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In this supplement file, we first present the proofs of our results in Sections [A{H| Next, in
Section [I, we provide details about estimating (0,11, P) in Example 1 of Sect and in
Section [J| we discuss how to numerically check Problem (|1)) is solvable for a given (K, m).
We also present two algorithms (as mentioned in Section [2.2). Last, in Section [K| we present
the numerical results for the three cases (i.e., (K, m) = (11,7),(15,9),(19,11)) where we find
that the Problem [1]is solvable using the optimization approach in Section [3| (see also Table
[1). Section [[] explains the connection between the NMF problem (2) and social network
modeling.

A  PRELIMINARY

The following definitions appeared the main file, but for their importance, we restate them.
We also present some frequently used lemmas.

Definition A.1 Fiz K > 3. Let cxo € RE be the vector \/1/K(1,1,...,1), and when

K is even, let sk o € RE be the vector \/2/K(1,—1,1,—1,...,1,—1)". Moreover, for any
K>3 and1<j<(K-—2)/2, let

2 2.2 3.2jr (K —1)-2jm/
CK,; = \/2/K(1,cos(7),cos( e ), cos( % ),...,COS(T) ,
27 229 3-2j K—-1)-2j
Sk, = \/Q/K(O,sin(%),sin( Kjﬂ),sin( KJW)7 .. ,sin(%)/.
For any K > 2, let ' = [ck,0,CK,1,5K,15- -+, CK,(K—1)/2> SK,(K—1)/2) Wwhen K is odd and
F = [ck,0,8K,0,CK,1, SK,15 - - - CK,(K—2) /2, SK,(K—2)/2) When K is even. It is seen that
Fis a K x K orthogonal matrix (A.1)

Definition A.2 Fiz K > 2. For any 1 < j < K/2, let hg ; € RE be the vector where the
(25 — 1)-th row is 1/v/2, the 2j-th row is —1/v/2, and all other rows are 0.

Consider the matrix
H=[hg1,hia ... higm] €RE™
Note that for any K > 2 and m < K/2, each column of H has a unit-¢2-norm, and
all columns of H are orthogonal to each other. (A.2)

Also, by direct calculations,

m D,
HH' =) il ; = ’

J=1 Dgyo

where
1 -1
D1:...:Dm:[1 1}, Dyyy1=...Dgyo =0.
Therefore, for any K > 2 and m < K/2,
I — HH' is non-negative (recall that H € R%:m). (A.3)
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Especially, when K is even and m = K/2,

Ix — HH' is a traceless non-negative matrix. (A4)

The following lemmas are frequently used in this supplement and are proved below.

Lemma A.1 Suppose QJk m@' is a non-negative matriz for some K x K orthogonal matriz

Q.
o If the first column of Q is sk o, then the matriz QJx Q' is doubly stochastic.

o [f the matriz is doubly stochastic and ar ., > 0, then the first coumn of Q) is £ck .

Remark (Why we can always assume the first column of Q) is cx0). Suppose there is a
K x K orthogonal matrix @ such that QJk @’ is doubly stochastic. We have two cases:

ar,m >0 and ak,, = 0. In the first case, by Lemma the first column of @ is £ck g, so
we can always assume that it is cx o, without loss of generality. In the second case,
Jrm = diag(1,...,1,—1,...,—1).

Therefore, if we partition

Q=1[Q1,Q2], Q1 eRHET Qe RF™,
then
M = QJrmQ = Q:1Q] — Q205,
and each column of @); is an eigenvctor of M corresponding to the eigenvalue of 1. Since M

is doubly stochastic, ck o is also an eigenvector of M where the corresponding eigenvalue is
1. By basic algebra, there is a (K —m) x (K —m) rotation matrix U such that

¢k 0 is the first column of the matrix @1 =: Q.U € RE-E—m,
Let C~2 = [@1, Q2]. Tt is seen that @ is a K x K orthogonal matrix and
QJkmQ' = QJkmQ".

Therefore, in this case, without loss of generality, we can always assume that the first column
of Ql is CK,0-

Lemma A.2 Fiz integers (K, N) such that 1 < N < K — 1 and consider a matrizc M =
allxg — 2HH' for a scalar a > 0 and matric H € RSN, If H'H = Ix and all diagonal
entries of HH' are equal to a/2, then M is a traceless non-negative matriz.

A.1 PRrRoOOF oF LEMMA [AT]

Consider the first claim. Note that when () is orthogonal and the first column is sk,
QIkmQ 1k = (1+arm)sk 05k ol = [(1+axm)/K]1x. This proves the claim. Consider
the second claim. Denote for short M = QJk Q" and write Q = [q1, ¢z, - .., qx]. It is seen
that one eigenvalue of M is (1 + ak,,) (which is the Perron eigenvalue Horn & Johnson
(2013)), (K —m — 1) eigenvalues of M are 1, and m eigenvalues of M are —1. Especially,
the Perron eigenvalue is larger than 1, with a multiplicity of 1. Therefore, the corresponding
eigen-space is one-dimensional. Note also the Perron eigenvalue equals to the spectral norm
of M, denoted by p(M).

Now, first, it is seen that
p(M) =14 agm and Mg =1+agm)q = p(M)q.

Second, by Perron’s theorem (Horn & Johnson, 2013, Page 503), there is nonzero and
non-negative eigenvector £ such that

Mg = p(M)§ = p(M)E, (A.5)
Last, since M is doubly stochastic, there is a number a > 0 such that

1 =alg, and so Mecg o = ack -
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Combining these,

f/MCK’O = p(M)g/CKp = af’l. (A6)
Since &'cx o > 0, we must have a = p(M), and so
Mecg,o = p(M)ck . (A7)

Combining (A.5))-(A.7) and recalling that the eigenspace of corresponding to p(M) is one-
dimensional,

q1 = *ck .
This proves the claim and completes the proof of Lemma [AT]

A.2 PROOF OF LEMMA

It is seen that all diagonal entries of M are 0. Moreover, since all diagonal entries of HH'
are a, an off-diagonal entry will not exceed a, by Cauchy-Schwartz inequality. Therefore, all
off-diagonal entries of M are non-negative. This proves Lemma [A2]

B PROOF OF THEOREMS 214l
In this section, we prove Theorem [2] Theorem [3] and Theorem [

B.1 PROOF OF THEOREM [2]

When K > 5 and m = K —2, m > K/2 and Jg ., = diag(1+ ag,m, 1, —1,...,—1). Also, by
definition,
l+agm=02m-K)+1=K—-3>1.

Suppose that there is a K x K orthogonal matrix () such that
M = QJrmQ’
is doubly stochastic. Write
Q = [(]17(]2w .. »(IK]
By Lemma [AT] ¢ = +ck 0. Without loss of generality, we assume
q1 = CK,0-

Now, write
QJkmQ = Qdiag(K —3,1,—1,...,—-1)Q" = (K — 2)q1¢} + 2¢2¢5 — Ix.

It is seen that trace(M) = trace(QJx m Q') = trace(Jk m) = 0. Since M is non-negative, all
diagonal entries of M are 0. By direct calculations, this implies that all entries of ¢o are
+1/VK. Suppose N entries of g3 are —1/v/K and (K — N) entries are 1/v/ K. Recall that
g1 = ck,0 and all entries of ¢; are 1/\/[? When K is odd, we can not have

¢1q92 = (1/K)(K — 2N)
When K is odd, the RHS is nonzero, and so a contradiction. The contradiction proves the

claim.

B.2 PROOF OF THEOREM [3]

The theorem contains (a)-(c). Note that for any (K, m) with K <4and 1 <m < K — 1,
we either have (1) m < K/2 or (2) m > K/2 and m = K — 1. The claim for Case (1) is a
direct result of Theorem Therefore, once (a)-(b) are proved, then (c) follows from For this
reason, we only prove (a)-(b).

Consider (a). In this case, m = (K — 1) and m > 1 (and so K > 2). By definition,
agm =2m—K =K —2>0. (B.8)
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Let
Q = [CK,Oa Q0]7

where Qg is any K x (K — 1) matrix satisfying Q{Qo = Ix—1. By direct calculations,
QJK,mQ/ = leag(Q + CLK,m, 07 ey O)Q/ — IK = [(2 =+ CLKJn)/K}]_l/ — IK

Combining this with (B.8)),
QJK mQ/ =11 - Ik,

which is a traceless non-negative matrix. Since the first column of @) is sk o, by Lemma @,
QJkmQ is doubly stochastic. This proves the claim.

Consider (b). Note that in this case, K is even. The case K = 2 is trivial, so we assume
K > 4. By definition,
agm=2m—-—K=K—-42>0.

Similarly, let
Q = [ck,0, 5K,0, Qo]
where Qg is any K x (K — 2) matrix satisfying Q(Qo = Ik —2. Similarly, in this case,
QJK’mQI = (CLK’m + 2)CK,(]C/K70 + QSK’()SKQO — I = ((K — 2)/K)11l + QSK’OSIK’O — Igk.

By definitions, it is seen that (a) all diagonal entries of the matrix QJg ., Q' are (K —2)/K)+
(2/K)—1 =0, and (b) all off-diagonal entries > ((K —2)/K) —2/K = (K —4)/K > 0.
Therefore, the matrix is non-negative. Since the first column of @) is ck , the matrix is
doubly stochastic by Lemma A1l This proves the claim and completes the proof of Theorem

Bl

B.3 PROOF OF THEOREM [4]

In this case, (K,m) = (7,4), m > K/2,2m — K =1, and Jk ,, = diag(2,1,1,-1,...,—1).
The goal is to show Problem [1] is not solvable in this case.

If Problem is solvable in this case, then there is a 7 x 7 orthogonal matrix ¢ such that
Q = [CK,Oa Qla G]

such that

QJk,m = (3/T)1717 +2Q:1Q7 — I7
is non-negative. Since Jg ., is traceless, QJk Q' is a traceless non-negative matrix. There-
fore,

e all diagonal entries of Q1Q) are 2/7,
e all off-diagonal entries of Q1@ are no smaller than —3/14.
For 1 <i <7, let row i of Q1 be
(cos(6;),sin(6;)), 0<6, <6, <...<6;<2m.

Since @ is an orthogonal matrix, by elementary algebra and triogometrics, we must have

For each 6;, there are two neighbors, 6;_1 and 6,11 (the neighbors of 6; are 65 and 6;).
Define the maximal neighboring distance for point ¢ by

di = max{|0i — 91‘_1‘, ‘91 — 9¢+1|}, (Bg)
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Note that if (R1)-(R5) hold for {61, 6s,...,07}, then they also hold for

{61 + A0, +A,...,0, + A} (which is a rotation on the circle). (B.10)
We call this symmetry in rotation. Therefore, without loss of generality, we assume
dqy = min {di}, 0 = 0, 01 <0y <03<...<6;<2m. (B.ll)
1<i<7

We now show
either that 21'721 cos(f;) = 0, or that 21'721 cos(0;) = 0 but Y., sin(6;) # 0. (B.12)
Once this is proved, some of (R1)-(R5) are not satisfied. The contradiction proves the claim.

We now show (B.12). Let a = cos™1(3/4) ~ 41.4° and 8 = (1 — a)/2 ~ 69.3°. By (R5) and
that 6; — 0,
cos(f;) > —3/4,

so all 1,0, ...,607 belongs to the region
Q={0<b<7m—a}U{r+a<0<2r}

We now divides © into 4 regions, (I)-(V) as follows.

(1). {0 <6 < B}.
(IN). { <0 <7m—a}l

(II). {m + a < 6 < 27 — 3}.
(IV). {2 — 8 < 0 < 27}.

Suppose there are m different 6; are 0. It follows that when m > 3,

7
> cos(8;) > m — (3/4)(7 —m) >0,
=1

with equality only when m = 3 and all remaining 4 other 6; satisfying cos(6;) = —3/4. In
such a special case, Z?:1 cos?(0;) # 21'721 sin?(6;), so (R3) is violated. Therefore, the result
follows when m > 3. If m = 2, then we treat #; = 05 = 0. For this reason, we can assume

no more than 6, are 0 and when there are two 6; are 0, 6; = 62 = 0. (B.13)

If (R1)-(R5) hold, then
At least one points in {0, ..., 607} fall in (II) and at least one of them fall in (III). (B.14)

To show this, without loss of generality, assume (/1) does not contains any of the 6 points.
Therefore, up to a rotation on the circle and relabeling of the 7 points, we have

0=0,<6,<...<0; <7+ (B —a)~208°,
where the RHS is smaller than 7 + « &~ 221.4°. By (R5), for any i < j,
cos(0; —6;) < —3/4,
so we either have
0<6; -0, <m—aq, or T+a<0; —0; <2m.
Combining these, we must have
06, <0, <...<0;<m—qu

By (B.10), (R1)-(R5) holds for such {61,0s,...,67}, but this contradicts with (R2) as all
sin(6;) > 0. This proves (B.14).

Moreover, by (B.9)-(B.11)),
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o If Region (I) does not contain any of the 6 points {62, ..., 07} and Region (IV) does
not contains any of these point either, then Region (II) has at most two points.
Otherwise, if Region (II) has three or more points, then we can find one among

them (say, 7) such that d; < dj, where d; is maximum neighboring distance defined

in . Similarly, Region (III) has at most two points. However, these say Region

(I)-(IV) contain at most 4 points of {s,...,07}, and so a contradiction. Therefore,

the total points in Region (I) and Region (IV) is nonzero.

e Suppose Region (I) contains no point of {fs,...,607} and Region (IV) contains
exactly one of them. In this case, Region II contains no more than two points of
them, so Region (IV) has at least three points of them. This again contradicts with
—, by similar reasons as above. Suppose Region (I) has none of these 6
points and Region (IV) contains two or more of them. This again contradicts with
—, for one point in Region (IV) may have a smaller maximum neighboring
distance then 6.

Combining the above as well as (B.12]), in each of the four regions, (I)-(IV),

we have at least one point {f5,...,607}, but no more than two of them. (B.15)

We now study

7
>_cos(th) =1+ (4) +(B),

where
(A) = Z cos(0;) + Z 0,
{i:0:€(IV)} {i:0;€(ID)}
and
(B) = Z cos(6;) + Z 0;.
{i:0:€(IV)} {i:0:€(I1D)}

We now analyze (A) first. Suppose (IV) contains s points of {fs, ..., 607} and (II) contains ¢
of them. By the above arguments,
1<, <2,

Since for any 6;,6; in (II) or (IV),
0; —0;| <m+pf—a<2m—q

we must have
|9i_9j| S’IT—O[E2B.

It is seen for an z such that —3 < z < 0,
(A) > scos(x) + t cos(z + 28) = S(x).
Using cos(23) = —3/4 and sin(z) = \/7/4,
S(x) = (s — 3t/4) cos(x) — (V/Tt/4) sin(x), S'(x) = —(s — 3t/4) sin(z) — (V7t/4) cos(z).
We have three cases.

e (1). s=1,t = 2. In this case, (s — 3t/4) < 0. In this case, S(X) is monotonely
decreasing, with minimum (achieved at 4z = 0) of

s—3t/4=-1/2;
note that (IV) does not contain the point 0 or 27, so the minimum is not achievable.
e (2). s =t. In this case, s — 3t/4 > 0,
S'(z) = —(3/4)[sin(z) + V/7 cos(z)].
In this case, the minimum is no smaller than

s/4.
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e (3). s=2,t=1. In this case,
S(x) = (5/4) cos(z) — (V/7/4) sin(z), S'(z) = —(5/4) sin(z) — (V7/4) cos(z).
The minimum is achieved when S’(z) = 0, with the value of
1/4.

Therefore, the only case where (A) is negative is when
(s,t) =(1,2) that is, (IV) contains one point of {fa, ..., 607}, and (II) contains 2 of them.

Also, the minimum strictly larger than —1/2, achieved only when the point in (IV) is
(approaching) 0 and the two points in (II) are 7 — . Similarly, (B) can only be negative
when (I) contains one point of {6y, ..., 607}, and (III) contains 2 of them, where the minimum
is —1/2 achieved only when the point in (I) is 0 and the two points in (III) are 7 — «.
Combining these,

7
Z cos(f;) > 0.
i=1

This says (R1)-(R5) can not hold simultaneously. The contradiction proves the claim.

C PROOF OF THEOREMS [GH6]

In this section, we prove Theorem [5] and Theorem [6}

C.1 Proor oF THEOREM

The goal is to show when K > 2 and m < K/2 < K — 1, Problem [1]is solvable. The case of
K =2 is trivial, so we assume K > 3. Let

Qo = [ck,0,hK1,- - hicm] € RO

Note that since m < K/2 and K > 3, m+ 2 < K. It is seen that
Q6Qo = Imy1, where m +1 < K — 1.

Therefore, there is a matrix G € REK—(m+1) guch that the matrix

Q=[ck0,G,....hKk1, - him]

is a K x K orthogonal matrix. Since m < K/2, ak , = 0 by definition. Therefore, in this
case,

Jrgm=(1,...,1,=1,...,-1),
where m is the number of —1’s. It follows that

QIkmQ =2Ix — Z hi il .

j=1
By direct calculations,
- D, -
ZhK’j IKJ' - 0 )
j=1
L 0]
where
1 -1
pimmp=] 11

Therefore, QJk mQ' is a K x K symmetric non-negative matrix. Moreover, since the first
column of @) is ¢k o, so by Lemma QJkmQ is doubly stochastic. This proves the claim
and completes the proof of Theorem |3]
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C.2 PROOF OF THEOREM [6]

In this case, K is dyadic so there is an integer s > 1 so that K = 2°. Let Hy be the Haar
basis matrix. For example, when K = 4,

1 1 1 0
1 1 -1 0
Ho=1|1 1 o 1
1 -1 0 -1
and when K = 8,
r1 1 1 0 1 0 0 07
1 1 1 0 -1 0 0 0
1 1 -1 0 0 1 0 0
g_|1 1 -1 0 0 -1 0 0
°=f1 -1 0 1 0o 0 1 0
1 -1 0 1 0 0 -1 0
1 -1 0 -1 0 0 0 1
1 -1 0 -1 0 0 0 -1

In general, we can write

Hy = [h1,ha, ... hi]

We remove the first column and the last (K/2) columns of Hy, and partition the remaining
(K/2) — 1 columns into (s + 1) blocks as follows:

HS = [h27h37"'7hK] == [U07U17U27"'aUS—2}7

where U; are blocks of columns of H as follows:

e Block 0, Uy, contains 2° vector which is h;.
e Block 1, Uy, contains 2! vectors hs and hy.
e Block 2, Us, contains 22 vectors hs, ..., hs.
o The last block Us_; contains 2°~! vectors h(k/a)41,- -+ hicj2-

By basic number theory, for any number 1 < m < K, there is a unique way where we can
write

s—2
m—K/2=>Y a;2,  a;€{0,1}. (C.16)
j=0

We construct a matrix @1 as follows. We start with
H* = Uy, Us, ..., Us_s] € RECK/271,
Next, for 0 < j < s —1, remove block Uj if and only if a; = 0 in (C.16)). Denote the resultant
matrix by Q1. We have the following observations.
e (Q; has exactly Zj;é aj29 = m columns.

e For each block Uj, 0 < j < s — 2, either all columns of U; shows up in ¢, or none
of its columns shows up in @1 (no column shows up more than once).

e For each 0 < j < s—1, UjU; = Iy and all diagonal entries of U;U; are the same.
It follows that

Q1Q1 = I_k/2, and all diagonal entries of 1@} are the same. (C.17)
Next, let

Q2= [h(K/2)+1» h(r/2y425 -+ hx]
and

Qo = [Q1,Q2).
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It follows that

Therefore, there is a matrix G € RX=m~1 guch that
Q = [CK,Oa G7 Qla QZ}
is a K x K orthogonal matrix. Recall that Jx ,,, = diag(1+ax m,1,1,...,—1,...,—1) where

we have exactly m of —1’s. It follows that

QIkmQ" = (ag,m/K)11'+Q1Q1—Q2Q5—Q3Q% = (ax,m/K)11'+1x—2Q2Q5—Q3Q3 = (I)+(I1),
where
(I) = (ag.m/K)11" —2Q1Q1,
and
(IT) = Ix — 2Q2Q5.
Now, first, by ,

(II) is a traceless non-negative matrix.
Second, since m > K/2, ax,m = (2m — K), and
trace(QJx m@Q') = trace(Jg,m) = (2m —K+1)+ (K —m—1) —m = 0.

Combining these,
trace((I)) = 0.

By (C.17), all diagonal entries of 2Q1Q] are the same; denote the common value by a. It
follows that
0 = trace((1)) = ax,m — Ka,

and so a = ak /K. By Cauchy-Schwartz inequality, all off-diagonals of 2Q2QY% are no
greater than a. Therefore, all diagonal entries of (I) are no smaller than

(agm/K)—a>0,
and so (/) is non-negative.

Combining these, QJk Q' is non-negative. Since the first column of Q) os sk o, by Lemma
QJk mQ' is doubly stochastic. This proves the claim.

D PROOF OF LEMMA [7] AND THEOREMS Bl
In this section, we prove Lemma [7] and Theorems [8}[9]

D.1 PROOF OF LEMMA

We prove these for the case (a)-(d) separately. Consider (a). Let n = (K —m —1)/2. In this
case, n is an integer. Also, by (D.18), n > 1. Let

Qo = [CK,Ole]a where Q= [CK,laSK,la .- -,CK,mSK,n].

By (A.1), Q,Qo = Izpt1, where (2n + 1) = (K —m) < K. Therefore, there is a matrix
G € R™™ such that the matrix

G = [Qo, G| = [ck,0,Q1,G]

is a K x K orthogonal matrix. Moreover, by 7 each diagonal entry of Q1@ is
(2/K)n = (K —m - 1)/K,

SO holds, and the claim follows.

Consider (b). Let n = (K —m — 2)/2. Note that in the current case, K is even, n is an
integer and n > 0. Let

Qo = [ck,0, Q1] where Q1 =[5K,0,CK,1,SK1,--sCK.n,SK.n]-
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By (A.1), Q4Qo € I2p42. Since 2n+2 = K —m < K, there is a matrix G € R¥"™ such that

the matrix
Q = [ck,0,Q1,G]
is an orthogonal matrix. Moreover, by construction, all diagonal entries of Q1Q)] are
(1/K)+ (2n)/K = (2n+1)/K = (K —m —1)/K,
S0 holds. The claim follows by using Lemma

Consider case (c). This case is very similar to that of case (b) so we omit the proof.

Consider (d). Let K =2N +1 and n = (K —m —2)/2. Since (a) both K and K —m —1 are
odd, and (b) m # K — 2, we must have m < K — 4 and so n > 1. By the construction, it is
seen that all columns of Q1 are orthogonal to each other. Therefore, It is sufficient to show

e (dl) all columns of @) are orthogonal to the vector 1k,
e (d2) the f2-norm of each column of Q; are 1,
e (d3) the square ¢?-norm of each row of Qg is (2n +1)/K,

Consider (d1). By constructions and (A.1)), 1(x41)/2 is orthogonal to all columns of By,
and 1(x_1)/2 is orthogonal to all columns of By. Therefore, for any 2 < j <2n+1, 1k is
orthogonal to column j of QQg. At the same time, the sum of all entries of the first column of

QO is

co(K +1) — do(K — 1) = /(K2 — 1)/ 2K) — /(K? — 1)/ (2K) = 0,
so 1k is also orthogonal to the first column of Qg. This proves (d1).
Consider (d2). For the first column of Q, the square £>-norm is seen to be
K+1 K-1
(5 )+ (m5—)dg = (K = 1)/(2K) + (K + 1)/(2K) = 1.

For any 1 < j < n, by (A.1)), for either N = (K +1)/2 or N = (K —1)/2, the square /*>-norm
of ¢y j and sy ; are 1. Therefore, fixing 2 < j < 2n + 1 and considering column j of @, the
square £2-norm is

1 K+1 1 1 K-1 1

2, 2 _ 1 Sy = B
Crl st TR )
This proved (d2).

Consider (d3). Note that by the construction, the square ¢?-norm of each row of B is
2n/((K 4+ 1)/2) = 4n/(K + 1), and that for each row of By is 4n/(K — 1). Therefore, he
square £“-norm of the j-th row of Qg is

A+ A7, 1<j<(K+1)/2,
d3 + d* 21, (K+1)/2+1<j<K.
Now,
4 K—1 1 K+1 1 4 m+1
242 in ( ) 1 + Sl BV L nt ,
K+1 K(EK+1) K 2 m’ T K+1 K
and 4 K+1 1 K—-1 1 4 M+ 1
d2 & d? n _ 1 -1 1 n _ n .
e T T RE-D TR W) ko1 K

This verifies (d3) and completes the proof of Lemma

D.2 PROOF OF THEOREM [}l

The goal is to show Problem is solvable when m + 1 > 3K/4 and m # K — 2 when K
is odd. Since the case of K < 4 and the case of K = m — 1 are proved in Theorem [2| we
assume

(m+1) > 3K/4, K >5, and K # m — 2 when K is odd. (D.18)
Note that in the current case, m > K/2, so by definition,
agm = (2m— K).
The following lemma is proved below.

10
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Lemma D.1 Fiz (K, m) as in Theorem @ and consider a K x K orthogonal matriz Q) with
the form of

Q = [ck,0,Q1,Gl, where @ € RE-K—m=1 gnd G € RE™, (D.19)
If all diagonal entries of Q1Q} equal to (K —m —1)/K, then
QI m@Q’
s a non-negative doubly stochastic matrix.
Proof of Lemma g Recall that Jg,, = diag(l + ax,m,1,...,1,—1,...,—1) and
agm = (2m — K). It follows that

M = QJkmQ = (2+ ax m)ck,0Ck o +2Q1Q7 — Ik
First, it is seen that each diagonal entry of M is
2+ agm)/K+2(K-m—-1)/K—-1=1/K)[(2+2m - K)+2(K —m—1)]—1=0.

Second, since all diagonal entries of Q1Q} are (K —m—1)/K, by Cauchy-Schwartz inequality,
any off-diagonal entry of Q1 Q)

>—(K-m-1)/K.
Therefore, any off-diagonal entry of M is
> (24ag,m)/K—2(K—m—-1)/K = (1/K)[(24+2m—K)—-2(K—m—1)] = (1/K)[4(m+1)—3K],
and the claim follows by (m + 1) > (3K)/4.

We now prove Theorem [8] By Lemma [7] and the way @1 is constructed, all columns of the
matrix [cx o, @1] have unit £2-norm and are orthogonal to each other. Therefore, there is a
matrix G € R¥™ such that

Q = [ck,0,Q1,G]
is a K x K orthogonal matrix. Also, by Lemma [7}

all diagonal entries of @Q;Q} are (K —m —1)/K. (D.20)
By Cauchy-Schwartz inequailty,
all off-diagonal entries of 1@} are no smaller than —(K —m — 1)/K. (D.21)

Without loss of generality, assume K > 4. When (m + 1) > 3K/4, m > K/2 and so
agm = (2m — K). By @7

M =QJkmQ = 2+ar,m)crxock0+2Q1Q) — Ik = [(2m—K+2)/K|1x 1% +2Q1Q — I.
Combining this with (D.20)-(D.21)), first, all diagonal entries of M are
[(2m—-K+2)/K]+2(K—-m—-1)/K—-1=0,
and second, all off-diagonal entries of M are
>[2m—-K+2)/K|-2(K—-m—-1)/K = (4(m+1) — 3K)/K,
where the RHS is non-negative as (m + 1) > (3K/4). Therefore, M is doubly stochastic.
This proves Theorem

D.3 PROOF OF THEOREM

In this case, K is odd and m # (K —2). By Theorems and |8} Problem is solvable when
K <4, when m < K/2, and when (m + 1) > 3K/4 but m # K — 2. For these reasons, we
assume

max{ag,bg} K <m < (3K/4) — 1, m # (K —2), K >5. (D.22)
Especially, in this case, since max{ar,bx} > 1/2, so in this case,

m > K/2, and so by definition, ag,m =2m— K.

11
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Let n = (K —m —1)/2. It is seen n > 0. Since K is odd and m is even, n is an integer and
n > 1. Let

Qo = [ck,0, Q1] where Q1= [CK,1,5K 1, CKns SK,n]-
It is seen that Q)Qo = I2,+1, where (2n + 1) = K — m, so there is a matrix G € R¥™ such
that
Q = [CK,Oa Q17 G]

is a K x K orthogonal matrix. It follows
M = QJkmQ = (akm + 2)ck ok, +20Q1Q) — Ik.
By the construction, all diagonal entries of Q1@ are 2n/K, so all diagonal entries of M are
2+agm)/K+4n/K —1=(1/K)[2+2m - K)+2(K —m—1)]—-1=0.
At the same time, by basic trigonometrics and

cos(z) + ...+ cos(nz) = —(1/2) + sin((n +1/2)z)

2sin(z/2)
we have that for any ¢ < j,

o - 2m(i — 1)k on(j — k. . 2wk, . 2mjk
M(@,j) =2+ arxm)/ K+ (4/K) k:1[cos( e ) cos( e ) + sin( % ) sin( 7
- 2m(i — j)k)

=(1/K)|2m —-K+2)+4 cos(——————~=
(1/K)[( ) ; (—% )
sin((K —m)|i - jln/K)
=(2/K - K/2
(/) l(m = 1¢/2) + )
where for 1 <k < K —1,
sin((K — m)kn/K)
= - K/2
g = (m /2)+ sin(kw/K)
Note here 1 <|i—j|< K —1,and forall 1 <k (< K with k+ ¢ =K,
9k = ge-
Therefore, to show that M is non-negative, it is sufficient to show that when (D.22]) holds,
gi >0, forany 1 <k < (K —1)/2. (D.23)

We now show (D.23)). Recall that in our range of interest, K/2 < m < (3K/4) — 1. We have
the following observations.

o (a) Forall 1 <k < (K —1)/2, sin(kr/K) > 0.

e When 1 <k <2 0<(K—-m)k/K <1, sosin((K —m)kn/K) > 0. Therefore,
sin((K — m)kn/K)

ge = (m = K2+ == Gy ="
o (b) When k = 3, since sin(37 — z) = sin(z) for any z,
sin(3(K —m)r/K) sin(3mn /K)
e T S BT O
sin(3mm/K)

= K[(m/K)—1/2+ sin(3m/K) )

Consider the function z — 1/2 + sin(37z)/sin(37/K) in 1/2 < 2 < 3/4. It is seen
that the function strictly increasing in 1/2 < x < 3/4 and bx € (1/2,3/4) is the
unique solution of the equation 2 —1/2+sin(3wx)/sin(37/K) = 0. Therefore, g, > 0
when k£ = 3.

12
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o () When 4 <k < (K —1)/2, by m/K > agx = 1/2 + —4&

1 1
gn = (m = K/2) = oy 2 (M= K1) = g
/K
= Klm/K ~1/2= oo ms] 20

Combining these, M is non-negative. Since the first column of @ is cx o, M is doubly
stochastic by Lemma [A7T] This proves Theorem [J]

E  PROOF OF THEOREMS [10H1 1]
In this section, we prove Theorems [TOJII]

E.1 PRrROOF OF THEOREM

In this case, we assume 4 | K. By Theorem [3| Problem (1)) is solvable
when m < K/2 and when m > K — 2 (note that 4|K so it is even in this case).

Therefore, we assume

K/241<m<K-3. (E.24)
In this case, ag m = 2m — K > 0 and
Jkm =diag(l+2m—K,1,...,1,—-1,...,—1).

We consider two cases:

e Case 1. m is even.

e Case 2. m is odd.

Consider Case 1. Let
n=(m-—K/2)/2.

By (E29),
n > 1 and n is an integer.
Let
Qo = [cx 0, Q1, Q2] € RFE™HL
where

Q2= lhg1,hkz2, ... hi Kkl € REGK/2

and Q; € RXm=(K/2) ig the matrix where (a) the first two rows Q1 equal to each other, the

next two rows of (}1 equal to each other, and so on and so forth, and (b) row 1,3,..., K — 1
of @1 equal to row 1,2,..., K/2 of
M = (1/2) . [CK/271a5K/2,1a-~-7CK,n75K,n]~ (E25)

respectively. Here, note that 2n = m — K/2 < K /2, and that each diagonal entry of M M’ is
2
(1/2)K—/2n =2n/K =(m—- K/2)/K.

By (A.1))-(A.2)) and basic algebra,
® ck o is orthogonal to any columns of @)1 and any columns of Q5.
e () € R¥:27 and Q/lQl =2M'M = Is,.
o Q2 € REE/Z and Q4Q0 = Ik ).
e Fixing a column of ()7 and a column of (s, they are orthogonal to each other.

13
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Combining these,
Q0Qo = L1
Therefore, there is G € Rf:X~™~1 guch that the matrix
Q = [QO) G] = [CK,07CK,17 SK,la ey CK,’er SK,TL; hK,l) hK,Q; ey hK,K/27 G] (E26)
is a K x K orthogonal matrix.
Next, recall that
Jr.m = diag(l + ax m,1,...,1,—1,...,—1).
It follows that
QJIkmQ" = axmSk,05%,0 + Ik —2Q1Q — 2Q2Q5 = (I) + (I1), (E.27)
where
(I) = (ax,msK.05Kk0 — 2Q1Q7.
and
(IT) = Iy — 2Q2Q5%.

Consider (I). Note that by construction,

® K mSK05K,0 = (aKm/K)11.
o Q1Q1 = I(k/2—m) and every diagonal entry of Q1Q is 2n/K.

Recall that ax ,, = 2m — K and n = (m — K/2)/2. It follows that
agm/K =(2m—-K)/K, 2n/K =(m—-K/K)/K =(1/2)(2m — K)/K.
Applying Lemma with a = (2m — K)/K and H = Q1, it follows that
(I) is a non-negative matrix. (E.28)
At the same time, by ,
(IT) is a traceless non-negative matrix. (E.29)

Inserting (E.28)-(E.29) into (E.27), QJk Q' is a traceless non-negative matrix. Finally,
since the first column of @ is sk o, the matrix QJk ,,@" is doubly stochastic matrix by
Lemma [A] This proves Case 1.

Consider Case 2. In this case, m is odd and m > (K/2) + 1. Let

n=(m-K/2-1)/2.

It is seen n > 0. Let
Qo = [cK 0, Q1, Q2] € RF™HL

where Qy € RE%/2 is as the same as in Case 1, and
Q1 = [sx0,Q7) € RFOm=(K/2)

for a matrix Q} € R%:?"; note that 2n = m — (K/2) — 1. We construct Q7 in a way such
that (a) the first two rows equal to each other, the next two rows equal to each other, and so
on and so forth, and (b) row 1,3,..., K — 1 of Q7 equal to row 1,2,...,K/2 of

M = (1/2) ' [CK/Q,lvsK/Q,la"'aCK,nasK,n]~ (E30)
By similar arguments, it is seen that

Q/OQO = Im+17
so there is a matrix G € RF:K—m=1 g5 that
Q = [ck,0,G,Q1,Q2] (E.31)
is a K x K orthogonal matrix. Now, we similarly write
QJkmQ = Qdiag((1 + ax,m),1,...,1,—1,...,=1) = (I) + (1),
where
(I) = agmSK,05k,0 — 2Q1Q]-
and

(IT) = Ik — 2Q2Q%, which is non-negative; see (A.3).
By the construction,

14
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° aKﬁmsK,os’K,O = (ag m/K)1g1y, where ag /K = (2m — K)/K.

o Q\Q; = Iy with N =m — K/2.

e Every diagonal entry of MM’ is (1/2)(2n)/(K/2) = 2n/K, so every diagonal entry of
Q5Q2 is (2n+1)/K, where (2n+1)/K = [(m—K/2—-1)+1)]/K = (1/2)(2m—-K)/K.

Applying Lemma[A.2] with a = (2m — K)/K and H = @1, the matrix (I) is also non-negative.
Combining these gives the claim of Case 2 and completes the proof of Theorem

E.2 PRrOOF OoF THEOREM [11]

We now prove Theorem In this case, K is even but 4 t K, and m # (K/2) +1. By
Theorems [2| and Theorem [5, Problem is solvable when m < K/2 and m > K — 2.
Combining these, we only need to consider the case where

(K/2)+2<m<K —3. (E.32)

We consider two cases.

e Case 1. m is odd.
e Case 2. m is even. In this case, since K is even, it follows from (E.32) that m < K —4.

Consider Case 1. Let n = (m — (K/2))/2. Note that in our case, K/2 is odd, so (m — K/2)
is even. Since m > K/2, n > 1. Also, since m < K — 3, n < (K —6)/4, and 2n < (K/2) — 3.
Let
M= (1/\/5) [CK/2,17 SK/2,15-+-5CK/2,n> SK/z,n]-

Similarly as in the proof of Theorem we construct a matrix Q; € R¥:2? in a way such
that (a) the first two rows @1 equal to each other, the next two rows of @1 equal to each
other, and so on and so forth, and (b) row 1,3,..., K — 1 of @1 equal to row 1,2,..., K/2
of M, respectively. Also, similarly, we let

Q2 = [hK,17hK,27 .. '7hK,K/2]a

and
Qo = [ck0,Q1,Q2] € R™ T
It is seen Q)Qo = I,ny1. Since m + 1 < K, there is a matrix G € RE-E=m=1 guch that

Q = [ck,0,G,Q1, Q2]
is an orthogonal matrix. Similarly, we write
QJIkmQ" = arxmSk,05k,0 + Ik —2Q1Q — 2Q2Q5 = (I) + (I1), (E.33)
where
(1) = (GK,mSK,OS'K,o - 2@1@’1-
and

(IT) = Ix — 2Q2Q5, which is non-negative; see (A.3)).

Moreover, by similar argument as before,

o ax.mSk.05Kk0 = ((2m — K)/K)1x1} (by definition and that m > K/2),

e Q1Q = Iy with N =m — (K/2),

e For every row of Q1, the square ¢?>-norm is 2n/K, where (2n)/K = (m — K/2)/K =

(1/2)(2m — K)/K.

Applying Lemma[A.2|with a = (2m—K)/K and H = Q1, it follows that () is a non-negative
matrix. This proves the claim in Case 1.

Consider Case 2. In this case, m is even. By (E.32) and that K/2 is odd,
m— (K/2) > 3.
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Let
K =2N =4s+2, n=(m-—(K/2)—-1)/2, so n is an integer and n > 1.

Note that
N=2s+1 which is an odd number.

Since m < %, and m is even, we must have

3K-6 if (3K —2)/4 is odd
< ’ 7
m { SK%T—{ if (3K —2)/4 is even,
Since (3K — 2)/4 = 3s + 1, this is equivalent to
- 3s, if s is even,
M= 3s+1, if s is odd.
It follows
5—2, if s is even,
27”L§(WL—K/2_1)§{3_17 if s is odd,

Recall that N = 2s + 1. This is equivalent to

on < { (N =5)/2=[(N-1)/2] -2, if (N —1)/2is even,

(N-3)/2=[(N-1)/2] -1, i (N-1)/2is odd. (E.34)

Let
M = [qo,q1,G2; - - - Gan] € RYV2TL

where for 1 < j <mn,
_ Lni1y)2 | evt)y/2 | savt1)/2,
= [ “In-ne |0 BT ey |0 BT sy |
We partition M* as

1 B
M- (v+y/2 Bio|
’ [1<N—1>/2 By

Note that especially, by (A.1) and (E.34)),
BBy = ByBy = Iy,

For
[ N-a b [ N
TN NN 1 CTV NN 1)
and
1 N+1 1 1 N-1 1
eSS R
we let

al cB
My = (N+1)/2 ! M = (1/v2)M. E.
’ { —bl(n-1)2 dBy |’ and (1/v2) (E:35)

Next, we construct (since 2n+2+4+ K/2)=(m—-K/2-1)+2+ K/2=m+1)

Qo = [cK 0, Q1, Q2] € RF™HL

where Q2 is the same as in Case 1, and @ is constructed so that (a) the first two rows @
equal to each other, the next two rows of (Q; equal to each other, and so on and so forth,
and (b) row 1,3,..., K — 1 of Q1 equal to row 1,2,..., K/2 of M, respectively. Note that
since 1 has (2n + 1) columns with 2n 4+ 1 = (m — K/2), Qo has

1+ (m—-K/2)+ K/2=(m+1)
columns, so

QO _ RK’erl.
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By Lemmal[7]
len,0, Mo)'[en,0, Mo) = Iopo.
Combining this with our construction,

Q0Qo = Im+1.
Since in our range of interest, (m + 1) < K, so there is a matrix G € RE-X =71 50 that
Q = [CK,Oa Gv Qla QQ}

is a K x K orthogonal matrix. Note that

® agmSKySK,0 = (ar,m/K)1k1,
e For each row of Q1, the square ¢?>-norm is (2n + 1)/ K, where
2n+1)/K =(m—K/2)=(1/2)(2m — K).
Applying Lemma with a = (2m — K)/K and H = @1, the matrix
aKrmSKyS5K,0 — 2Q1Q]

is non-negative. The remaining part of the proof is very similar to that in Case 1 so is
omitted. This proves that QJk ,, Q' is doubly stochastic in Case 2.

F PROOF OF THEOREM [12

In this setting, we assume

ml/mgzKl/KQ, K1/2<7’H1§K171, K2/2<TIL2§K271.

Given
_ | A puing _

A= [ pon, Ay , where p = \/(2m; — K1)(2ma — Ka), (F.36)
where A; € RE1E1 is a traceless doubly stochastic matrix with spectrum o(A;) = {(2m; —
Ki+1,1,...,1,—1,...,—1} (where exactly m; of them are —1), Ay € R¥2:%2 ig traceless
doubly stochastic matrix with spectrum o(As) = {(2mas—Ko+1,1,...,1,—1,...,—1} (where

exactly mg of them are —1), and u; = (K1)~ /?1g, and u; = (K5)~/?1g, are the Perron
eigenvector of A; and As, respectively (the Perron roots of 4; and As are (2m; — Ky + 1)
and (2my — K + 1), respectively. Let

K=K, + Ky, m = mj + ms.

All we need to show are

e (a) The spectrum of A are (1 + (2m — K),1,...,1,—1,...,—1), where we have
exactly m of —1’s.

e (b) A is doubly stochastic.

Counsider (a). By [Fiedler| (1974)), let 1 and 7, (assuming v; > 72) be the eigenvalues of the
2 x 2 matrix

(2m1—K1—|—1) P

“=1 @ms— Ko+ 1) | P= VM —EK)2ma — Ks),

then the spectrum of A is
o(A) = (v1,72,1,...,1,—1,...,—1),
where we have exactly m of —1’s. By basic algebra,
Yo =1, Yo=02m; —Ki+1)+(2mey— Ky +1)—1=(2m— K +1).
Therefore, the spectrum of A is

c(A)=02m—-K+1,1,...,1,-1,...,-1),
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where we have exactly m of —1’s. This proves (a).

Consider (b). Note that the Perron root of A is (2m; — K1 + 1) > 1, with a multiplicity of
1. By Lemma [A7T] the Perron eigenvector u; of A; is
Uy = (1/\/ Kl)(]., ].7 ey 1)/
Similarly, the Perron eigenvector us of As is
ug = (1/4/Ko)(1,1,...,1)".
Therefore, A is non-negative and
A11K1 :(2m17K1+1)1K1, A11K1 :(2m17K1+1)1K1.
Also, note that
p=+/(2m1 — K1)(2my — K»), puivili, = p\/ K2 /Kilk,, pviuyli, = p\/K1/K>lk,.
Combining these, we have

Aly = Al]_[,(l + pU1U11K2 _ 1‘11]{1
pviui 1, + Ai1lg, x2lg,

where

r1 = (27’711 — Kl + 1) + \/277’?,1 — Kl)(ng — KQ)\/KQ/Kl,
and

(EQ:(2m27K2+1)+\/(lele)(2m27K2)\/K1/K2.
By basic algebra,
To — X1 2m2—K2 \/le—Kl
= — + VK /Ky —/Ky/Ky. (F.37
VvV (2my — K1)(2ma — Ka) \/le—fﬁ 2my — Ko VER, = VR Ky (F37)
By mi/mo = K /K>, there is a number a > 0 such that
a=my/me =K /Ks.
It follows that the RHS of (F.37) is
V1/a—+a++a—+/1/a=0.

Therefore, x1 = x5 and A is doubly stochastic. This proves the claim.

G PROOF OF LEMMA [13]

In this case, m > K/2, so ag m,m, = max{0,2m — K} = 2m — K and
Q = [ck0,Q1,Q2], Jrgm =diag((1+2m — K),1,...,1,-1,...,-1).

It follows

QJK)mQI = (2 +2m — K)CK’OC/I{)O + 2@1@’1 —Ik. (G38)
Let M = @Q1Q}. Note that for any such Q,

trace(QJ g m@Q") = trace(Jx m) = 0.

Therefore, if QJk ,» Q' is doubly stochastic, then all diagonal entries of QJk ,,, Q" are 0. As
a result (0;; =1 if i = j and 0 otherwise),

rank(M) = K —m — 1, (G.39)
Amax(M) <1, 1 M1g =0, (G.40)
]\IZZ:(,K——VTL—l)/,Kv7 M”Z—(2m—K—|—2)/(2K), 1<i#j<K. (G41)

This proves one direction of the lemma.

At the same time, suppose there is a matrix M € R satisfying —. By
rank(M) = (K —m — 1) and trace(M) = (K —m —1) > (K — m — 1)Apax(M), M has
exactly (K —m — 1) nonzero eigenvalues that are all 1. Therefore, M is a projection matrix
and there is a Q; € RFK="=1 guch that M = Q1Q} and Q,Q1 = Ix_,,_1. Combining
this with 1% M1x = 0, Q11x = 0. Therefore, there is a matrix Q2 € RE™ gsuch that
Q = [ck,0,Q1,Q2] is a K x K orthogonal matrix. Combining with , it is seen

that
QJK,mQ/

is non-negative. Since the first column of @ is cx 0, QJx m@" is doubly stochastic. This
proves the claim in the another direction and completes the proofs.
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H PROOF OF THEOREM [14

First, note that aj ,, > ak m. Otherwise, if aj ,, < ax,m, the by definition, aj ,, =0 and
ax,m = max{0,2m — K}, so we must have m > K/2 and a} ,, < (2m — K). Therefore, at
a = aj ,, for any orthogonal matrix Q € R¥¥, trace(QJx,m.oQ") = trace(Jx m,aQ’) < 0
and 80 QJ,m,«Q" can not be a non-negative matrix. This proves aj ,,, > ax m-

It remains to show aj.,, < axm and we can write 3 = OIIPII'O for (©,1I, P) as in the
DCMM model. By \Jin| (2022)) and Lemma all we need to show is when a > ag ,, there
is a K x K orthogonal matrix Q € RfK such that

the first column of Q is cx 0 = (1/VK)1x and QJk m..Q’ is non-negative. (H.42)

The claim for the Case (S1)-(S9) follows directly from our results in Section [2| so we only
need to show the claim for Case (N1), Case (N2), Case (Ul), and Case (U2). The case (U2)
is relatively long, so we further split. Throughout this section, let N be the largest integer
such that

4N < K.

Note that in Case (U2), we must have
Kisodd, K >5,and K/2 <m < (3K/4) — 1,
so we further divide (U2) as two sub-cases,
o (U2a): K=4N+1, N>2 K/2<m< (3K/4)—1 and m < K — 2.
o (U2b): K=4AN+3,N>1, K/2<m< (3K/4) —1 and m < K — 2.

In (U2a), we assume N > 2. The reason is that when N =1, K = 5, where Problem is
solvable for (K,m) = (5,1), (5,2), (5,4) and is not solvable when (K, m) = (5,3), but the
last case is covered in Case (N). Therefore, we assume N > 2 in (U2a). We consider the four
cases: (N1), (N2), (U1), (U2a), and (U2b) separately in the sections below.

H.1 PROOF FOR THEOREM [14] FOR THE CASE (N1)

In this case,
Kisodd, K >5,m=K -2, and a > axm =K —4K/(K + 1), (H.43)
and the goal is to construct a matrix @ such that holds. Let
Qo = [cK 0, 4],

g= | Cruciny em KD PR B
dlx-1y2 |’ K(K +1) K(K —1)

It is seen that Q(Qo = I2, so there is a matrix G € R¥¥=2 such that
Q = [CK,Oa q, G]

is a K x K orthogonal matrix. For any a > ax ., write
QJrmaQ = (a+2)cx ok +2qq — Ix = (I) + (I1).
Note that all diagonal entries of the LHS are no smaller than
2(K —1)

29/K +22 —1> (a N/K+—-—0— 1>
(a+2)/K +2c > (agm+2)/ +K(K+1) >0,

where

and all off-diagonals of the LHS are no smaller than
(a+2)/K—-2/K > (agm+2—2)/K > ax,m/K > 0.

Note that the first column of @ is ¢k . Combining this gives the claim.
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H.2 PROOF FOR THEOREM FOR THE CASE (N2)
In this case, (K,m) = (7,4) and ax,, = 1. Let ag = 4cos(m/7) — 2 and
Jo = JK,m.a, = diag(l+ao,1,1,-1,—1,—1).

By similar argument as above, it is sufficient to show that there is a 7 x 7 orthogonal matrix
of the form

Q = [CK,Oa Q17 QQ]; where Ql (= R772’ Q2 c R7,47
such that
QJQ'

is entry-wise non-negative.
To show the claim, let
Q1 = [cx1,5K,1]-
It follows
QIQ" = (2+ ao)ck,Ci o +20Q1Q) — Ix = M.
Now, first, since ag =~ 1.6 > 1, all diagonal entries of M on the RHS are
(24 a9)/T+ (4/7) —1=(2+ag—3)/7 > 0.

Second, by definition, for any 1 < i # j <7,

M(i, ) = (24 a0) /7 + (4/7) cos(2li — jlm/K) = (1/7)[2 + ao + 4cos(2li — jln/K)],
where the minimum is achieved when |i — j| = 3 or |i — j| = 4, with the same value of

(1/7)[2+ ap + 4cos(n/T7)] = 0.

This proves the claim.

H.3 PROOF OF THEOREM [14] FOR THE CASE OF (U1)

In this case,

2(K +2
K=4N+2, N>1, m=(K/2)+1=2N+2, aK,m=(<K+2)),

and the goal is to show (H.42) holds for all a > ax . Let
QOZ [CK,an7Q2]a QQZ [hK,17"'7hK)K/2]7

where hg ; is as in the first page of the supplement, and

o= | Lacra oo K- ] K+2
dl(x-2)/2 |’ K(K +2) K(K —2)

It is seen that Q(Qo = I;nt1, so there is a matrix G € REK=m=1 gych that

Q = [CK,07 G7 q, QQ]

is a K x K orthogonal matrix. For any a > 0, write
QJIkm.aQ" = (ack ok o — 2qq") + (Ix — Q2Q3) = (I) + (II).

First, by (A.3), (II) is non-negative. Second, recall that a > ax n, = 2(K + 2)/[(K — 2)]. It
follows that the smallest entry of (I) is no smaller than
2(K+2) 2(K+2)

a/K72d22K(K—2)7K(K—2) =0,

so (I) is also non-negative. Also, note that the first column of @ is ¢k 0. Combining these
gives the claim.
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H.4 PROOF OF THEOREM |14 FOR THE CASE OF (U2A)

In this case,
3K K 2K

K
K=4N+1, N>2, — — -1, a =—2m-K—-1)+ ———.
t1, N22, 5 <m<— . AK,m K—l(m ) + ]

By elementary algebra, we have
2N +1<m <3N —1, (m—1)> (K —-1)/2. (H.44)
The goal is to show that holds for any a > ax .
Now, when m is odd, (so m —1 is even), let (see the first page of the supplement for definition
of cx ;)
2n=(m—1)—2N, M = [can,1,52N,1s- - - C2Nn, S2N,n) € RZV27,

and when m is even, let

_ _ 2N 2n+1
2n = (m —2) — 2N, M = [san,0,CaN1, 82N 15 - -, C2N s S2N ] € R .

Combining this with (H.44)) and recalling N > 2,
n<(m-1)/2—N<(N/2)—1< N -2.
Therefore, in both cases,

CaN,n+1 is well-defined in our range of interest and is orthogonal to all columns of M.
(H.45)
Also, in both cases, let Q; € R¥:(m=1)=2N he the matrix such that (a) the first two rows of
Q1 equal to each other, the next two rows of ¢ equal to each other, and so on and so forth,
and (b) row 1,3,5,...,4N — 1 of @Q; equals to row 1,2,...,2N of M, respectively.

At the same time, define a vector ¢ € R*" so that (a) the first two rows of ¢ equal to each
other, the next two rows of ¢ equal to each other, and so on and so forth, and (b) row
1,3,5,...,4N — 1 of q equals to

2
U= ——— + ToC2N n+1 e R?V, where ¢ > 0 and 2% = i(l—ﬁ).

8N
Let (see the first page of the supplement for definition of hy ;)

Q2 = [hun1, han2, ... hunon] € RN
Also, let
«_ | Q1 K,m—1-2N «_ | Q2 ¢ K2N+1
Ql - |: 0 eR ) QQ - 0 \/5/2 eR 3
and

Qé = [CK,07 QT? Q;]a
We have the following observations.
o llall* = 2ljul* = 1/2.
* [lqllc <1/V2N.

e The sum of all rows of ¢ is —1/+/2, so the last column of Q3 is orthogonal to CK,0-

e The last column of Q% is orthogonal to all other columns of %, and is also orthogonal
to all columns of Q7.

o As aresult, Q5Q¢5 = Inm+1-

Now, let
Q" =[Qp, G™],
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where G* € RE=™~1 is any matrix so that Q* is a K x K orthogonal matrix. For any
a > QK m, write
Q" Jkm,a(Q7) = (I) + (II) + (I1I),
where
I = CLCK,OC/K,O - aK—l,m—ch—l,OclK_LOa

(IT) = (aK—1,m-1cK-1,0¢k 1,0 — 2Q7(Q7)"),

and

(I1I) = (Ix —2Q3(Q3)").
Note that by (H.44), m —1> (K —1)/2, so

AK -1m—-1 = 2m — K — 1.
Now, first, for all @ > @k, all entries of (I) are no smaller than

a/K —ag_1m-1/K —1)>agm/K—(2m—-K —1)/(K —1).
Second, by the same argument as in the proof of Theorem [10]
(IT) is non-negative.

Second, by construction,

_ [ —2ad —V2¢
= "8, .
Recall that ||¢|lcc < 1/V2N and N > 2. It follows that all entries of (I1]) are no smaller
than
~1/VN = —2/vVK — 1.

Combining all these, all entries of QJk m Q' are no smaller than

drm/K — (2m—K —1)/(K —1) —2/VK —1=0.

Combining these, QJx m, Q" is non-negative for all @ > @k, and the claim follows.

H.5 PROOF OF THEOREM [14] FOR THE CASE OF (U2B)

In this case,
K=4N+3, N>2 K/2<m<3K/4) -1, m< (K -2).

and

K 2K
ik = o (2m — K — 1) + e
Grem = g (2m I R=T

By elementary algebra, we have
IN+2<m<3N+1, (m—1)>(K—1)/2. (H.46)
and the goal is to show (H.42)) holds for all a > aj ,,. We consider three cases:

e (a). N >2and m# (2N + 3).
e (b). (m—1)= (K —1)/2+1 (or equivalently m = 2N + 3) and N > 2.
Consider Case (a). In this case, N > 2 (and so K > 11). The range of interest for m in this

case is
(2N +2) <m <3N +1, m # 2N + 3. (H.47)

When m is even, m—1— (K —1)/2 = m—2N —2 is even. In this case, let n = (m—2N —2)/2
and

M = [C2N+1,1, S2N+1,15---5C2N+1,n;s 82N+1,n] € R2N+1L2n, (H~48)
By (H.46)), m < 3N + 1. Since m is even, we have m < 3N in the special case of N = 2.
Combining this with (H.46) and recalling N > 3,

n<m/2—-N—-1<[3N+1)/2] —-N—-1<(N-1)/2<N-2
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and when N = 2,
n<m/2—N-1<3N/2-N-1=(N-2)/2<N -—2.
Therefore,

caN+1,n+1 is well-defined in our range of interest and is orthogonal to all columns of M.

(H.49)
Let u € R2N*1! be the vector
\@ 1 1
U:—m+xo'62N+l7n+1, $0>0and .ﬁ%zz(l—m) (H50)

When m is odd, then (m — 1 — (K —1)/2 = m — 2N — 2 is odd. In this case, let n =
(m — 2N —3)/2. By (HLA),
n > 1.

Let
Mg = [q0,91,92, - - -, q2n] € RN-2n+1

where for 1 < j < n,

1y CN41.4 SN+1,j
Qo = [ _1+N ] ; q2j—1 = [ C;j’j , Q25 = s;jﬁj .

Moreover, we partition M* as

«_ | Iny1 B1
My = [ e B }
For
N N+1
co = ; do = | o>
(N+1)(2N +1) N(2N +1)
and
1 1 1 1
) — (N4 14 — d= | ——(N - —
¢ \/2N+1( tl+on) \/2N+1( o)
we let
_ | colns1 c¢By IN+1,2n+1
M= [ far iyl } cR . (H.51)

In this case, by , m < 3N + 1. Since m is odd, we have four cases (1) m < 3N
and N is odd, (2) m < 3N — 1 and N is even, (3) m = 3N + 1 and N is even. In (1),
n=(m—-2N—3)/2< (N —23)/2and N is odd. In (2). n = (m— 2N —3)/2 < (N — 4)/2
and N is even. In (3), n = (m —2N —3)/2 < (N —2)/2 and N is even.

e In all three cases, cyy1,n+1 is well-defined, and is orthogonal to all columns of
[alN_H,cBﬂ.

o In the first two cases, cn,nt1 is well-defined, and is orthogonal to all columns of
[-b1y,dBs)]. In the last case, sy o is well-defined, and is orthogonal to all columns
of [—b]_N, dBQ]

e Note also that the first column of M is orthogonal to 1ox41 by construction.

Let
_ ) _ (N/2)en nt1, in Case (1)-(2),
v = VN2 enpin, V2= { (N/2)sk.0, in Case (3).
Let
V2 o V1 2 _ 1 1

In summary,
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e When m is even, the u defined in (H.50) is orthogonal to all columns of the
corresponding M matrix in (H.48)). Also, [Ju/|> = 1/2, and the sum of all entries of
u is 0.

e When m is odd, the u defined in (H.52)) is orthogonal to all columns of the corre-
sponding M matrix in (H.51). Also, [[ul|? = 1/2, and the sum of all entries of u is
0.

e In either cases, if we fix a column in M, the the sum of all entries are 0.

In either case, let Q; € R*N+2m=2N=2 he the matrix where (a) the first two rows are the
same, the next two rows are the same, and so on and so forth, and (b) row 1,3,...,4N +1 of
Q1 is the same as row 1,2,...,2N + 1 of M, respectively. Also in either case, let ¢ € R4V+2
be the vector where (a) the first two rows are the same, the next two rows are the same, and
so on and so forth, and (b) row 1,3,...,4N + 1 of ¢ is the same as row 1,2,...,2N + 1 of u,
respectively. Let

Q2 = [hant2,1, hant2,2, ..., hant2,2n+1]-
Let

Q1= [ %1 ] , Q5= [ %2 1\‘/5/2 . and Q) = [ck0,QF, Q5] € RE™HL

It is seen that
(QS),QS = Int1.
Now, let
Q" =[Q0.G"],
where G* € RE=™~1 is any matrix so that Q* is a K x K orthogonal matrix. For any
a > ay ,,, write
Q" Jkm,a(Q) = (I) + (1) + (I11),
where
(I) = ack,0Ck o — GK—1,m—1CK—1,0CK 105
(II) = (@K—l,m—ch—l,Oc/K—l,O - QQT(QT)/%
and
(I11) = Ix —2Q5(Q3)".
Now, first, by the proof of Theorem [10]
(II) is non-negative.
Second, by construction,

-29¢ —V2¢
II) =
(I11) —V2¢ 0 ’

where by basic algebra, ||¢|lcc < 1/v/2N + 1. It follows that all entries of (I1I) are no smaller

than B
—1/y/N +1/2.

Last, since (m —1) > (K —1)/2 in our range of interest, ag_1,m—1 =2(m —1) — (K —1) =

(2m — K —1). Recall that ax,, = 252m - K — 1) + \/i(Kj = Loag_1mo1 + \/Lﬁ
Therefore, for any a > ax m, all entries of (I) are no smaller than
1, K K m— 1
a/K —ag—1m1/(K—1)> = _AK-tmol s

R R PN T TR U
Combining these, QJk m Q' is non-negative for all @ > ak ,, and completes the proof of
Case (a).
Consider Case (b). In this case,
K—=4N+3, m=2N+3,  N>2,

and
. 2K 2K
aK.m =3, aK’m:K—1+ anh
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Let

. a12N+2 . K*S o K+1
o= 50 “ﬂea¢%x—w@wwfb 2K —1)(K —3)

and let ¢ € R*N*2 be the vector such that (a) the first two rows are the same, the next two

rows are the same, and so on and so forth, and (b) the row 1,3,5,...,4N + 1 or ¢ equals to
the row 1,2,..., (2N + 1) of the vector
V2 |

2 _ 1
_mlgNH + wocan 41,1, where zg > 0 and 25 = 7(1 — m).

We have

all rows of u sum to 0 and ||Jul|? = 1.

e all rows of ¢ sum to 0 and ||¢||> = 1/2.
e ulg.

e both u and ¢ are orthogonal to

Let

AN+422N+1
Q2 = [han42.1,- -, hanyoony1] € RNVE22NT

x * «__ | U Q2 ¢ K,(2N+3).
QO - [CK,Oan]v where Ql - |: 0 0 1/\/5 :| S R 3

note that m = (2N + 3) in the current case. It is seen
(Q5)' Q5 = I,
so there is a matrix G* € RE-E=m=1 guch that
Q" = [ck0,G% Q1]
is a K x K orthogonal matrix. Finally, for any a > ax n,

(Q*)JK,m,aQ* = (I) + (II) + (III)a

)

and

where
(I)= acK,OC’K07
_ wu' 0
)
and

(I1T) = (Ix —2Q5(Q3)").
Now, first, by the construction, all entries of (II) are no smaller than
K+1 2(K +1)

CRE=3 - (K-D(K—3)

Second, by the construction,

(IT) = { :ffqg(’] (;ﬁq’ ]

Therefore, all entries of (II) + (III) are no smaller than

x|l + VKTl | (H.53)

where we have used ||¢q||2, < 1/(2N +1) < 1/2 when N > 2.
We now analyze (H.53)). Denote the term in the bracket by g, and so

2K (K +1) 2K 8 K
iy Vel = o + g e + VKl
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When N = 2, K = 11, and 423 = 0.9. Therefore, and ||¢||%, = 8(2]\,1“)2 + 22 (21\/2+1) +

2%4(T\/§+1) ﬁ ~ 0.137. It can be directly verified that in this case,
< n 2K
I K 1" Jk-1
When N >3, K =4N +3 > 15,50 (K — 1) > 14 and K — 3 > 8. Therefore,
2K 8 K 2K K 2K 1 2K
+ < + < + .
K-1 K-3K-1"K-1 K-1"K-1 2J14/K-1
As the same time, since zo < 1/2 and N > 2,

1 2 V2 2
2 2
= 2
ldlee = san T2 Y an ) PR aeN s DV aN 11
1 12 1 V2 2
< - Lol V2
8(2N +1)2 42N +1 24(2N+1)V 2N +1

11 1 1
IN+12 T aaN T 8(2N+1)]
1
4)—
< B3y
1
=B/

Combining these,
2K 1 2K 3 2K 2K 1 3, 2K
9= + + Vs = +( + £)7,
K-1 2/14vK-1 2 VK-1 K-1 "2/14 2 ’'VK-1
Since (1/(2v/14) ++/3/2 < 1,

< 2K n 2K ‘
- K-1 K-1
Combining these, when N > 2, all entries of (IT) + (I1I) are no smaller than
1, 2K 2K
KE-1yR=1
Note that by our conditions, all entries of (I) are
1. 2K 2K
Kx-1" V=1
Com’t()inin)g these proves the claim in Case (b) and completes the proof of Theorem (14| for
case (U2b).

[ DETAILS ABOUT ESTIMATING (©,1I, P) IN EXAMPLE 1 OF SECTION

In this section, we include more details on estimating (0, P, IT) in Example 1 of Section

Given the adjacency matrix A and the number of community K of the network, let (5\;6, ék)
be the k-th eigen-pair of A (where \; is the k-th largest eigenvalue in magnitude). Following
Jin et al.| (2022+4)), we apply the Mixed-SCORE algorithm and let ©y,0s,...,0x be the

estimated vertices of the Simplex there. Let V= [01, D2, ..., 0k] and b1 € RE be the vector

where . . o A
bi(k) = (A + dpdiag(ha, As, .., A )ow) /2, 1<k<K.

Let B = diag(by)[1x, V'] and A = diag(\y, ..., Ak).
e We estimate I by the Mixed-SCORE algorithm [Jin et al.| (2022+]).
e We estimate P by P = BAB'.
o Let 6; = |é’ei|\1/||B’fI’eiH1, where e; is the i-th standard basis vector of R™,

1 <i < n. We estimate © by 6= diag(@l,ég, .. .,én).
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J TWO ALGORITHMS FOR CHECKING WHETHER PROBLEM ([I) 1s
SOLVABLE

In Section we use a DFT approach and show that Problem is solvable in many
cases, and the results are more complete when K is even, but less complete when K is odd.
Especially, in the end of Section [2.2] we mentioned that a numerical approach is helpful for
it may cover some cases where our theorems do not cover. Below, we introduce an approach,
focusing on two cases:

e (a). K isodd, mis even, and (K +1)/2<m <K —3.
e (b). Kisodd, misodd, and (K +1)/2<m < K —4.

Note here that Problem is solvable when m < K/2 or m = K — 1 and is not solvable
when m = K — 2. Note also in both cases, ax ,» = (2m — K) > 0 and

Jgm =diag(l+2m—K,1,...,1,—1,...,—1).

Now, for (a), let n = (K —m —1)/2 and
Qo = [ex 0, Q1) where Q1 =[cK1,5K 1, CKns SKn-
Note that QoQo = Iont1 = I —m. For any G € RF™ such that G = [Qo, Q1,G] is a K x K
orthogonal matrix,
2m — K +2
K

By similar arguments as in the proof of Theorem |§|, all diagonal entries of QJk Q" are 0,
and in order for QJk Q' to be doubly stochastic, we only need to check if the off-diagonals
of QJk m@Q are non-negative. This gives the following algorithm:

QJKmeI = (2m—K+2)SK108/K,0 +2Q1Q’1 —Ig = 11/+2Q1Q/1 —Ik. (J54)

Algorithm (a). Given (K,m) as in (a), check if all off-diagonal entries of the matrix on
the RHS of (J.54) are non-negative.

Consider (b). Let n = (K —m — 2)/2. Let Q7 = [q0,q1, 42, - - -, G2n] € RYV2"H1 where for
1<5<n,

_ | Y2 | amt/24 | Sr+1)/2,
o= [ Vv |0 P07 ooy |00 T sieneg |
We partition Q7 by
Qr = [ Lkv1)y2 B ]

! —Lxk-12 B2
For ¢y = /(K ~ D/(K(K + 1)), dy = JIK + DJ(K(E ~ D), ¢ = /(52 + L) and
d= %(% - ﬁ), we introduce a new matrix @; by

0, =| Gl cBy
! —dol(x_1)2 dBa |’

Similarly, let Qo = [ck,0, @1]. By similar arguments as in Lemma Q6Qo = Ik _m, so there

is a matrix G € RE™ so that Q = [Qo, Q1,G] is a K x K orthogonal matrix. Similarly as
above, it is seen that

2m — K + 2
QJIkmQ = (ar,m + 2)ck 0k o +2Q1Q) — Ik = — %

Compared with (J.55)), the formula is the same, except for that the definition of @, is changed.
By similar arguments as in Lemma [7| and Theorem all diagonal entries of QJk ., Q' are
0, so we only need to check if all of its off-diagonals are non-negative.

11 +2Q:Q, — Ix. (J.55)

Algorithm (b). Given (K, m) as in (b), check if all off-diagonal entries of the matrix on
the RHS of (J.55]) are non-negative.
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K SOLUTIONS FOUND BY THE OPTIMIZATION-BASED APPROACH

We solve the convex program in Section |3 with CVXPYIH Agrawal et al.| (2018); Diamond &
Boyd.| (2016) version 1.2.0. We use the default solver selected by the software. Below we
give numerical solutions our approach found for

(K7 m) = (1177)’ (K7 m) = (1579)7 (K7 m) = (19711)'
For each case, we list

° /\(]\/4\ ) (the Eigenvalues of M found by our approach, which demonstrate M approxi-
mately achieves the desired rank K —m — 1),

e the matrix (:2\1 € REX(K=m=1) formed by the leading Eigen-vectors of M\,

e and C/Q\JK’m@, where Q = [CK’(),@\MC/)\Q]. The matrix @JK,m@’ is expected to be

(entry-wise) non-negative.

Here, Q1 is computed using our optimization algorithm, and Qg € REm g any matrix such
that Q is orthogonal. Note that first by our algorithm, if we let Q [cK.0, Ql] then QOQO
is (approximately) Ix_, so such a Q2 exists. Second, since

QJk.mQ = (2+2m — K)ckock o + 20:Q1 — I,

@J K,m@ does not depend on @2 so there is no need to compute @2 in our algorithm.

We use the notation @J;@m@;,i;j for the i-th to j-th columns of the matrix. Due to space
limitation, we present the Eigenvalues in scientific notation rounded to 3 decimal precision,
and round matrix entries to 3 decimal places.

Case 1. (K,m) = (11,7):

[1.000e+00] [—0.309 —0.119  0.404 ]
1.000e-+00 —0.154 —0.107  0.487
1.000e+00 —0.037 0512 0.095
7.868¢-06 —0.171 —0.403 —0.285
- 7.829¢-06 | -0378 —0.280 —0.226
AM) = | 4.222¢-06 |, @, = [—0.022 0.351 —0.386] ,
3.907¢-06 0206  0.131  0.462
2.907e-06 —0.380 0.258 —0.248
1.542¢-06 0.370  —0.365 —0.052
6.748¢-07 0429  0.266 —0.134
| 4.497e-07 | | 0446  —0.246 —0.117

[0.000 0.969 0.432 0426  0.573 0.073]
0.969 0.000 0.450 0315 0410 0.010
0432 0450 0.000 —0.000 0.153 0.742
0.426 0.315 —0.000 —0.000 0.938 0.399
o 0.573 0410 0.153 0938 —0.000 0.449
QJr.m@ 16 = |0.073 0.010 0742 0399  0.449  0.000|
0.669 0.814 0.662 0.016 0.017 0.181
0428 0.275 0.700 0518 0.710 0.844
0271 0.367 0.044 0.652 0402 0.223
0.018 0.135 0.670  0.170  0.041 0.726
0.144 0256 0.148  0.567  0.307 0.353]

"https://www.cvxpy.org/
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[0.669 0.428 0.271 0.018 0.1447
0.814 0.275 0.367 0.135 0.256
0.662 0.700 0.044 0.670 0.148
0.016 0.518 0.652 0.170 0.567
R R 0.017 0.710 0.402 0.041 0.307
OJkmQ -y, = | 0181  0.844 0223 0.726  0.353
7 —0.000 0.137 0.463 0.577 0.466
0.137 0.000 0.011 0.332 0.047
0.463 0.011 0.000 0.592 0.976
0.577 0.332 0.592 —-0.000 0.738
| 0.466 0.047 0.976 0.738 0.000 ]
Case 2. (K,m) = (15,9):

[1.000e-+007 —0.015 —0.226 0.081 0.200
1.000e+00 —0.142 —-0.381 —-0.103 0.357
1.000e+00 —0.161 0.453 0.183 0.256
1.000e+00 0.177 0.070 —-0.332 —-0.431
1.000e+00 0.451 —-0.212 0.102 0.194
8.856e-06 0.046 0.533 —0.203 0.060

. 7.683e-06 . —0.327 0.148 0.444 —0.077
A(M) 6.521e-06 [ , @1 =] 0.366 —0.184 —0.057 0.138
5.401e-06 —0.405 —0.154 —-0.373 0.045
4.552¢e-06 0.234 —-0.178 0.169 —0.359
3.979%¢-06 —0.191 —-0.053 —-0.460 -—0.114
2.284e-06 0.380 0.370 —0.072 0.138
1.534e-06 —0.030 —-0.103 0.427 —-0.101
5.690e-07 —0.154 —-0.047 0.132 —0.537
| 1.816e-07 | |—0.229 —-0.037 0.062 0.230
r0.000 0.469 0.214 0.042 0.696 0.034 0.277
0.469 0.000 0.197 0.000 0.419 0.016 0.180
0.214 0.197 -0.000 0.000 0.112 0.763 0.700
0.042 0.000 0.000 —0.000 0.217 0.510 0.013
0.696 0.419 0.112 0.217 0.000 0.112 0.020
0.034 0.016 0.763 0.510 0.112 —-0.000 0.275
R . 0.277 0.180 0.700 0.013 0.020 0.275 0.000
QJK7me71:8 = | 0.083 0.611 0.139 0.377 0.637 0.248 0.000
0.437 0.652 0.204 0.373 0.000 0.282 0.210
—0.000 0.214 0.007 0.605 0.400 0.083 0.358
0.499 0.350 0.092 0.647 0.147 0.406 0.031
0.362 0.000 0.573 0.438 0.623 0.791 0.095
0.758 0.136 0.316 0.091 0.536 —0.000 0.687
0.126 0.016 0.118 0.650 0.017 0.154 0.624
L 0.000 0.740 0.564 0.035 0.063 0.323 0.530
r0.437 —0.000 0.499 0.362 0.758 0.126
0.652 0.214 0.350 0.000 0.136 0.016
0.204 0.007 0.092 0.573 0.316 0.118
0.373 0.605 0.647 0.438 0.091 0.650
0.000 0.400 0.147 0.623 0.536 0.017
0.282 0.083 0.406 0.791 —0.000 0.154
R N 0.210 0.358 0.031 0.095 0.687 0.624
QJKva{,Qilf) = | 0.099 0.679 0.033 0.393 —0.000 0.106
0.000 0.000 0.872 —0.000 0.109 0.320
0.000 0.000 0.031 0.155 0.357 0.732
0.872 0.031 —0.000 0.272 0.177 0.377
—0.000 0.155 0.272 —-0.000 0.267 —0.000
0.109 0.357 0.177 0.267 0.000 0.544
0.320 0.732 0.377 —0.000 0.544 —0.000
L 0.443 0.378 0.066 0.029 0.021 0.215

29

—0.4857

—0.192

—0.066

—0.264
—0.168
—0.360

0.172
0.053
0.029

0.050
0.041
0.380

0.299

0.041
0.472 |

0.083 7
0.611
0.139
0.377
0.637
0.248
0.000
—0.000
0.099
0.679
0.033
0.393
—0.000
0.106
0.595 |

0.0007
0.740
0.564
0.035
0.063
0.323
0.530
0.595
0.443
0.378
0.066
0.029
0.021
0.215
0.000]
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Case 3. (K,m) = (19,11):

r1.000e 007
1.000e+00
1.000e+-00
1.000e+-00
1.000e+00
1.000e+-00
1.000e+-00
2.895¢-05
| 2.516e-05
A(M) = | 2.136¢-05 | ,
2.030e-05
1.869¢-05
1.393¢-05
1.300e-05
9.276e-06
5.556e-06
3.805¢-06
2.971e-06
[ 2.046¢-06 |
r—0.221 —0.094 —0.114 0.174  0.035  0.295 —0.424]
—0.232 0079 0416 —0279 0.194 0073  0.119
—0.081 0271 —0.319 0.197 —0.068 —0.159 0.343
0136  0.147 —0.110 0.001  0.051 —0.000 —0.560
—0.056 —0.055 0.233 —0.318 —0.362 —0.270 —0.059
—0.056 0.032 0.145 0452 —0.277 —0.226 0.106
0220 0.261  0.162 —0.165 0.134  0.357  0.230
—0.029 —0.094 0.154 —0.325 —0.418 —0.180 —0.150
| 0184 0496  0.099 —0.067 0235 0126 —0.053
Q1= | 0167 —0.155 —0.377 —0.060 0.279 —0.236 0.193 |,
0121 —0.082 —0.244 —0.037 —0.319 0.341  0.261
—0.264 —0.201 —0.299 —0.108 0.179 —0.157 —0.318
0419 —0.373 0031 —0.152 —0.049 0.071  0.150
—0.334 —0.157 0.257  0.393  0.077 —0.051 0.058
0.094 —0.004 —0.159 0.080 —0.268 0.504 —0.049
0445 —0.047 0185 —0.048 0.352 —0.088 —0.012
0092 —0.38 0253 0331 0195 0.047  0.044
0194 0421 —0.026 0.183 —0.133 —0.310 —0.079
[—0.363 —0.064 —0.287 —0.254 0.165 —0.137 0.199 ]
0.000  0.115  —0.000 0.679 0.000  0.163  0.243 7
0.115  —0.000 0.000 0.017 0457  0.047  0.793
—0.000  0.000  0.000 0.000 0.064 0558  0.298
0.679  0.017  0.000 0.000 0.209  0.080  0.000
0.000  0.457  0.064 0209 —0.000 0.356 0.123
0.163  0.047 0.558 0.080 0.356 —0.000 0.015
0243 0.793  0.298 0.000 0.123  0.015 —0.000
0.137 0347 0002 0317 0972 0293  0.075
o 0.178 0473 0304 0.521 0.045 0.044 0.624
QJxm@ 17 = | 0000 0000 0538 0.159 0.028 0.065 —0.000
0.225  0.000 0455 0.000 0.186 0218  0.378
0.637  0.135 0.153 0.572 0.236 —0.000 0.003
—0.000 0.148 —0.000 0.088 0.348  0.091  0.051
0444 0424 0269 0014 0.151 0713  0.293
0.606  0.000 0.222 0.350 0.056 0.189  0.408
0.000 0351 —0.000 0.380 0.129  0.063  0.144
0.355  0.279  0.000 0.093 0.030 0481  0.103
0.043 —0.000 0.611 0520 0.340 0.624  0.035
L 0.174 0415 0528 0.001 0270 —0.000 0.417
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£0.137 0178  0.000 0.225  0.637 —0.0007
0.347 0473  0.000 0000 0.135  0.148
0.002 0304 0538 0455 0.153 —0.000
0317 0521  0.159 0000 0572  0.088
0972  0.045 0.028 0.186 0236  0.348
0293  0.044 0065 0218 —0.000 0.091
0.075  0.624 —0.000 0.378 0.003  0.051
—0.000 0.007  0.000 0.287  0.296  0.388

o 0.007  0.000 0.155 0.091 —0.000 0.053

QJr.m@g13 = | 0000 0155  0.000 0279  0.528  0.510

0287  0.091 0279 —0.000 0.000 0.579

0296 —0.000 0.528 0.000 0.000 0.072

0388  0.053 0510 0579 0072 —0.000

0.072  0.000 0.049 0.000 0270  0.000

0214 0258 0000 0847 0070 0.394

0.075  0.568 0.526  0.000 0.109  0.646

0.000 0.024 0285 0.130 0.171  0.540

0292 0590 0237 0073 0.067 —0.000

0225 0065 0.643 0251  0.682  0.091

0444 0.606  0.000 0.355 0.043  0.174 ]
0.424  0.000 0.351 0279 —0.000 0415
0.269  0.222 —0.000 0.000 0.611  0.528
0.014 0350 0.380 0.093 0.520  0.001
0.151  0.056 0.129 0.030 0.340  0.270
0.713 0189  0.063 0481 0.624 —0.000
0.293 0408 0.144 0.103 0.035 0417
0.072  0.214  0.075 0.000 0292  0.225
o 0.000 0.258  0.568 0.024 0.590  0.065
QJrem@ 140 = | 0049  0.000  0.526 0.285 0.237  0.643

0.000  0.847  0.000 0.130 0.073  0.251
0270 0.070 0.109 0.171 0.067  0.682
0.000  0.394  0.646 0.540 —0.000 0.091
—0.000 0.085 0.101 0.741 0.134  0.240
0.085 —0.000 0.005 0.195 0.101 —0.000
0.101  0.005 —0.000 0.571 0.332  0.000
0.741  0.195 0.571 0.000 0.000  0.000
0.134  0.101  0.332 0.000 0.000  0.000
[ 0.240  —0.000 0.000 0.000 0.000  0.000 ]

L CONNECTION OF NIEP AND SOCIAL NETWORK MODELING

In Section we mentioned that that the NMF problem is motivated by network
modeling. We now discuss this with more details. Consider a symmetric connected network
with n nodes and let A be the adjacency matrix:

1<i,j<n.

Ai, j) = 1, if there is an edge connecting nodes ¢ and j,
bI)= 0, otherwise,

Conventionally, self edges are not allowed, so all diagonal entries of A are 0. We assume the
network has K perceivable communities

C1,Cg,...,CK.

In many network models, we assume that the upper triangular entries of A. Also, for a
non-negative matrix 2 € R™"

A=E[A]+(A—E[4], and E[A] = Q — diag(q). (L.56)

We say the network model is a rank-K model if Q is an irreducible non-negative matrix
where

rank(Q?) = K;
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recall that K is the number of communities. Many well-known network models (e.g.,
the Random Dot Product Graph (RDPG) model (Young & Scheinermanl, 2007) and the
generalized RDPG model (Rubin-Delanchy et al., [2021) are rank-K models.

In these models, the parameters do not have explicit practical meanings. It is desirable
to have models where the parameters have more explicit meanings. The Degree-Corrected
Mixed-Membership (DCMM) model is one of such models, where we further assume
Q = OIIPIT'e,

See for example (Zhang et all 2020; |Jin et all, [2022+)). Here, © = (64,...,6,) is an
n X n diagonal matrix where 6; > 0 is the degree heterogeneity parameter for node i,
I = [m,...,7] is an n X K matrix where each m; a K-dimensional weight vector and
represents the membership of node ¢, and P is a K x K non-negative matrix, representing
the baseline connecting probabilities between different communities.

Conventionally, we assume the ranks of IT and P are K, so a DCMM is also a rank-K model.
However, compared to other rank-K models, all parameter matrices (6,11, P) in the DCMM
model have practical meanings and are easy to interpret. These make the DCMM model
especially appealing in practice. An interesting question is then

When is a rank-K network model also a DCMM model? (L.57)

This is the NMF problem in .
By our results on NIEP in Sections 2}[3] and on NMF in Section [4] have the following results.

Lemma L.1 We can always rewrite a rank-K model as a DCMM model if either one of the
following conditions holds.

e K =2.
e K >3 but Condition (B¥) (e.g., (19) in Section[{) holds.

For real applications, we may consider the 5 networks below. The first 4 networks have 2
communities, and it is believed that a rank-2 model is appropriate, but it is not known that
whether a DCMM model is also appropriate. By our lemma above, we conclude a DCMM
model is appropriate, as long as a rank-2 model is appropriate. The UKfaculty network has
3 communities, and it is believed that a rank-3 model is appropriate. It was argued by |Jin
(2022) that Condition (B*) holds in this case, so a DCMM model is also appropriate.

Dataset | Source | #Nodes | #Edges | K
Weblogs Adamic & Glance (2005) 1222 16714 | 2
Karate Zachary & Wayne (1977) 34 78 2
Dolphins | Lusseau et al. (2003) 62 159 2
Polbooks | Krebs (unpublished) 92 374 2
UKfaculty | Nepusz et al. (2008) 79 552 3

Note that |Jin| (2022)) focused on the case of m < K/2. For the case of m > K/2, it remained
unclear that under what conditions we can rewrite a rank-K model as a DCMM model; such
a more challenging case is addressed in the current paper. Note also that that the framework
can be extended to weighted networks and asymmetrical networks (such as citation networks
and bipartite networks).

Aside from the network modeling, similar settings also arise in topic modeling. Suppose we
have n text documents, each with N; words, 1 <4 < n, and the dictionary size is p. Let X;
be the p-dimensional word count vector for document ¢ and let X = [X7, Xo,..., X,;]. If we
assume these documents discuss only K topics, then it is reasonable to assume an rank-K
model, where we assume
rank(E[X]) = K.

The Hoffmann’s model is a well-known topic model (e.g., Ke & Wang| (2022)), where we
additionally assume for a p x K non-negative matrix A and a K x n non-negative matrix W,

E[X] = AW.
A natural question is then when we can rewrite a rank-K topic model as a Hoffmann’s topic
model. Our theory can be directly extended to address this question.
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