
A Background293

In this section, we describe Generative Flow Networks in detail (Section A.2), and we perform a294

survey of related work that tackles the catalyst discovery problem (Section A.3).295

A.1 Catalysts for hydrogen energy storage296

Hydrogen Energy Storage (HES) is a scalable, sustainable option for storing excess energy for297

later use. Although HES has a relatively low efficiency compared to alternatives such as pumped298

storage hydroelectricity and battery storage [42, 31, 6], it is more scalable and transportable than299

the alternatives. HES via water electrolysis (water-splitting) can be thought of as two half-cell300

reactions: the hydrogen evolution reaction and the oxygen evolution reaction. Both HER and OER301

are electrochemical reactions which occur in the catalyzer at different electrodes. While HER is a one-302

step reaction, OER consists of four intermediate reactions which, under an applied voltage, produces303

oxygen gas, protons and electrons under acidic conditions. HER, in this setting, brings electrons and304

protons together to produce hydrogen gas. As the energy is used for water electrolysis, the hydrogen305

gas can be collected and stored in tanks, or other storage containers. When the energy is in demand306

again, fuel cells can extract the energy from the stored hydrogen at about 60% efficiency [14]. An307

efficient catalyst, used in the fuel cell or in the electrocatalyzer, can significantly speed up the reaction308

rate and improve the efficiency of the process [42].309

A.2 Generative Flow Networks310

A generative flow network (GFlowNets, GFN) is an inference method introduced by [4] that allows311

one to sequentially construct objects with probability proportional to a non-negative reward function.312

They have been employed in tasks such as molecule generation, crystal generation, and for causal313

discovery [22, 1, 3]. A desirable capability of GFlowNets is their ability to generate a diversity of314

objects that all have high reward (relative to other possible candidates in the space). Within catalyst315

discovery, this is key, as the reward function may not capture all the relevant predictors of whether a316

material will be a good catalyst. For example, the reward function may capture a target adsorption317

energy for the catalyst, but not its stability, which is an important trait (high stability) if the catalyst is318

to be used in real-world applications. After generating a variety of high-reward catalyst materials, one319

or more of these materials may also be found to be stable during experimental testing. Furthermore,320

GFlowNets perform particularly well in cases where the search space is quite large, and outperform321

methods such as MCMC and reinforcement learning in terms of mode mixing [5].322

A key component of GFlownets is the proxy model, which is how the GFlowNet obtains information323

on the reward landscape, and hence what “desirable”, high-reward samples are. Proxy models in324

our context are predictive models (possibly machine learning models) that allow one to evaluate the325

reward of a particular sampled object. In the case of molecule or crystal discovery, it may be that326

the sampled molecule or crystal does not exist in any database, and as such, relevant properties of327

the crystal must be computed in real time instead. Here, we note that for certain properties such328

as the formation energy of a crystal, physics simulations such as density functional theory (DFT)329

are traditionally performed. These simulations are computationally expensive and not scalable to330

high batch sizes. Hence, a machine learning model that is able to replace the physics simulation331

and compute the properties of interest is valuable; for crystals, there are many works that develop332

machine learning-based approaches to compute properties such as formation energy and adsorption333

energy [35, 36, 13, 9].334

Crystal GFlowNet is a GFlowNet designed to discover new materials by sequentially sampling crystal335

structures [1]. This work uses the GFlowNet paradigm to construct and sample crystal structures that336

have a high reward. The authors test the method on a reward based upon formation energy, where a337

high reward corresponds to a low formation energy, and a low reward corresponds to a high formation338

energy. This allows the framework to be used to sample thermodynamically stable materials with339

desirable properties. As mentioned earlier, the reward function may use any measurable (or predicted,340

via a proxy model) characteristic of the material. Sequential crystal construction proceeds in three341

steps. First, the space group (symmetry operations) of the crystal are selected. Then, the composition342

(elements and their ratios), and finally, the lattice parameters, which determine the shape of the final343

lattice. Atom positions are not sampled by the model.344
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A.3 Machine learning for catalyst discovery345

Since traditional catalyst design methods are time-consuming and involve trial and error experiments346

within a very large search space [18], scientists are turning to machine learning approaches to347

more efficiently explore the space of good catalysts. Recent work has leveraged both predictive348

models (which evaluate the performance of catalysts based on their measurable attributes) and349

generative models (which aim to construct catalyst representations with desirable properties) for350

catalyst discovery.351

One major thread of predictive machine learning for catalyst design are predictive models to replace352

density functional theory (DFT) calculations of adsorption energies. The Open Catalyst Dataset353

2020 [8] and 2022 [37] are datasets of 1.2 million and 62 thousand relaxations respectively. The354

datasets span a wide variety of materials, surfaces and adsorbates, with the inclusion of oxides355

in OC22. Machine learning models such as FAENet, Schnet, PaiNN, and Graphormer [13] are356

neural networks (e.g. graph neural networks, transformers) that can be trained to perform the OC20357

Initial Structure to Relaxed Energy (IS2RE) task, which involves predicting the relaxed energy of358

an adsorbate-catalyst system from their initial atomic positions. Machine learning models have359

also been used to predict formation energies, perform relaxations, predict forces [9]. Predictive360

machine learning models have also been used to predict the thermodynamic stability of catalysts [44].361

All of these predictive models have the potential to be included as proxy models within generative362

approaches.363

Recent generative approaches to catalyst discovery include reinforcement learning [23], large lan-364

guage models [24], variational autoencoders [34], and generative adversarial networks (GANs,365

citation) which aim to generate catalysts de novo, by meeting criteria such as target adsorption366

energies and encoding this in the reward or loss. AdsorbRL [23] employs Deep Q-learning to find367

compositions of catalysts that have either minimal or maximal adsorption energy. They only model368

composition, omitting space groups, crystal symmetries, surface selection, and atom positions. [34]369

addresses the problem by employing a VAE to generate catalysts by sampling from the latent space,370

but we note that reliance on the latent space makes controllable generation and systematic exploration371

of possible catalysts difficult. [20] takes the approach of GANs to generate catalysts for the ammonia372

formation reaction, but does not take catalyst stability into account during generation. LLM-based373

tools such as [24, 30] have so far been mainly applied to help screen known catalysts and perform a374

literature search.375
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B Effect of relaxation on lattice parameters376

After the GFlowNet generates samples, we relax them using M3GNet PES [9], as detailed in377

Section 2.1. Figure 3 demonstrates the change in lattice parameters of the cubic platinum lattice378

before and after relaxation. We note that the lattice parameters relax to the minimum of the total379

energy of the system.380

Figure 3: For the HER case study, the platinum samples generated by the GFlownet relax to the
minimum energy every time. The green line represents the total energy of the system.

Table 1 details the search space for the Hydrogen evolution reaction case study (Section 2.2). We381

note that in general, the Catalyst GFlowNet’s constraints and search space can be set to be much382

larger than that used in the HER case study. In future work, we will consider a larger search space up383

to 80-100 atoms, more elements and space group options, while enforcing a neutral charge constraint.384

Table 1: Hydrogen evolution reaction catalyst search space.

Setting Value Units

Possible elements Pt, Ag, Au, Pd, Ir, Ni, W, Co, Cu, Mo, Rh, Nb
Min. # of different elements in unit cell 1
Max. # of different elements in unit cell 1
Min. atoms in unit cell 2
Max. atoms in unit cell 4
Min. atoms per element 2
Max. atoms per element 4
Enforce neural charge? No
Possible space groups 225, 229
Min. lattice parameter length 2 Angstroms
Max. lattice parameter length 6 Angstroms
Min. angle between lattice vectors 60 Degrees
Max. angle between lattice vectors 140 Degrees
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C Table of hydrogen evolution reaction samples385

Table 2: Proportions of sampled structures for the case study: hydrogen evolution reaction.

Overpotential (eV) Samples

Composition Space
Group

Experimental2 DFT Proxy
Model

Count Percentage

Pt 225 0.016 0.03 0.04 185 43.53
Rh 225 0.071∗ 0.06 0.03 144 33.88
Pd 229 0.036∗ 0.09∗ 0.12 54 12.71
Co 225 0.224∗ 0.25 0.16 24 5.65
Ir 225 0.015 0.08 0.14 10 2.35
Mo 229 0.394∗ 0.53 0.21 5 1.18
Cu 225 0.445 0.27 0.39 3 0.71
W 229 0.318∗ 0.59 0.30 0 0.00
Nb 229 0.488∗ 0.56 0.35 0 0.00
Ni 229 0.268 0.23 0.32 0 0.00
Au 225 0.337 0.63 0.51 0 0.00
Ag 225 0.403 0.58 0.62 0 0.00

Sum 425 100.00

Figure 4: A linear fit that maps log of exchange current density to experimental overpotential using
data from [38] and [11]. These values are used column 3 (from the left) of Table 2.

2When available, the experimental overpotential was added from [11]. For the remaining elements, marked
with an asterisk, the overpotentials were inferred using a linear fit between the log of experimental exchange
current density (from [38]) and the available experimental overpotentials (from [11]). Figure 4 shows the linear
fit and predictions.
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