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In this supplement file, we first present the proofs of our results in Sections A-H. Next, in
Section I, we provide details about estimating (Θ,Π, P ) in Example 1 of Section 1.1, and in
Section J, we discuss how to numerically check Problem (1) is solvable for a given (K,m).
We also present two algorithms (as mentioned in Section 2.2). Last, in Section K, we present
the numerical results for the three cases (i.e., (K,m) = (11, 7), (15, 9), (19, 11)) where we find
that the Problem 1 is solvable using the optimization approach in Section 3 (see also Table
1). Section L explains the connection between the NMF problem (2) and social network
modeling.

A Preliminary

The following definitions appeared the main file, but for their importance, we restate them.
We also present some frequently used lemmas.

Definition A.1 Fix K ≥ 3. Let cK,0 ∈ RK be the vector
√

1/K(1, 1, . . . , 1)′, and when
K is even, let sK,0 ∈ RK be the vector

√
2/K(1,−1, 1,−1, . . . , 1,−1)′. Moreover, for any

K ≥ 3 and 1 ≤ j ≤ (K − 2)/2, let

cK,j =
√

2/K
(
1, cos(

2jπ

K
), cos(

2 · 2jπ
K

), cos(
3 · 2jπ
K

), . . . , cos(
(K − 1) · 2jπ

K

)′
,

sK,j =
√

2/K
(
0, sin(

2jπ

K
), sin(

2 · 2jπ
K

), sin(
3 · 2jπ
K

), . . . , sin(
(K − 1) · 2jπ

K

)′
.

For any K ≥ 2, let F = [cK,0, cK,1, sK,1, . . . , cK,(K−1)/2, sK,(K−1)/2] when K is odd and
F = [cK,0, sK,0, cK,1, sK,1, . . . , cK,(K−2)/2, sK,(K−2)/2] when K is even. It is seen that

F is a K ×K orthogonal matrix (A.1)

Definition A.2 Fix K ≥ 2. For any 1 ≤ j ≤ K/2, let hK,j ∈ RK be the vector where the
(2j − 1)-th row is 1/

√
2, the 2j-th row is −1/

√
2, and all other rows are 0.

Consider the matrix
H = [hK,1, hK,2, . . . , hK,m] ∈ RK,m.

Note that for any K ≥ 2 and m ≤ K/2, each column of H has a unit-`2-norm, and

all columns of H are orthogonal to each other. (A.2)

Also, by direct calculations,

HH ′ =

m∑
j=1

hK,jh
′
K,j =

 D1

. . .
DK/2

 ,
where

D1 = . . . = Dm =

[
1 −1
−1 1

]
, Dm+1 = . . . DK/2 = 0.

Therefore, for any K ≥ 2 and m ≤ K/2,
IK −HH ′ is non-negative (recall that H ∈ RK,m). (A.3)
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Especially, when K is even and m = K/2,

IK −HH ′ is a traceless non-negative matrix. (A.4)

The following lemmas are frequently used in this supplement and are proved below.

Lemma A.1 Suppose QJK,mQ′ is a non-negative matrix for some K×K orthogonal matrix
Q.

• If the first column of Q is sK,0, then the matrix QJK,mQ′ is doubly stochastic.

• If the matrix is doubly stochastic and aK,m > 0, then the first coumn of Q is ±cK,0.

Remark (Why we can always assume the first column of Q is cK,0). Suppose there is a
K ×K orthogonal matrix Q such that QJK,mQ′ is doubly stochastic. We have two cases:
aK,m > 0 and aK,m = 0. In the first case, by Lemma A.1, the first column of Q is ±cK,0, so
we can always assume that it is cK,0, without loss of generality. In the second case,

JK,m = diag(1, . . . , 1,−1, . . . ,−1).

Therefore, if we partition

Q = [Q1, Q2], Q1 ∈ RK,K−m, Q2 ∈ RK,m,
then

M = QJK,mQ
′ = Q1Q

′
1 −Q2Q

′
2,

and each column of Q1 is an eigenvctor of M corresponding to the eigenvalue of 1. Since M
is doubly stochastic, cK,0 is also an eigenvector of M where the corresponding eigenvalue is
1. By basic algebra, there is a (K −m)× (K −m) rotation matrix U such that

cK,0 is the first column of the matrix Q̃1 =: Q1U ∈ RK,K−m.

Let Q̃ = [Q̃1, Q2]. It is seen that Q̃ is a K ×K orthogonal matrix and

Q̃JK,mQ̃
′ = QJK,mQ

′.

Therefore, in this case, without loss of generality, we can always assume that the first column
of Q1 is cK,0.

Lemma A.2 Fix integers (K,N) such that 1 ≤ N ≤ K − 1 and consider a matrix M =
a11K − 2HH ′ for a scalar a > 0 and matrix H ∈ RK,N . If H ′H = IN and all diagonal
entries of HH ′ are equal to a/2, then M is a traceless non-negative matrix.

A.1 Proof of Lemma A.1

Consider the first claim. Note that when Q is orthogonal and the first column is sK,0,
QJK,mQ

′1K = (1 +aK,m)sK,0s
′
K,01K = [(1 +aK,m)/K]1K . This proves the claim. Consider

the second claim. Denote for short M = QJK,mQ
′ and write Q = [q1, q2, . . . , qK ]. It is seen

that one eigenvalue of M is (1 + aK,m) (which is the Perron eigenvalue Horn & Johnson
(2013)), (K −m− 1) eigenvalues of M are 1, and m eigenvalues of M are −1. Especially,
the Perron eigenvalue is larger than 1, with a multiplicity of 1. Therefore, the corresponding
eigen-space is one-dimensional. Note also the Perron eigenvalue equals to the spectral norm
of M , denoted by ρ(M).

Now, first, it is seen that

ρ(M) = 1 + aK,m and Mq1 = (1 + aK,m)q1 = ρ(M)q1.

Second, by Perron’s theorem (Horn & Johnson, 2013, Page 503), there is nonzero and
non-negative eigenvector ξ such that

Mξ = ρ(M)ξ = ρ(M)ξ, (A.5)

Last, since M is doubly stochastic, there is a number a > 0 such that

1K = a1K , and so McK,0 = acK,0.
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Combining these,
ξ′McK,0 = ρ(M)ξ′cK,0 = aξ′1. (A.6)

Since ξ′cK,0 > 0, we must have a = ρ(M), and so

McK,0 = ρ(M)cK,0. (A.7)

Combining (A.5)-(A.7) and recalling that the eigenspace of corresponding to ρ(M) is one-
dimensional,

q1 = ±cK,0.
This proves the claim and completes the proof of Lemma A.1.

A.2 Proof of Lemma A.2

It is seen that all diagonal entries of M are 0. Moreover, since all diagonal entries of HH ′
are a, an off-diagonal entry will not exceed a, by Cauchy-Schwartz inequality. Therefore, all
off-diagonal entries of M are non-negative. This proves Lemma A.2.

B Proof of Theorems 2-4

In this section, we prove Theorem 2, Theorem 3, and Theorem 4.

B.1 Proof of Theorem 2

When K ≥ 5 and m = K − 2, m > K/2 and JK,m = diag(1 + aK,m, 1,−1, . . . ,−1). Also, by
definition,

1 + aK,m = (2m−K) + 1 = K − 3 > 1.

Suppose that there is a K ×K orthogonal matrix Q such that

M ≡ QJK,mQ′

is doubly stochastic. Write
Q = [q1, q2, . . . , qK ].

By Lemma A.1, q1 = ±cK,0. Without loss of generality, we assume

q1 = cK,0.

Now, write

QJK,mQ
′ = Qdiag(K − 3, 1,−1, . . . ,−1)Q′ = (K − 2)q1q

′
1 + 2q2q

′
2 − IK .

It is seen that trace(M) = trace(QJK,mQ
′) = trace(JK,m) = 0. Since M is non-negative, all

diagonal entries of M are 0. By direct calculations, this implies that all entries of q2 are
±1/
√
K. Suppose N entries of q2 are −1/

√
K and (K −N) entries are 1/

√
K. Recall that

q1 = cK,0 and all entries of q1 are 1/
√
K. When K is odd, we can not have

q′1q2 = (1/K)(K − 2N)

When K is odd, the RHS is nonzero, and so a contradiction. The contradiction proves the
claim.

B.2 Proof of Theorem 3

The theorem contains (a)-(c). Note that for any (K,m) with K ≤ 4 and 1 ≤ m ≤ K − 1,
we either have (1) m ≤ K/2 or (2) m > K/2 and m = K − 1. The claim for Case (1) is a
direct result of Theorem 8. Therefore, once (a)-(b) are proved, then (c) follows from For this
reason, we only prove (a)-(b).

Consider (a). In this case, m = (K − 1) and m ≥ 1 (and so K ≥ 2). By definition,

aK,m = 2m−K = K − 2 ≥ 0. (B.8)
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Let
Q = [cK,0, Q0],

where Q0 is any K × (K − 1) matrix satisfying Q′0Q0 = IK−1. By direct calculations,

QJK,mQ
′ = Qdiag(2 + aK,m, 0, . . . , 0)Q′ − IK = [(2 + aK,m)/K]11′ − IK .

Combining this with (B.8),
QJK,mQ

′ = 11′ − IK ,
which is a traceless non-negative matrix. Since the first column of Q is sK,0, by Lemma A.1,
QJK,mQ

′ is doubly stochastic. This proves the claim.

Consider (b). Note that in this case, K is even. The case K = 2 is trivial, so we assume
K ≥ 4. By definition,

aK,m = 2m−K = K − 4 ≥ 0.

Similarly, let
Q = [cK,0, sK,0, Q0],

where Q0 is any K × (K − 2) matrix satisfying Q′0Q0 = IK−2. Similarly, in this case,

QJK,mQ
′ = (aK,m + 2)cK,0c

′
K,0 + 2sK,0sK,0 − IK = ((K − 2)/K)11′ + 2sK,0s

′
K,0 − IK .

By definitions, it is seen that (a) all diagonal entries of the matrix QJK,mQ′ are ((K−2)/K)+
(2/K) − 1 = 0, and (b) all off-diagonal entries ≥ ((K − 2)/K) − 2/K = (K − 4)/K ≥ 0.
Therefore, the matrix is non-negative. Since the first column of Q is cK,0, the matrix is
doubly stochastic by Lemma A.1. This proves the claim and completes the proof of Theorem
3.

B.3 Proof of Theorem 4

In this case, (K,m) = (7, 4), m ≥ K/2, 2m−K = 1, and JK,m = diag(2, 1, 1,−1, . . . ,−1).
The goal is to show Problem 1 is not solvable in this case.

If Problem (1) is solvable in this case, then there is a 7× 7 orthogonal matrix Q such that

Q = [cK,0, Q1, G]

such that
QJK,m = (3/7)1717 + 2Q1Q

′
1 − I7

is non-negative. Since JK,m is traceless, QJK,mQ′ is a traceless non-negative matrix. There-
fore,

• all diagonal entries of Q1Q
′
1 are 2/7,

• all off-diagonal entries of Q1Q
′
1 are no smaller than −3/14.

For 1 ≤ i ≤ 7, let row i of Q1 be

(cos(θi), sin(θi)), 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θ7 < 2π.

Since Q is an orthogonal matrix, by elementary algebra and triogometrics, we must have

• (R1).
∑7
i=1 cos(θi) = 0.

• (R2).
∑7
i=1 sin(θi) = 0.

• (R3).
∑n
i=1 cos(2θi) = 0.

• (R4).
∑n
i=1 sin(2θi) = 0.

• (R5). cos(θi − θj) ≥ −3/4.

For each θi, there are two neighbors, θi−1 and θi+1 (the neighbors of θ7 are θ6 and θ1).
Define the maximal neighboring distance for point i by

di = max{|θi − θi−1|, |θi − θi+1|}, (B.9)
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Note that if (R1)-(R5) hold for {θ1, θ2, . . . , θ7}, then they also hold for

{θ1 + ∆, θ2 + ∆, . . . , θ7 + ∆} (which is a rotation on the circle). (B.10)

We call this symmetry in rotation. Therefore, without loss of generality, we assume

d1 = min
1≤i≤7

{di}, θ1 = 0, θ1 ≤ θ2 ≤ θ3 ≤ . . . ≤ θ7 < 2π. (B.11)

We now show

either that
∑7
i=1 cos(θi) = 0, or that

∑7
i=1 cos(θi) = 0 but

∑n
i=1 sin(θi) 6= 0. (B.12)

Once this is proved, some of (R1)-(R5) are not satisfied. The contradiction proves the claim.

We now show (B.12). Let α = cos−1(3/4) ≈ 41.4◦ and β = (1− α)/2 ≈ 69.3◦. By (R5) and
that θ1 = 0,

cos(θi) ≥ −3/4,

so all θ1, θ2, . . . , θ7 belongs to the region

Ω = {0 ≤ θ ≤ π − α} ∪ {π + α ≤ θ ≤ 2π}.

We now divides Ω into 4 regions, (I)-(V) as follows.

• (I). {0 ≤ θ ≤ β}.
• (II). {β < θ ≤ π − α}.
• (III). {π + α ≤ θ < 2π − β}.
• (IV). {2π − β ≤ θ < 2π}.

Suppose there are m different θi are 0. It follows that when m ≥ 3,

7∑
i=1

cos(θi) ≥ m− (3/4)(7−m) ≥ 0,

with equality only when m = 3 and all remaining 4 other θi satisfying cos(θi) = −3/4. In
such a special case,

∑6
i=1 cos2(θi) 6=

∑7
i=1 sin2(θi), so (R3) is violated. Therefore, the result

follows when m ≥ 3. If m = 2, then we treat θ1 = θ2 = 0. For this reason, we can assume

no more than θi are 0 and when there are two θi are 0, θ1 = θ2 = 0. (B.13)

If (R1)-(R5) hold, then

At least one points in {θ2, . . . , θ7} fall in (II) and at least one of them fall in (III). (B.14)

To show this, without loss of generality, assume (III) does not contains any of the 6 points.
Therefore, up to a rotation on the circle and relabeling of the 7 points, we have

0 = θ1 ≤ θ2 ≤ . . . ≤ θ7 ≤ π + (β − α) ≈ 208◦,

where the RHS is smaller than π + α ≈ 221.4◦. By (R5), for any i < j,

cos(θj − θi) ≤ −3/4,

so we either have

0 ≤ θj − θi < π − α, or π + α ≤ θj − θi < 2π.

Combining these, we must have

0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θ7 ≤ π − α.

By (B.10), (R1)-(R5) holds for such {θ1, θ2, . . . , θ7}, but this contradicts with (R2) as all
sin(θi) ≥ 0. This proves (B.14).

Moreover, by (B.9)-(B.11),
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• If Region (I) does not contain any of the 6 points {θ2, . . . , θ7} and Region (IV) does
not contains any of these point either, then Region (II) has at most two points.
Otherwise, if Region (II) has three or more points, then we can find one among
them (say, i) such that di < d1, where di is maximum neighboring distance defined
in (B.9). Similarly, Region (III) has at most two points. However, these say Region
(I)-(IV) contain at most 4 points of {θ2, . . . , θ7}, and so a contradiction. Therefore,
the total points in Region (I) and Region (IV) is nonzero.
• Suppose Region (I) contains no point of {θ2, . . . , θ7} and Region (IV) contains
exactly one of them. In this case, Region II contains no more than two points of
them, so Region (IV) has at least three points of them. This again contradicts with
(B.9)-(B.11), by similar reasons as above. Suppose Region (I) has none of these 6
points and Region (IV) contains two or more of them. This again contradicts with
(B.9)-(B.11), for one point in Region (IV) may have a smaller maximum neighboring
distance then θ1.

Combining the above as well as (B.12), in each of the four regions, (I)-(IV),

we have at least one point {θ2, . . . , θ7}, but no more than two of them. (B.15)

We now study
7∑
i=1

cos(θi) = 1 + (A) + (B),

where
(A) =

∑
{i:θi∈(IV )}

cos(θi) +
∑

{i:θi∈(II)}

θi,

and
(B) =

∑
{i:θi∈(IV )}

cos(θi) +
∑

{i:θi∈(II)}

θi.

We now analyze (A) first. Suppose (IV) contains s points of {θ2, . . . , θ7} and (II) contains t
of them. By the above arguments,

1 ≤ s, t ≤ 2.

Since for any θi, θj in (II) or (IV),

|θi − θj | ≤ π + β − α < 2π − α,

we must have
|θi − θj | ≤ π − α ≡ 2β.

It is seen for an x such that −β < x < 0,

(A) ≥ s cos(x) + t cos(x+ 2β) ≡ S(x).

Using cos(2β) = −3/4 and sin(x) =
√

7/4,

S(x) = (s− 3t/4) cos(x)− (
√

7t/4) sin(x), S′(x) = −(s− 3t/4) sin(x)− (
√

7t/4) cos(x).

We have three cases.

• (1). s = 1, t = 2. In this case, (s − 3t/4) ≤ 0. In this case, S(X) is monotonely
decreasing, with minimum (achieved at 4x = 0) of

s− 3t/4 = −1/2;

note that (IV) does not contain the point 0 or 2π, so the minimum is not achievable.
• (2). s = t. In this case, s− 3t/4 > 0,

S′(x) = −(3/4)[sin(x) +
√

7 cos(x)].

In this case, the minimum is no smaller than

s/4.
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• (3). s = 2, t = 1. In this case,

S(x) = (5/4) cos(x)− (
√

7/4) sin(x), S′(x) = −(5/4) sin(x)− (
√

7/4) cos(x).

The minimum is achieved when S′(x) = 0, with the value of

1/4.

Therefore, the only case where (A) is negative is when

(s, t) = (1, 2) that is, (IV) contains one point of {θ2, . . . , θ7}, and (II) contains 2 of them.

Also, the minimum strictly larger than −1/2, achieved only when the point in (IV ) is
(approaching) 0 and the two points in (II) are π − α. Similarly, (B) can only be negative
when (I) contains one point of {θ2, . . . , θ7}, and (III) contains 2 of them, where the minimum
is −1/2 achieved only when the point in (I) is 0 and the two points in (III) are π − α.
Combining these,

7∑
i=1

cos(θi) > 0.

This says (R1)-(R5) can not hold simultaneously. The contradiction proves the claim.

C Proof of Theorems 5-6

In this section, we prove Theorem 5 and Theorem 6.

C.1 Proof of Theorem 5

The goal is to show when K ≥ 2 and m ≤ K/2 ≤ K − 1, Problem 1 is solvable. The case of
K = 2 is trivial, so we assume K ≥ 3. Let

Q0 = [cK,0, hK,1, . . . , hK,m] ∈ RK,m+1.

Note that since m ≤ K/2 and K ≥ 3, m+ 2 ≤ K. It is seen that

Q′0Q0 = Im+1, where m+ 1 ≤ K − 1.

Therefore, there is a matrix G ∈ RK,K−(m+1) such that the matrix

Q = [cK,0, G, . . . , hK,1, . . . , hK,m]

is a K ×K orthogonal matrix. Since m ≤ K/2, aK,m = 0 by definition. Therefore, in this
case,

JK,m = (1, . . . , 1,−1, . . . ,−1),

where m is the number of −1’s. It follows that

QJK,mQ
′ = 2[IK −

m∑
j=1

hK,jh
′
K,j ].

By direct calculations,

m∑
j=1

hK,jh
′
K,j =



D1

. . .
Dm

0
. . .

0


,

where
D1 = . . . = Dm =

[
1 −1
−1 1

]
.

Therefore, QJK,mQ′ is a K ×K symmetric non-negative matrix. Moreover, since the first
column of Q is cK,0, so by Lemma A.1, QJK,mQ′ is doubly stochastic. This proves the claim
and completes the proof of Theorem 3.
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C.2 Proof of Theorem 6

In this case, K is dyadic so there is an integer s ≥ 1 so that K = 2s. Let H0 be the Haar
basis matrix. For example, when K = 4,

H0 =

 1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 .
and when K = 8,

H0 =



1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1


.

In general, we can write
H0 = [h1, h2, . . . , hK ]

We remove the first column and the last (K/2) columns of H0, and partition the remaining
(K/2)− 1 columns into (s+ 1) blocks as follows:

H∗0 = [h2, h3, . . . , hK ] = [U0, U1, U2, . . . , Us−2],

where Uj are blocks of columns of H as follows:

• Block 0, U0, contains 20 vector which is h1.
• Block 1, U1, contains 21 vectors h3 and h4.
• Block 2, U2, contains 22 vectors h5, . . . , h8.
• The last block Us−1 contains 2s−1 vectors h(K/4)+1, . . . , hK/2.

By basic number theory, for any number 1 ≤ m ≤ K, there is a unique way where we can
write

m−K/2 =

s−2∑
j=0

aj2
j , aj ∈ {0, 1}. (C.16)

We construct a matrix Q1 as follows. We start with

H∗ = [U0, U2, . . . , Us−2] ∈ RK,K/2−1.

Next, for 0 ≤ j ≤ s− 1, remove block Uj if and only if aj = 0 in (C.16). Denote the resultant
matrix by Q1. We have the following observations.

• Q1 has exactly
∑s−1
j=0 aj2

j = m columns.

• For each block Uj , 0 ≤ j ≤ s− 2, either all columns of Uj shows up in Q1 or none
of its columns shows up in Q1 (no column shows up more than once).
• For each 0 ≤ j ≤ s− 1, U ′jUj = I2j and all diagonal entries of UjU ′j are the same.

It follows that

Q′1Q1 = Im−K/2, and all diagonal entries of Q1Q
′
1 are the same. (C.17)

Next, let
Q2 = [h(K/2)+1, h(K/2)+2, . . . , hK ]

and
Q0 = [Q1, Q2].
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It follows that
Q′0Q0 = Im.

Therefore, there is a matrix G ∈ RK,K−m−1 such that

Q = [cK,0, G,Q1, Q2]

is a K×K orthogonal matrix. Recall that JK,m = diag(1+aK,m, 1, 1, . . . ,−1, . . . ,−1) where
we have exactly m of −1’s. It follows that

QJK,mQ
′ = (aK,m/K)11′+Q1Q

′
1−Q2Q

′
2−Q3Q

′
3 = (aK,m/K)11′+IK−2Q2Q

′
2−Q3Q

′
3 = (I)+(II),

where
(I) = (aK,m/K)11′ − 2Q1Q1,

and
(II) = IK − 2Q2Q

′
2.

Now, first, by (A.3),
(II) is a traceless non-negative matrix.

Second, since m > K/2, aK,m = (2m−K), and

trace(QJK,mQ
′) = trace(JK,m) = (2m−K + 1) + (K −m− 1)−m = 0.

Combining these,
trace((I)) = 0.

By (C.17), all diagonal entries of 2Q1Q
′
1 are the same; denote the common value by a. It

follows that
0 = trace((I)) = aK,m −Ka,

and so a = aK,m/K. By Cauchy-Schwartz inequality, all off-diagonals of 2Q2Q
′
2 are no

greater than a. Therefore, all diagonal entries of (I) are no smaller than

(aK,m/K)− a ≥ 0,

and so (I) is non-negative.

Combining these, QJK,mQ′ is non-negative. Since the first column of Q os sK,0, by Lemma
A.1, QJK,mQ′ is doubly stochastic. This proves the claim.

D Proof of Lemma 7 and Theorems 8-9

In this section, we prove Lemma 7 and Theorems 8-9.

D.1 Proof of Lemma 7

We prove these for the case (a)-(d) separately. Consider (a). Let n = (K −m− 1)/2. In this
case, n is an integer. Also, by (D.18), n ≥ 1. Let

Q0 = [cK,0, Q1], where Q1 = [cK,1, sK,1, . . . , cK,n, sK,n].

By (A.1), Q′0Q0 = I2n+1, where (2n + 1) = (K −m) < K. Therefore, there is a matrix
G ∈ RK,m such that the matrix

G = [Q0, G] = [cK,0, Q1, G]

is a K ×K orthogonal matrix. Moreover, by (A.1), each diagonal entry of Q1Q
′
1 is

(2/K)n = (K −m− 1)/K,

so (D.20) holds, and the claim follows.

Consider (b). Let n = (K −m − 2)/2. Note that in the current case, K is even, n is an
integer and n ≥ 0. Let

Q0 = [cK,0, Q1], where Q1 = [sK,0, cK,1, sK,1, . . . , cK,n, sK,n].

9
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By (A.1), Q′0Q0 ∈ I2n+2. Since 2n+ 2 = K −m < K, there is a matrix G ∈ RK,m such that
the matrix

Q = [cK,0, Q1, G]

is an orthogonal matrix. Moreover, by construction, all diagonal entries of Q1Q
′
1 are

(1/K) + (2n)/K = (2n+ 1)/K = (K −m− 1)/K,

so (D.20) holds. The claim follows by using Lemma D.1.

Consider case (c). This case is very similar to that of case (b) so we omit the proof.

Consider (d). Let K = 2N + 1 and n = (K −m− 2)/2. Since (a) both K and K −m− 1 are
odd, and (b) m 6= K − 2, we must have m ≤ K − 4 and so n ≥ 1. By the construction, it is
seen that all columns of Q1 are orthogonal to each other. Therefore, It is sufficient to show

• (d1) all columns of Q1 are orthogonal to the vector 1K ,
• (d2) the `2-norm of each column of Q1 are 1,
• (d3) the square `2-norm of each row of Q0 is (2n+ 1)/K,

Consider (d1). By constructions and (A.1), 1(K+1)/2 is orthogonal to all columns of B1,
and 1(K−1)/2 is orthogonal to all columns of B2. Therefore, for any 2 ≤ j ≤ 2n+ 1, 1K is
orthogonal to column j of Q0. At the same time, the sum of all entries of the first column of
Q0 is

c0(K + 1)− d0(K − 1) =
√

(K2 − 1)/(2K)−
√

(K2 − 1)/(2K) = 0,

so 1K is also orthogonal to the first column of Q0. This proves (d1).

Consider (d2). For the first column of Q0, the square `2-norm is seen to be

(
K + 1

2
)c20 + (

K − 1

2
)d20 = (K − 1)/(2K) + (K + 1)/(2K) = 1.

For any 1 ≤ j ≤ n, by (A.1), for either N = (K+ 1)/2 or N = (K−1)/2, the square `2-norm
of cN,j and sN,j are 1. Therefore, fixing 2 ≤ j ≤ 2n+ 1 and considering column j of Q0, the
square `2-norm is

c2 + d2 =
1

K
(
K + 1

2
+

1

2n
) +

1

K
(
K − 1

2
− 1

2n
) = 1.

This proved (d2).

Consider (d3). Note that by the construction, the square `2-norm of each row of B1 is
2n/((K + 1)/2) = 4n/(K + 1), and that for each row of B2 is 4n/(K − 1). Therefore, he
square `2-norm of the j-th row of Q0 is{

c20 + c2 4n
K+1 , 1 ≤ j ≤ (K + 1)/2,

d20 + d2 4n
K−1 , (K + 1)/2 + 1 ≤ j ≤ K.

Now,

c20 + c2
4n

K + 1
=

(K − 1)

K(K + 1)
+

1

K
(
K + 1

2
+

1

2n
)× 4n

K + 1
=

2n+ 1

K
,

and
d20 + d2

4n

K − 1
=

K + 1

K(K − 1)
+

1

K
(
K − 1

2
− 1

2n
)× 4n

K − 1
=

2n+ 1

K
.

This verifies (d3) and completes the proof of Lemma 7.

D.2 Proof of Theorem 8

The goal is to show Problem (1) is solvable when m+ 1 ≥ 3K/4 and m 6= K − 2 when K
is odd. Since the case of K ≤ 4 and the case of K = m − 1 are proved in Theorem 2, we
assume

(m+ 1) ≥ 3K/4, K ≥ 5, and K 6= m− 2 when K is odd. (D.18)
Note that in the current case, m ≥ K/2, so by definition,

aK,m = (2m−K).

The following lemma is proved below.

10
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Lemma D.1 Fix (K,m) as in Theorem 8 and consider a K ×K orthogonal matrix Q with
the form of

Q = [cK,0, Q1, G], where Q1 ∈ RK,K−m−1 and G ∈ RK,m. (D.19)

If all diagonal entries of Q1Q
′
1 equal to (K −m− 1)/K, then

QJK,mQ
′

is a non-negative doubly stochastic matrix.

Proof of Lemma D.1. Recall that JK,m = diag(1 + aK,m, 1, . . . , 1,−1, . . . ,−1) and
aK,m = (2m−K). It follows that

M ≡ QJK,mQ′ = (2 + aK,m)cK,0c
′
K,0 + 2Q1Q

′
1 − IK .

First, it is seen that each diagonal entry of M is

(2 + aK,m)/K + 2(K −m− 1)/K − 1 = (1/K)[(2 + 2m−K) + 2(K −m− 1)]− 1 = 0.

Second, since all diagonal entries of Q1Q
′
1 are (K−m−1)/K, by Cauchy-Schwartz inequality,

any off-diagonal entry of Q1Q
′
1

≥ −(K −m− 1)/K.

Therefore, any off-diagonal entry of M is

≥ (2+aK,m)/K−2(K−m−1)/K = (1/K)[(2+2m−K)−2(K−m−1)] = (1/K)[4(m+1)−3K],

and the claim follows by (m+ 1) ≥ (3K)/4.

We now prove Theorem 8. By Lemma 7 and the way Q1 is constructed, all columns of the
matrix [cK,0, Q1] have unit `2-norm and are orthogonal to each other. Therefore, there is a
matrix G ∈ RK,m such that

Q = [cK,0, Q1, G]

is a K ×K orthogonal matrix. Also, by Lemma 7,

all diagonal entries of Q1Q
′
1 are (K −m− 1)/K. (D.20)

By Cauchy-Schwartz inequailty,

all off-diagonal entries of Q1Q
′
1 are no smaller than −(K −m− 1)/K. (D.21)

Without loss of generality, assume K ≥ 4. When (m + 1) ≥ 3K/4, m ≥ K/2 and so
aK,m = (2m−K). By (6),

M = QJK,mQ
′ = (2+aK,m)cK,0cK,0+2Q1Q

′
1−IK = [(2m−K+2)/K]1K1′K+2Q1Q

′
1−IK .

Combining this with (D.20)-(D.21), first, all diagonal entries of M are

[(2m−K + 2)/K] + 2(K −m− 1)/K − 1 = 0,

and second, all off-diagonal entries of M are

≥ [(2m−K + 2)/K]− 2(K −m− 1)/K = (4(m+ 1)− 3K)/K,

where the RHS is non-negative as (m + 1) ≥ (3K/4). Therefore, M is doubly stochastic.
This proves Theorem 8.

D.3 Proof of Theorem 9

In this case, K is odd and m 6= (K − 2). By Theorems 2 and 8, Problem (1) is solvable when
K ≤ 4, when m ≤ K/2, and when (m+ 1) ≥ 3K/4 but m 6= K − 2. For these reasons, we
assume

max{aK , bK}K ≤ m < (3K/4)− 1, m 6= (K − 2), K ≥ 5. (D.22)

Especially, in this case, since max{aK , bK} > 1/2, so in this case,

m > K/2, and so by definition, aK,m = 2m−K.

11
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Let n = (K −m− 1)/2. It is seen n > 0. Since K is odd and m is even, n is an integer and
n ≥ 1. Let

Q0 = [cK,0, Q1], where Q1 = [cK,1, sK,1, . . . , cK,n, sK,n].

It is seen that Q′0Q0 = I2n+1, where (2n+ 1) = K −m, so there is a matrix G ∈ RK,m such
that

Q = [cK,0, Q1, G]

is a K ×K orthogonal matrix. It follows

M ≡ QJK,mQ′ = (aK,m + 2)cK,0cK,0 + 2Q1Q
′
1 − IK .

By the construction, all diagonal entries of Q1Q
′
1 are 2n/K, so all diagonal entries of M are

(2 + aK,m)/K + 4n/K − 1 = (1/K)[(2 + 2m−K) + 2(K −m− 1)]− 1 = 0.

At the same time, by basic trigonometrics and

cos(x) + . . .+ cos(nx) = −(1/2) +
sin((n+ 1/2)x)

2 sin(x/2)
,

we have that for any i ≤ j,

M(i, j) = (2 + aK,m)/K + (4/K)

n∑
k=1

[cos(
2π(i− 1)k

K
) cos(

2π(j − 1)k

K
) + sin(

2πik

K
) sin(

2πjk

K
)]

= (1/K)[(2m−K + 2) + 4

n∑
k=1

cos(
2π(i− j)k)

K
)]

= (2/K)[(m−K/2) +
sin((K −m)|i− j|π/K)

sin(|i− j|π/K)
]

≡ (2/K)g|i−j|,

where for 1 ≤ k ≤ K − 1,

gk = (m−K/2) +
sin((K −m)kπ/K)

sin(kπ/K)
.

Note here 1 ≤ |i− j| ≤ K − 1, and for all 1 ≤ k, ` ≤ K with k + ` = K,

gk = g`.

Therefore, to show that M is non-negative, it is sufficient to show that when (D.22) holds,

gk ≥ 0, for any 1 ≤ k ≤ (K − 1)/2. (D.23)

We now show (D.23). Recall that in our range of interest, K/2 < m < (3K/4)− 1. We have
the following observations.

• (a) For all 1 ≤ k ≤ (K − 1)/2, sin(kπ/K) > 0.
• When 1 ≤ k ≤ 2, 0 < (K −m)k/K < 1, so sin((K −m)kπ/K) > 0. Therefore,

gk = (m−K/2) +
sin((K −m)kπ/K)

sin(kπ/K)
≥ 0.

• (b) When k = 3, since sin(3π − z) = sin(z) for any z,

gkm−K/2−
sin(3(K −m)π/K)

sin(2π/K)
= (m−K/2)− sin(3mπ/K)

sin(3π/K)

= K[(m/K)− 1/2 +
sin(3πm/K)

sin(3π/K)
].

Consider the function x− 1/2 + sin(3πx)/ sin(3π/K) in 1/2 < x < 3/4. It is seen
that the function strictly increasing in 1/2 < x < 3/4 and bK ∈ (1/2, 3/4) is the
unique solution of the equation x−1/2+sin(3πx)/ sin(3π/K) = 0. Therefore, gk ≥ 0
when k = 3.

12
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• (c) When 4 ≤ k ≤ (K − 1)/2, by m/K ≥ aK = 1/2 + 1/K
sin(4π/K) ,

gk = (m−K/2)− 1

sin(kπ/K)
≥ (m−K/2)− 1

sin(4π/K)

= K[m/K − 1/2− 1/K

sin(4π/K)
] ≥ 0.

Combining these, M is non-negative. Since the first column of Q is cK,0, M is doubly
stochastic by Lemma A.1. This proves Theorem 9.

E Proof of Theorems 10-11

In this section, we prove Theorems 10-11.

E.1 Proof of Theorem 10

In this case, we assume 4 | K. By Theorem 3, Problem (1) is solvable

when m ≤ K/2 and when m ≥ K − 2 (note that 4|K so it is even in this case).

Therefore, we assume
K/2 + 1 ≤ m ≤ K − 3. (E.24)

In this case, aK,m = 2m−K > 0 and

JK,m = diag(1 + 2m−K, 1, . . . , 1,−1, . . . ,−1).

We consider two cases:

• Case 1. m is even.
• Case 2. m is odd.

Consider Case 1. Let
n = (m−K/2)/2.

By (E.24),
n ≥ 1 and n is an integer.

Let
Q0 = [cK,0, Q1, Q2] ∈ RK,m+1,

where
Q2 = [hK,1, hK,2, . . . , hK,K/2] ∈ RK,K/2,

and Q1 ∈ RK,m−(K/2) is the matrix where (a) the first two rows Q1 equal to each other, the
next two rows of Q1 equal to each other, and so on and so forth, and (b) row 1, 3, . . . ,K − 1
of Q1 equal to row 1, 2, . . . ,K/2 of

M =
√

(1/2) · [cK/2,1, sK/2,1, . . . , cK,n, sK,n]. (E.25)

respectively. Here, note that 2n = m−K/2 ≤ K/2, and that each diagonal entry of MM ′ is

(1/2)
2

K/2
n = 2n/K = (m−K/2)/K.

By (A.1)-(A.2) and basic algebra,

• cK,0 is orthogonal to any columns of Q1 and any columns of Q2.

• Q1 ∈ RK,2n and Q′1Q1 = 2M ′M = I2n.

• Q2 ∈ RK,K/2 and Q′2Q2 = IK/2.
• Fixing a column of Q1 and a column of Q2, they are orthogonal to each other.

13



Under review as a conference paper at ICLR 2024

Combining these,
Q′0Q0 = Im+1.

Therefore, there is G ∈ RK,K−m−1 such that the matrix
Q = [Q0, G] = [cK,0, cK,1, sK,1, . . . , cK,n, sK,n, hK,1, hK,2, . . . , hK,K/2, G] (E.26)

is a K ×K orthogonal matrix.

Next, recall that
JK,m = diag(1 + aK,m, 1, . . . , 1,−1, . . . ,−1).

It follows that
QJK,mQ

′ = aK,msK,0s
′
K,0 + IK − 2Q1Q

′
1 − 2Q2Q

′
2 = (I) + (II), (E.27)

where
(I) = (aK,msK,0s

′
K,0 − 2Q1Q

′
1.

and
(II) = IK − 2Q2Q

′
2.

Consider (I). Note that by construction,

• aK,msK,0sK,0 = (aK,m/K)11′K .
• Q′1Q1 = I(K/2−m) and every diagonal entry of Q1Q

′
1 is 2n/K.

Recall that aK,m = 2m−K and n = (m−K/2)/2. It follows that
aK,m/K = (2m−K)/K, 2n/K = (m−K/K)/K = (1/2)(2m−K)/K.

Applying Lemma A.2 with a = (2m−K)/K and H = Q1, it follows that
(I) is a non-negative matrix. (E.28)

At the same time, by (A.3),
(II) is a traceless non-negative matrix. (E.29)

Inserting (E.28)-(E.29) into (E.27), QJK,mQ′ is a traceless non-negative matrix. Finally,
since the first column of Q is sK,0, the matrix QJK,mQ

′ is doubly stochastic matrix by
Lemma A.1. This proves Case 1.

Consider Case 2. In this case, m is odd and m ≥ (K/2) + 1. Let
n = (m−K/2− 1)/2.

It is seen n ≥ 0. Let
Q0 = [cK,0, Q1, Q2] ∈ RK,m+1,

where Q2 ∈ RK,K/2 is as the same as in Case 1, and

Q1 = [sK,0, Q
∗
1] ∈ RK,m−(K/2)

for a matrix Q∗1 ∈ RK,2n; note that 2n = m− (K/2)− 1. We construct Q∗1 in a way such
that (a) the first two rows equal to each other, the next two rows equal to each other, and so
on and so forth, and (b) row 1, 3, . . . ,K − 1 of Q∗1 equal to row 1, 2, . . . ,K/2 of

M =
√

(1/2) · [cK/2,1, sK/2,1, . . . , cK,n, sK,n]. (E.30)
By similar arguments, it is seen that

Q′0Q0 = Im+1,

so there is a matrix G ∈ RK,K−m−1 so that
Q = [cK,0, G,Q1, Q2] (E.31)

is a K ×K orthogonal matrix. Now, we similarly write
QJK,mQ

′ = Qdiag((1 + aK,m), 1, . . . , 1,−1, . . . ,−1) = (I) + (II),

where
(I) = aK,msK,0s

′
K,0 − 2Q1Q

′
1.

and
(II) = IK − 2Q2Q

′
2, which is non-negative; see (A.3).

By the construction,

14
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• aK,msK,0s′K,0 = (aK,m/K)1K1′K , where aK,m/K = (2m−K)/K.

• Q′1Q1 = IN with N = m−K/2.
• Every diagonal entry ofMM ′ is (1/2)(2n)/(K/2) = 2n/K, so every diagonal entry of
Q′2Q2 is (2n+1)/K, where (2n+1)/K = [(m−K/2−1)+1)]/K = (1/2)(2m−K)/K.

Applying Lemma A.2 with a = (2m−K)/K and H = Q1, the matrix (I) is also non-negative.
Combining these gives the claim of Case 2 and completes the proof of Theorem 10.

E.2 Proof of Theorem 11

We now prove Theorem 11. In this case, K is even but 4 - K, and m 6= (K/2) + 1. By
Theorems 2 and Theorem 5, Problem (1) is solvable when m ≤ K/2 and m ≥ K − 2.
Combining these, we only need to consider the case where

(K/2) + 2 ≤ m ≤ K − 3. (E.32)

We consider two cases.

• Case 1. m is odd.
• Case 2. m is even. In this case, since K is even, it follows from (E.32) thatm ≤ K−4.

Consider Case 1. Let n = (m− (K/2))/2. Note that in our case, K/2 is odd, so (m−K/2)
is even. Since m > K/2, n ≥ 1. Also, since m ≤ K − 3, n ≤ (K − 6)/4, and 2n ≤ (K/2)− 3.
Let

M = (1/
√

2)[cK/2,1, sK/2,1, . . . , cK/2,n, sK/2,n].

Similarly as in the proof of Theorem 10, we construct a matrix Q1 ∈ RK,2n in a way such
that (a) the first two rows Q1 equal to each other, the next two rows of Q1 equal to each
other, and so on and so forth, and (b) row 1, 3, . . . ,K − 1 of Q1 equal to row 1, 2, . . . ,K/2
of M , respectively. Also, similarly, we let

Q2 = [hK,1, hK,2, . . . , hK,K/2],

and
Q0 = [cK,0, Q1, Q2] ∈ Rm+1.

It is seen Q′0Q0 = Im+1. Since m+ 1 < K, there is a matrix G ∈ RK,K−m−1 such that

Q = [cK,0, G,Q1, Q2]

is an orthogonal matrix. Similarly, we write

QJK,mQ
′ = aK,msK,0s

′
K,0 + IK − 2Q1Q

′
1 − 2Q2Q

′
2 = (I) + (II), (E.33)

where
(I) = (aK,msK,0s

′
K,0 − 2Q1Q

′
1.

and
(II) = IK − 2Q2Q

′
2, which is non-negative; see (A.3).

Moreover, by similar argument as before,

• aK,msK,0sK,0 = ((2m−K)/K)1K1′K (by definition and that m > K/2),
• Q′1Q1 = IN with N = m− (K/2),
• For every row of Q1, the square `2-norm is 2n/K, where (2n)/K = (m−K/2)/K =

(1/2)(2m−K)/K.

Applying Lemma A.2 with a = (2m−K)/K and H = Q1, it follows that (I) is a non-negative
matrix. This proves the claim in Case 1.

Consider Case 2. In this case, m is even. By (E.32) and that K/2 is odd,

m− (K/2) ≥ 3.

15



Under review as a conference paper at ICLR 2024

Let

K = 2N = 4s+ 2, n = (m− (K/2)− 1)/2, so n is an integer and n ≥ 1.

Note that
N = 2s+ 1 which is an odd number.

Since m ≤ 3K
4 , and m is even, we must have

m ≤
{

3K−6
4 , if (3K − 2)/4 is odd,

3K−2
4 , if (3K − 2)/4 is even,

Since (3K − 2)/4 = 3s+ 1, this is equivalent to

m ≤
{

3s, if s is even,
3s+ 1, if s is odd.

It follows
2n ≤ (m−K/2− 1) ≤

{
s− 2, if s is even,
s− 1, if s is odd,

Recall that N = 2s+ 1. This is equivalent to

2n ≤
{

(N − 5)/2 = [(N − 1)/2]− 2, if (N − 1)/2 is even,
(N − 3)/2 = [(N − 1)/2]− 1, if (N − 1)/2 is odd. (E.34)

Let
M∗0 = [q0, q1, q2, . . . , q2n] ∈ RN,2n+1,

where for 1 ≤ j ≤ n,

q0 =

[
1(N+1)/2

−1(N−1)/2

]
, q2j−1 =

[
c(N+1)/2,j

c(N−1)/2,j

]
, q2j =

[
s(N+1)/2,j

s(N−1)/2,j

]
.

We partition M∗ as

M∗0 =

[
1(N+1)/2 B1

−1(N−1)/2 B2

]
.

Note that especially, by (A.1) and (E.34),

B′1B1 = B′2B2 = I2n.

For

c0 =

√
N − 1

N(N + 1)
, d0 =

√
N + 1

N(N − 1)
,

and

c =

√
1

N
(
N + 1

2
+

1

2n
), d =

√
1

N
(
N − 1

2
− 1

2n
),

we let
M0 =

[
a1(N+1)/2 cB1

−b1(N−1)/2 dB2

]
, and M = (1/

√
2)M. (E.35)

Next, we construct (since (2n+ 2 +K/2) = (m−K/2− 1) + 2 +K/2 = m+ 1)

Q0 = [cK,0, Q1, Q2] ∈ RK,m+1,

where Q2 is the same as in Case 1, and Q1 is constructed so that (a) the first two rows Q1

equal to each other, the next two rows of Q1 equal to each other, and so on and so forth,
and (b) row 1, 3, . . . ,K − 1 of Q1 equal to row 1, 2, . . . ,K/2 of M , respectively. Note that
since Q1 has (2n+ 1) columns with 2n+ 1 = (m−K/2), Q0 has

1 + (m−K/2) +K/2 = (m+ 1)

columns, so
Q0 = RK,m+1.
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By Lemma 7,
[cN,0,M0]′[cN,0,M0] = I2n+2.

Combining this with our construction,

Q′0Q0 = Im+1.

Since in our range of interest, (m+ 1) < K, so there is a matrix G ∈ RK,K−m−1 so that

Q = [cK,0, G,Q1, Q2]

is a K ×K orthogonal matrix. Note that

• aK,msK0sK,0 = (aK,m/K)1K1′K ,

• For each row of Q1, the square `2-norm is (2n+ 1)/K, where

(2n+ 1)/K = (m−K/2) = (1/2)(2m−K).

Applying Lemma A.2 with a = (2m−K)/K and H = Q1, the matrix

aK,msK0
sK,0 − 2Q1Q

′
1

is non-negative. The remaining part of the proof is very similar to that in Case 1 so is
omitted. This proves that QJK,mQ′ is doubly stochastic in Case 2.

F Proof of Theorem 12

In this setting, we assume

m1/m2 = K1/K2, K1/2 < m1 ≤ K1 − 1, K2/2 < m2 ≤ K2 − 1.

Given

A =

[
A1 ρu1v

′
1

ρv1u
′
1 A2

]
, where ρ =

√
(2m1 −K1)(2m2 −K2), (F.36)

where A1 ∈ RK1,K1 is a traceless doubly stochastic matrix with spectrum σ(A1) = {(2m1 −
K1 + 1, 1, . . . , 1,−1, . . . ,−1} (where exactly m1 of them are −1), A2 ∈ RK2,K2 is traceless
doubly stochastic matrix with spectrum σ(A2) = {(2m2−K2+1, 1, . . . , 1,−1, . . . ,−1} (where
exactly m2 of them are −1), and u1 = (K1)−1/21K1

and u1 = (K2)−1/21K2
are the Perron

eigenvector of A1 and A2, respectively (the Perron roots of A1 and A2 are (2m1 −K1 + 1)
and (2m2 −K2 + 1), respectively. Let

K = K1 +K2, m = m1 +m2.

All we need to show are

• (a) The spectrum of A are (1 + (2m − K), 1, . . . , 1,−1, . . . ,−1), where we have
exactly m of −1’s.
• (b) A is doubly stochastic.

Consider (a). By Fiedler (1974), let γ1 and γ2 (assuming γ1 > γ2) be the eigenvalues of the
2× 2 matrix

C =

[
(2m1 −K1 + 1) ρ
ρ (2m2 −K2 + 1)

]
, ρ =

√
(2m1 −K1)(2m2 −K2),

then the spectrum of A is

σ(A) = (γ1, γ2, 1, . . . , 1,−1, . . . ,−1),

where we have exactly m of −1’s. By basic algebra,

γ2 = 1, γ2 = (2m1 −K1 + 1) + (2m2 −K2 + 1)− 1 = (2m−K + 1).

Therefore, the spectrum of A is

σ(A) = (2m−K + 1, 1, . . . , 1,−1, . . . ,−1),
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where we have exactly m of −1’s. This proves (a).

Consider (b). Note that the Perron root of A1 is (2m1 −K1 + 1) > 1, with a multiplicity of
1. By Lemma A.1, the Perron eigenvector u1 of A1 is

u1 = (1/
√
K1)(1, 1, . . . , 1)′.

Similarly, the Perron eigenvector u2 of A2 is
u2 = (1/

√
K2)(1, 1, . . . , 1)′.

Therefore, A is non-negative and
A11K1 = (2m1 −K1 + 1)1K1 , A11K1 = (2m1 −K1 + 1)1K1 .

Also, note that
ρ =

√
(2m1 −K1)(2m2 −K2), ρu1v

′
11K2

= ρ
√
K2/K11K1

, ρv1u
′
11K1

= ρ
√
K1/K21K2

.

Combining these, we have

A1K =

[
A11K1 + ρu1v

′
11K2

ρv1u
′
11K1

+A11K2

]
=

[
x11K1

x21K2

]
,

where
x1 = (2m1 −K1 + 1) +

√
2m1 −K1)(2m2 −K2)

√
K2/K1,

and
x2 = (2m2 −K2 + 1) +

√
(2m1 −K1)(2m2 −K2)

√
K1/K2.

By basic algebra,
x2 − x1√

(2m1 −K1)(2m2 −K2)
=

√
2m2 −K2

2m1 −K1
−
√

2m1 −K1

2m2 −K2
+
√
K1/K2 −

√
K2/K1. (F.37)

By m1/m2 = K1/K2, there is a number a > 0 such that
a = m1/m2 = K1/K2.

It follows that the RHS of (F.37) is√
1/a−

√
a+
√
a−

√
1/a = 0.

Therefore, x1 = x2 and A is doubly stochastic. This proves the claim.

G Proof of Lemma 13

In this case, m > K/2, so aK,m = max{0, 2m−K} = 2m−K and
Q = [cK,0, Q1, Q2], JK,m = diag((1 + 2m−K), 1, . . . , 1,−1, . . . ,−1).

It follows
QJK,mQ

′ = (2 + 2m−K)cK,0c
′
K,0 + 2Q1Q

′
1 − IK . (G.38)

Let M = Q1Q
′
1. Note that for any such Q,

trace(QJK,mQ
′) = trace(JK,m) = 0.

Therefore, if QJK,mQ′ is doubly stochastic, then all diagonal entries of QJK,mQ′ are 0. As
a result (δij = 1 if i = j and 0 otherwise),

rank(M) = K −m− 1, (G.39)
λmax(M) ≤ 1, 1′KM1K = 0, (G.40)

Mii = (K −m− 1)/K, Mij ≥ −(2m−K + 2)/(2K), 1 ≤ i 6= j ≤ K. (G.41)
This proves one direction of the lemma.

At the same time, suppose there is a matrix M ∈ RK,K satisfying (G.39)-(G.41). By
rank(M) = (K − m − 1) and trace(M) = (K − m − 1) ≥ (K − m − 1)λmax(M), M has
exactly (K −m− 1) nonzero eigenvalues that are all 1. Therefore, M is a projection matrix
and there is a Q1 ∈ RK,K−m−1 such that M = Q1Q

′
1 and Q′1Q1 = IK−m−1. Combining

this with 1′KM1K = 0, Q11K = 0. Therefore, there is a matrix Q2 ∈ RK,m such that
Q = [cK,0, Q1, Q2] is a K ×K orthogonal matrix. Combining (G.41) with (G.38), it is seen
that

QJK,mQ
′

is non-negative. Since the first column of Q is cK,0, QJK,mQ′ is doubly stochastic. This
proves the claim in the another direction and completes the proofs.
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H Proof of Theorem 14

First, note that a∗K,m ≥ aK,m. Otherwise, if a∗K,m < aK,m, the by definition, a∗K,m = 0 and
aK,m = max{0, 2m−K}, so we must have m > K/2 and a∗K,m < (2m−K). Therefore, at
a = a∗K,m, for any orthogonal matrix Q ∈ RK,K , trace(QJK,m,aQ

′) = trace(JK,m,aQ
′) < 0

and so QJK,m,aQ′ can not be a non-negative matrix. This proves a∗K,m ≥ aK,m.

It remains to show a∗K,m ≤ ãK,m and we can write Ω = ΘΠPΠ′Θ for (Θ,Π, P ) as in the
DCMM model. By Jin (2022) and Lemma A.1, all we need to show is when a ≥ ãK,m, there
is a K ×K orthogonal matrix Q ∈ RK,K such that

the first column of Q is cK,0 ≡ (1/
√
K)1K and QJK,m,aQ′ is non-negative. (H.42)

The claim for the Case (S1)-(S9) follows directly from our results in Section 2, so we only
need to show the claim for Case (N1), Case (N2), Case (U1), and Case (U2). The case (U2)
is relatively long, so we further split. Throughout this section, let N be the largest integer
such that

4N ≤ K.
Note that in Case (U2), we must have

K is odd, K ≥ 5, and K/2 < m < (3K/4)− 1,

so we further divide (U2) as two sub-cases,

• (U2a): K = 4N + 1, N ≥ 2, K/2 < m < (3K/4)− 1 and m < K − 2.
• (U2b): K = 4N + 3, N ≥ 1, K/2 < m < (3K/4)− 1 and m < K − 2.

In (U2a), we assume N ≥ 2. The reason is that when N = 1, K = 5, where Problem (1) is
solvable for (K,m) = (5, 1), (5, 2), (5, 4) and is not solvable when (K,m) = (5, 3), but the
last case is covered in Case (N). Therefore, we assume N ≥ 2 in (U2a). We consider the four
cases: (N1), (N2), (U1), (U2a), and (U2b) separately in the sections below.

H.1 Proof for Theorem 14 for the Case (N1)

In this case,

K is odd, K ≥ 5, m = K − 2, and a ≥ ãK,m = K − 4K/(K + 1), (H.43)

and the goal is to construct a matrix Q such that (H.42) holds. Let

Q0 = [cK,0, q],

where

q =

[
c1(K+1)/2

d1(K−1)/2

]
, c =

√
(K − 1)

K(K + 1)
, d = −

√
K + 1

K(K − 1)
.

It is seen that Q′0Q0 = I2, so there is a matrix G ∈ RK,K−2 such that

Q = [cK,0, q, G]

is a K ×K orthogonal matrix. For any a ≥ ãK,m, write

QJK,m,aQ
′ = (a+ 2)cK,0c

′
K,0 + 2qq′ − IK = (I) + (II).

Note that all diagonal entries of the LHS are no smaller than

(a+ 2)/K + 2c2 − 1 ≥ (ãK,m + 2)/K +
2(K − 1)

K(K + 1)
− 1 ≥ 0,

and all off-diagonals of the LHS are no smaller than

(a+ 2)/K − 2/K ≥ (ãK,m + 2− 2)/K ≥ ãK,m/K ≥ 0.

Note that the first column of Q is cK,0. Combining this gives the claim.
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H.2 Proof for Theorem 14 for the Case (N2)

In this case, (K,m) = (7, 4) and aK,m = 1. Let a0 = 4 cos(π/7)− 2 and

J0 ≡ JK,m,a0 = diag(1 + a0, 1, 1,−1,−1,−1).

By similar argument as above, it is sufficient to show that there is a 7× 7 orthogonal matrix
of the form

Q = [cK,0, Q1, Q2], where Q1 ∈ R7,2, Q2 ∈ R7,4,

such that
QJ0Q

′

is entry-wise non-negative.

To show the claim, let
Q1 = [cK,1, sK,1].

It follows
QJ0Q

′ = (2 + a0)cK0c
′
K,0 + 2Q1Q

′
1 − IK ≡M.

Now, first, since a0 ≈ 1.6 > 1, all diagonal entries of M on the RHS are

(2 + a0)/7 + (4/7)− 1 = (2 + a0 − 3)/7 ≥ 0.

Second, by definition, for any 1 ≤ i 6= j ≤ 7,

M(i, j) = (2 + a0)/7 + (4/7) cos(2|i− j|π/K) = (1/7)[2 + a0 + 4 cos(2|i− j|π/K)],

where the minimum is achieved when |i− j| = 3 or |i− j| = 4, with the same value of

(1/7)[2 + a0 + 4 cos(π/7)] = 0.

This proves the claim.

H.3 Proof of Theorem 14 for the case of (U1)

In this case,

K = 4N + 2, N ≥ 1, m = (K/2) + 1 = 2N + 2, ãK,m =
2(K + 2)

(K − 2)
,

and the goal is to show (H.42) holds for all a ≥ ãK,m. Let

Q0 = [cK,0, q,Q2], Q2 = [hK,1, . . . , hK,K/2],

where hK,j is as in the first page of the supplement, and

q =

[
c1(K+2)2

d1(K−2)/2

]
, c =

√
(K − 2)

K(K + 2)
, d = −

√
K + 2

K(K − 2)
.

It is seen that Q′0Q0 = Im+1, so there is a matrix G ∈ RK,K−m−1 such that

Q = [cK,0, G, q,Q2]

is a K ×K orthogonal matrix. For any a > 0, write

QJK,m,aQ
′ = (acK,0c

′
K,0 − 2qq′) + (IK −Q2Q

′
2) = (I) + (II).

First, by (A.3), (II) is non-negative. Second, recall that a ≥ ãK,m = 2(K + 2)/[(K − 2)]. It
follows that the smallest entry of (I) is no smaller than

a/K − 2d2 ≥ 2(K + 2)

K(K − 2)
− 2(K + 2)

K(K − 2)
= 0,

so (I) is also non-negative. Also, note that the first column of Q is cK,0. Combining these
gives the claim.
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H.4 Proof of Theorem 14 for the case of (U2a)

In this case,

K = 4N + 1, N ≥ 2,
K

2
< m <

3K

4
− 1, ãK,m =

K

K − 1
(2m−K − 1) +

2K√
K − 1

.

By elementary algebra, we have

2N + 1 ≤ m ≤ 3N − 1, (m− 1) ≥ (K − 1)/2. (H.44)

The goal is to show that (H.42) holds for any a ≥ ãK,m.

Now, when m is odd, (so m−1 is even), let (see the first page of the supplement for definition
of cK,i)

2n = (m− 1)− 2N, M = [c2N,1, s2N,1, . . . , c2N,n, s2N,n] ∈ R2N,2n.

and when m is even, let

2n = (m− 2)− 2N, M = [s2N,0, c2N,1, s2N,1, . . . , c2N,n, s2N,n] ∈ R2N,2n+1.

Combining this with (H.44) and recalling N ≥ 2,

n ≤ (m− 1)/2−N ≤ (N/2)− 1 ≤ N − 2.

Therefore, in both cases,

c2N,n+1 is well-defined in our range of interest and is orthogonal to all columns of M.
(H.45)

Also, in both cases, let Q1 ∈ RK,(m−1)−2N be the matrix such that (a) the first two rows of
Q1 equal to each other, the next two rows of q equal to each other, and so on and so forth,
and (b) row 1, 3, 5, . . . , 4N − 1 of Q1 equals to row 1, 2, . . . , 2N of M , respectively.

At the same time, define a vector q ∈ R4N so that (a) the first two rows of q equal to each
other, the next two rows of q equal to each other, and so on and so forth, and (b) row
1, 3, 5, . . . , 4N − 1 of q equals to

u = −
√

2

8N
+ x0c2N,n+1 ∈ R2N , where x0 > 0 and x20 = 1

4 (1− 1
2N ).

Let (see the first page of the supplement for definition of hN,i)

Q2 = [h4N,1, h4N,2, . . . , h4N,2N ] ∈ R4N,2N ,

Also, let

Q∗1 =

[
Q1

0

]
∈ RK,m−1−2N , Q∗2 =

[
Q2 q
0
√

2/2

]
∈ RK,2N+1,

and
Q∗0 = [cK,0, Q

∗
1, Q

∗
2],

We have the following observations.

• ‖q‖2 = 2‖u‖2 = 1/2.

• ‖q‖∞ ≤ 1/
√

2N .

• The sum of all rows of q is −1/
√

2, so the last column of Q∗2 is orthogonal to cK,0.
• The last column of Q∗2 is orthogonal to all other columns of Q∗2, and is also orthogonal

to all columns of Q∗1.
• As a result, Q∗0Q∗0 = Im+1.

Now, let
Q∗ = [Q∗0, G

∗],
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where G∗ ∈ RK−m−1 is any matrix so that Q∗ is a K × K orthogonal matrix. For any
a ≥ ãK,m, write

Q∗JK,m,a(Q∗)′ = (I) + (II) + (III),

where
(I) = acK,0c

′
K,0 − aK−1,m−1cK−1,0c′K−1,0,

(II) = (aK−1,m−1cK−1,0c
′
K−1,0 − 2Q∗1(Q∗1)′),

and
(III) = (IK − 2Q∗2(Q∗2)′).

Note that by (H.44), m− 1 ≥ (K − 1)/2, so

aK−1,m−1 = 2m−K − 1.

Now, first, for all a ≥ ãK,m, all entries of (I) are no smaller than

a/K − aK−1,m−1/K − 1) ≥ ãK,m/K − (2m−K − 1)/(K − 1).

Second, by the same argument as in the proof of Theorem 10,

(II) is non-negative.

Second, by construction,

(III) =

[
−2qq′ −

√
2q′

−
√

2q 0

]
.

Recall that ‖q‖∞ ≤ 1/
√

2N and N ≥ 2. It follows that all entries of (III) are no smaller
than

−1/
√
N = −2/

√
K − 1.

Combining all these, all entries of QJK,m,aQ′ are no smaller than

ãK,m/K − (2m−K − 1)/(K − 1)− 2/
√
K − 1 = 0.

Combining these, QJK,m,aQ′ is non-negative for all a ≥ ãK,m, and the claim follows.

H.5 Proof of Theorem 14 for the case of (U2b)

In this case,

K = 4N + 3, N ≥ 2, K/2 < m < (3K/4)− 1, m < (K − 2).

and
ãK,m =

K

K − 1
(2m−K − 1) +

2K√
K − 1

.

By elementary algebra, we have

2N + 2 ≤ m ≤ 3N + 1, (m− 1) ≥ (K − 1)/2. (H.46)

and the goal is to show (H.42) holds for all a ≥ a∗K,m. We consider three cases:

• (a). N ≥ 2 and m 6= (2N + 3).
• (b). (m− 1) = (K − 1)/2 + 1 (or equivalently m = 2N + 3) and N ≥ 2.

Consider Case (a). In this case, N ≥ 2 (and so K ≥ 11). The range of interest for m in this
case is

(2N + 2) ≤ m ≤ 3N + 1, m 6= 2N + 3. (H.47)
When m is even, m−1−(K−1)/2 = m−2N−2 is even. In this case, let n = (m−2N−2)/2
and

M = [c2N+1,1, s2N+1,1, . . . , c2N+1,n, s2N+1,n] ∈ R2N+1,2n. (H.48)
By (H.46), m ≤ 3N + 1. Since m is even, we have m ≤ 3N in the special case of N = 2.
Combining this with (H.46) and recalling N ≥ 3,

n ≤ m/2−N − 1 ≤ [(3N + 1)/2]−N − 1 ≤ (N − 1)/2 ≤ N − 2
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and when N = 2,

n ≤ m/2−N − 1 ≤ 3N/2−N − 1 = (N − 2)/2 ≤ N − 2.

Therefore,

c2N+1,n+1 is well-defined in our range of interest and is orthogonal to all columns of M.
(H.49)

Let u ∈ R2N+1 be the vector

u = −
√

2

4(2N + 1)
+ x0 · c2N+1,n+1, x0 > 0 and x20 = 1

4 (1− 1
2(2N+1) ). (H.50)

When m is odd, then (m − 1 − (K − 1)/2 = m − 2N − 2 is odd. In this case, let n =
(m− 2N − 3)/2. By (H.47),

n ≥ 1.

Let
M∗0 = [q0, q1, q2, . . . , q2n] ∈ RN,2n+1,

where for 1 ≤ j ≤ n,

q0 =

[
1N+1

−1N

]
, q2j−1 =

[
cN+1,j

cN,j

]
, q2j =

[
sN+1,j

sN,j

]
.

Moreover, we partition M∗ as

M∗0 =

[
1N+1 B1

−1N B2

]
.

For

c0 =

√
N

(N + 1)(2N + 1)
, d0 =

√
N + 1

N(2N + 1)
,

and

c =

√
1

2N + 1
(N + 1 +

1

2n
), d =

√
1

2N + 1
(N − 1

2n
),

we let
M =

[
c01N+1 cB1

−d01N dB2

]
∈ R2N+1,2n+1. (H.51)

In this case, by (H.47), m ≤ 3N + 1. Since m is odd, we have four cases (1) m ≤ 3N
and N is odd, (2) m ≤ 3N − 1 and N is even, (3) m = 3N + 1 and N is even. In (1),
n = (m− 2N − 3)/2 ≤ (N − 3)/2 and N is odd. In (2). n = (m− 2N − 3)/2 ≤ (N − 4)/2
and N is even. In (3), n = (m− 2N − 3)/2 ≤ (N − 2)/2 and N is even.

• In all three cases, cN+1,n+1 is well-defined, and is orthogonal to all columns of
[a1N+1, cB1].
• In the first two cases, cN,n+1 is well-defined, and is orthogonal to all columns of

[−b1N , dB2]. In the last case, sN,0 is well-defined, and is orthogonal to all columns
of [−b1N , dB2].
• Note also that the first column of M is orthogonal to 12N+1 by construction.

Let

v1 =
√

(N + 1)/2 · cN+1,n+1, v2 =

{ √
(N/2)cN,n+1, in Case (1)-(2),√
(N/2)sK,0, in Case (3).

Let

u = −
√

2

4(2N + 1)
+

x0√
(N + 1/2)

·
[
v1
v2

]
, x0 > 0 and x20 = 1

4 (1− 1
2(2N+1) ). (H.52)

In summary,
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• When m is even, the u defined in (H.50) is orthogonal to all columns of the
corresponding M matrix in (H.48). Also, ‖u‖2 = 1/2, and the sum of all entries of
u is 0.
• When m is odd, the u defined in (H.52) is orthogonal to all columns of the corre-
sponding M matrix in (H.51). Also, ‖u‖2 = 1/2, and the sum of all entries of u is
0.
• In either cases, if we fix a column in M , the the sum of all entries are 0.

In either case, let Q1 ∈ R4N+2,m−2N−2 be the matrix where (a) the first two rows are the
same, the next two rows are the same, and so on and so forth, and (b) row 1, 3, . . . , 4N + 1 of
Q1 is the same as row 1, 2, . . . , 2N + 1 of M , respectively. Also in either case, let q ∈ R4N+2

be the vector where (a) the first two rows are the same, the next two rows are the same, and
so on and so forth, and (b) row 1, 3, . . . , 4N + 1 of q is the same as row 1, 2, . . . , 2N + 1 of u,
respectively. Let

Q2 = [h4N+2,1, h4N+2,2, . . . , h4N+2,2N+1].

Let

Q∗1 =

[
Q1

0

]
, Q∗2 =

[
Q2 u
0

√
2/2

]
, and Q∗0 = [cK,0, Q

∗
1, Q

∗
2] ∈ RK,m+1.

It is seen that
(Q∗0)′Q∗0 = Im+1.

Now, let
Q∗ = [Q∗0, G

∗],

where G∗ ∈ RK−m−1 is any matrix so that Q∗ is a K × K orthogonal matrix. For any
a ≥ a∗K,m, write

Q∗JK,m,a(Q∗)′ = (I) + (II) + (III),

where
(I) = acK,0c

′
K,0 − aK−1,m−1cK−1,0c′K−1,0,

(II) = (aK−1,m−1cK−1,0c
′
K−1,0 − 2Q∗1(Q∗1)′),

and
(III) = IK − 2Q∗2(Q∗2)′.

Now, first, by the proof of Theorem 10,

(II) is non-negative.

Second, by construction,

(III) =

[
−2qq′ −

√
2q′

−
√

2q 0

]
,

where by basic algebra, ‖q‖∞ ≤ 1/
√

2N + 1. It follows that all entries of (III) are no smaller
than

−1/
√
N + 1/2.

Last, since (m− 1) ≥ (K − 1)/2 in our range of interest, aK−1,m−1 = 2(m− 1)− (K − 1) =

(2m − K − 1). Recall that ãK,m = K
K−1 (2m − K − 1) + 2K√

K−1 = K
K−1aK−1,m−1 + K√

N
.

Therefore, for any a ≥ ãK,m, all entries of (I) are no smaller than

a/K − aK−1,m−1/(K − 1) ≥ 1

K
[
K

K − 1
aK−1,m−1 +

K√
N

]− aK−1,m−1
K − 1

≥ 1√
N
.

Combining these, QJK,m,aQ′ is non-negative for all a ≥ ãK,m and completes the proof of
Case (a).

Consider Case (b). In this case,

K = 4N + 3, m = 2N + 3, N ≥ 2,

and
aK,m = 3, a∗K,m =

2K

K − 1
+

2K√
K − 1

.
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Let

u =

[
a12N+2

−b12N

]
, where a =

√
K − 3

2(K − 1)(K + 1)
, b =

√
K + 1

2(K − 1)(K − 3)
.

and let q ∈ R4N+2 be the vector such that (a) the first two rows are the same, the next two
rows are the same, and so on and so forth, and (b) the row 1, 3, 5, . . . , 4N + 1 or q equals to
the row 1, 2, . . . , (2N + 1) of the vector

−
√

2

4(2N + 1)
12N+1 + x0c2N+1,1,where x0 > 0 and x20 = 1

4 (1− 1
(4N+2) ).

We have

• all rows of u sum to 0 and ‖u‖2 = 1.
• all rows of q sum to 0 and ‖q‖2 = 1/2.
• u ⊥ q.
• both u and q are orthogonal to

Let
Q2 = [h4N+2,1, . . . , h4N+2,2N+1] ∈ R4N+2,2N+1,

and
Q∗0 = [cK,0, Q

∗
1], where Q∗1 =

[
u Q2 q
0 0 1/

√
2

]
∈ RK,(2N+3);

note that m = (2N + 3) in the current case. It is seen

(Q∗0)′Q∗0 = Im+1,

so there is a matrix G∗ ∈ RK,K−m−1 such that

Q∗ = [cK,0, G
∗, Q∗1]

is a K ×K orthogonal matrix. Finally, for any a ≥ ãK,m,

(Q∗)JK,m,aQ
∗ = (I) + (II) + (III),

where
(I) = acK,0c

′
K,0,

(II) = −2

[
uu′ 0
0 0

]
.

and
(III) = (IK − 2Q∗2(Q∗2)′).

Now, first, by the construction, all entries of (II) are no smaller than

−2
K + 1

K(K − 3)
= − 2(K + 1)

(K − 1)(K − 3)
.

Second, by the construction,

(II) =

[
−2qq′ −

√
2q′

−
√

2q 0

]
Therefore, all entries of (II) + (III) are no smaller than

− 1

K

[
2K(K + 1)

(K − 1)(K − 3)
+
√

2K‖q‖∞
]
, (H.53)

where we have used ‖q‖2∞ ≤ 1/(2N + 1) ≤ 1/2 when N ≥ 2.

We now analyze (H.53). Denote the term in the bracket by g, and so

g =
2K(K + 1)

(K − 1)(K − 3)
+
√

2K‖q‖∞ =
2K

K − 1
+

8

K − 3

K

K − 1
+
√

2K‖q‖∞.
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When N = 2, K = 11, and 4x20 = 0.9. Therefore, and ‖q‖2∞ = 1
8(2N+1)2 + x20

2
(2N+1) +

2x0
√
2

4(2N+1)

√
2

2N+1 ≈ 0.137. It can be directly verified that in this case,

g ≤ 2K

K − 1
+

2K√
K − 1

.

When N ≥ 3, K = 4N + 3 ≥ 15, so (K − 1) ≥ 14 and K − 3 > 8. Therefore,
2K

K − 1
+

8

K − 3

K

K − 1
≤ 2K

K − 1
+

K

K − 1
≤ 2K

K − 1
+

1

2
√

14

2K√
K − 1

.

As the same time, since x0 ≤ 1/2 and N ≥ 2,

‖q‖2∞ =
1

8(2N + 1)2
+ x20

2

(2N + 1)
+ 2x0

√
2

4(2N + 1)

√
2

2N + 1

≤ 1

8(2N + 1)2
+

1

4

2

2N + 1
+ 2

1

2

√
2

4(2N + 1)

√
2

2N + 1

=
1

2N + 1
[
1

2
+

1

2
√

2N + 1
+

1

8(2N + 1)
]

≤ (3/4)
1

2N + 1

= (3/2)
1

K − 1
.

Combining these,

g ≤ 2K

K − 1
+

1

2
√

14

2K√
K − 1

+

√
3

2

2K√
K − 1

=
2K

K − 1
+ (

1

2
√

14
+

√
3

2
)

2K√
K − 1

,

Since (1/(2
√

14) +
√

3/2 ≤ 1,

g ≤ 2K

K − 1
+

2K√
K − 1

.

Combining these, when N ≥ 2, all entries of (II) + (III) are no smaller than

− 1

K
[

2K

K − 1
+

2K√
K − 1

].

Note that by our conditions, all entries of (I) are
1

K
[

2K

K − 1
+

2K√
K − 1

].

Combining these proves the claim in Case (b) and completes the proof of Theorem 14 for
case (U2b).

I Details about estimating (Θ,Π, P ) in Example 1 of Section 1.1

In this section, we include more details on estimating (Θ, P,Π) in Example 1 of Section 1.1.

Given the adjacency matrix A and the number of community K of the network, let (λ̂k, ξ̂k)
be the k-th eigen-pair of A (where λk is the k-th largest eigenvalue in magnitude). Following
Jin et al. (2022+), we apply the Mixed-SCORE algorithm and let v̂1, v̂2, . . . , v̂K be the
estimated vertices of the Simplex there. Let V̂ = [v̂1, v̂2, . . . , v̂K ] and b̂1 ∈ RK be the vector
where

b̂1(k) = (λ̂1 + v̂′kdiag(λ̂2, λ̂3, . . . , λ̂K)v̂k)−1/2, 1 ≤ k ≤ K.
Let B̂ = diag(b̂1)[1K , V̂

′] and Λ̂ = diag(λ̂1, . . . , λ̂K).

• We estimate Π by the Mixed-SCORE algorithm Jin et al. (2022+).

• We estimate P by P̂ = B̂Λ̂B̂′.

• Let θ̂i = ‖Ξ̂′ei‖1
/
‖B̂′Π̂′ei‖1, where ei is the i-th standard basis vector of Rn,

1 ≤ i ≤ n. We estimate Θ by Θ̂ = diag(θ̂1, θ̂2, . . . , θ̂n).
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J Two algorithms for checking whether Problem (1) is
solvable

In Section 2.2, we use a DFT approach and show that Problem (1) is solvable in many
cases, and the results are more complete when K is even, but less complete when K is odd.
Especially, in the end of Section 2.2, we mentioned that a numerical approach is helpful for
it may cover some cases where our theorems do not cover. Below, we introduce an approach,
focusing on two cases:

• (a). K is odd, m is even, and (K + 1)/2 ≤ m ≤ K − 3.
• (b). K is odd, m is odd, and (K + 1)/2 ≤ m ≤ K − 4.

Note here that Problem (1) is solvable when m ≤ K/2 or m = K − 1 and is not solvable
when m = K − 2. Note also in both cases, aK,m = (2m−K) > 0 and

JK,m = diag(1 + 2m−K, 1, . . . , 1,−1, . . . ,−1).

Now, for (a), let n = (K −m− 1)/2 and

Q0 = [cK,0, Q1], where Q1 = [cK,1, sK,1, . . . , cK,n, sK,n].

Note that Q0Q0 = I2n+1 = IK−m. For any G ∈ RK,m such that G = [Q0, Q1, G] is a K ×K
orthogonal matrix,

QJK,mQ
′ = (2m−K + 2)sK,0s

′
K,0 + 2Q1Q

′
1− IK =

2m−K + 2

K
11′+ 2Q1Q

′
1− IK . (J.54)

By similar arguments as in the proof of Theorem 9, all diagonal entries of QJK,mQ′ are 0,
and in order for QJK,mQ′ to be doubly stochastic, we only need to check if the off-diagonals
of QJK,mQ′ are non-negative. This gives the following algorithm:

Algorithm (a). Given (K,m) as in (a), check if all off-diagonal entries of the matrix on
the RHS of (J.54) are non-negative.

Consider (b). Let n = (K −m − 2)/2. Let Q∗1 = [q0, q1, q2, . . . , q2n] ∈ RN,2n+1, where for
1 ≤ j ≤ n,

q0 =

[
1(K+1)/2

1(K−1)/2

]
, q2j−1 =

[
c(K+1)/2,j

c(K−1)/2,j

]
, q2j =

[
s(K+1)/2,j

s(K−1)/2,j

]
.

We partition Q∗1 by

Q∗1 =

[
1(K+1)/2 B1

−1(K−1)/2 B2

]
,

For c0 =
√

(K − 1)/(K(K + 1)), d0 =
√

(K + 1)/(K(K − 1)), c =
√

1
K (K+1

2 + 1
2n ) and

d =
√

1
K (K−12 − 1

2n ), we introduce a new matrix Q1 by

Q1 =

[
c01(K+1)/2 cB1

−d01(K−1)/2 dB2

]
.

Similarly, let Q0 = [cK,0, Q1]. By similar arguments as in Lemma 7, Q′0Q0 = IK−m, so there
is a matrix G ∈ RK,m so that Q = [Q0, Q1, G] is a K ×K orthogonal matrix. Similarly as
above, it is seen that

QJK,mQ
′ = (aK,m + 2)cK,0c

′
K,0 + 2Q1Q

′
1 − IK =

2m−K + 2

K
11′ + 2Q1Q

′
1 − IK . (J.55)

Compared with (J.55), the formula is the same, except for that the definition of Q1 is changed.
By similar arguments as in Lemma 7 and Theorem 11, all diagonal entries of QJK,mQ′ are
0, so we only need to check if all of its off-diagonals are non-negative.

Algorithm (b). Given (K,m) as in (b), check if all off-diagonal entries of the matrix on
the RHS of (J.55) are non-negative.
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K Solutions found by the optimization-based approach

We solve the convex program in Section 3 with CVXPY1 Agrawal et al. (2018); Diamond &
Boyd. (2016) version 1.2.0. We use the default solver selected by the software. Below we
give numerical solutions our approach found for

(K,m) = (11, 7), (K,m) = (15, 9), (K,m) = (19, 11).

For each case, we list

• λ(M̂) (the Eigenvalues of M̂ found by our approach, which demonstrate M̂ approxi-
mately achieves the desired rank K −m− 1),

• the matrix Q̂1 ∈ RK×(K−m−1) formed by the leading Eigen-vectors of M̂ ,

• and Q̂JK,mQ̂, where Q̂ = [cK,0, Q̂1, Q̂2]. The matrix Q̂JK,mQ̂′ is expected to be
(entry-wise) non-negative.

Here, Q̂1 is computed using our optimization algorithm, and Q̂2 ∈ RK,m is any matrix such
that Q̂ is orthogonal. Note that first by our algorithm, if we let Q̂ = [cK,0, Q̂1], then Q̂′0Q̂0

is (approximately) IK−m so such a Q̂2 exists. Second, since

Q̂JK,mQ̂ = (2 + 2m−K)cK,0c
′
K,0 + 2Q̂1Q̂1 − IK ,

Q̂JK,mQ̂ does not depend on Q̂2 so there is no need to compute Q̂2 in our algorithm.

We use the notation Q̂JK,mQ̂:,i:j for the i-th to j-th columns of the matrix. Due to space
limitation, we present the Eigenvalues in scientific notation rounded to 3 decimal precision,
and round matrix entries to 3 decimal places.

Case 1. (K,m) = (11, 7):

λ(M̂) =



1.000e+00
1.000e+00
1.000e+00
7.868e-06
7.829e-06
4.222e-06
3.907e-06
2.907e-06
1.542e-06
6.748e-07
4.497e-07


, Q̂1 =



−0.309 −0.119 0.404
−0.154 −0.107 0.487
−0.037 0.512 0.095
−0.171 −0.403 −0.285
−0.378 −0.280 −0.226
−0.022 0.351 −0.386
0.206 0.131 0.462
−0.380 0.258 −0.248
0.370 −0.365 −0.052
0.429 0.266 −0.134
0.446 −0.246 −0.117


,

Q̂JK,mQ̂
′
:,1:6 =



0.000 0.969 0.432 0.426 0.573 0.073
0.969 0.000 0.450 0.315 0.410 0.010
0.432 0.450 0.000 −0.000 0.153 0.742
0.426 0.315 −0.000 −0.000 0.938 0.399
0.573 0.410 0.153 0.938 −0.000 0.449
0.073 0.010 0.742 0.399 0.449 0.000
0.669 0.814 0.662 0.016 0.017 0.181
0.428 0.275 0.700 0.518 0.710 0.844
0.271 0.367 0.044 0.652 0.402 0.223
0.018 0.135 0.670 0.170 0.041 0.726
0.144 0.256 0.148 0.567 0.307 0.353


,

1https://www.cvxpy.org/
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Q̂JK,mQ̂
′
:,7:11 =



0.669 0.428 0.271 0.018 0.144
0.814 0.275 0.367 0.135 0.256
0.662 0.700 0.044 0.670 0.148
0.016 0.518 0.652 0.170 0.567
0.017 0.710 0.402 0.041 0.307
0.181 0.844 0.223 0.726 0.353
−0.000 0.137 0.463 0.577 0.466
0.137 0.000 0.011 0.332 0.047
0.463 0.011 0.000 0.592 0.976
0.577 0.332 0.592 −0.000 0.738
0.466 0.047 0.976 0.738 0.000


.

Case 2. (K,m) = (15, 9):

λ(M̂) =



1.000e+00
1.000e+00
1.000e+00
1.000e+00
1.000e+00
8.856e-06
7.683e-06
6.521e-06
5.401e-06
4.552e-06
3.979e-06
2.284e-06
1.534e-06
5.690e-07
1.816e-07



, Q̂1 =



−0.015 −0.226 0.081 0.200 −0.485
−0.142 −0.381 −0.103 0.357 0.172
−0.161 0.453 0.183 0.256 0.053
0.177 0.070 −0.332 −0.431 0.029
0.451 −0.212 0.102 0.194 −0.192
0.046 0.533 −0.203 0.060 0.050
−0.327 0.148 0.444 −0.077 0.041
0.365 −0.184 −0.057 0.138 0.380
−0.405 −0.154 −0.373 0.045 −0.066
0.234 −0.178 0.169 −0.359 0.299
−0.191 −0.053 −0.460 −0.114 −0.264
0.380 0.370 −0.072 0.138 −0.168
−0.030 −0.103 0.427 −0.101 −0.360
−0.154 −0.047 0.132 −0.537 0.041
−0.229 −0.037 0.062 0.230 0.472



,

Q̂JK,mQ̂
′
:,1:8 =



0.000 0.469 0.214 0.042 0.696 0.034 0.277 0.083
0.469 0.000 0.197 0.000 0.419 0.016 0.180 0.611
0.214 0.197 −0.000 0.000 0.112 0.763 0.700 0.139
0.042 0.000 0.000 −0.000 0.217 0.510 0.013 0.377
0.696 0.419 0.112 0.217 0.000 0.112 0.020 0.637
0.034 0.016 0.763 0.510 0.112 −0.000 0.275 0.248
0.277 0.180 0.700 0.013 0.020 0.275 0.000 0.000
0.083 0.611 0.139 0.377 0.637 0.248 0.000 −0.000
0.437 0.652 0.204 0.373 0.000 0.282 0.210 0.099
−0.000 0.214 0.007 0.605 0.400 0.083 0.358 0.679
0.499 0.350 0.092 0.647 0.147 0.406 0.031 0.033
0.362 0.000 0.573 0.438 0.623 0.791 0.095 0.393
0.758 0.136 0.316 0.091 0.536 −0.000 0.687 −0.000
0.126 0.016 0.118 0.650 0.017 0.154 0.624 0.106
0.000 0.740 0.564 0.035 0.063 0.323 0.530 0.595



,

Q̂JK,mQ̂
′
:,9:15 =



0.437 −0.000 0.499 0.362 0.758 0.126 0.000
0.652 0.214 0.350 0.000 0.136 0.016 0.740
0.204 0.007 0.092 0.573 0.316 0.118 0.564
0.373 0.605 0.647 0.438 0.091 0.650 0.035
0.000 0.400 0.147 0.623 0.536 0.017 0.063
0.282 0.083 0.406 0.791 −0.000 0.154 0.323
0.210 0.358 0.031 0.095 0.687 0.624 0.530
0.099 0.679 0.033 0.393 −0.000 0.106 0.595
0.000 0.000 0.872 −0.000 0.109 0.320 0.443
0.000 0.000 0.031 0.155 0.357 0.732 0.378
0.872 0.031 −0.000 0.272 0.177 0.377 0.066
−0.000 0.155 0.272 −0.000 0.267 −0.000 0.029
0.109 0.357 0.177 0.267 0.000 0.544 0.021
0.320 0.732 0.377 −0.000 0.544 −0.000 0.215
0.443 0.378 0.066 0.029 0.021 0.215 0.000



.
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Case 3. (K,m) = (19, 11):

λ(M̂) =



1.000e+00
1.000e+00
1.000e+00
1.000e+00
1.000e+00
1.000e+00
1.000e+00
2.895e-05
2.516e-05
2.136e-05
2.030e-05
1.869e-05
1.393e-05
1.300e-05
9.276e-06
5.556e-06
3.805e-06
2.971e-06
2.046e-06



,

Q̂1 =



−0.221 −0.094 −0.114 0.174 0.035 0.295 −0.424
−0.232 0.079 0.416 −0.279 0.194 0.073 0.119
−0.081 0.271 −0.319 0.197 −0.068 −0.159 0.343
0.136 0.147 −0.110 0.001 0.051 −0.000 −0.560
−0.056 −0.055 0.233 −0.318 −0.362 −0.270 −0.059
−0.056 0.032 0.145 0.452 −0.277 −0.226 0.106
−0.220 0.261 0.162 −0.165 0.134 0.357 0.230
−0.029 −0.094 0.154 −0.325 −0.418 −0.180 −0.150
0.184 0.496 0.099 −0.067 0.235 0.126 −0.053
0.167 −0.155 −0.377 −0.060 0.279 −0.236 0.193
0.121 −0.082 −0.244 −0.037 −0.319 0.341 0.261
−0.264 −0.201 −0.299 −0.108 0.179 −0.157 −0.318
0.419 −0.373 0.031 −0.152 −0.049 0.071 0.150
−0.334 −0.157 0.257 0.393 0.077 −0.051 0.058
0.094 −0.004 −0.159 0.080 −0.268 0.504 −0.049
0.445 −0.047 0.185 −0.048 0.352 −0.088 −0.012
0.092 −0.380 0.253 0.331 0.195 0.047 0.044
0.194 0.421 −0.026 0.183 −0.133 −0.310 −0.079
−0.363 −0.064 −0.287 −0.254 0.165 −0.137 0.199



,

Q̂JK,mQ̂
′
:,1:7 =



0.000 0.115 −0.000 0.679 0.000 0.163 0.243
0.115 −0.000 0.000 0.017 0.457 0.047 0.793
−0.000 0.000 0.000 0.000 0.064 0.558 0.298
0.679 0.017 0.000 0.000 0.209 0.080 0.000
0.000 0.457 0.064 0.209 −0.000 0.356 0.123
0.163 0.047 0.558 0.080 0.356 −0.000 0.015
0.243 0.793 0.298 0.000 0.123 0.015 −0.000
0.137 0.347 0.002 0.317 0.972 0.293 0.075
0.178 0.473 0.304 0.521 0.045 0.044 0.624
0.000 0.000 0.538 0.159 0.028 0.065 −0.000
0.225 0.000 0.455 0.000 0.186 0.218 0.378
0.637 0.135 0.153 0.572 0.236 −0.000 0.003
−0.000 0.148 −0.000 0.088 0.348 0.091 0.051
0.444 0.424 0.269 0.014 0.151 0.713 0.293
0.606 0.000 0.222 0.350 0.056 0.189 0.408
0.000 0.351 −0.000 0.380 0.129 0.063 0.144
0.355 0.279 0.000 0.093 0.030 0.481 0.103
0.043 −0.000 0.611 0.520 0.340 0.624 0.035
0.174 0.415 0.528 0.001 0.270 −0.000 0.417



,

30



Under review as a conference paper at ICLR 2024

Q̂JK,mQ̂
′
:,8:13 =



0.137 0.178 0.000 0.225 0.637 −0.000
0.347 0.473 0.000 0.000 0.135 0.148
0.002 0.304 0.538 0.455 0.153 −0.000
0.317 0.521 0.159 0.000 0.572 0.088
0.972 0.045 0.028 0.186 0.236 0.348
0.293 0.044 0.065 0.218 −0.000 0.091
0.075 0.624 −0.000 0.378 0.003 0.051
−0.000 0.007 0.000 0.287 0.296 0.388
0.007 0.000 0.155 0.091 −0.000 0.053
0.000 0.155 0.000 0.279 0.528 0.510
0.287 0.091 0.279 −0.000 0.000 0.579
0.296 −0.000 0.528 0.000 0.000 0.072
0.388 0.053 0.510 0.579 0.072 −0.000
0.072 0.000 0.049 0.000 0.270 0.000
0.214 0.258 0.000 0.847 0.070 0.394
0.075 0.568 0.526 0.000 0.109 0.646
0.000 0.024 0.285 0.130 0.171 0.540
0.292 0.590 0.237 0.073 0.067 −0.000
0.225 0.065 0.643 0.251 0.682 0.091



,

Q̂JK,mQ̂
′
:,14:19 =



0.444 0.606 0.000 0.355 0.043 0.174
0.424 0.000 0.351 0.279 −0.000 0.415
0.269 0.222 −0.000 0.000 0.611 0.528
0.014 0.350 0.380 0.093 0.520 0.001
0.151 0.056 0.129 0.030 0.340 0.270
0.713 0.189 0.063 0.481 0.624 −0.000
0.293 0.408 0.144 0.103 0.035 0.417
0.072 0.214 0.075 0.000 0.292 0.225
0.000 0.258 0.568 0.024 0.590 0.065
0.049 0.000 0.526 0.285 0.237 0.643
0.000 0.847 0.000 0.130 0.073 0.251
0.270 0.070 0.109 0.171 0.067 0.682
0.000 0.394 0.646 0.540 −0.000 0.091
−0.000 0.085 0.101 0.741 0.134 0.240
0.085 −0.000 0.005 0.195 0.101 −0.000
0.101 0.005 −0.000 0.571 0.332 0.000
0.741 0.195 0.571 0.000 0.000 0.000
0.134 0.101 0.332 0.000 0.000 0.000
0.240 −0.000 0.000 0.000 0.000 0.000



.

L Connection of NIEP and social network modeling

In Section 1.1, we mentioned that that the NMF problem (2) is motivated by network
modeling. We now discuss this with more details. Consider a symmetric connected network
with n nodes and let A be the adjacency matrix:

A(i, j) =

{
1, if there is an edge connecting nodes i and j,
0, otherwise, 1 ≤ i, j ≤ n.

Conventionally, self edges are not allowed, so all diagonal entries of A are 0. We assume the
network has K perceivable communities

C1, C2, . . . , CK .
In many network models, we assume that the upper triangular entries of A. Also, for a
non-negative matrix Ω ∈ Rn,n,

A = E[A] + (A− E[A], and E[A] = Ω− diag(Ω). (L.56)

We say the network model is a rank-K model if Ω is an irreducible non-negative matrix
where

rank(Ω) = K;
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recall that K is the number of communities. Many well-known network models (e.g.,
the Random Dot Product Graph (RDPG) model (Young & Scheinerman, 2007) and the
generalized RDPG model (Rubin-Delanchy et al., 2021) are rank-K models.

In these models, the parameters do not have explicit practical meanings. It is desirable
to have models where the parameters have more explicit meanings. The Degree-Corrected
Mixed-Membership (DCMM) model is one of such models, where we further assume

Ω = ΘΠPΠ′Θ,

See for example (Zhang et al., 2020; Jin et al., 2022+). Here, Θ = (θ1, . . . , θn) is an
n × n diagonal matrix where θi > 0 is the degree heterogeneity parameter for node i,
Π = [π1, . . . , πn]′ is an n × K matrix where each πi a K-dimensional weight vector and
represents the membership of node i, and P is a K ×K non-negative matrix, representing
the baseline connecting probabilities between different communities.

Conventionally, we assume the ranks of Π and P are K, so a DCMM is also a rank-K model.
However, compared to other rank-K models, all parameter matrices (Θ,Π, P ) in the DCMM
model have practical meanings and are easy to interpret. These make the DCMM model
especially appealing in practice. An interesting question is then

When is a rank-K network model also a DCMM model? (L.57)
This is the NMF problem in (2).

By our results on NIEP in Sections 2-3 and on NMF in Section 4, have the following results.

Lemma L.1 We can always rewrite a rank-K model as a DCMM model if either one of the
following conditions holds.

• K = 2.

• K ≥ 3 but Condition (B*) (e.g., (12) in Section 4) holds.

For real applications, we may consider the 5 networks below. The first 4 networks have 2
communities, and it is believed that a rank-2 model is appropriate, but it is not known that
whether a DCMM model is also appropriate. By our lemma above, we conclude a DCMM
model is appropriate, as long as a rank-2 model is appropriate. The UKfaculty network has
3 communities, and it is believed that a rank-3 model is appropriate. It was argued by Jin
(2022) that Condition (B*) holds in this case, so a DCMM model is also appropriate.

Dataset Source #Nodes #Edges K
Weblogs Adamic & Glance (2005) 1222 16714 2
Karate Zachary & Wayne (1977) 34 78 2
Dolphins Lusseau et al. (2003) 62 159 2
Polbooks Krebs (unpublished) 92 374 2
UKfaculty Nepusz et al. (2008) 79 552 3

Note that Jin (2022) focused on the case of m ≤ K/2. For the case of m > K/2, it remained
unclear that under what conditions we can rewrite a rank-K model as a DCMM model; such
a more challenging case is addressed in the current paper. Note also that that the framework
can be extended to weighted networks and asymmetrical networks (such as citation networks
and bipartite networks).

Aside from the network modeling, similar settings also arise in topic modeling. Suppose we
have n text documents, each with Ni words, 1 ≤ i ≤ n, and the dictionary size is p. Let Xi

be the p-dimensional word count vector for document i and let X = [X1, X2, . . . , Xn]. If we
assume these documents discuss only K topics, then it is reasonable to assume an rank-K
model, where we assume

rank(E[X]) = K.
The Hoffmann’s model is a well-known topic model (e.g., Ke & Wang (2022)), where we
additionally assume for a p×K non-negative matrix A and a K × n non-negative matrix W ,

E[X] = AW.

A natural question is then when we can rewrite a rank-K topic model as a Hoffmann’s topic
model. Our theory can be directly extended to address this question.
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