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A Background

In this section, we describe Generative Flow Networks in detail (Section @]), and we perform a
survey of related work that tackles the catalyst discovery problem (Section [A.3).

A.1 Catalysts for hydrogen energy storage

Hydrogen Energy Storage (HES) is a scalable, sustainable option for storing excess energy for
later use. Although HES has a relatively low efficiency compared to alternatives such as pumped
storage hydroelectricity and battery storage [42} 131} 6], it is more scalable and transportable than
the alternatives. HES via water electrolysis (water-splitting) can be thought of as two half-cell
reactions: the hydrogen evolution reaction and the oxygen evolution reaction. Both HER and OER
are electrochemical reactions which occur in the catalyzer at different electrodes. While HER is a one-
step reaction, OER consists of four intermediate reactions which, under an applied voltage, produces
oxygen gas, protons and electrons under acidic conditions. HER, in this setting, brings electrons and
protons together to produce hydrogen gas. As the energy is used for water electrolysis, the hydrogen
gas can be collected and stored in tanks, or other storage containers. When the energy is in demand
again, fuel cells can extract the energy from the stored hydrogen at about 60% efficiency [[14]. An
efficient catalyst, used in the fuel cell or in the electrocatalyzer, can significantly speed up the reaction
rate and improve the efficiency of the process [42].

A.2 Generative Flow Networks

A generative flow network (GFlowNets, GFN) is an inference method introduced by [4] that allows
one to sequentially construct objects with probability proportional to a non-negative reward function.
They have been employed in tasks such as molecule generation, crystal generation, and for causal
discovery [22} 1, 13]]. A desirable capability of GFlowNets is their ability to generate a diversity of
objects that all have high reward (relative to other possible candidates in the space). Within catalyst
discovery, this is key, as the reward function may not capture all the relevant predictors of whether a
material will be a good catalyst. For example, the reward function may capture a target adsorption
energy for the catalyst, but not its stability, which is an important trait (high stability) if the catalyst is
to be used in real-world applications. After generating a variety of high-reward catalyst materials, one
or more of these materials may also be found to be stable during experimental testing. Furthermore,
GFlowNets perform particularly well in cases where the search space is quite large, and outperform
methods such as MCMC and reinforcement learning in terms of mode mixing [J5]].

A key component of GFlownets is the proxy model, which is how the GFlowNet obtains information
on the reward landscape, and hence what “desirable”, high-reward samples are. Proxy models in
our context are predictive models (possibly machine learning models) that allow one to evaluate the
reward of a particular sampled object. In the case of molecule or crystal discovery, it may be that
the sampled molecule or crystal does not exist in any database, and as such, relevant properties of
the crystal must be computed in real time instead. Here, we note that for certain properties such
as the formation energy of a crystal, physics simulations such as density functional theory (DFT)
are traditionally performed. These simulations are computationally expensive and not scalable to
high batch sizes. Hence, a machine learning model that is able to replace the physics simulation
and compute the properties of interest is valuable; for crystals, there are many works that develop
machine learning-based approaches to compute properties such as formation energy and adsorption
energy [35136, (13, 9].

Crystal GFlowNet is a GFlowNet designed to discover new materials by sequentially sampling crystal
structures [1]]. This work uses the GFlowNet paradigm to construct and sample crystal structures that
have a high reward. The authors test the method on a reward based upon formation energy, where a
high reward corresponds to a low formation energy, and a low reward corresponds to a high formation
energy. This allows the framework to be used to sample thermodynamically stable materials with
desirable properties. As mentioned earlier, the reward function may use any measurable (or predicted,
via a proxy model) characteristic of the material. Sequential crystal construction proceeds in three
steps. First, the space group (symmetry operations) of the crystal are selected. Then, the composition
(elements and their ratios), and finally, the lattice parameters, which determine the shape of the final
lattice. Atom positions are not sampled by the model.
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A.3 Machine learning for catalyst discovery

Since traditional catalyst design methods are time-consuming and involve trial and error experiments
within a very large search space [18]], scientists are turning to machine learning approaches to
more efficiently explore the space of good catalysts. Recent work has leveraged both predictive
models (which evaluate the performance of catalysts based on their measurable attributes) and
generative models (which aim to construct catalyst representations with desirable properties) for
catalyst discovery.

One major thread of predictive machine learning for catalyst design are predictive models to replace
density functional theory (DFT) calculations of adsorption energies. The Open Catalyst Dataset
2020 [8]] and 2022 [37]] are datasets of 1.2 million and 62 thousand relaxations respectively. The
datasets span a wide variety of materials, surfaces and adsorbates, with the inclusion of oxides
in OC22. Machine learning models such as FAENet, Schnet, PaiNN, and Graphormer [13]] are
neural networks (e.g. graph neural networks, transformers) that can be trained to perform the OC20
Initial Structure to Relaxed Energy (IS2RE) task, which involves predicting the relaxed energy of
an adsorbate-catalyst system from their initial atomic positions. Machine learning models have
also been used to predict formation energies, perform relaxations, predict forces [9]. Predictive
machine learning models have also been used to predict the thermodynamic stability of catalysts [44].
All of these predictive models have the potential to be included as proxy models within generative
approaches.

Recent generative approaches to catalyst discovery include reinforcement learning [23]], large lan-
guage models [24], variational autoencoders [34], and generative adversarial networks (GANS,
citation) which aim to generate catalysts de novo, by meeting criteria such as target adsorption
energies and encoding this in the reward or loss. AdsorbRL [23]] employs Deep Q-learning to find
compositions of catalysts that have either minimal or maximal adsorption energy. They only model
composition, omitting space groups, crystal symmetries, surface selection, and atom positions. [34]]
addresses the problem by employing a VAE to generate catalysts by sampling from the latent space,
but we note that reliance on the latent space makes controllable generation and systematic exploration
of possible catalysts difficult. [20] takes the approach of GANs to generate catalysts for the ammonia
formation reaction, but does not take catalyst stability into account during generation. LLM-based
tools such as [24}130] have so far been mainly applied to help screen known catalysts and perform a
literature search.
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B Effect of relaxation on lattice parameters

After the GFlowNet generates samples, we relax them using M3GNet PES [9], as detailed in
Section [2.1] Figure [3]demonstrates the change in lattice parameters of the cubic platinum lattice
before and after relaxation. We note that the lattice parameters relax to the minimum of the total
energy of the system.

GFN-generated Pt vs Relaxed Pt
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Figure 3: For the HER case study, the platinum samples generated by the GFlownet relax to the
minimum energy every time. The green line represents the total energy of the system.

Table [T] details the search space for the Hydrogen evolution reaction case study (Section2.2)). We
note that in general, the Catalyst GFlowNet’s constraints and search space can be set to be much
larger than that used in the HER case study. In future work, we will consider a larger search space up
to 80-100 atoms, more elements and space group options, while enforcing a neutral charge constraint.

Table 1: Hydrogen evolution reaction catalyst search space.

Setting Value  Units
Possible elements Pt, Ag, Au, Pd, Ir, Ni, W, Co, Cu, Mo, Rh, Nb

Min. # of different elements in unit cell 1

Max. # of different elements in unit cell 1

Min. atoms in unit cell 2

Max. atoms in unit cell 4

Min. atoms per element 2

Max. atoms per element 4

Enforce neural charge? No

Possible space groups 225,229

Min. lattice parameter length 2 Angstroms
Max. lattice parameter length 6  Angstroms
Min. angle between lattice vectors 60 Degrees
Max. angle between lattice vectors 140  Degrees
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Table 2: Proportions of sampled structures for the case study: hydrogen evolution reaction.

Overpotential (eV) Samples
Composition Space  Experimenta DFT Proxy Count Percentage
Group Model
Pt 225 0.016  0.03 0.04 185 43.53
Rh 225 0.071*  0.06 0.03 144 33.88
Pd 229 0.036*  0.09* 0.12 54 12.71
Co 225 0.224*  0.25 0.16 24 5.65
Ir 225 0.015  0.08 0.14 10 2.35
Mo 229 0.394*  0.53 0.21 5 1.18
Cu 225 0.445  0.27 0.39 3 0.71
w 229 0.318*  0.59 0.30 0 0.00
Nb 229 0.488* 0.56 0.35 0 0.00
Ni 229 0.268  0.23 0.32 0 0.00
Au 225 0.337  0.63 0.51 0 0.00
Ag 225 0.403  0.58 0.62 0 0.00
Sum 425 100.00
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Figure 4: A linear fit that maps log of exchange current density to experimental overpotential using
data from [38] and [T1]]. These values are used column 3 (from the left) of Table 2]

>When available, the experimental overpotential was added from [L1]. For the remaining elements, marked
with an asterisk, the overpotentials were inferred using a linear fit between the log of experimental exchange
current density (from [38]]) and the available experimental overpotentials (from [11]). Figure[z_f]shows the linear
fit and predictions.

11



