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A Supplementary Materials

A.1 Traditional List Scheduling Algorithm

Algorithm 2 Traditional list scheduling algorithm.

Input: Priority function 7, CDFG G = (V, E), functional unit set U, and delay array d
Output: Generated schedule S’

L Vep+ @, Ve ¢, Vy <V, 58 < ¢, Time + 0

2: for v; in V do

3: if v;.inDegree() = 0 then

4: Ve <+ VR Uuv;, Viy %VU\’W
5: while |Vg| < |V]| do
6: for u; in U do
7: M+ MAX_FLOAT, veposen < ¢
8: for v; in Vi do
9: if (v;) < M and v;.canU se(u;) then
10: M +— F(v;), Uchosen Vi
11: if Venosen = @ or uj.unavailable(Time) then
12: continue
13: S’.insert(Vehosen, w;, Time)
14: u;.setUnavailable(Time, Time 4 d,,; — 1)
15: VR < VR \ Uchosens VF — VF U Vchosen
16: for v; in Vi do
17: if (Vchosen, Vi) € E then
18: E + E\ (Uchosena Ui)
19: if v; € V7 and v;.inDegree() = 0 then
20: VR%VRUvi,VU(—VU\Ui

21: Time < Time + 1

Algorithm 2 gives an overview of the traditional list scheduling algorithm. Our proposed NeuroSched-
ule method as shown in Algorithm 1 derives from Algorithm 2, while taking our trained neural
network as the priority function. The loop (line 5) runs until each node in the CDFG is successfully
scheduled. In each cycle, for every available functional unit (line 6), the algorithm schedules the
operation vU.poser, With the highest priority to the functional unit (line 13). Note that only operations
of the corresponding type of the current functional unit can be chosen (line 9). After the chosen
operation vcposen 18 scheduled, all the out edges (Venosens Vi) Of Venosen are deleted (line 18). If the
in-degree of v; equals 0, v; is added into the ready set Vr (line 20). Finally, the scheduling solution
is obtained in S”.

In the traditional list scheduling algorithm, the most widely-used priority function is:
Fi(i) = ALAP(v;) — ASAP(v;) (6)

where ASAP and AL AP are defined as in Section 3. The priority function F; describes the flexibility
of each node in the CDFG. This priority function follows a simple but effective rule: nodes with higher
flexibility are scheduled prior to nodes with lower flexibility. Recently, the force-directed priority
function [12] and the entropy-directed priority function [13] are designed for better scheduling
solutions. In the proposed NeuroSchedule method, our GNN-based priority function shows its
superiority to other methods.

A.2 Dataset Preparation

It is necessary to acquire sufficient data for training a GNN model to predict the operations’ priorities.
We propose a CDFG generation algorithm, which generates CDFGs with a balanced structure and
high diversity. Algorithm 3 presents the CDFG generation algorithm, where 1" denotes the number
of operations in the generated CDFG, M denotes the minimum number of operations in a layer, N
denotes the maximum number of operations in a layer, I denotes the rate that inter-layer operations
are connected, U denotes the rate that an operation is not connected to a predecessor, and G = (V, E)
denotes the generated CDFG. As shown in the algorithm, operations in the generated CDFG are
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arranged into several layers, and operations in the current layer are randomly connected to operations
in previous layers.

Algorithm 3 CDFG generation algorithm.
Imput: T, M. N, I,U
Output: Generated CDFG G = (V, E)
I: Ly < ¢, Lo~ ¢, Ly ¢,V ¢, E ¢
2: while 7" > 0 do
3: C + random.randint(M, N)

4: T+ T-C

S: repeat

6: C+—C-1

7 O <« newOperation()

8: O.optype < randomOpType()

9: V«Vuo
10: L3+ L3UO
11: if random.random() > U then
12: if random.random() < I then

13: 0" + selectRandomElement(L,)
14: else
15: O <« selectRandomElement(Ls)
16: E«+ EU(0,0")

17: until C' < 0
18: L1 «— L1 U Lg
19: LQ <— L3

20: L3 — ¢

21: return (V, E)

A.3 Dataset Details
Two datasets are synthesized for training and evaluating the proposed model. Details of the synthe-
sized datasets are presented as follows.

First, we synthesize a large dataset including 50000 CDFGs to train our model. The CDFGs are
randomly generated using the algorithm shown in Algorithm 3, and the labels are generated using
the ILP methods as introduced in Section 4. The numbers of functional units are randomly generated
according to the size of CDFG, using the following function:

)

Ny, = randInt(1, max(1, {MJ)

10
Second, a small dataset including 1000 CDFGs are built to evaluate our training settings in Section 5.2.
In the small dataset, the number of each functional unit is fixed to 1.
For better scalability on real applications, the dataset is extended to give more instructive information
to our GNN model. The node features for each node v; are a 11-dimensional vector F', and the details
are given as follows:
0-1 : Operation’s type (one-hot);
: Number of operation’s cycles;
: The scheduling result using ASAP method (normalized);
: The scheduling result using ALAP method (normalized);
: ASAP(v;) as introduced in Section 3;
: ALAP(v;) as introduced in Section 3;

: The scheduling result of traditional list scheduling algorithm using ALAP — ASAP as
the priority function;

~N O L AW
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8 : max ASAP(v;);

I
v; EV
9 : The maximum number of cycles obtained by traditional list scheduling algorithm;

10 : The number of corresponding functional units u,, .

Note that features F'[3, 4] are different from F'[5, 6], because F'[3, 4] are the scheduling results using
the idea of ASAP and ALAP, while considering the resource constraints. All the node features can be
obtained efficiently by the traditional list scheduling algorithm using ALAP — AS AP as the priority
function.

A.4 Model details

In our network model, we use a 5-layer GIN [14] to generate the learned operation embeddings. The
dimension of each GIN layer is 64. The learned operation embeddings are fed into a (64, 64) dense
layer, and then into a (64, 1) dense layer. The activation function of each layer in the model is ReLU.
There is a dropout layer between the 5-layer GIN model and the fully connected layers, while the
dropout value is set to be 0.5.

A.5 Experiment Configuration

In our training process, we train our model in 2 stages, pre-training and fine-tuning. More specifically,
we train our GNN model in the following way:

Stage 1 : Pre-training: We use our generated large dataset including 50000 CDFGs to train our
model. The dataset is divided into the training set consisting of 49000 CDFGs, and the
evaluation set consisting of 1000 CDFGs. The learning rate is set to be 0.0002 initially,
which decays by Ir = 0.9 x [r for each 10 epochs. We train the model for 2500 epochs.

Stage 2 : Fine-tuning: We use our generated small dataset including 1000 CDFGs to fine-tune our
model. The learning rate is set to be 0.0002 initially, which decays by ir = 0.9 x Ir for
each 10 epochs. We train the model for 25 epochs.
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