
A Necessity of Polynomially Bounded Weights

In [BLN21] it was conjectured that the law of robustness should hold for the class of all two-layer
neural networks. In this paper we prove that in fact it holds for arbitrary smoothly parametrized func-
tion classes, as long as the parameters are of size at most polynomial. In this section we demonstrate
that this polynomial size restriction is necessary for bounded depth neural networks.

First we note that some restriction on the size of the parameters is certainly necessary in the most
general case. Indeed one can build a single-parameter family, where the single real parameter is
used to approximately encode all Lipschitz functions from a compact set in Rd to [−1, 1], simply
by brute-force enumeration. In particular no tradeoff between number of parameters and attainable
Lipschitz constant would exist for this function class.

Showing a counter-example to the law of robustness with unbounded parameters and “reasonable”
function classes is slightly harder. Here we build a three-layer neural network, with a single fixed
nonlinearity σ : R → R, but the latter is rather complicated and we do not know how to describe it
explicitly (it is based on the Kolmogorov-Arnold theorem). It would be interesting to give similar
constructions using other function classes such as ReLU networks.
Theorem 4. For each d ∈ Z+ there is a continuous function σ : R→ R and a sequence (b`)`≤22d

such that the following holds. The function Φa defined by

Φa(x) =

22d∑
`=1

σ(a− `)
2d∑
i=1

σ

b` +

d∑
j=1

σ(xj + b`)

 , |a| ≤ 22d (A.1)

is alwaysO(d3/2)-Lipschitz, and the parametrization a→ Φa is 1-Lipschitz. Moreover for n ≤ 2d

100 ,
given i.i.d. uniform points x1, . . . , xn ∈ Sd−1 and random labels y1, . . . , yn ∈ {−1, 1}, with
probability 1 − e−Ω(d) there exists ` ∈ [22d] such that Φ`(xi) = yi for at least 3n

4 of the values
i ∈ [n].

Proof. For each coordinate i ∈ [d], define the slab slabi = {x ∈ Sd−1 : |xi| ≤ 1
100d3/2

} and set
slab =

⋃
i∈[d] slabi. Then it is not difficult to see that µ(slab) ≤ 1

10 . We partition Sd−1\slab
into its 2d connected components, which are characterized by their sign patterns in {−1, 1}d; this de-
fines a piece-wise constant function γ : Sd−1\slab→ {−1, 1}d. If we sample the points x1, . . . , xn
sequentially, each point has probability at least 4

5 to be in a new cell - this implies that with prob-
ability 1 − e−Ω(n), at least 3n

4 are in a unique cell. It therefore suffices to give a construction that
achieves Φ(xi) = yi for all xi /∈ slab such that γ(xi) 6= γ(xj) for all j ∈ [n]\{i}. We do this now.

For each of the 22d functions g` : {−1, 1}d → {−1, 1}, we now obtain the partial function h̃` =

g` ◦ γ : Sd−1\slab → {−1, 1}. By the Kirszbraun extension theorem, h̃` extends to an O(d3/2)-
Lipschitz function h` : Sd−1 → [−1, 1] on the whole sphere. The Kolmogorov-Arnold theorem
guarantees the existence of an exact representation

Φ`(x) =

2d∑
i=1

σ`

 d∑
j=1

σ`(xj)

 (A.2)

of h` by a two-layer neural network for some continuous function σ` : R → R depending on `. It

suffices to give a single neural network capable of computing all functions (Φ`)
22d

`=1. We extend the
definition of Φa to any a ∈ R via:

Φa(x) =

22d∑
`=1

σ(a− `)Φ`(x) (A.3)

where σ : R→ R satisfies σ(x) = (1− |x|)+ for |x| ≤ 22d . This ensures that (A.3) extends (A.2).
To express Φa using only a single non-linearity, we prescribe further values for σ. Let

U = 22d + d · max
x∈[−1,1],`∈[22d]

|σ`(x)|

13

so that
∣∣∣∑d

j=1 σ`(xj)
∣∣∣ ≤ U for all x ∈ Sd−1. Define real numbers b` = 10`U + 22d for ` ∈ [22d]

and for all |x| ≤ U set

σ(x+ b`) = σ`(x).

Due to the separation of the values b` such a function σ certainly exists. Then we have

Φ`(x) =

2d∑
i=1

σ

b` +

d∑
j=1

σ(xj + b`)

 .

Therefore with this choice of non-linearity σ and (data-independent) constants b`, some function Φ`
fits at least 3n

4 of the n data points with high probability, and the functions Φa are parametrized in a
1-Lipschitz way by a single real number a ≤ 22d .

Remark A.1. The representation (A.1) is a three-layer neural network because the σ(a − `) terms
are just matrix entries for the final layer.
Remark A.2. The construction above can be made more efficient, using only O(n · 2n) uniformly
random functions g` : {−1, 1}d → {−1, 1} instead of all 22` . Indeed by the coupon collector
problem, this results in all functions from {γ(xi) : i ∈ [n]} → {−1, 1} being expressable as the
restriction of some g`, with high probability.

14

