We define the robust Harsanyi-Bellman equation for Q function as:

Qi∗(s,a, b
i) = max

π(·|H,b)
min

π̂(·|H,θ)

∑
θ∈Θ

p(θ|Hi)
∑
s′∈S

∑
â∈A

P(s′|s,a, π̂, θ)
[

R(s,a) + γ
∑
a′∈A

π(a′|H ′, b′)Qi∗(s
′,a′, b′i)

]
,

(6)

Qi∗(s,a, b
i) = max

π(·|H,b)
min

π̂(·|H,θ)
R(s,a) + γ

∑
s′∈S
P(s′|s,a)

∑
θ∈Θ

p(θ|H ′i)∑
a′∈A

π(a′|H ′, b′, θ)Qi∗(s
′,a′, b′i).

(7)

This Q function can be estimated via Temporal Difference (TD) loss.
Proposition 3.1 (Convergence). Assume the belief is updated via Bayes’ rule, the space of state,
actions and belief are finite, updating value functions by robust Harsanyi-Bellman equation converge
to the optimal value Qi∗(s,a, b

i) and Qi∗(s,a, b
i).

Proof sketch. The proof is done by combining the standard convergence proof of Q function with
adversaries and Bayesian belief update, and showing our Q function forms a contraction mapping.
Next, applying Banach’s fixed point theorem completes the proof. See full proof in Appendix. A.4.

3.2 ACTOR-CRITIC ALGORITHM FOR ex interim ROBUST EQUILIBRIUM

Armed with the robust Harsanyi-Bellman equation, we propose an actor-critic algorithm to achieve
our proposed ex interim equilibrium with almost sure convergence under certain assumptions. We
first derive the policy gradient theorem for robust c-MARL. Assume policies of robust agents and
adversaries are parameterized by πϕ := (πiϕi)i∈N and π̂ϕ̂ := (π̂i

ϕ̂i
)i∈N respectively, forming a mixed

policy πϕ,ϕ̂ = (1− θ) · πϕ + θ · π̂ϕ̂. Define the performance for a robust agent i in the episodic case

as J i(ϕ) = Es∼ρπ(s)[V i(s, bi)] and (zero-sum) adversary as J i(ϕ̂) = Es∼ρπ(s)[−V i(s, bi)], where
ρπ(s) is the state visitation frequency. The policy gradients for πϕ and π̂ϕ̂ are then defined as:

Theorem 3.1. The policy gradient theorem for robust agent and adversary i is:

∇ϕiJ i(ϕi) = Es∼ρπ(s),a∼πϕ,ϕ̂(a|H,b,θ)
[
(1− θi)∇ log πϕi(ai|Hi, bi)Qi(s,a, bi)

]
, (8)

∇ϕ̂iJ
i(ϕ̂i) = Es∼ρπ(s),a∼πϕ,ϕ̂(a|H,b,θ)

[
−θi∇ log π̂ϕ̂i(â

i|Hi, θ)Qi(s,a, bi)
]
. (9)

The policy gradient naturally depends on Qi(s,a, bi), which is related to policy gradient and decision
of adversaries. Specifically, θ cuts off the gradient of robust agents πϕi with θi = 1 and cut off the
gradient of adversary π̂ϕ̂i with θi = 0. The detailed derivation is deferred to Appendix. A.5.

Convergence. In zero-sum Markov games, achieving convergence through policy gradients remains
challenging, with current theoretical results being dependent on specific conditions (Daskalakis
et al., 2020; Zhang et al., 2020b; Kalogiannis et al., 2022). In this paper, we prove that, under
certain assumptions in stochastic approximation theory (Borkar, 1997; Borkar & Meyn, 2000; Borkar,
2009), applying a two-timescale update for both adversaries and defenders, as stated in Theorem
3.1, guarantees almost sure convergence (i.e., converge with probability 1) to an ex interim RMPBE.
A detailed proof is provided in Appendix A.6 as an application of stochastic approximation. With
this two-timescale update, the adversary’s policy is updated on a faster timescale and is essentially
equilibrated, while the defender’s policy is updated on a slower timescale and remains quasi-static.
Despite these advances, establishing finite sample, global convergence guarantees without restrictive
assumptions remains an open problem, warranting future research.

Finally, we suggest update rules for critic and belief networks. Assuming the critic Qiψ(s,a, b
i) is

parameterized by ψ. As for belief bi, the calculation of bi via Bayes’ rule requires assess to the policy
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of other agents, which is not possible during deployment. To remedy this, we approximate the belief
bi = maxξ pξ(θ|Hi) using a neural network parameterized by ξ. The objectives to update critic and
belief network are:

min
ψ

(
R(s,a)− γQiψ(s′,a′, b′i) +Qiψ(s,a, b

i)
)2
, (10)

min
ξ
−θ log

(
pξ(θ|Hi)

)
− (1− θ) log

(
1− pξ(θ|Hi)

)
, (11)

with critic trained via TD loss and belief network trained by binary cross entropy loss. See the
pseudo-code for our algorithm in Appendix. B.

4 EXPERIMENTS

(a) Toy (b) LBF (c) SMAC

Figure 3: Environments used in our experiments. The toy iterative matrix game is proposed by Han
et al. (2022). We use map 12x12-4p-3f-c for LBF and map 4m vs 3m for SMAC.

Environments. To validate the efficacy of our proposed approach, we conducted experiments on
three benchmark cooperative MARL environments, as shown in Fig. 7. Environments include a toy
iterative matrix game proposed by (Han et al., 2022), rewarding XNOR or XOR actions at different
state, 12x12-4p-3f-c of Level-Based Foraging (LBF) (Papoudakis et al., 2020) and 4m vs 3m of
the StarCraft Multi-agent Challenge (SMAC) (Samvelyan et al., 2019), which reduce to 3m in the
presence of an adversary.

Baselines. Our comparative study includes MADDPG (Lowe et al., 2017), M3DDPG (Li et al.,
2019), MAPPO (Yu et al., 2021), RMAAC He et al. (2023), ex ante robust MAPPO (EAR-MAPPO),
a MAPPO variant of (Phan et al., 2020; Zhang et al., 2020c) that considers ex ante equilibrium,
which is also an ablation of our approach without belief. We dubbed our method ex interim robust
MAPPO (EIR-MAPPO) and add an ideal case which grants access to true type, labelled “True
Type”. It’s worth noting that we couldn’t directly adapt M3DDPG onto the MAPPO framework
due to its reliance on Q(s,a), a component not compatible with MAPPO’s use of V (s) as a critic.
More experiment details are given in Appendix. C. For fair comparison, all methods use the same
codebase, network structure and hyperparameters. Code and demo videos available at https:
//github.com/DIG-Beihang/EIR-MAPPO.

Evaluation protocol. In each environment with N cooperative agents, the robust policy was trained
using five random seeds. Attack results were compiled by launching attacks on each of the N agents
using the same five seeds, yielding a total of 5×N attacks per environment. We plot all results with
95% confidence interval.

Evaluated attacks. We consider four types of threats. (1) Non-oblivious adversaries (Gleave et al.,
2019): we fix the trained policy and deployed a zero-sum, worst-case adversarial policy to attack each
agents separately. (2) Random agents: an agent perform random actions from a uniform distribution,
possibly via hardware or software failure (labelled as “random”). (3) Noisy observations: we add
ℓ∞ bounded adversarial noise (Lin et al., 2020) with perturbation budgets ϵ ∈ {0.2, 0.5, 1.0} to the
observation of an agent (denoted as “ϵ =”). (4) Transferred adversaries: attackers initially train a
policy on a surrogate algorithm, then directly transfer the attack to target other algorithms.

4.1 ROBUSTNESS OVER NON-OBLIVIOUS ATTACKS

We first evaluate our performance under the most arduous non-oblivious attack, where an adversary
can manipulate any agent in cooperative tasks and execute arbitrary learned worst-case policy.
The cooperation and attack performance on three environments are given in Fig. 4. Across all
environments, our EIR-MAPPO consistently delivers robust performance close to the maximum
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Figure 4: Cooperative and robust performance on three c-MARL environments. EIR-MAPPO
achieves higher robust performance against non-oblivious adversaries and have cooperative perfor-
mance on par with baselines. Reported on 5 seeds for cooperation and 5×N attacks.

reward achievable in each environment under attack (50 for Toy, 1.0 for LBF, 20 for SMAC),
outperforming baselines by large margins and displays robustness equalling the ideal True Type
defense. Concurrently, EIR-MAPPO maintains cooperative performance on par with MAPPO.

Swayed
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(a) MADDPG/M3DDPG

Unfocused
Fire

(b) MAPPO/RMAAC

Unfocused
Fire

Bad Kiting

(c) EAR-MAPPO

Focus
Fire

Kiting

(d) EIR-MAPPO

Figure 5: Agent behaviors under attack. Red square indicates the adversary agent. Existing methods
are either swayed, having unfocused fire or perform bad kiting. In contrast, our EIR-MAPPO learns
kiting and focused fire simultaneously, under the presence of a worst-case adversary.

As illustrated in Fig. 5, a detailed examination of each method’s behaviour under attack enriches
our comprehension of robustness, with adversaries marked by a red square. First, MADDPG and
M3DDPG can be easily swayed by adversaries. In Fig. 5a, a downward-moving adversary easily
diverts two victims from the battle, resulting in a single victim facing three opponents. As for MAPPO
and RMAAC, agents fail to master useful micromanagement strategies, such as kiting or focused fire
during combat1. Consequently, the agent do not exihibit any cooperation skills under attack and are
not skillful enough to win the game. As for EAR-MAPPO, agents occasionally demonstrate kiting
but fall short in executing focused fire. They spread fire over two enemies instead of concentrating
fire on one. Furthermore, even successful kiting can be compromised. In Fig. 5c, the adversary
advances, causing two half-health agents to mistakenly believe that an ally is coming to its aid, and
thus retreats to kite the enemy. This, however, leaves another low-health ally vulnerable to enemy fire
and immediately being eliminated. Finally, we find that both EIR-MAPPO and True Type demonstrate
focused fire and kiting, proving resistant to adversarial agents. Illustrated in Fig. 5d, two low-health
agents retreat to avoid being eliminated, while an agent with high health advances to shield its allies,
showcasing classic kiting behaviour. Moreover, allies coordinate to eliminate enemies, leaving one
enemy nearly unscathed and another at half health.

4.2 ROBUSTNESS OVER VARIOUS TYPE OF ATTACKS

Apart from the worst-case oblivious adversary, c-MARL can encounter various uncertainties in real
world, ranging from allies taking random actions, having uncertainties in observations, or a transferred

1Micromanagements are granular control strategies for agents to win in StarCraft II (Samvelyan et al., 2019).
Kiting enables agents to evade enemy fire by stepping outside the enemy’s attack range, thereby compelling the
enemy to give chase rather than attack; focused fire requires taking enemies down one after another.
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adversary trained on alternate algorithms. We examine the robust performance of all methods under
such diverse uncertainties in Fig. 6. The rows signify uncertainties while the columns represent the
evaluated methods. Diagonal entries (i.e., blocks with the same uncertainty and evaluated method)
denote non-oblivious attacks. For each uncertainty (column), the method of highest reward was
marked by a red square. Furthermore, since the True Type represents an ideal scenario, if it secures
the highest reward, we mark the method that gained the second-highest reward as well.
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Figure 6: Evaluating robustness over diverse attacks, row indicates uncertainties and column indicates
evaluated methods. EIR-MAPPO achieves improved robustness on almost all uncertainties in LBF
and SMAC, while having higher robustness on average in Toy. Results averaged over 5×N attacks.

We first emphasize the effectiveness of our EIR-MAPPO approach. Considering the average reward
gained under a broad range of uncertainties, our EIR-MAPPO surpasses baselines by 5.81% on Toy,
5.88% on LBF, and 25.45% on SMAC. Notably, EIR-MAPPO and True Type yields highest reward
in almost all LBF and SMAC environments. In toy environment, owing to the existence of two
pure-strategy equilibria, algorithms and attacks deploying deterministic strategies can occasionally
yield higher rewards by chance. However, given its superior worst-case robustness, our EIR-MAPPO
consistently delivers commendable results under all uncertainties.

Our second observation focuses on the relationship between action and observation perturbations. As
an algorithm designed to counteract observation uncertainties, RMAAC is robust against observation
perturbations, but fails to counter unseen action perturbations. In contrast, our EIR-MAPPO maintains
its robustness against observation perturbations, even though it has not encountered the attack before.
This resilience is due to the fact that observational attacks ultimately affect agents’ choices of actions,
which reduces observation uncertainty to a form of action uncertainty.

5 CONCLUSIONS

In this paper, we study robust c-MARL against Byzantine threat, where agents in this system to
fail, or being compromised by an adversary. We frame the problem as a Dec-POMDP and define
its solution as an ex interim RMPBE, such that the equilibrated policy weakly dominates ex ante
solutions in prior research, when time goes to infinity. To actualize this equilibrium, we introduce
Harsanyi-Bellman equation for value function updates, and an actor-critic algorithm with almost sure
convergence under specific conditions. Experimental results show that under worst-case adversarial
perturbation, our method can learn intricate and adaptive cooperation skills, and can withstand
non-oblivious, random, observation-based, and transferred adversaries. As future work, we plan to
apply our method to c-MARL applications, including robot swarm control (Hüttenrauch et al., 2019),
traffic light management (Chu et al., 2019), and power grid maintenance (Xi et al., 2018).
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Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of operations research, 27(4):
819–840, 2002.

Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291–294, 1997.

Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Springer,
2009.

Vivek S Borkar and Sean P Meyn. The ode method for convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447–469, 2000.

Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-agent deep reinforcement learning for
large-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 21(3):
1086–1095, 2019.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Constantinos Daskalakis, Dylan J Foster, and Noah Golowich. Independent policy gradient methods
for competitive reinforcement learning. Advances in neural information processing systems, 33:
5527–5540, 2020.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Persi Diaconis and David Freedman. On the consistency of bayes estimates. The Annals of Statistics,
pp. 1–26, 1986.

Le Cong Dinh, David Henry Mguni, Long Tran-Thanh, Jun Wang, and Yaodong Yang. Online markov
decision processes with non-oblivious strategic adversary. Autonomous Agents and Multi-Agent
Systems, 37(1):15, 2023.

Arlington M Fink. Equilibrium in a stochastic n-person game. Journal of science of the hiroshima
university, series ai (mathematics), 28(1):89–93, 1964.

10



Published as a conference paper at ICLR 2024

Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell. Adversarial
policies: Attacking deep reinforcement learning. arXiv preprint arXiv:1905.10615, 2019.

Barbara J Grosz and Sarit Kraus. The evolution of sharedplans. Foundations of rational agency, pp.
227–262, 1999.

Wenbo Guo, Xian Wu, Sui Huang, and Xinyu Xing. Adversarial policy learning in two-player
competitive games. In International Conference on Machine Learning, pp. 3910–3919. PMLR,
2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Songyang Han, Sanbao Su, Sihong He, Shuo Han, Haizhao Yang, and Fei Miao. What is the solution
for state adversarial multi-agent reinforcement learning? arXiv preprint arXiv:2212.02705, 2022.

John C Harsanyi. Games with incomplete information played by “bayesian” players, i–iii part i. the
basic model. Management science, 14(3):159–182, 1967.

Sihong He, Songyang Han, Sanbao Su, Shuo Han, Shaofeng Zou, and Fei Miao. Robust multi-agent
reinforcement learning with state uncertainty. Transactions on Machine Learning Research, 2023.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121, 2016.

Maximilian Hüttenrauch, Sosic Adrian, Gerhard Neumann, et al. Deep reinforcement learning for
swarm systems. Journal of Machine Learning Research, 20(54):1–31, 2019.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

Fivos Kalogiannis, Ioannis Anagnostides, Ioannis Panageas, Emmanouil-Vasileios Vlatakis-
Gkaragkounis, Vaggos Chatziafratis, and Stelios Stavroulakis. Efficiently computing nash equilibria
in adversarial team markov games. arXiv preprint arXiv:2208.02204, 2022.
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APPENDIX FOR "BYZANTINE ROBUST COOPERATIVE
MULTI-AGENT REINFORCEMENT LEARNING AS A
BAYESIAN GAME"

A PROOFS AND DERIVATIONS

A.1 PROOF OF PROPOSITION 2.1

In this section, we proof a worst-case adversary always exist for any BARDec-POMDP with fixed
defenders. Considering different numbers of adversaries (i.e.,

∑
i∈N ), with fixed defenders, the

attackers can be seen as solving a POMDP or Dec-POMDP, where optimal solution exists.

First, if
∑
i∈N θi = 0, no adversary exists and the environment is reduced to a fully cooperative

setting. Since adversary do not even exist, the problem becomes vacuous, and any π̂ achieves the
same (optimal) result.

Second, if
∑
i∈N θi = 1, the problem is reduced to a POMDP Gα := ⟨S,O, O,A, P̂,Pα, Rα, γ⟩ for

adversary, where S the global state space,O the observation space for adversary, O is the observation
emission function, A is the action space of adversary, Rα : S × A → R is the reward function for
adversary. Actions taken by adversary i are sampled via adversarial policy âit ∼ π̂i(·|Hi

t , θ). The
environment transition for adversary is defined as P̂(st+1|st, âit) = P(st+1|st,at) · Pα(at|π, θt, âit),
where at is the mixed joint actions after perturbation in BARDec-POMDP. Here, P(st+1|st,at) is the
environment transition in BARDec-POMDP, which combines with the transition Pα(at|π, θ, âit) =∏
i∈N δ(ait − âit) · θi + πi(·|Hi

t) · (1− θi) represents the decision of π, which is fixed and treated as
a part of environment transition. Following the proof of Astrom et al. (1965), there always exists an
optimal policy for POMDP. Thus, there exists an optimal adversary.

Third, with
∑
i∈N θi > 1, the problem is reduced to a Dec-POMDP ⟨N ,S,Oα, O,A, P̂, Rα, γ⟩,

with S the global state space, Oα = ×i∈{θi=1}Oi is the observation space of adversaries, O is the
observation emission function, A = ×i∈{θi=1}Ai action space of adversaries, Rα : S × Aα →
R is the reward function for adversary. Actions taken by adversary are sampled via adversarial
policy ât ∼ π̂(·|Ht, θ). The environment transition for adversary is defined as P̂(st+1|st, ât) =
P(st+1|st,at) · Pα(at|π, θ, ât). Here, P(st+1|st, ât) is the environment transition for BARDec-
POMDP, with the effect of the policy of π merged in transition Pα(at|π, θ, ât) =

∏
i∈N δ(ait − âit) ·

θi + πi(·|Hi
t) · (1 − θi), which is fixed and treated as a part of transition function. Following the

proof of Bernstein et al. (2002), there always exists an optimal policy for Dec-POMDP. Thus, there
exists an optimal adversary.

A.2 PROOF OF PROPOSITION 2.2

We proof this by showing our BARDec-POMDP satisfies the requirement of Kakutani’s fixed point
theorem. Our proof is an extension of Kardeş et al. (2011), which shows equilibrium exists in robust
stochastic games. In the following proof, we will first state existing results, then shows the existence
of our ex interim RMPBE as a generalization of the proof of (Kardeş et al., 2011) considering
Bayesian update and transforming action uncertainty as a kind of environment uncertainty. The
existence proof of ex ante RMPBE rise as a corollary.

A.2.1 PRELIMINARIES

We first introduce existing results.

Theorem A.1 (Kakutani’s fixed point theorem). If X is a closed, bounded, and convex set in a
Euclidean space, and ϕ is an upper semicontinuous correspondence mapping X into the family of
closed, convex subsets of X , then ∃x ∈ X , s.t. x ∈ ϕ(x).

Next, we brief the definition of robust stochastic game and its equilibrium concept before we introduce
the main result of Kardeş et al. (2011).
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In a stochastic gameG =< N ,S,A,P, R, γ > with finite state and actions, whereN is the indicator
of agents, S is the state space, A = ×i∈NAi is the joint action space, P : S × A → ∆(S) is
the state transition probability, R : S × A ×N → RN is the reward function that maps state and
actions to reward of each agent, γ is the discount factor. Let s ∈ S, ai ∈ Ai, with a the joint actions,
π : S → ∆(A) is the policy for agent i with πi(ai|s), ri = R(s, a, i) is the reward for agent i.
A robust stochastic game is a stochastic game with perturbed reward r̂t ∈ Rα and environment
transition P̂(s′|s,a) ∈ Pα, withRα and Pα are the bounded perturbation range.

Define the expected value function V i
π,r̂,P̂(s) under perturbed reward and environment transition

recursively through the following Bellman equation:

V i
π,r̂,P̂(s) =

∑
a∈A

πi(ai|s)
∏
j ̸=i

πj(aj |s)[r̂i +
∑
s′∈S
P̂(s′|s,a)V iπ(s′)],

the worst-case value function V i
π,r̂∗,P̂∗

(s) is defined as V i
π,r̂,P̂(s) = minr̂,P̂ V

i
π,r̂∗,P̂∗

(s). The equi-

librium policy, if exists, is thus ∀i ∈ N , s ∈ S, a ∈ A, πi∗(·|s) ∈ argmaxπi(·|s) V
i
π(s), with

corresponding value as V i{πi
∗,π

−i},r̂∗,P̂∗
(s) = maxπi V i

π,r̂∗,P̂∗
(s).

Next, let π(·|s) =
∏
i∈N πi(·|s) be the joint policy, and the set of value functions for each agent

as Vπ,r̂,P̂(s) = (V 1
π,r̂,P̂(s), V

2
π,r̂,P̂(s), ..., V

N
π,r̂,P̂(s)). Define mappings β and ϕ by β(π−i) =

{V i|V i = maxπi minr̂,P̂ V
i
{πi,π−i},r̂,P̂(s)} and ϕ(π−i) = {πi|β(π−i) = V i{πi

∗,π
−i},r̂∗,P̂∗

(s)} to be
the set of value functions and optimal policies.
Theorem A.2 (Kardeş et al. (2011)). Assume uncertainties in transition probabilities and payoffs
belongs to compact sets, all agents use stationary strategies, then the set of functions {Vπ,r̂,P̂(s), r̂ ∈
Rα, P̂ ∈ Pα} is equicontinuous and Vπ,r̂∗,P̂∗

(s) continuous on all its variables. ϕ(π−i) is an upper
semicontinuous correspondence mapping ∆(A) in a convex and closed subsets of ∆(A), which
satisfies the assumptions of Kakutani’s fixed point theorem.

We are now ready to construct our proof.

A.2.2 EXISTENCE OF EX INTERIM RMPBE

We first state the existence of ex interim RMPBE. The proof is conducted by transforming BARDec-
POMDP to a Dec-POMDP with environmental uncertainties, and applying Bayesian update to value
functions. Note that we include some results of Kardeş et al. (2011) for a self-contained proof.

First, by definition of our BARDec-POMDP, it can be transformed to a robust Dec-POMDP
with adversary in environmental dynamics. This is done by combining environment transition
P(st+1|st,a) with action perturbation probability Pα(â|a, π̂, θ), resulting in P(st+1|st,a, π̂, θ) =
P(st+1|st, â) · Pα(â|a, π̂, θ). Thus, the robust Dec-POMDP can be seen as a particular case of
stochastic game with shared reward, partial observations and uncertainties in perturbations. Thus,
some results of Kardeş et al. (2011) can be taken for our proof. Before that, let us redefine some
notations for clarity of our proof.

Let us redefine the expected value function Vθ(s) using the following Bellman equation:

V iπ,π̂,θ(s) =
∑
a∈A

πi(ai|Hi, bi)
∏
j ̸=i

πj(aj |Hj , bj)[ri +
∑
s′∈S

∑
â∈A

P(s′|s,a, π̂, θ)Vπ,π̂,θ(s′)].

Note that V iπ,π̂,θ(s) assumes the type θ is known, thus there is no uncertainty over θ and the
function is not updated by robust Harsanyi-Bellman equation. The expected value function with
belief, V iπ,π̂,bi(s), is defined by V iπ,π̂,bi(s) = Ep(θ|H)[V

i
π,π̂,θ(s)]. The worst-case value func-

tion V iπ,π̂∗,θ
(s) and V iπ,π̂∗,bi

(s) are defined as V iπ,π̂∗,θ
(s) = minπ̂ V

i
π,π̂,θ(s) and V iπ,π̂∗,bi

(s) =

minπ̂ V
i
π,π̂,bi(s). With optimal (equilibrium) policy defined as π∗, the corresponding value is

V i{πi
∗,π

−i},π̂∗,bi
(s) = maxπi V iπ,π̂∗,bi

(s). The mappings β and ϕ are similarly defined β(π−i) =

{V i|V i = maxπi minπ̂ V
i
{πi,π−i},π̂,bi(s)} and ϕ(π−i) = {πi|β(π−i) = V i{πi

∗,π
−i},π̂∗,bi

(s)} to be
the set of value functions and optimal policies. By Proposition. 3.1, the optimal value at each s ∈ S
is unique, which we denote it as vis.
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Lemma A.1 (Equicontinuity of {V iπ,π̂,bi(s), π̂ ∈ ∆(A)}). For every ϵ > 0, ∃δ > 0, for any
(π1, Vπ1,π̂,bi1

(s′1), b
i
2) and (π2, Vπ2,π̂,bi2

(s′2), b
i
2), |π1−π2|+|Vπ1,π̂,bi(s

′
1)−Vπ2,π̂,bi(s

′
2)|+|b1−b2| <

δ, then, ∀π̂ ∈ ∆(A), |Vπ1,π̂,bi(s1)− Vπ2,π̂,bi(s2)| < ϵ.

Proof. By Lemma 1 of Kardeş et al. (2011), the equicontinuity of {V iπ,π̂,θ(s), π̂ ∈ ∆(A)} holds, if
we consider π̂ as uncertainties in P(s′|s,a, π̂, θ). All we need now is to extend the proof considering
belief bi.

|Vπ1,π̂,bi(s1)− Vπ2,π̂,bi(s2)|
=|Ep(θ|Hi

1)
[Vπ1,π̂,θ(s1)]− Ep(θ|Hi

2)
[Vπ2,π̂,θ(s2)]|

=

∣∣∣∣∣∑
θ∈Θ

[p(θ|Hi
1) · Vπ1,π̂,θ(s1)− p(θ|Hi

2) · Vπ2,π̂,θ(s2)]

∣∣∣∣∣
=

∣∣∣∣∣∑
θ∈Θ

[p(θ|Hi
1) · (Vπ1,π̂,θ(s1)− Vπ2,π̂,θ(s2)) + (p(θ|Hi

1)− p(θ|Hi
2)) · Vπ2,π̂,θ(s2)

∣∣∣∣∣
≤
∑
θ∈Θ

[
|p(θ|Hi

1) · (Vπ1,π̂,θ(s1)− Vπ2,π̂,θ(s2))|+ |(p(θ|Hi
1)− p(θ|Hi

2)) · Vπ2,π̂,θ(s2)|
]

≤
∑
θ∈Θ

[|p(θ|Hi
1)| · |Vπ1,π̂,θ(s1)− Vπ2,π̂,θ(s2)|+ |(p(θ|Hi

1)− p(θ|Hi
2)| · |Vπ2,π̂,θ(s2)|]

Since p(θ|Hi
1) is a probability function, we have p(θ|Hi

1) ≤ 1. Since reward is finite,
and |Vπi,π̂,θ(si)|, i ∈ 1, 2 is defined by discount factor γ, |Vπi,π̂,θ(si)| is also bounded, i.e.,
|Vπi,π̂,θ(si)| ≤ K.

Now, let

|Vπ1,π̂,θ(s1)− Vπ2,π̂,θ(s2)| < δ1 =
min{ϵ, 1}
2 · |Θ|

,

|(p(θ|Hi
1)− p(θ|Hi

2)| < δ2 =
min{ϵ, 1}
2 ·K

,

and let δ = min{δ1, δ2}, we have:

|Vπ1,π̂,bi(s1)− Vπ2,π̂,bi(s2)|

≤
∑
θ∈Θ

[|p(θ|Hi
1)| · |Vπ1,π̂,θ(s1)− Vπ2,π̂,θ(s2)|+ |(p(θ|Hi

1)− p(θ|Hi
2)| · |Vπ2,π̂,θ(s2)|]

=
∑
θ∈Θ

[|p(θ|Hi
1)| · δ1] +

∑
θ∈Θ

[δ2 · |Vπ2,π̂,θ(s2)|]

≤ϵ/2 + ϵ/2 = ϵ.

Thus, the set of functions {V iπ,π̂,bi(s), π̂ ∈ ∆(A)} is equicontinuous.

Lemma A.2. ϕ(π−i) is a convex set.

Proof. The proof follows Theorem 4 of Kardeş et al. (2011). By Lemma 2 of Kardeş et al. (2011), the
pointwise minimum of an equicontinuous set of function is continuous, V iπ,π̂∗,bi

(s) = minπ̂ V
i
π,π̂,bi(s)

is continuous on all its variables. Besides, V iπ,π̂∗,bi
(s) is defined by a discounted factor and is bounded.

Thus, the maxima of V iπ,π̂∗,bi
(s) exists.

Second, in Proposition 3.1, we have proof that updating Q function by robust Harsanyi-Bellman
equation yields an optimal robust Q value. It rise as a simple corollary that the optimal
V value, V i{πi

∗,π
−i},π̂∗,bi

(s) exists. By equality V i{πi
∗,π

−i},π̂∗,bi
(s) = maxπi(ai|Hi,bi) minπ̂∑

a∈A πi(ai|Hi, bi)
∏
j ̸=i π

j(aj |Hj , bj) [ri+
∑
s′∈S

∑
â∈A P(s′|s,a, π̂, θ) V i{πi

∗,π
−i},π̂∗,bi

(s′),
ϕ(π−i) ̸= ∅.
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Third, by Lemma 3 of Kardeş et al. (2011), the value function considering worst-
case adversary V iπ,π̂∗,bi

(s) = minπ̂
∑

a∈A π
i(ai|Hi, bj)

∏
j ̸=i π

j(aj |Hj , bj)[ri +∑
s′∈S

∑
â∈A

∑
θ∈Θ p(θ|Hi)P(s′|s,a, π̂, θ)Vπ,π̂,bi(s′)] is concave in πi with fixed π−i and

V iπ,π̂∗,bi
(s′) 2.

Finally, we show the convexity of ϕ(π−i). Let πi1,∗, π
i
2,∗ ∈ ϕ(π−i), with fixed π−i. By definition

of V i{πi
∗,π

−i},π̂∗,bi
(s), ∀π, s ∈ S, b ∈ ∆(Θ), i ∈ N , V i{πi

1,∗,π
−i},π̂∗,bi

(s) = V i{πi
2,∗,π

−i},π̂∗,bi
(s) ≥

V iπ,π̂∗,bi
(s). Thus, ∀λ ∈ [0, 1], we also have λV i{πi

1,∗,π
−i},π̂∗,bi

(s) + (1 − λ)V i{π2,∗,π−i},π̂∗,bi
(s) ≥

V iπ,π̂∗,bi
(s). By concavity of V iπ,π̂∗,bi

(s), V i{πi
∗,π

−i},π̂∗,bi
(s) = λV i{πi

1,∗,π
−i},π̂∗,bi

(s) + (1 −
λ)V i{πi

2,∗,π
−i},π̂∗,bi

(s) ≤ V i{λπi
1,∗+(1−λ)πi

2,∗,π
−i},π̂∗,bi

(s). Since by Proposition 3.1, V iπ,π̂∗,bi
(s) is

optimal and unique. Thus, λπi1,∗ + (1− λ)πi2,∗ ∈ ϕ(π−i), ϕ(π−i) is a convex set.

Next, we first introduce several lemmas, then show ϕ(x) is an upper semicontinuous correspondence.

Lemma A.3. Let T be the robust Harsanyi-Bellman operator defined in Appendix. A.6.
T V i{πi

∗,π
−i},π̂∗,bi

(s) is continuous in π−i. The set {T V{πi
∗,π

−i},π̂,bi(s)| V i{πi
∗,π

−i},π̂∗,bi
(s)

is bounded} is equicontinuous.

Proof. By Lemma 4 of Kardeş et al. (2011), T V i{πi
∗π

−i},π̂∗,θ
(s) is continuous and the set

{T V{πi
∗,π

−i},π̂,bi(s)|V i{πi
∗,π

−i},π̂∗,θ
(s) is bounded} is equicontinuous. Since T V i{πi

∗,π
−i},π̂∗,bi

(s) =

T Ep(θ|H))[V
i
{πi

∗,π
−i},π̂∗,θ

(s)], the expectation of a continuous function is still continuous, and the
expectation over a equicontinuous set is still equicontinuous. This completes the proof.

Lemma A.4. Define the optimal value as vi = {vi1, vi2, ...viS}. If πin → πi, π−i
n → π−i, β(π−i

n )→
vi and πin ∈ ϕ(π−i

n ), then πi ∈ ϕ(π−i), i.e., ϕ(π−i) is an upper semicontinuous correspondence.

Proof. The proof is by Lemma 5 of Fink (1964). We re-write it here using our notation
to make the proof self-contained. Specifically, ∀s ∈ S, H ∈ (O × A)∗, b ∈ ∆(Θ). De-
fine function f(·) as f(Vπ,π̂∗,bi(s)) = minπ̂(â|H,θ)

∑
a∈A π

i(ai|Hi, bi)
∏
j ̸=i π

j(aj |Hj , bj)[ri +∑
s′∈S

∑
â∈A

∑
θ∈Θ p(θ|Hi)P(s′|s,a, π̂, bi)Vπ,π̂∗,bi(s

′)]. Recall vis is the fixed point. Let πi∗ ∈
ϕ(π−i), |f(vis) − vis| ≤ |f(vis) − f(β(π−i

n |s))| + |f(β(π−i
n |s)) − vis| = |f(vis) − f(β(π−i

n |s))| +
|β(π−i

n |s)− vis| → 0 as n→∞.

Now we need to show when π−i
n → π−i and β(π−i

n )→ vi, β(π−i|s) = vis. We have |vis − T vis| ≤
|vis−β(π−i

n |s)|+ |β(π−i
n |s)−T β(π−i

n |s)|+ |T β(π−i
n |s)−T vis|. By our assumption, β(π−i

n )→ vi

and πin ∈ ϕ(π−i
n ) as n → ∞, |vis − β(π−i

n |s)| → 0, |T β(π−i
n |s) − T vis| → 0. By Lemma A.3,

|β(π−i
n |s) − T β(π−i

n |s)| → 0. Thus, |vis − T vis| → 0 as n → ∞. As β(π−i) = {V i|V i =
maxπi minπ̂ V

i
{πi,π−i},π̂,bi(s) = vis}, β(π−i|s) = vis.

As we have β(π−i|s) = vis, we have vis = T vis and is a fixed point. Thus, vis = f(vis) = β(π−i|s) =
minπi V i{πi,π−i},π̂∗,bi

(s). As a consequence, πi ∈ ϕ(π−i), ϕ(π−i) is an upper semicontinuous
correspondence.

Now, we have proofed ϕ is an upper semicontinuous correspondence (Lemma. A.4), mapping ∆(A)
into the family of convex subsets of ∆(A) (Lemma. A.2). Since ϕ(π−i) is an upper semicontinuous
correspondence, it is also a closed set for any π. Thus, the result satisfies the requirement of
Kakutani’s fixed point theorem, with equilibrium policy ϕ(π−i).

A.2.3 EXISTENCE OF EX INTERIM RMPBE

The existence of ex ante RMPBE follows the proof of ex interim RMPBE, but having a prior belief
p(θ) that is never updated. Since the expectation over p(θ) is a linear combination and p(θ) is
bounded, the addition of p(θ) do not violate the convergence and continuity of value functions. The
proof thus follows the result of ex interim RMPBE.

2Note that Lemma 3 of Kardeş et al. (2011) considers cost, which is the negative of reward. While in their
proof, the function considering cost is convex. Taking the negative of a convex function is thus concave.
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A.3 PROOF OF PROPOSITION 3.2

For convenience of notations, Let us redefine the value function under worst-case adversary and type
θ at time t, but additionally adding π, π̂ into the notation of Vθ(s) for clarity, resulting in

V π,π̂∗
θ (s) = min

π̂(·|H,θ)

∑
a∈A

Pα(a|a, π̂, θ)
∏
i∈N

πi(ai|Hi)(R(s,a) + γ
∑
s′∈S
P(s′|s,a)V π,π̂∗

θ (s′)).

We can then redefine the value function for ex ante RMPBE as V π,π̂∗
p (θ)(s) = Ep(θ)[V π,π̂∗

θ (s)] and
the value function for ex interim RMPBE as V π,π̂∗

b (s) = Ep(θ|H)[V
π,π̂∗
θ (s)].

Next, for each θ ∈ Θ, with time t→∞, we have bt = p(θ|Ht)→ θ by consistency of Bayes’ rule
Diaconis & Freedman (1986), if ∀θ ∈ Θ, p(θ) ̸= 0 and with finite type space Θ. The resulting value
function at t→∞ is thus:

V
πEI
∗ ,π̂EI

∗
bt→∞

(s) = V
πEI
∗ ,π̂EI

∗
θ (s) ≥ V π,π̂∗

θ (s),

where π̂∗ is always the optimal adversarial policy for current π. The rest follows. As for the expected
return of ex ante robustness for θ, we get:

V
πEA
∗ ,π̂EA

∗
p(θ) (s) = Ep(θ)

[
V
πEA
∗ ,π̂EA

∗
θ (s))

]
.

During evaluation, ∀p(θ), at t → ∞, since current type θ is known and do not change, the return
conditions on θ, instead of expectations on θ. As a consequence, the value function of ex ante and
ex interim equilibrium is V π

EA
∗ ,π̂EA

∗
θ (s) and V π

EI
∗ ,π̂EI

∗
θ (s), respectively. At t→∞ and ∀θ ∈ Θ, we

have bt = p(θ|Ht)→ θ, and following inequality holds:

V
πEI
∗ ,π̂EI

∗
θ (s) ≥ V π

EA
∗ ,π̂EA

∗
θ (s),

which use the fact V π
EI
∗ ,π̂EI

∗
θ (s) ≥ V π,π̂∗

θ (s). Considering to the gap between V π,π̂∗
θ (s) and V π,π̂∗

p(θ) (s),
a sufficient condition for this equality to hold is when the type space Θ contains one type only. Note

that even at t→∞, the relation between expected value function V
πEA
∗ ,π̂EA

∗,θ
p(θ) (s) of ex ante equilibrium

and V π
EI
∗ ,π̂EI

∗
θ (s) of ex interim equilibrium is still not known. This is because the ex ante equilibrium

can get high expected values by simply “believing” it in some prior p(θ) that yields high value.
However, since the belief is not correct, the resulting policy is non-optimal in any type at t→∞.

A.4 PROOF OF PROPOSITION 3.3

Overview. We first proof the contraction mapping of Q(s,a, bi) by combining standard proof of the
contraction mapping of Q function and Bayesian belief update. Afterwards, applying Banach’s fixed
point theorem completes the proof. The convergence of Q(s,a, bi) follows the same vein.

We first show the proof for Q-function for Qi∗(s,a, b
i). The proof incorporates our robust Harsanyi-

Bellman equation in the contraction mapping proof of robust MDP (Iyengar, 2005). Based on
Bellman equation in Definition 3.1, let ∆(Θ) be a probability over Θ, the optimal Q-function of a
contraction operator T , defined from a generic function Q : S ×A×∆(Θ)→ R can be defined as:

(T Qi)(s,a, bi) = max
π(·|o,b)

min
π̂(·|o,θ)

R(s,a) + γ

[∑
s′∈S
P(s′|s,a)

∑
θ∈Θ

p(θ|Hi)

∑
â′∈A

π(a′|H ′, b′, θ)Qi∗(s
′,a′, b′i)

]
.

Next, we show T forms a contraction operator, such that for any two Q functionQi1 andQi2, assuming
T Qi1(s,a, bi) ≥ T Qi2(s,a, bi), the following holds:
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||T Qi1 − T Qi2||∞ ≤ γ||Qi1 −Qi2||∞,

Specifically, for ϵ > 0 and with fixed a ∈ A, s ∈ S, b ∈ ∆(Θ), H ∈ (O ×A)∗ for Q1 and Q2,

min
π̂(·|H,θ)

R(s, â) + γ

[∑
s′∈S
P(s′|s,a)

∑
θ∈Θ

p(θ|Hi)
∑
a′∈A

π(â′|H ′, b′, θ)Qi1(s
′,a′, b′i)

]
≥ T Qi1 − ϵ.

Note that updating belief by Bayes’ rule is required for consistency of b′i. We require fixed Hi

as well since the calculation of belief and Q function depends on Hi. Now we can also choose a
conditional policy measure of the adversary π̂s, such that:

Eπ̂s

[
R(s, â) + γ

[∑
s′∈S
P(s′|s, â)

∑
θ∈Θ

p(θ|Hi)
∑
â′∈A

π(â′|H ′, b′, θ)Qi2(s
′, â′, b′i)

]]
≤

min
π̂(·|o,θ)

R(s, â) + γ

[∑
s′∈S
P(s′|s, â)

∑
θ∈Θ

p(θ|Hi)
∑
â′∈A

π(â′|H ′, b′, θ)Qi2(s
′, â′, b′i)

]
+ϵ.

Then,

0 ≤ T Qi1 − T Qi2

≤

(
min

π̂(·|H,θ)
R(s, â) + γ

[∑
s′∈S
P(s′|s,a)

∑
θ∈Θ

p(θ|Hi)
∑
â′∈A

π(â′|H ′, b′, θ)Qi1(s
′, â′, b′i)

]
+ϵ

)
−(

min
π̂(·|H,θ)

R(s,a) + γ

[∑
s′∈S
P(s′|s,a)

∑
θ∈Θ

p(θ|Hi)
∑
a′∈A

π(a′|H ′, b′, θ)Qi2(s
′,a′, b′i)

])

≤

(
Eπ̂s

[
R(s,a) + γ

[∑
s′∈S
P(s′|s,a)

∑
θ∈Θ

p(θ|Hi)
∑
a′∈A

π(a′|H ′, b′, θ)Qi1(s
′,a′, b′i)

]]
+ ϵ

)
−(

Eπ̂s

[
R(s,a) + γ

[∑
s′∈S
P(s′|s,a)

∑
θ∈Θ

p(θ|Hi)
∑
a′∈A

π(a′|H ′, b′, θ)Qi2(s
′,a′, b′i)

]]
− ϵ

)
= γEπ̂s

[
Qi1 −Qi2

]
+ 2ϵ ≤ γEπ̂s

∣∣Qi1 −Qi2∣∣+ 2ϵ ≤ γEπ̂s
||Qi1 −Qi2||∞ + 2ϵ.

Thus, we have:

||T Qi1 − T Qi2||∞ ≤ γ||Qi1 −Qi2||∞ + 2ϵ,

and since by definition, ϵ is arbitrary, then we have ||T Qi1 − T Qi2||∞ ≤ γ||Qi1 −Qi2||∞.

Finally, since T is a contraction operator on a Banach space, by Banach’s fixed point theorem,
updating Qi(s,a, bi) by Bellman operator T will converge to the optimal value function Qi∗(s,a, b

i).

In the same way, the convergence of Qi(s,a, bi) is again done by robust Harsanyi-Bellman
equation, Qi∗(s,a, b

i) = max
π(·|H,b)

min
π̂(·|H,θ)

∑
θ∈Θ p(θ|Hi)

∑
s′∈S

∑
â∈A P(s′|s,a, π̂, θ)[R(s,a) +

γ
∑

a′∈A π(a
′|H ′, b′)Qi∗(s

′,a′, b′i)]. Expanding the function in the same way above completes
the proof.
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A.5 PROOF OF THEOREM 4.1

We first discuss the policy gradient with πϕi(ai|Hi, bi):

∇ϕiV i(s, bi) =∇ϕi

[∑
a∈A

πϕ,ϕ̂(a|H, b, θ)Q
i(s,a, bi)

]

=∇ϕi

[∑
a∈A

(
(1− θ) · πϕ(a|H, b) + θ · π̂ϕ̂(â|H, θ)

)
Qi(s,a, bi)

]
=
∑
a∈A

[
(1− θi)∇ϕiπϕi(ai|Hi, bi) ·Qi(s,a, bi) + πϕ,ϕ̂(a|H, b, θ)∇ϕiQi(s,a, bi)

]
=
∑
a∈A

[
(1− θi)∇ϕiπϕi(ai|Hi, bi) ·Qi(s,a, bi) + πϕ,ϕ̂(â|H, b, θ)∇ϕi

[
R(s,a)

+ γ
∑
s′∈S

∑
a′∈A

P(s′|s,a)
∑
θ∈Θ

p(θ|H)πϕ,ϕ̂(a
′|H ′, b′, θ)Qi(s′,a′, b′i)

]
,

=
∑
a∈A

[
(1− θi)∇ϕiπϕi(ai|oi, bi) ·Qi(s,a, bi) + πϕ,ϕ̂(a|H, b, θ)

[
γ(1− θi)∇ϕi

πϕi(a′|H ′, b′) + γ
∑
s′∈S

∑
a′∈A

P(s′|s,a)πϕ,ϕ̂(a
′|H ′, b′, θ)

∑
θ∈Θ

p(θ|H)∇ϕiQi(s′,a′, b′i)
]
,

=
∑
s′∈S

∞∑
t=0

Pr(s→ s′, t, π)
∑
â∈A

(1− θi)∇ϕiπϕi(ai|Hi, bi) ·Qi(s,a, bi).

Considering∇ϕiJ i(ϕi), we have

∇ϕiJ i(ϕi) =∇ϕiV i(s0, b
i)

=
∑
s∈S

∞∑
t=0

Pr(s0 → s, t, π)
∑
a∈A

(1− θi)∇ϕiπϕi(ai|Hi, bi) ·Qi(s,a, bi)

=
∑
s∈S

η(s)
∑
a∈A

(1− θi)∇ϕiπϕi(ai|Hi, bi) ·Qi(s,a, bi)

=
∑
s′∈S

η(s′)
∑
s∈S

η(s)∑
s′∈S η(s

′)

∑
a∈A

(1− θi)∇ϕiπϕi(ai|Hi, bi) ·Qi(s,a, bi)

=
∑
s′∈S

η(s′)
∑
s∈S

ρπ(s)
∑
a∈A

(1− θi)πϕi(ai|Hi, bi) ·Qi(s,a, bi)

∝
∑
s∈S

ρπ(s)
∑
a∈A

(1− θi)∇ϕiπϕi(ai|Hi, bi) ·Qi(s,a, bi).

Using the log-derivative trick, we have:

∇ϕiJ i(ϕi) ∝
∑
s∈S

ρπ(s)
∑
a∈A

(1− θi)∇ϕiπϕi(ai|Hi, bi) ·Qi(s,a, bi)

=
∑
s∈S

ρπ(s)
∑
a∈A

(1− θi)πϕi(ai|Hi, bi) ·Qi(s,a, bi)
∇ϕiπϕi(ai|Hi, bi)

πϕi(ai|Hi, bi)

=Es∼ρπ(s),a∼π(·|H,b,θ)[(1− θi)∇ϕi lnπϕi(ai|Hi, bi) ·Qi(s,a, bi)].
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The proof of πϕ̂i(âi|oi, θ) basically follows the same method.

∇ϕ̂iV
i(s, bi) =∇ϕ̂i

[∑
a∈A

πϕ,ϕ̂(a|H, b, θ)Q
i(s,a, bi)

]

=∇ϕ̂i

[∑
a∈A

(
(1− θ) · πϕ(a|H, b) + θ · π̂ϕ̂(â|H, θ)

)
Qi(s,a, bi)

]
=
∑
a∈A

[
θi · ∇ϕ̂i π̂ϕ̂i(â

i|Hi, θ) ·Qi(s,a, bi) + πϕ,ϕ̂(â|H, b, θ)∇ϕ̂iQ
i(s,a, bi)

]
=
∑
a∈A

[
θi · ∇ϕ̂i π̂ϕ̂i(â

i|Hi, θ) ·Qi(s,a, bi) + πϕ,ϕ̂(â|H, b, θ)∇ϕ̂i

[
R(s,a)

+ γ
∑
s′∈S

∑
a′∈A

P(s′|s,a)
∑
θ∈Θ

p(θ|H)πϕ,ϕ̂(a
′|H ′, b′, θ)Qi(s′, â′, b′i)

]
,

=
∑
a∈A

[
θi · ∇ϕ̂i π̂ϕ̂i(â

i|Hi, θ) ·Qi(s,a, bi) + πϕ,ϕ̂(a|H, b, θ)
[
γ · θi · ∇ϕ̂i

π̂ϕ̂i(â
′i|H ′i, θ) + γ

∑
s′∈S

∑
a′∈A

P(s′|s,a)
∑
θ∈Θ

p(θ|H)πϕ,ϕ̂(â
′|H ′, b′, θ)∇ϕiQi(s′,a′, b′i)

]
,

=
∑
s′∈S

∞∑
t=0

Pr(s→ s′, t, π)
∑
a∈A

θi · ∇ϕ̂i π̂ϕ̂i(â
i|Hi, θ) ·Qi(s,a, bi).

Considering∇ϕiJ i(ϕi) and use the log-derivative trick same as above, we get:

∇ϕ̂iJ
i(ϕ̂i) ∝

∑
s∈S

ρπ(s)
∑
a∈A

θi · ∇ϕ̂i π̂ϕ̂i(â
i|Hi, θ) ·Qi(s,a, bi)

=
∑
s∈S

ρπ(s)
∑
a∈A

θiπ̂ϕ̂(â
i|Hi, θ) ·Qi(s, â, bi)

∇ϕ̂i π̂ϕ̂i(âi|Hi, θ)

π̂ϕ̂i(âi|Hi, θ)

=Es∼ρπ(s),a∼π(·|H,b,θ)[θi∇ϕ̂i ln π̂ϕ̂i(â
i|Hi, θ) ·Qi(s,a, bi)].

This completes the proof.

A.6 CONVERGENCE PROOF OF THEOREM 3.1

We proof this via stochastic approximation theory of Borkar (Borkar, 1997; Borkar & Meyn, 2000;
Borkar, 2009), where the robust agent is quasi-static and the adversary is essentially equilibrated
(Borkar & Meyn, 2000). One notable difference is, since the type in our work was sampled from
prior distribution θ ∼ p(θ), we take the expectation with respect to p(θ) to follow the notation of
stochastic approximation theory.

Proposition A.1 (Convergence). Theorem 3.1 in main paper converge to robust Bayesian Markov
Perfect equilibrium a.s. if the following assumption holds.

Assumption A.1. Given step n, learning rate of π and π̂ as α(n) and β(n) with α(n), β(n) ∈
(0, 1), denote the probability of having an adversary as pθ

i

= p(θi = 1), such that ∀i ∈ N ,∑
t α(n)(1−pθ

i

) =
∑
n β(n)p

θi =∞,
∑
t(α(n)(1−pθ

i

))2+(β(n)pθ
i

)2 <∞, α(n)(1−p
θi )

β(n)pθi )
→ 0.

Note that the assumption slightly differs from standard stochastic approximation, since adversaries
and robust agents are not uniformly explored.

Assumption A.2. ∀i ∈ N , θ ∈ Θ, Qi(s,a, θ) is Lipshitz continuous. As a corollary, Qi(s,a, bi) =
Ep(θ|Hi)[Q

i(s,a, θ)] is Lipshitz continuous.

Assumption A.3. Let ν(s, a, θ) denote the number of visit to state s and action a under θi.
∀s, a, θ, ν(s, a, θ)→∞.
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Assumption A.4. The error in stochastic approximation (i.e., inaccuracy in critic value, environment
noise, beliefetc.) constitutes martingale difference sequences with respect to the increasing σ-fields.

Assumption A.5. ∀θ ∈ Θ, a global asymptotically stable ex interim equilibrium (πEI∗ , π̂EI∗ ) exists.

Assumption A.6. ∀θ ∈ Θ, supt(||πEIn ||+ ||π̂EIn ||) <∞.

proof. We can write the update rule of π and π̂ in their Ordinary Differential Equation (ODE) form:

Eθi∼p(θi)[πin+1] =Eθi∼p(θi)[πin] + α(ν(s, a))(1− pθ
i

)Eθi∼p(θi)[∇ log πin(R(s,a)

+
∑
s′∈S
P(s′|s,a)

∑
θ∈Θ

p(θ|H ′i)
∑
a∈A

πn(a
′|H ′, b′, θ)Qin(s

′,a′, b′i))],

Eθi∼p(θi)[π̂in+1] =Eθi∼p(θi)[π̂in] + β(ν(s, a))pθ
i

Eθi∼p(θi)[∇ log π̂in(R(s,a)

+
∑
s′∈S
P(s′|s,a)

∑
θ∈Θ

p(θ|H ′i)
∑
â∈A

πn(a
′|H ′, b′, θ)Qin(s

′,a′, b′i))].

where we assume Qin(s
′,a′, b′i) is the learned critic, updated at a faster timescale than α(n) and

β(n), following Assumption 1.1-1.5, such that Qi is essentially equilibrated. The error terms are
embedded in Qin(s

′,a′, H ′i). Thus, the update rule of πi and π̂i follows the general update rule of
stochastic optimization (Borkar, 2009):

xn+1 =xn + α(n)[h(xn, yn) +M
(1)
n+1],

yn+1 =yn + α(n)[g(xn, yn) +M
(2)
n+1].

Thus, by Theorem 4.1 in (Borkar & Meyn, 2000) or Theorem 2 in (Borkar, 2009), πn and π̂n converge
to equilibrium.

B ADDITIONAL DETAILS ON ALGORITHM

We implement our algorithm on top of MAPPO (Yu et al., 2021). MAPPO is an widely used
multi-agent extension of PPO and consistently achieves strong performance on many benchmark
environments. Note that our method do not include algorithm-specific structures, which means it can
easily be applied to other actor-critic based algorithms, such as IPPO (de Witt et al., 2020), HATRPO
(Kuba et al., 2021), MAT (Wen et al., 2022) etc. easily. However, while technically possible, we
do not suggest a MADDPG implementation (Lowe et al., 2017) of our algorithm. This is because
MADDPG provide deterministic output, but pure-strategy robust Markov perfect Perfect Bayesian
equilibrium is not guaranteed to exist, as we have shown in Appedix. ?? by a counterexample.

One important thing to notice is that we empirically find using larger learning rate for adversaries
during training of EIR-MAPPO do not always work well in all environments. For example, the
learning dynamics of adversary in our toy environment can be unstable even with learning rate 5e− 4,
and get worse if the learning rate further increase, which is much smaller than the convergence rate
suggested by previous papers (Daskalakis et al., 2020). We empirically find adversaries using slightly
higher learning rates than robust agents works well, but requires extensive tuning. To tackle this
problem, we maintain the central assumption of two-timescale updates (i.e., updating the adversary
faster and the robust agent slower), but instead update the adversary for more rollouts (denoted by
interval in our algorithm), while update the victim for less rollouts. This do not violate our proof
in Appendix A.6, since taking expectations to policy update brings the same result.

We closely follow the implementation details of MAPPO and PPO (Schulman et al., 2017), including
parameter sharing, generalized advantage estimation (GAE) (Schulman et al., 2015), and other
tricks in the codebase of MAPPO, available at https://github.com/marlbenchmark/
on-policy. Note that we use fixed learning rate for both adversary and robust agents. pξ(θ|Hi)
is a GRU (Chung et al., 2014) with input pξ(bi|oi, hi), where hi is the hidden state that summarize
observations in previous timesteps and oi is observation of current timestep.
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Algorithm 1 ex interim robust c-MARL (EIR-MAPPO).

Input: Policy network of robust agents πϕ, adversary π̂
ϕ̂i , value function Vψ , belief network pξ.

Output: Trained policy network of robust agents πϕ.
1: for k = 0, 1, 2, ... K do
2: Sample θ ∼ p(θ). Initialize τ = [].
3: for t = 0, 1, 2, ... T do
4: ∀i ∈ N , perform rollout under bit = pξ(θ|Hi

t), at ∼ πϕ(·|Ht, bt), ât ∼ π̂
ϕ̂i(·|Ht, θ) and

st+1 ∼ P(st+1|st,at, θ, π̂), receive Hi
t+1 and rt.

5: τ ← τ ∪ (bt,at, ât, st+1, Ht+1, rt, Ht, θ).
6: end for
7: for i = 0, 1, 2, ... N do
8: if k % interval == 0 then
9: Using τ , calculate Aiψ(s,a, b

i) by GAE; calculate bi by pξ.
10: ϕ← ϕi + αϕ(1− θi)∇ log πϕ(a

i|Hi, bi)Aiψ(s,a, b
i). // Shared parameters

11: ϕ̂← ϕi − αϕ̂θ
i∇ log π̂ϕ̂(a

i|Hi, θ)Aiψ(s,a, b
i).

12: ψ ← ψ + αψ∇ψ(r − γQiψ(s′,a′, b′i) +Qiψ(s,a, b
i))2

13: ξ ← ξ − αξ∇ξ(θ log
(
pξ(θ|Hi)

)
+ (1− θ) log(1− pξ(θ|Hi))

14: else
15: ϕ̂ ← ϕi − αϕ̂θ

i∇ log π̂ϕ̂(a
i|Hi, θ)Aiψ(s,a, b

i). // Update adversaries for
more rollouts, with others fixed. Empirically stabilize
training.

16: end if
17: end for
18: end for

C ADDITIONAL DETAILS ON EXPERIMENTS

C.1 ENVIRONMENT DETAILS

(a) Toy (b) LBF (c) SMAC

Figure 7: Environments used in our experiments. The toy game is proposed by (Han et al., 2022).
We use map 3m in SMAC (Samvelyan et al., 2019) and map 12x12-4p-4f in LBF (Papoudakis et al.,
2020).

In this section, we introduce more details on environment. Again, we add the figure of environments
in Fig. 7. Next, we introduce the tasks, actions and reward of each environments as follows.

Toy environment. The toy environment was first proposed by (Han et al., 2022) to study the effect
of state-based attacks on c-MARL. In this game, two agents play simultaneously for 100 iterations to
achieve maximum coordination. Specifically, in state s1, two agents seeks same actions (XNOR gate),
while state s2 seeks two agents seeks different actions (XOR gate). During attack, the adversary can
take over each agent, and perform actions to maximally attack another agent. The attack requires the
robust agent to simultaneously identify other agents as adversary or allies, while taking cooperative
actions if other agent is an ally, and take randomized action if other agent is an adversary.

Level-Based Foraging environment. Level-Based Foraging environment (Papoudakis et al., 2020)
aims at a set of agents to cooperatively achieve maximum reward in food collection process. Each
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agents are assigned different “levels”, while the food can only be collected via agents with level
higher than the food. Note that we use the cooperative setting in LBF, which majority agents (except
the adversary) have to collaborate jointly to achieve the goal. While there do not exist a commonly
used testbed in LBF, we use 12x12-4p-4f in our experiment.

We also need to notice that, in LBF environment, an adversary is capable of physically interfere with
other agents, such as blocking the way of others or intentionally colliding with other agents, resulting
in a deadlock ever since. While Gleave et al. (2019) cited an important aspect of adversarial policy as
“not to physically interfere with others”, we turn the collision in LBF off to represent this.

StarCraft Multi-Agent Challenge environment. StarCraft Multi-Agent Challenge environment
(Samvelyan et al., 2019) is the most commly used testbed for c-MARL, which agents control a team
of red agents and seeks to win a team of blue agents with built-in AIs. We adapt the map 3m proposed
in SMAC testbed to 4m vs 3m, with one agent as adversary. Thus, the map can still be viewed as 3m,
albeit with one adversary agents trying to fool its teammates. Note that the adversary cannot attack
its allies by design of SMAC environment.

C.2 IMPLEMENTATION DETAILS

The implementation of MAPPO, RMAAC, EAR-MAPPO and EIR-MAPPO are based on the orig-
inal codebase of MAPPO (https://github.com/marlbenchmark/on-policy). The
implementation of MADDPG and M3DDPG resembles the code of FACMAC (Peng et al., 2021)
(https://github.com/oxwhirl/facmac) and Heterogeneous-Agent Reinforcement Learn-
ing (HARL) codebase (https://github.com/PKU-MARL/HARL). Our code are available in
supplementary files, and will be open sourced after this paper is accepted.

For all environments, we set p(θ = 0N ) = 0.5 and p(θ = 1i) = 0.5/N , where 1i denotes the
one-hot vector with θi = 1 and others 0. This probability of selecting p(θ) remains fixed throughout
training process. During training, we store the model of robust agents with improved robustness
without decreasing cooperation reward, evaluated on the adversary during training. While testing, we
held all parameters in robust agents fixed, including policy and belief network. Then, a black-box
adversary was trained following the approach of adversarial policy. The adversary also follows a
CTDE approach, assuming assess to state, reward and local observation during training, and use local
observation only in testing. For fair comparison, we attack all baselines by PPO (Schulman et al.,
2017).

As for M3DDPG, note that the original version of M3DDPG (Li et al., 2019) are designed for
continuous control only, where actions are continuous and can be perturbed by a small value, while
in discrete control, one will have to completely change the action, or not changing the action at all.
To solve that, we add the noise perturbation to the action probability of MADDPG and send it to
Q function instead. We also find using large ϵ for M3DDPG will make the policy impossible to
converge in fully cooperative settings: since M3DDPG add perturbations directly to each agents,
resulting in an overly challenging setting. As such, we select the largest ϵ which enables maximum
cooperation result in each setting.

As for RMAAC, the perturbation in training is set to ϵ = 0.5 following their original paper, except
for ϵ = 0.05 in toy environment since otherwise the policy will not converge in normal training.

Next, we present all hyperparameters of each environment in the table below. These hyparameters
follows the default in previous papers, including MAPPO (Yu et al., 2021), HARL (Zhong et al.,
2023) and FACMAC (Peng et al., 2021).
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Table 1: Hyperparameters for MAPPO, RMAAC, EAR-MAPPO, EIR-MAPPO in toy environment.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
rollouts 10 mini-batch num 1 PPO epoch 5
gamma 0.99 max grad norm 10 PPO clip 0.05

gain 0.01 max episode len 200 entropy coef 0.01
actor network MLP actor lr 5e-5 eval episode 32
hidden dim 128 critic lr 5e-5 optimizer Adam

belief network GRU adversary lr 5e-5 Huber loss True
use PopArt True belief lr 5e-5 Huber delta 10

adversary interval 10 GAE lambda 0.95 RMAAC ϵ 0.05

Table 2: Hyperparameters for MADDPG and M3DDPG in toy environment.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
rollouts 10 mini-batch num 1 gamma 0.99

actor network MLP actor lr 5e-5 eval episode 32
hidden dim 256 critic lr 5e-5 optimizer Adam
buffer size 1000000 batch size 1000 epsilon 0.1

Table 3: Hyperparameters for the PPO adversary in toy environment.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
rollouts 10 mini-batch num 1 PPO epoch 5
gamma 0.99 max grad norm 10 PPO clip 0.05

gain 0.01 max episode len 200 entropy coef 0.01
actor network MLP adversary lr 5e-5 eval episode 32
hidden dim 128 critic lr 5e-5 optimizer Adam
use PopArt True Huber loss True Huber delta 10

GAE lambda 0.95

Table 4: Hyperparameters for MAPPO, RMAAC, EAR-MAPPO, EIR-MAPPO in SMAC environ-
ment.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
rollouts 20 mini-batch num 1 PPO epoch 5
gamma 0.95 max grad norm 10 PPO clip 0.05

gain 0.01 max episode len 200 entropy coef 0.01
actor network MLP actor lr 5e-4 eval episode 32
hidden dim 128 critic lr 5e-4 optimizer Adam

belief network GRU adversary lr 5e-4 Huber loss True
use PopArt True belief lr 5e-4 Huber delta 10

adversary interval 5 GAE lambda 0.95 RMAAC ϵ 0.05

Table 5: Hyperparameters for MADDPG and M3DDPG in SMAC environment.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
rollouts 20 mini-batch num 1 gamma 0.99

actor network MLP actor lr 5e-4 eval episode 32
hidden dim 256 critic lr 5e-4 optimizer Adam
buffer size 1000000 batch size 1000 epsilon 0.01

26



Published as a conference paper at ICLR 2024

Table 6: Hyperparameters for the PPO adversary in SMAC environment.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
rollouts 20 mini-batch num 1 PPO epoch 5
gamma 0.99 max grad norm 10 PPO clip 0.05

gain 0.01 max episode len 200 entropy coef 0.01
actor network MLP adversary lr 5e-4 eval episode 32
hidden dim 128 critic lr 5e-4 optimizer Adam
use PopArt True Huber loss True Huber delta 10

GAE lambda 0.95

Table 7: Hyperparameters for MAPPO, RMAAC, EAR-MAPPO, EIR-MAPPO in LBF environment.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
rollouts 20 mini-batch num 1 PPO epoch 5
gamma 0.99 max grad norm 10 PPO clip 0.05

gain 0.01 max episode len 200 entropy coef 0.01
actor network MLP actor lr 5e-4 eval episode 32
hidden dim 128 critic lr 5e-4 optimizer Adam

belief network GRU adversary lr 5e-4 Huber loss True
use PopArt True belief lr 5e-4 Huber delta 10

adversary interval 5 GAE lambda 0.95 RMAAC ϵ 0.05

Table 8: Hyperparameters for MADDPG and M3DDPG in LBF environment.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
rollouts 20 mini-batch num 1 gamma 0.99

actor network MLP actor lr 5e-5 eval episode 32
hidden dim 256 critic lr 5e-5 optimizer Adam
buffer size 1000000 batch size 1000 epsilon 0.1

Table 9: Hyperparameters for the PPO adversary in LBF environment.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
rollouts 20 mini-batch num 1 PPO epoch 5
gamma 0.99 max grad norm 10 PPO clip 0.05

gain 0.01 max episode len 200 entropy coef 0.01
actor network MLP adversary lr 5e-4 eval episode 32
hidden dim 128 critic lr 5e-4 optimizer Adam
use PopArt True Huber loss True Huber delta 10

GAE lambda 0.95
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