© N O O A~ W N =

o o b W N =2 O ©

18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

35
36
37
38

State-wise Constrained Policy Optimization

Anonymous Author(s)
Affiliation
Address

email

Abstract

Reinforcement Learning (RL) algorithms have shown tremendous success in simu-
lation environments, but their application to real-world problems faces significant
challenges, with safety being a major concern. In particular, enforcing state-wise
constraints is essential for many challenging tasks such as autonomous driving
and robot manipulation. However, existing safe RL algorithms under the frame-
work of Constrained Markov Decision Process (CMDP) do not consider state-wise
constraints. To address this gap, we propose State-wise Constrained Policy Opti-
mization (SCPO), the first general-purpose policy search algorithm for state-wise
constrained reinforcement learning. SCPO provides guarantees for state-wise con-
straint satisfaction in expectation. In particular, we introduce the framework of
Maximum Markov Decision Process, and prove that the worst-case safety violation
is bounded under SCPO. We demonstrate the effectiveness of our approach on
training neural network policies for extensive robot locomotion tasks, where the
agent must satisfy a variety of state-wise safety constraints. Our results show
that SCPO significantly outperforms existing methods and can handle state-wise
constraints in high-dimensional robotics tasks.

1 Introduction

Reinforcement learning (RL) has achieved remarkable progress in games and control tasks [Mnih
et al., 2015, |Vinyals et al., 2019} |Brown and Sandholm, [2018, He et al., 2022} |[Zhao et al., 2019].
However, one major barrier that limits the application of RL algorithms to real-world problems is
the lack of safety assurance. RL agents learn to make reward-maximizing decisions, which may
violate safety constraints. For example, an RL agent controlling a self-driving car may receive high
rewards by driving at high speeds but will be exposed to high chances of collision. Although the
reward signals can be designed to penalize risky behaviors, there is no guarantee for safety. In other
words, RL agents may sometimes prioritize maximizing the reward over ensuring safety, which can
lead to unsafe or even catastrophic outcomes [Gu et al., 2022].

Emerging in the literature, safe RL aims to provide safety guarantees during or after training. Early
attempts have been made under the framework of constrained Markov Decision Process, where the
majority of works enforce cumulative constraints or chance constraints [Ray et al.l 2019, |Achiam
et al.,|2017al |Liu et al., 2021]]. In real-world applications, however, many critical constraints are
instantaneous. For instance, collision avoidance must be enforced at all times for autonomous
cars [Zhao et al.| 2023]]. Another example is that when a robot holds a glass, the robot can only
release the glass when the glass is on a stable surface. The violation of those constraints will lead to
irreversible failures of the task. In this work, we focus on state-wise (instantaneous) constraints.

The State-wise Constrained Markov Decision Process (SCMDP) is a novel formulation in reinforce-
ment learning that requires policies to satisfy hard state-wise constraints. Unlike cumulative or
probabilistic constraints, state-wise constraints demand full compliance at each time step as for-
malized by [Zhao et al.|[2023]]. Existing state-wise safe RL methods can be categorized based on

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

59

60
61
62
63
64
65
66
67
68
69
70
71
72

73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

whether safety is ensured during training. There is a fundamental limitation that it is impossible to
guarantee hard state-wise safety during training without prior knowledge of the dynamic model. The
best we can achieve in a model free setting is to learn to satisfy the constraints using as few samples
as possible, which is the focus of this paper. We aim to provide theoretical guarantees on state-wise
safety violation and worst case reward degredation during training.

Our approach is underpinned by a key insight that constraining the maximum violation is equivalent
to enforcing state-wise safety. This insight leads to a novel formulation of MDP called the Maximum
Markov Decision Process (MMDP). With MMDP, we establish a new theoretical result that provides
a bound on the difference between the maximum cost of two policies for episodic tasks. This result
expands upon the cumulative discounted reward and cost bounds for policy search using trust regions,
as previously documented in literature [[Achiam et al.,[2017b]. We leverage this result to design a
policy improvement step that not only guarantees worst-case performance degradation but also ensures
state-wise cost constraints. Our proposed algorithm, State-wise Constrained Policy Optimization
(SCPO), approximates the theoretically-justified update, which achieves a state-of-the-art trade-off
between safety and performance. Through experiments, we demonstrate that SCPO effectively
trains neural network policies with thousands of parameters on high-dimensional simulated robot
locomotion tasks; and is able to optimize rewards while enforcing state-wise safety constraints. This
work represents a significant step towards developing practical safe RL algorithms that can be applied
to many real-world problems.

2 Related Work

2.1 Cumulative Safety

Cumulative safety requires that the expected discounted return with respect to some cost function is
upper-bounded over the entire trajectory. One representative approach is constrained policy optimiza-
tion (CPO) [[Achiam et al.,[2017al], which builds on a theoretical bound on the difference between
the costs of different policies and derives a policy improvement procedure to ensure constraints
satisfaction. Another approach is interior-point policy optimization (IPO) [Liu et al.l 2019]], which
augments the reward-maximizing objective with logarithmic barrier functions as penalty functions
to accommodate the constraints. Other methods include Lagrangian methods [Ray et al.| [2019]
which use adaptive penalty coefficients to enforce constraints and projection-based constrained
policy optimization (PCPO) [Yang et al.,[2020al] which projects trust-region policy updates onto the
constraint set. Although our focus is on a different setting of constraints, existing methods are still
valuable references for illustrating the advantages of our SCPO. By utilizing MMDP, SCPO breaks
the conventional safety-reward trade-off, which results in stronger convergence of state-wise safety
constraints and guaranteed performance degradation bounds.

2.2 State-wise Safety

Hierarchical Policy One way to enforce state-wise safety constraints is to use hierarchical policies,
with an RL policy generating reward-maximizing actions, and a safety monitor modifying the actions
to satisfy state-wise safety constraints. Such an approach often requires a perfect safety critic to
function well. For example, conservative safety critics (CSC) [Bharadhwaj et al., [2020] propose
a safe critic Q¢ (s, a), providing a conservative estimate of the likelihood of being unsafe given a
state-action pair. If the safety violation exceeds a predefined threshold, a new action is re-sampled
from the policy until it passes the safety critic. However, this approach is time-consuming. On
the other hand, optimization-based methods such as gradient descent or quadratic programming
can be used to find a safe action that satisfies the constraint while staying close to the reference
action. Unrolling safety layer (USL) [Zhang et al.| 2022a] follows a similar hierarchical structure as
CSC but performs gradient descent on the reference action iteratively until the constraint is satisfied
based on learned safety critic Q¢ (s, a). Finally, instead of using gradient descent, Lyapunov-based
policy gradient (LPG) [[Chow et al., 2019] and SafeLayer [Dalal et al.| 2018]] directly solve quadratic
programming (QP) to project actions to the safe action set induced by the linearized versions of some
learned critic Q¢ (s, a). All these approaches suffer from safety violations due to imperfect critic
Qc (s, a), while those solving QPs further suffer from errors due to the linear approximation of the
critic. To avoid those issues, we propose SCPO as an end-to-end policy which does not explicitly
maintain a safety monitor.

92
93
94
95
96
97
98
99
100
101
102
103
104

106
107

108

109

110
111
112
113
114
115
116
117
118

119
120

121
122

123

124
125
126
127

128
129

130
131

End-to-End Policy End-to-end policies maximize task rewards while ensuring safety at the same
time. Related work regarding state-wise safety after convergence has been explored recently. Some
approaches [Liang et al., 2018|, [Tessler et al., [2018]] solve a primal-dual optimization problem to
satisfy the safety constraint in expectation. However, the associated optimization is hard in practice
because the optimization problem changes at every learning step. [Bohez et al.|[2019] approaches
the same setting by augmenting the reward with the sum of the constraint penalty weighted by the
Lagrangian multiplier. Although claimed state-wise safety performance, the aforementioned methods
do not provide theoretical guarantee and fail to achieve near-zero safety violation in practice. [He
et al.[[2023] proposes AutoCost to automatically find an appropriate cost function using evolutionary
search over the space of cost functions as parameterized by a simple neural network. It is empirically
shown that the evolved cost functions achieve near-zero safety violation, however, no theoretical
guarantee is provided, and extensive computation is required. FAC [Ma et al.,[2021]] does provide
theoretically guaranteed state-wise safety via parameterized Lagrange functions. However, FAC
replies on strong assumptions and performs poorly in practice. To resolve the above issues, we
propose SCPO as an easy-to-implement and theoretically sound approach with no prior assumptions
on the underlying safety functions.

3 Problem Formulation

3.1 Preliminaries

In this paper, we are especially interested in guaranteeing safety for episodic tasks, which falls within
in the scope of finite-horizon Markov Decision Process (MDP). An MDP is specified by a tuple
(S, A,~v,R, P, 1), where S is the state space, and A is the control space, R : S X A — R is the
reward function, 0 < < 1 is the discount factor, i : S — R is the initial state distribution, and
P : §x AxS +— Ris the transition probability function. P(s’|s, a) is the probability of transitioning
to state s’ given that the previous state was s and the agent took action a at state s. A stationary
policy 7 : § — P(A) is a map from states to a probability distribution over actions, with 7(als)
denoting the probability of selecting action a in state s. We denote the set of all stationary policies by
II. Subsequently, we denote 7y as the policy that is parameterized by the parameter 6.

The standard goal for MDP is to learn a policy 7 that maximizes a performance measure 7, () which
is computed via the discounted sum of reward:

u7() (77) = ETNTK'

H
ZVtR(St,at,8t+1)1 y (D
t=0

where H € N is the horizon, 7 = [sg, ag, $1, -+], and 7 ~ 7 is shorthand for that the distribution
over trajectories depends on 7 : So ~ i, az ~ 7(-|8t), St41 ~ P(-|s¢, az).

3.2 State-wise Constrained Markov Decision Process

A constrained Markov Decision Process (CMDP) is an MDP augmented with constraints that restrict
the set of allowable policies. Specifically, CMDP introduces a set of cost functions, C1,Cs, - - - , Cyp,
where C; : S X A x S — R maps the state action transition tuple into a cost value. Analogous to (),
we denote

JCi (7T) = ETNTF

H
Z'Vtci(sta ag, St+1)] ()
t=0

as the cost measure for policy 7 with respect to cost function C;. Hence, the set of feasible stationary
policies for CMDP is then defined as follows, where d; € R:

He = {r € | Vi, Je, (7) < di}. 3)
In CMDP, the objective is to select a feasible stationary policy 7y that maximizes the performance

measure:

max Jo(m), s.t. 7€ Ie. 4)

132
133
134
135
136
137

138
139

140

141
142
143
144
145
146
147
148

149

150
151

152
153

154

155
156
157
158
159

161
162
163
164
165

In this paper, we are interested in a special type of CMDP where the safety specification is to persis-
tently satisfy a hard cost constraint at every step (as opposed to cumulative costs over trajectories),
which we refer to as State-wise Constrained Markov Decision Process (SCMDP). Like CMDP,
SCMDP uses the set of cost functions C, Cs, - - - , Cy, to evaluate the instantaneous cost of state
action transition tuples. Unlike CMDP, SCMDP requires the cost for every state action transition to
satisfy a hard constraint. Hence, the set of feasible stationary policies for SCMDP is defined as

1:[0 = {ﬂ— € H’V% E(st,at,st+1)~T,T~ﬂ [Ci(sta Qt, StJrl)] < wi} (5)

where w; € R. Then the objective for SCMDP is to find a feasible stationary policy from II¢ that
maximizes the performance measure. Formally,

max Jo(7), s.t.w € I¢ (6)

3.3 Maximum Markov Decision Process

Note that for (6), every state-action transition pair corresponds to a constraint, which is intractable to
solve using conventional reinforement learning algorithms. Our intuition is that, instead of directly
constraining the cost of each possible state-action transition, we can constrain the expected maximum
state-wise cost along the trajectory, which is much easier to solve. Following that intuition, we define
a novel Maximum Markov-Decision Process (MMDP), which further extends CMDP via (i) a set of
up-to-now maximum state-wise costs M = [My, Ms, - -- , M,;,] where M; € M C R, and (ii) a set
of cost increment functions, Dy, Da, -+ , Dy, where D; : (S, M™) x A x S — [0, R*] maps the
augmented state action transition tuple into a non-negative cost increment. We define the augmented

state § = (s, M) € (S, M™) = &, where S is the augmented state space. Formally,
D; (3¢, a1, 8141) = max{C;(s¢, ar, se41) — My, 0}. @)
By setting D; (50, a0,51) = Ci(s0,a0,51), we have My, = Sv_p Di(8k, ag, p41) for t > 1.

Hence, we define expected maximum state-wise cost (or D;-return) for :

H
ZDi(ét,at,ém)]. ®)

t=0

jDi (7T) = IE:‘r~7r

Importantly, is the key component of MMDP and differs our work from existing safe RL ap-
proaches that are based on CMDP cost measure (2). With (8), () can be rewritten as:

max J(m), s.t.Vi, Ip,(r) < wi, ©))

where 7 () = Eror {Zf: oV R(3, ar, gm)} and R(3,a,8) = R(s, a,s'). With R(r) being the

discounted return of a trajectory, we define the on-policy value function as V™ (8) = E, . [R(7)|$0 =
§], the on-policy action-value function as Q7 (8, a) = E,.[R(7)|50 = §, ap = a], and the advantage
function as A™(8,a) = Q™ (5,a) — V™ (8). Lastly, we define on-policy value functions, action-value
functions, and advantage functions for the cost increments in analogy to V™, @™, and A™, with D;
replacing R, respectively. We denote those by V7, QT and AT, .

4 State-wise Constrained Policy Optimization

To solve large and continuous MDPs, policy search algorithms search for the optimal policy within a
set Iy C II of parametrized policies. In local policy search [Peters and Schaal, 2008]], the policy is
iteratively updated by maximizing 7 () over a local neighborhood of the most recent policy 7. In
local policy search for SCMDPs, policy iterates must be feasible, so optimization is over Iy () IL¢.
The optimization problem is:

Tr+1 = argmax J (), (10)
melly
s.t. Dist(m,) < 4,
le(Tr) < wiai = 17 y M.

166
167
168
169
170
171
172
173

174
175

176
177
178
179

180
181
182
183
184
185
186

187

188
189

190
191

192

193

194

195
196

197

198
199
200

where Dist is some distance measure, and 6 > 0 is a step size. For actual implementation, we need
to evaluate the constraints first in order to determine the feasible set. However, it is challenging to
evaluate the constraints using samples during the learning process. In this work, we propose SCPO
inspired by recent trust region optimization methods [Schulman et al.|[2015]]. SCPO approximates
(TO) using (i) KL divergence distance metric Dist and (ii) surrogate functions for the objective and
constraints, which can be easily estimated from samples on 7. Mathematically, SCPO requires
the policy update at each iteration is bounded within a trust region, and updates policy via solving
following optimization:

Tr+1 = argmax E [A™ (8, a)] (11)
welly §;Nd:rk

s.t. Egogme [Drr(]|mr)[8]] <6,

1
Ip.(m)+ E AT (5,a) —|—2(H+1)6}5_\/§6§wi,izl,u-,m.
Srad™k : ‘

where Dgp(7'||7)[$] is KL divergence between two policy (7', 7) at state §, the set {w €
Iy : E;ogmn [PDrr(rwlmg)[8]] < 6} is called trust region, d™ = (1 —) Z:I:o VEP(8; = 8|my),
dm = Zf{:o P(3; = 8|mx) and €], = maxs|E,~-[AT (3, a)]|. We then show that SCPO guaran-
tees (i) worst case maximum state-wise cost violation, and (ii) worst case performance degradation

for policy update, by establishing new bounds on the difference in returns between two stochastic
policies 7 and 7’ for MMDPs.

Theoretical Guarantees for SCPO We start with the theoretical foundation for our approach,
i.e. a new bound on the difference in state-wise maximum cost between two arbitrary policies. The
following theorem connects the difference in maximum state-wise cost between two arbitrary policies
to the total variation divergence between them. Here total variation divergence between discrete
probability distributions p, ¢ is defined as Drv (pllg) = 3 Y-, |p; — ¢;|- This measure can be easily
extended to continuous states and actions by replacing the sums with integrals. Thus, the total variation
divergence between two policy (7/,) at state § is defined as: Dy (7' ||w)[5] = Dy (7' (+|8)]|7(-]3)).
Theorem 1 (Trust Region Update State-wise Maximum Cost Bound). For any policies 7', w, with
€r = max;|Eqn [AT (5, a)]|, and define d™ = Zf:o P(4; = 8|n) as the non-discounted aug-
mented state distribution using T, then the following bound holds:

Io(w') = Ip(m) < E_[AD(5,0) +2(H + 1)ep Doy («'|Im)[5] . (12)

’
anT

The proof for Theorem [I]is summarized in Appendix [A] Next, we note the following relationship
between the total variation divergence and the KL divergence [Boyd et al.| 2003} |/Achiam et al.,|2017a]:

E; g [Drv(pllq)[s]] < \/ 3E: =[P (pllq)[5]]. The following bound then follows directly from
Theorem [Tk

1
JD(’IT,) S jD(ﬂ') + ANEJ" AE(&G) + 2(H + 1)67[) \/QEéwdﬂ [DKL(’]T/||7T)[§]] . (13)

By Equation (I3), we have a guarantee for satisfaction of maximum state-wise constraints:
Proposition 1 (SCPO Update Constraint Satisfaction). Suppose 7y, w1 are related by (T1), then
D;-return for w41 satisfies

Vi, Ip, (Trt1) < w;.

Proposition |1| presents the first constraint satisfaction guarantee under MMDP. Unlike trust region
methods such as CPO and TRPO, which assume a discounted sum characteristic, MMDP’s non-
discounted sum characteristic invalidates these theories. As the maximum state-wise cost is calculated

201
202
203

204
205
206
207
208

209
210

211

212
213
214
215

216
217
218

219
220
221
222
223
224
225
226

227
228
229
230
231
232
233
234
235

237

238
239
240
241
242
243
244

through a summation of non-discounted increments, analysis must be performed on a finite horizon to
upper bound the worst-case summation. In contrast, the theory behind CPO relies on infinite horizon
analysis with discounted constraint assumptions, which is not applicable for MMDP settings.

Next, we provide the performance guarantee of SCPO. Previous analyses of performance guarantees
have focused on infinite-horizon MDP. We generalize the analysis to finite-horizon MDP, inspired
by previous work [Kakade and Langford, [2002} |Schulman et al.l 2015 |Achiam et al.l2017a], and
prove it in Appendix [B] The infinite-horizon case can be viewed as a special case of the finite-horizon
setting.

Proposition 2 (SCPO Update Worst Performance Degradation). Suppose 7y, 71 are related by
(1), with €™+ = max;|Eqon,, [A™ (5,)], 1

V25yem

T (Thy1) = T (mi) = — T

S Practical Implementation

In this section, we show how to (a) implement an efficient approximation to the update (TI)), (b)
encourage learning even when @]) becomes infeasible, and (c) handle the difficulty of fitting
augmented value V5 which is unique to our novel MMDP formulation. The full SCPO pseudocode
is given as algorlthmﬂ]m appendix [C]

Practical implementation with sample-based estimation We first estimate the objective and
constraints in (TT)) using samples. Note that we can replace the expected advantage on rewards using
an importance sampling estimator with a sampling distribution 7 [[Achiam et al.,[2017a] as

7(al$)

mr(al3)
(T4) allows us to replace A™ with empirical estimates at each state-action pair (§,) from rollouts
by the previous policy 7. The empirical estimate of reward advantage is given by R(8,a,8§") +
~V7T(8") — V™ (§). V™ (§) can be computed at each augmented state by taking the discounted
future return. The same can be applied to the expected advantage with respect to cost increments, with
the sample estimates given by D;(8,a, 8') + V*(8') — V5*(8). V3*(8) is computed by taking the
non-discounted future D;-return. To proceed we convex1fy @I) by approx1mat1ng the objective and

cost constraint via first-order expansions, and the trust region constraint via second-order expansions.
Then, (TT) can be efficiently solved using duality [Achiam et al/,[2017a.

Eswdmr, amn[AT5(5,0)] = Esvame, gy,

s

A™(5,a)| . (14)

Infeasible constraints An update to 6 is computed every time (TI)) is solved. However, due to
approximation errors, sometimes @ can become infeasible. In that case, we follow [[Achiam
et al.,[2017al] to propose an recovery update that only decreases the constraint value within the trust
region. In addition, approximation errors can also cause the proposed policy update (either feasible
or recovery) to violate the original constraints in (TT). Hence, each policy update is followed by
a backtracking line search to ensure constraint satisfaction. If all these fails, we relax the search
condition by also accepting decreasing expected advantage with respect to the costs, when the cost
constraints are already violated. Denoting ¢; = Jp, (7) +2(H + 1)€T,+/d/2 — w;, the above criteria
can be summarized as

Esnigm [Drer(wl[me)[3]] < 0 (15)
Eidmi amn [A”’?(§,a)] —E [A’T’? (8,a)] < max(—c;,0). (16)

Note that the previous expected advantage E;_gr. 4, [A’”‘ (8, a)} is also estimated from rollouts
by 7 and converges to zero asymptotically, which recovers tﬁe original cost constraints in (TT).

§~d™k jar~Ty

Imbalanced cost value targets A critical step in solving is to fit the cost increment value
functions V3" (3;). By definition, V5*(5;) is equal to the maximum cost increment in any future
state over the ‘maximal state-wise cost so far. In other words, the true VJ* will always be zero for all
S¢. ;7 when the maximal state-wise cost has already occurred before tlme t. In practice, this causes
the distribution of cost increment value function to be highly zero-skewed and makes the fitting very
hard. To mitigate the problem, we sub-sample the zero-valued targets to match the population of
non-zero values. We provide more analysis on this trick in Q3 in section [6.2]

245

246

247
248

249

251
252

254
255

257

258

259
260

274

275

6 Experiments

In our experiments, we aim to answer these questions:

Q1 How does SCPO compare with other state-of-the-
art methods for safe RL?

Q2 What benefits are demonstrated by constraining
the maximum state-wise cost?

Q3 How do the sub-sampling trick of SCPO impact
its performance?

6.1 Experiment Setups

New Safety Gym To showcase the effectiveness
of our state-wise constrained policy optimization ap-
proach, we enhance the widely recognized safe rein-
forcement learning benchmark environment, Safety
Gym Ray et al.|[2019], by incorporating additional
robots and constraints. Subsequently, we perform a
series of experiments on this augmented environment.

Our experiments are based on five different robots: (i)
Point: Figure[2al A point-mass robot (A C R?) that
can move on the ground. (ii) Swimmer: Figure|7_5|
A three-link robot (4 C R?) that can move on the
ground. (iii) Walker: Figure 2d| A bipedal robot

Reward_Performance
Reward_Performance

— e TRPO-USL cpo
grangian — TRPO-IPO PCPO
TRPO-FAC

0.0 f— Teo — TRPOUSL cpo -1
TRPO-Lagrangian —— TRPO-IPO pcPO
-05 — TRPOSL TRPO-FAC —— SCPO

05

RPO-Lag

— TRROSL

10 15 20 25 30 05 15 20

TotalEnvinteracts 167 TotalEnvinteracts
— o

8 — TRPO-Lagrangian

[y~ reo-sL

TRPO-USL o
— TRPO-IPO pcPO
TRPO-FAC

Cost_Performance

Cost_Performance

05

0 15 20 25 30
TotalEnvinteracts 17

TRPO-USL cpo
g — TRPOIPO PCPO
TRPOFAC —— SCPO.

s

Cost_Rate_perft

10 20 25 30
TotalEnvinteracts 1e7

(b) Walker-Hazard-8

05

10 15 20 25 30 05
TotalEnvinteracts 1e7

(a) Ant-Hazard-8

Figure 1: Comparison of results from two repre-
sentative test suites in high dimensional systems
(Ant and Walker).

(A C R19) that can move on the ground. (iv) Ant: Figure[2d A quadrupedal robot (A C R®) that
can move on the ground. (v) Drone: Figure [2e| A quadrotor robot (A C R%) that can move in the air.

All of the experiments are based on the goal task where the robot must navigate to a goal. Additionally,
since we are interested in episodic tasks (finite-horizon MDP), the environment will be reset once the
goal is reached. For the robots that can move in 3D spaces (e.g, the Drone robot), we also design a
new 3D goal task with a sphere goal floating in the 3D space. Three different types of constraints are
considered: (i) Hazard: Dangerous areas as shown in Figure[3a] Hazards are trespassable circles on
the ground. The agent is penalized for entering them. (ii) 3D Hazard: 3D Dangerous areas as shown

in Figure 35

3D Hazards are trespassable spheres in the air. The agent is penalized for entering them.

(iii) Pillar: Fixed obstacles as shown in Figure[3c} The agent is penalized for hitting them.

]

(a) Point

> X

(b) Swimmer

(c) Ant

n +

(d) Walker (e) Drone

Figure 2: Robots for benchmark problems in upgraded Safety Gym.

(a) Hazard

(b) 3D Hazard

(c) Pillar

Figure 3: Constraints for benchmark problems in upgraded Safety Gym.

276
277
278

279

281
282
283
284
285

287
288
289

290
291
292
293
294
295
296

297

298
299
300
301

303
304

Reward_Performance

TRPO-FAC

> 4
TotalEnvinteracts le6
5 — treo

TRPO Lagrangian
o f— meost

— TRPO-USL cpo
— TRPO-PO
TRPO-FAC

Cost_Performance

6

2 3 4
TotalEnvinteracts 1e6

le-2

— TR0
FRPO-Lagrangian

—HiTibo. 1

— TRPO-USL cpo
— TRPO-IPO. PCOP.
TRPO-FAC — SCPO

Cost_Rate_Performance

2 3 4 5 6
TotalEnvinteracts 1e6

(a) Point-Hazard-8

'i
%‘t

Reward_Performance
Reward_Performance

— PO
TRPO-Lagrangian
— TRPO-SL

— TRPO-USL cPo
— TRPO-IPO PCOP
TRPO-FAC

2 3 4
TotalEnvinteracts 1le6

TRPO-USL cPo
an — TRPO-IPO PCOP
TRPO-FAC

5

ost_Performance
5

Cos

2 3 a
TotalEnvinteracts le6

— TRPO-USL cPo
n — TRPOPO PCOP
JRPO-FAC — SCPO

2 3 a 5 6
TotalEnvinteracts 1le6

(b) Point-Pillar-4

5

TRPO — TRPO-USL cpo
TRPO-Lagrangian —— TRPO-IPO pcop
— TRPO-SL TRPOFAC —— SCPO

2 3 4
TotalEnvinteracts 1e6
— TRPO-USL cPo

— TRPOPO — PCOP.
TRPO-FAC — SCPO

Cost_Performance

°

2 3 4 5 6
TotalEnvinteracts 1le6

1le-3

o ErTN G e Lo

Cost_Rate_Performance

2 3 4 5 6
TotalEnvinteracts 1e6

(c) Swimmer-Hazard-8

=

Reward_Performance

— PO
TRPO-Lagrangian

-6 — TRPO-SL TRPO-FAC

2 4
TotalEnvinteracts le6

4 — TRPO
TRPO-Lagrangian

— TRPO-SL

— TRPO-USL cPo
— TRPO-PO.
TRPO-FAC

Cost_Performance

°

2 3 a 6
TotalEnvinteracts 1e6

1e-3
— PO

TRPO-Lagrangian
— TRPOSL

— TRPO-USL cPo
— TRPO-PO PCOP.
TRPO-FAC — SCPO

Cost_Rate_Performance
o RN G s e

2 3 4 5 6
TotalEnvinteracts le6

(d) Drone-3DHazard-8

Figure 4: Comparison of results from four representative test suites in low dimensional systems (Point, Swimmer,
and Drone).

Considering different robots, constraint types, and constraint difficulty levels, we design 14 test suites
with 5 types of robots and 9 types of constraints, which are summarized in Table[I]in Appendix. We
name these test suites as {Robot}-{Constraint Type}-{Constraint Number}.

Comparison Group The methods in the comparison group include: (i) unconstrained RL algorithm
TRPO [Schulman et al., 2015]] (ii) end-to-end constrained safe RL algorithms CPO [Achiam et al.}
2017al], TRPO-Lagrangian [Bohez et al.,[2019], TRPO-FAC [Ma et al.,2021], TRPO-IPO [Liu et al.|
2020], PCPO [Yang et al., | 2020b], and (iii) hierarchical safe RL algorithms TRPO-SL (TRPO-Safety
Layer) [Dalal et al.,[2018]], TRPO-USL (TRPO-Unrolling Safety Layer) [Zhang et al.,[2022b]. We
select TRPO as our baseline method since it is state-of-the-art and already has safety-constrained
derivatives that can be tested off-the-shelf. For hierarchical safe RL algorithms, we employ a warm-up
phase (1/3 of the whole epochs) which does unconstrained TRPO training, and the generated data
will be used to pre-train the safety critic for future epochs. For all experiments, the policy m, the value
(V™, V) are all encoded in feedforward neural networks using two hidden layers of size (64,64)
with tanh activations. More details are provided in Appendix

Evaluation Metrics For comparison, we evaluate algorithm performance based on (i) reward
performance, (ii) average episode cost and (iii) cost rate. Comparison metric details are provided
in Appendix [D.3] We set the limit of cost to O for all the safe RL algorithms since we aim to avoid
any violation of the constraints. For our comparison, we implement the baseline safe RL algorithms
exactly following the policy update / action correction procedure from the original papers. We
emphasize that in order for the comparison to be fair, we give baseline safe RL algorithms every
advantage that is given to SCPO, including equivalent trust region policy updates.

6.2 Evaluating SCPO and Comparison Analysis

Low Dimension System We select four representative test suites on low dimensional system
(Point, Swimmer, Drone) and summarize the comparison results on Figure EL which demonstrate
that SCPO is successful at approximately enforcing zero constraints violation safety performance
in all environments after the policy converges. Specifically, compared with the baseline safe RL
methods, SCPO is able to achieve (i) near zero average episode cost and (ii) significantly lower
cost rate without sacrificing reward performance. The baseline end-to-end safe RL methods (TRPO-
Lagrangian, TRPO-FAC, TRPO-IPO, CPO, PCPO) fail to achieve the near zero cost performance

305
306
307
308
309
310
311
312
313

314
315
316
317
318
319
320
321
322
323
324
325

326
327
328
329
330

331
332
333
334
335
336
337
338
339
340
341
342
343
344

345

346
347
348
349
350
351

352
353
354
355
356

even when the cost limit is set to be 0. The baseline hierarchical safe RL methods (TRPO-SL,
TRPO-USL) also fail to achieve near zero cost performance even with an explicit safety layer to
correct the unsafe action at every time step. End-to-end safe RL algorithms fail since all methods
rely on CMDP to minimize the discounted cumulative cost while SCPO directly work with MMDP
to restrict the state-wise maximum cost by Proposition [T} We also observe that TRPO-SL fails to
lower the violation during training, due to the fact that the linear approximation of cost function
C(8¢,a, §;41) [Dalal et al., 2018] becomes inaccurate when the dynamics are highly nonlinear like
the ones we used in MuJoCo [Todorov et al., [2012]]. More detailed metrics for comparison and
experimental results on test suites with low dimension systems are summarized in Appendix

High Dimension System To demonstrate the scalability and per-
formance of SCPO in high-dimensional systems, we conducted ad-
ditional tests on the Ant-Hazard-8 and Walker-Hazard-8 suites, with
8-dimensional and 10-dimensional control spaces, respectively. The
comparison results for high-dimensional systems are summarized in ¢
Figure|l} which show that SCPO outperforms all other baselines in
enforcing zero safety violation without compromising performance £
in terms of return. SCPO rapidly stabilizes the cost return around 2
zero and significantly reduces the cost rate, while the other baselines 0s
fail to converge to a policy with near-zero cost. The comparison

results of both low dimension and high dimension systems answer

QL.

—— Walker
— Ant

1.0 1.5 2.0 25 3.0
TotalEnvinteracts le7
Figure 5:
Maximum state-wise cost

Maximum State-wise Cost As pointed in Section[3.3] the under-

lying magic for enabling near-zero safety violation is to restrict the maximum state-wise cost to stay
around zero. To have a better understanding of this process, we visualize the evolution of maximum
state-wise cost for SCPO on the challenging high-dimensional Ant-Hazard-8 and Walker-Hazard-8
test suites in Figure[5], which answers Q2.

Ablation on Sub-sampling Imbalanced Cost Incre-
ment Value Targets As pointed in Section [3] fit-

— with downsampling

. without downsampling

ting V5" (8;) is a critical step towards solving SCPO, ¢ ° JW/J i i e
which is challenging due to zero-skewed distribution § -, £

of cost increment value function. To demonstrate 2 N “ﬁ

the necessity of sub-sampling for solving this chal- & .. “ JLW”WM

lenge, we compare the performance of SCPO with
and without sub-sampling trick on the aerial robot
test suite, summarized in Figure@ It is evident that
with sub-sampling, the agent achieves higher rewards
and more importantly, converges to near-zero costs.
That is because sub-sampling effectively balances the cost increment value targets and improves
the fitting of V5*(5;). We also attempted to solve the imbalance issue via over-sampling non-zero
targets, but did not observe promising results. This ablation study provides insights into Q3.

5 6

s A 2 3 4
TotalEnvinteracts le6

2 3 4
TotalEnvinteracts 1e6

Figure 6: SCPO sub-sampling ablation study with
Drone-3DHazard-8

7 Conclusion and Future Work

This paper proposed SCPO, the first general-purpose policy search algorithm for state-wise con-
strained RL. Our approach provides guarantees for state-wise constraint satisfaction at each iteration,
allows training of high-dimensional neural network policies while ensuring policy behavior, and is
based on a new theoretical result on Maximum Markov Decision Process. We demonstrate SCPO’s
effectiveness on robot locomotion tasks, showing its significant performance improvement compared
to existing methods and ability to handle state-wise constraints.

Limitation and future work One limitation of our work is that, although SCPO satisfies state-wise
constraints, the theoretical results are valid only in expectation, meaning that constraint violations
are still possible during deployment. To address that, we will study absolute state-wise constraint
satisfaction, i.e. bounding the maximal possible state-wise cost, which is even stronger than the
current result (satisfaction in expectation).

357

358
359
360

361

363

364
365

366
367
368

369
370

371
372

374
375

376
377

378
379
380

381
382
383

384
385

386
387

388
389
390

391
392

393
394

395
396

398
399

400
401

402

References

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats top
professionals. Science, 359(6374):418-424, 2018.

Tairan He, Yuge Zhang, Kan Ren, Minghuan Liu, Che Wang, Weinan Zhang, Yuqing Yang, and
Dongsheng Li. Reinforcement learning with automated auxiliary loss search. arXiv preprint
arXiv:2210.06041, 2022.

Wei-Ye Zhao, Xi-Ya Guan, Yang Liu, Xiaoming Zhao, and Jian Peng. Stochastic variance reduction
for deep g-learning. arXiv preprint arXiv:1905.08152, 2019.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and
Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. CoRR, abs/1910.01708, 2019.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pages 22-31. PMLR, 2017a.

Yongshuai Liu, Avishai Halev, and Xin Liu. Policy learning with constraints in model-free reinforce-
ment learning: A survey. In The 30th International Joint Conference on Artificial Intelligence
(IJCAI), 2021.

Weiye Zhao, Tairan He, Rui Chen, Tianhao Wei, and Changliu Liu. State-wise safe reinforcement
learning: A survey. The 32nd International Joint Conference on Artificial Intelligence (IJCAI),
2023.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pages 22-31. PMLR, 2017b.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. IPO: interior-point policy optimization under constraints.
CoRR, abs/1910.09615, 2019. URL http://arxiv.org/abs/1910.09615,

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge. Projection-based
constrained policy optimization. CoRR, abs/2010.03152, 2020a. URL https://arxiv.org/
abs/2010.03152.

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
Animesh Garg. Conservative safety critics for exploration. arXiv preprint arXiv:2010.14497, 2020.

Linrui Zhang, Qin Zhang, Li Shen, Bo Yuan, Xueqian Wang, and Dacheng Tao. Evaluating model-free
reinforcement learning toward safety-critical tasks. arXiv preprint arXiv:2212.05727, 2022a.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. /ICML 2019
Workshop RL4RealLife, abs/1901.10031, 2019.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. CoRR, abs/1801.08757, 2018.

Qingkai Liang, Fanyu Que, and Eytan Modiano. Accelerated primal-dual policy optimization for
safe reinforcement learning. arXiv preprint arXiv:1802.06480, 2018.

Chen Tessler, Daniel J] Mankowitz, and Shie Mannor. arXiv preprint arXiv:1805.11074, 2018.

10

http://arxiv.org/abs/1910.09615
https://arxiv.org/abs/2010.03152
https://arxiv.org/abs/2010.03152
https://arxiv.org/abs/2010.03152

403
404

405
406

407
408
409

410
411

412
413
414

415
416

417
418
419

420
421
422

423
424

425
426
427

428
429
430

Steven Bohez, Abbas Abdolmaleki, Michael Neunert, Jonas Buchli, Nicolas Heess, and Raia Hadsell.
Value constrained model-free continuous control. arXiv preprint arXiv:1902.04623, 2019.

Tairan He, Weiye Zhao, and Changliu Liu. Autocost: Evolving intrinsic cost for zero-violation
reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

Haitong Ma, Yang Guan, Shegnbo Eben Li, Xiangteng Zhang, Sifa Zheng, and Jianyu Chen. Feasible
actor-critic: Constrained reinforcement learning for ensuring statewise safety. arXiv preprint
arXiv:2105.10682, 2021.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682-697, 2008.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889-1897. PMLR,
2015.

Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. lecture notes of EE3920,
Stanford University, Autumn Quarter, 2004:2004-2005, 2003.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, pages 267-274,
2002.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 49404947,
2020.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020b.

Linrui Zhang, Qin Zhang, Li Shen, Bo Yuan, and Xueqian Wang. Saferl-kit: Evaluating efficient
reinforcement learning methods for safe autonomous driving. arXiv preprint arXiv:2206.08528,
2022b.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026-5033.
IEEE, 2012.

11

431

436
437

439

440

441

442

443

444
445

446

447

448
449
450

451
452

A Proof for Theorem /(1

To prove Theorem I] we bound the new policy improvement in Lemma[d] which relies on bounding
the cost increment (given in Lemma[2)) and the divergence (given in Lemma 3).

Then Theoremcan be proven by letting f = V5 in LemmaE], which leads to following inequality:

For any policies 7/, 7, with €5 = maxs| Eyr [AT (5, a)]|, the following bound holds:

Io(w) = Ip(®) < E_[AD(5,a) +2(H + 1)ef, Dy («'||)[3]

Next, we present the cost increment bound and the divergence bound, then follows by the new policy
improvement bound.

A.1 Cost Increment Bound

To introduce the cost increment bound, we first give an equivalent representation of the cost.
Lemma 1. For any function f : S— Rand any policy T,

o) = B[]+ E DG as)+ /()= 1) a7

a~T

§'~P

Proof. d™ is defined as

H

d™(3) =Y P(3 = §|m), (18)

t=0

then it allows us to express the expected non-discounted total reward compactly as:

Ip(m) = E_[D(5,0.5). (19)

§'~P
where by a ~ 7, we mean a ~ 7(+|8), and by §’ ~ P,we mean §' ~ P(:|$,a). We drop the explicit
notation for the sake of reducing clutter, but it should be clear from context that a and $’ depend on &.

Define P(§'|$, a) is the probability of transitioning to state §" given that the previous state was § and
the agent took action a at state §, and i : S — [0, 1] is the initial augmented state distribution. Let

pl € RI8| denote the vector with components pL(8) = P(8; = §|m), and let P, € RISI*ISI denote
the transition matrix with components Py (8'|3) = [P(8'|3,a)m(a|3)da; then p!. = Prpi=' = Pij
, we have:

dm = (Pr)'f (20)

= (1= (P (I - Pr) 4
= (B =PI = Py) !
— (=P

Noticing that the finite MDP ends up at step H, thus pZ+1 = 0.

12

453

454

455

456

457

458
459

460
461

462

463

464

465

466

467

468

By multiplying (I — P,) for both sides of (20), the following equality holds:

—(I — P)d™ + i =0, (21)
then take the inner product with the vector f € RI$I to both sides of (Z1), we have
E[f(®I+ E [f(&] - E [f(3)]=0.
S~j1 S~d S~d™
P
Combining this with (T9) gives (T7). O
Lemma 2. For any function f — D and any policies 7' and w, define
'oia
12y = B (T 1) (DGad) + 1) - 16). @)
’ s~d™ [\ m(al$)
&
and €' = maxs [Eqor g~ p[D(8,a,8") + f(8') — f(3)]|. Then the following bounds hold:
Ip(w') = Tp(w) 2 Ly g (x') = 26F Dy (d” ||d"7), (23)
Ip(x') = Tp(m) < L, s (n') + 26§ Dy (d" ||d"), (24)

where Dy is the total variational divergence. Furthermore, the bounds are tight(when ' = 7, the
LHS and RHS are identically zero).

Proof. First, for notational convenience, let §¢(3, a, ') = D(3,a,8") + f(8') — f(3). By Lemmall}
we obtain the identity

Ip(n') = Tp(r) = E [5;(3,a,8)] — AECZW[Sf(g,a, 8] (25)
s~d™ s~
g,NN’}; 4P

Now, we restrict our attention to the first term in this equation. Let Té’;/ € RIS| denote the vector of

components Té}r/(é) = Eqn 5~p[07(8,a,§")|3]. Observe that

E [0(3.a,8)] = (d",157) 26)
s~d” ’
&P
_ <Jﬂ,15; > n <Jﬂ — ", 167 >
. N . . 1 1
With the Holder’s inequality; for any p, g € [1, 0o] such that }; + a =1, we have
<CZW, w;:’> n ‘ a7 —d Hw;’ > E [3;(5,a,8)) > <&W, T(s;:’> _ ‘ a7 —dr Hw;ﬁ’
P q §Nd‘ﬂ,’ P q
&P
(27)
We choose p = 1 and g = oo; With ‘ d™ —dr| =2Dpy(d™||d") and HT(S;{/ = €}r,, and by the
1 o]

importance sampling identity, we have

(r15)

After bringing @28), ||d™ — d~

>
1

§'~P
are obtained. The lower bound leads to (23)), and the upper bound leads to (24).

0%

E [gf (‘§7 a, gl)}
S~d™

§'~P

s~d”™
an~T

§'~P

an~T

13

(28)

into (27), then substract E_[§(3, a, §')], the bounds
0 ~d™

O

469

470

471

472
473
474

475

476

477

4

3
®©

479

A.2 Divergence Bound

Then we will bound the divergence term, ||d™ — d”||1, i.e. 2Dpy (d™ ||d™).

Lemma 3. The divergence between future state visitation distributions, ™ —d~

an average divergence of the policies ™' and :

1, is bounded by

| =™y <2(H +1) E_[Dry(a|[m)[3],

S~

where Dry (n'||7)[8] = % 20 7' (al3) = m(al3)].

Proof. Firstly, we introduce an identity for the vector difference of the non-discounted future state
visitation distributions on two different policies, 7" and 7. Define the matrices G = (I — P,) "1, G' =
(I — Py)~',and A = Py, — P,. Then:

Gl-Gl=(I-P)—(-Py) (29)
=A

left-multiplying by G' and right-multiplying by G’, we obtain

G -G =GAG. (30)
According to (30) and (20),
" —d = (G'-G)p 31)
=G'AG[
=G'Ad".
Using (31)), we obtain
Il — ™|l = | &' Ad7|s (32)
< NG Il AT,
where ||G'|; is bounded by:
- _ > > o PLllullfll
e R DR e e (33)
t=0

0o ~ H ~ H
_ || Zt:OP;’MHl _ || Zt:opﬁ’:u’Hl :HZPt ||1
Al Al 2 Fx

H
<D NPeli=H+1

t=0

To conclude the lemma, we further bound ||Ad™||; as:

14

480

481

482

483

484

485
486

|AdT[ly =) ZA(é’lé)J”@) (34)

IA
]
b

= 3PS a) (7 als) - w(als)) |a7(3)

58 a

> P(#5,a)

3,a,8

- ¥

s,a

2 B [Dry(|ln)(8]

IN

7 (a) — m(al8)|d7 (3)

7' (al3) — w(al3)|d™(3)

By taking (34) and (33) into (32)), this lemma is proved.

A.3 New Policy Improvement Bound

The new policy improvement bound follows immediately.

Lemma 4. For any function f : S — R and any policies 7' and , define §¢(3,a,8') = D(3,a,8') +

1) - £(5),)
é?/ = max |Ea~ﬂ”§'~P[5f(§v a, §/)]|7
'
L. N~ E 7T(a|3)_1 5e(5.a.8 d
() N [(w(a|§) #(5,a,8)|,an
5P
DZ (') = Ly g (') £ 2(H + 1)&} E [Dry(x'||m[s],
where Dpy ('||7)[8] = 3 Y, |7/ (a|8) — 7(al3)| is the total variational divergence between action

distributions at 3. The following bounds hold:
Dy (') > Ip(n") = Ip(m) > D ().

Furthermore, the bounds are tight (when 7' = 7, all three expressions are identically zero)

Proof. Begin with the bounds from Lemmaand bound the divergence Dy (d™ ||d™) by Lemma
O

15

487

488

490

491

492

493

494
495

496

497
498

499

500

501

502

503

B Proof for Proposition 2]

Proof. Here we first present a new bound on the difference in returns between two arbitrary policies
in the context of finite-horizon MDP:
Theorem 2 (Trust Region Update Performance). For any policies ', m, with o=

mazs|Egmr [A™ (5, a)]

H
, and define d™ = (1 —7) > v*P(5; = §|m) as the discounted augmented
=0

state distribution using T, then the following bound holds:

Iy - T = ﬁ E, {A“(é,a) - f”_e:DTm’llw){é}] (35)

We provide the proof for Theorem [2]in Appendix The following bound then follows directly
from Theorem [2]using the relationship between the total variation divergence and the KL divergence:

1 2ve™ 1
Ty =T (x) > ﬁgl%ﬂ {A”(,é,a) - 17_67\/21@%6” [DKL(W’||7T)[§]]} (36)

In (TT), the reward performance between two policies is associated with trust region, i.e.

Tr+1 = argmax E [A™ (8, a)] 37)
m€elly 5;5;’“

st. Esogm [Prr(mlme)[s] < 6.

Due to Lemma 5] (proved in Appendix [B.T)), if two policies are related with Equation (37), they are
related with the following optimization:

mr+1 = argmax E [A™ (3, a)] (38)
w€elly ‘§a"’g:rk

s.t. Ezogmr [DKL(W||7Tk)[§]] <.

By (36) and (38), if 7y, mx+1 are related by (IT)), then performance return for 7441 satisfies

V26yeTr+1
I(mi) = I (m) 2 1.
-7
O
B.1 KL Divergence Relationship Between d™* and d™*
Lemma$. B [Dri(v/|m)[E] < E [Drr(r|m)[]
Proof.
H
E [DPrer(|m)[s]] = > (1= A'P(3 = 8|m)Dicr (||) [3]
T B t=0
H
<3S4 P(se = s Drer (7| m) 8
s t=0
H
<D > P(3 = 8|m) D (|| m) (3]
5 t=0
=K [Drcr(7'||7)[3]].
O

16

504

505

506

507

508
509

510
511

512
513
514

515
516

517

518

519

520

521

522

523
524

525

B.2 Proof for Theorem
B.2.1 PRELIMINARIES

d™ we used is defined as

d(3) = (1=9) > _+'P(3 = 8|r). (39)

J(r)=—— E [R(5,a,3)], (40)

where by a ~ 7, we mean a ~ 7(+|8), and by § ~ P,we mean §' ~ P(:|$,a). We drop the explicit
notation for the sake of reducing clutter, but it should be clear from context that a and §’ depend on §.
Define P(§’|3, a) is the probability of transitioning to state §" given that the previous state was § and
the agent took action ¢ at state §, and i : S — [0, 1] is the initial augmented state distribution. Let

pt. € RIS denote the vector with components pl(3) = P(st = s|7r), and let P, € RISI*I5] denote
the transition matrix with components P (= [P(8'|3,a)m(a|3)da; then p!. = Prpi=t = Pl
and

d™ = (1 -) (vPx)' (41)

oMm

=(1 7)(1 (YP) "I — A Pr)
=1 —-)(a—~"" H“)(I WP)
=1 =) —vPr)"

Noticing that the finite MDP ends up at step H, thus pZ+1 = 0.

This formulation helps us easily obtain the following lemma.

Lemma 6. For any function f : S+ Rand any policy T,

(1= E UGN+ E @) - E 6] =0. “2)

§'~P

Proof. Multiply both sides of @I)) by (I — vP;) and take the inner product with the vector f €
RIS, O

Combining Lemma 6| with (#0), we obtain the following, for any function f and any policy m:

I = B [FG)+ == B_[RG,08) +2f() - F6)] @3)
S~ [’Ysarj;dw
§'~P

B.2.2 MAIN RESULTS

In this section, we will derive and present the new policy improvement bound. We will begin with a
lemma:

Lemma 7. For any function f — R and any policies 7' and w, define

Lﬂ,fw’)ﬁiNNEd;[(1’&5}—1) (R(5,0,8) + () - 1) (@)
§~P

17

526

527
528

529
530

531

533

534

535

536

537
538

539

and €' = maxs [Eqor g~ p[R(3,a,8") +7f(8") — f(8)]]. Then the following bounds hold:

1 / /
Ty =T (x) > i (L,Tyf(wf) — 2¢} Dy (d™ ||dvr)> 7 (45)
1 / /
T = T(r) < R (L,Tyf(wf) +2€} Dy (d™ ||d7r)> 7 (46)
where Dy is the total variational divergence. Furthermore, the bounds are tight(when 7' = 7, the
LHS and RHS are identically zero).

Proof. First, for notational convenience, let d¢(8,a, §') = R(8,a,8") +vf(8') — f(8). By (@3), we
obtain the identity

I) = I = = | B 350,80 = B 35,0, @7
o o5

§'~P

Now, we restrict our attention to the first term in (@7). Let T(S}r/ € RI®l denote the vector of
components, where Té}rl(§) =Eqr 5~pP[0f(3,a,5)|5]. Observe that

B [7(3,a.)] = (4, 167)

S~

an~/ T

§'~P
- <d”, w}“> + <d”’ — w;:’>

1 1
With the Holder’s inequality; for any p, ¢ € [1, co] such that — + — = 1, we have
p q

<dﬂ,¢5;§ > + ‘ a —d| |7 | > E (50,8 > <dw5;: > _ ‘ a' —a| |7
P q smd P q
a~’
§'~P
(48)
We choose p = 1 and g = oo; With ’ d™ —d™| =2Dpy(d™||d™) and HT(S;{/ = e}r,, and by the
1 e}
importance sampling identity, we have
(4,167) = B [5(5,0,8) (49)
&l
7' (al8) .
= E) !
B (T) o)
§'~P
After bringing @9), ||d™ — d~|| , Té}r/ into (@8), then substract % [0¢(3,a,8")], the bounds
1 %) S~d™
5
are obtained. The lower bound leads to (#3)), and the upper bound leads to ({@6). O

Then we will bound the divergence term, ||d™ — d™||1, i.e. 2Dpy (d™ ||d™).

d™ —dr

Lemma 8. The divergence between discounted future state visitation distributions, 1, IS
bounded by an average divergence of the policies 7' and T:
/ 2y .
14" = d™lh < 7= E_[Drv('|[m)[3]], (50)
— /Y SNdﬂ'

where Dry (n'[|7)[3] = % 2.q |7 (a]8) — (al3)]-

18

540
541
542

543

544

545

546

547

548

549

550

Proof. Firstly, we introduce an identity for the vector difference of the discounted future state
visitation distributions on two different policies, 7’ and 7r. Define the matrices G = (I—yP,)%, G =
(I —yPy)~1,and A = P,s — Py. Then:

G ' -G ' =(I—-~P;)— (I —~Py) (51)
=74,

left-multiplying by G and right-multiplying by G, we obtain

G — G =~vGAG. (52)
Thus, the following equality holds:
d” —d"=(1-7)(G-G)p (53)
=7(1 - 7)GAGh
= yGAd"
Using (53), we obtain
& — ™[y = Y| GAd | (54)

<Gl AdT1,

where ||G/|; is bounded by:

IGIl = 17 = Pr) "Ml < DA Pl = (1= (55)
t=0

Next, we bound || AdT|| as following:

(56)

ladl = D21 AE18)d7()
< Y AFR)AT(3)

3,8

= Y D P#50) (' (al3) - w(al3))

5,8

dr(s)

< Y PE3a)n'(al3) - w(al3)|d" ()

5,a,8

- Z |7’ (al§) — m(al8)|d™(8)

2 E [Drv(w'||m)[s])

By taking (56) and (53) into (54), this lemma is proved.

The new policy improvement bound follows immediately.

19

551

552
553

554

555
556

557

Lemma 9. For any function f : S — R and any policies ' and =, define 0¢(5,a,8) = R(5,a,8") +
Vf(8) = f(3),

6;/ = max |Eqr a7~ p[0f(8, a,8")]],
1 A~

L. ()= E W(a|s)_1 500308 p

,f(7T) o [(W(a|§) f(s,a,s) , an
P
Ly f(m") 2767]5') X

: + E [D

1—7 (1_7)2§~dﬂ[rv (7| |m)[8]],

1

where Dy ('||m)[8] = 5 >, |7’ (al8) — w(al3)| is the total variational divergence between action
distributions at §. The following bounds hold:

Dy (n') 2 J(x') = I (m) 2 D 4(7).

D7:1|':,f(7r/) =

Furthermore, the bounds are tight (when 7' = 7, all three expressions are identically zero)

Proof. Begin with the bounds from lemma and bound the divergence Dty (d”/ ||d™) by lemma
O

B.2.3 Proof of Theorem 2]

The choice of f = V; in lemmal9]leads to following inequality:

For any policies 7/, 7, with €™ = max;|Eq~r[Ax(3,a)]|, the following bound holds:

, 1 o 2y I,
j(ﬂ') 7‘7(71') Z ﬁi%"; Aﬂ-(s,a) - 1 —’YDTV(’/T ||//T)[S}

At this point, the theorem J2]is proved.

20

sss C SCPO Pseudocode

Algorithm 1 State-wise Constrained Policy Optimization

Input: Initial policy my € Ilg.
for k=0,1,2,... do
Sample trajectory T ~ T = g,
Estimate gradient g < VoE;s or [A7(3,a)]|5_,

> section

Estimate gradient b; < VgE; onr [AT, (5,0)] ‘ezek L Vi=1,2,...,m > section
Estimate Hessian H < V3E; . [Drr (| mx)[8]] |9:9k
Solve convex programming >|Achiam et al.|[2017a]

0}, = argmax g' (0 —6y)
0

1
st (0 - 0)TH(O —60,) <6

cit+b (0—0,)<0,i=1,2,....,m

Get search direction A0* < 0 | — O
for j =0,1,2,... do

> Line search

0 — 6, + A > & € (0, 1) is the backtracking coefficient
if Esr[Drr(mo||7k)[8]] < 6 and > Trust region
Esamr [AZ"' (8,a)] —Eqq [A’T’“ (3,a)] < max(—c;,0), Vi and > Costs
(IES a~r [A™ (8,a)] >]ES a~r [A™ (8, a)] or infeasible (TT))) then > Rewards
0k+1 — 6 > Update policy
break
end if
end for

end for

21

559

560

561

562
563
564

565

566

567
568

569

571
572
573
574
575
576
577
578

579
580

581

582

583
584
585

Table 1: The test suites environments of our experiments

Ground robot Aerial robot
Task Setting | Low dimension | High dimension
Point Swimmer | Walker Ant Drone
Hazard-1 v v
Hazard-4 v v
Hazard-8 v v v v
Pillar-1 v
Pillar-4 v
Pillar-8 v
3DHazard-1 v
3DHazard-4 v
3DHazard-8 v

D Expeiment Details

D.1 Environment Settings

Goal Task In the Goal task environments, the reward function is:
r(z) = dj_y —dj +1[d} < R,

where df is the distance from the robot to its closest goal and RY is the size (radius) of the goal.
When a goal is achieved, the goal location is randomly reset to someplace new while keeping the rest
of the layout the same. The test suites of our experiments are summarized in Table[T]

Hazard Constraint In the Hazard constraint environments, the cost function is:
c(x;) = max(0, R" — dl)

where d? is the distance to the closest hazard and R" is the size (radius) of the hazard.

Pillar Constraint In the Pillar constraint environments, the cost ¢; = 1 if the robot contacts with
the pillar otherwise ¢; = 0.

State Space The state space is composed of two parts. The internal state spaces describe the
state of the robots, which can be obtained from standard robot sensors (accelerometer, gyroscope,
magnetometer, velocimeter, joint position sensor, joint velocity sensor and touch sensor). The details
of the internal state spaces of the robots in our test suites are summarized in Table 2| The external
state spaces are describe the state of the environment observed by the robots, which can be obtained
from 2D lidar or 3D lidar (where each lidar sensor perceives objects of a single kind). The state
spaces of all the test suites are summarized in Table[3] Note that Vase and Gremlin are two other
constraints in Safety Gym Ray et al.|[2019] and all the returns of vase lidar and gremlin lidar are zero
vectors (i.e., [0,0,- - ,0] € R'®) in our experiments since none of our test suites environments has
vases.

Control Space For all the experiments, the control space of all robots are continuous, and linearly
scaled to [-1, +1].

D.2 Policy Settings

The hyper-parameters used in our experiments are listed in Table] as default.

Our experiments use separate multi-layer perception with tanh activations for the policy network,
value network and cost network. Each network consists of two hidden layers of size (64,64). All of
the networks are trained using Adam optimizer with learning rate of 0.01.

22

586
587
588
589
590

592

593
594

595

597

598
599

600
601

602

603

605

606

607
608

Table 2: The internal state space components of different test suites environments.

Internal State Space Point Swimmer Walker @ Ant Drone
Accelerometer (R?) v v v v v
Gyroscope (R3) v v v v v
Magnetometer (R?) v v v v v
Velocimeter (R?) v v v v v
Joint position sensor (R™) | n =0 n=2 n=10 n=8 n=0
Joint velocity sensor (R™) | n = n= n=10 n=8 n=0
Touch sensor (R™) n=20 n=4 n=2 n=8 n=0

Table 3: The external state space components of different test suites environments.

External State Space | Goal-Hazard 3D-Goal-Hazard Goal-Pillar
Goal Compass (R?) v v v
Goal Lidar (R'6) v X v
3D Goal Lidar (R5%) X v X
Hazard Lidar (R'6) v X X
3D Hazard Lidar (R) X v X
Pillar Lidar (R16) X X v
Vase Lidar (R'5) v X v
Gremlin Lidar (R16) v X v

We apply an on-policy framework in our experiments. During each epoch the agent interact B times
with the environment and then perform a policy update based on the experience collected from the
current epoch. The maximum length of the trajectory is set to 1000 and the total epoch number N is
set to 200 as default. In our experiments the Walker and the Ant were trained for 1000 epochs due to
the high dimension.

The policy update step is based on the scheme of TRPO, which performs up to 100 steps of back-
tracking with a coefficient of 0.8 for line searching.

For all experiments, we use a discount factor of v = 0.99, an advantage discount factor A = 0.95,
and a KL-divergence step size of d 7, = 0.02.

For experiments which consider cost constraints we adopt a target cost d. = 0.0 to pursue a zero-
violation policy.

Other unique hyper-parameters for each algorithms are hand-tuned to attain reasonable performance.

Each model is trained on a server with a 48-core Intel(R) Xeon(R) Silver 4214 CPU @ 2.2.GHz,
Nvidia RTX A4000 GPU with 16GB memory, and Ubuntu 20.04.

For low-dimensional tasks, we train each model for 6e6 steps which takes around seven hours. For
high-dimensional tasks, we train each model for 3e7 steps which takes around 60 hours.

D.3 Metrics Comparison
In Tables[5]to[9] we report all the 14 results of our test suites by three metrics:

* The average episode return J,..
» The average episodic sum of costs M.

* The average cost over the entirety of training p..

All of the three metrics were obtained from the final epoch after convergence. Each metric was
averaged over two random seed.

23

00 - 00 - - - - - - uononpal 10D
- - - - 10°0 - - - - 1 1oyowrered Odr1

- - - - - ¢/l €/l - - oner dnuwresy

- - - - - S0°0 - - - 9Bl UOT}ORLIOD T[S

- - - - - I\ - - - UOTJBIS)I UOT}ORLIOD T[S

- - - 1000°0 - - - S00°0 - 9je1 Jurured] uerueide|

- - - wepy - - - - - 1oziumndo uerdueide|
00 00 00 00 00 00 00 00 - 0 180 10818,
100°0 100°0 100°0 100°0 - 100°0 100°0 100°0 - ajer SuuIea] 150D
wepy wepy wepy wepy - wepy wepy wepy - Jozrundo JI0m)au 150D
08 08 08 08 - 08 08 08 - UOTJBIRI JIOMISU IS0
9 ¥9) (9 v9) (¥9 ‘¥9) 9 ‘v9) - 9 *¥9) 9 ‘¥9) 9 ‘¥9) - SIOAR] UAPPIY STOMIOU JSOD)
100°0 100°0 100°0 100°0 100°0 100°0 100°0 100°0 100°0 aer SuruIed] aneA
wepy wepy wepy wepy wepy wepy wepy wepy wepy Iozrundo YIom)ou onfep
08 08 08 08 08 08 08 08 08 UOTJBIDN IOMISU on[eA
#9v9) #9¥9) F9¥9) (¥9°9) (9 ‘v9) #9 ‘v9) (9 ‘v9) #9 ‘v9) #9 ¥9) s1oA®] UAPPIY JI0MIU dN[EA
00 00 00 200 00 200 00 200 200 LRl T3 1081,
80 - 80 80 80 80 80 80 80 JUSID1F20d SUDIRNNOR] Od YL
001 - 00T 001 001 00T 001 00T 00T sdoys Suryoeneq OdY.L
L60 L60 L60 L60 L6'0 L60 L60 L60 L60 X 10)0BJ JUNOJSIP dTLIULAPY
660 660 660 660 660 660 660 660 660 L 1030B) JUNOSSI
#9v9) #9¥9) F9¥9) (¥9°v9) 9 ‘v9) 9 ‘v9) 9 ‘v9) #9 ‘v9) 9 ‘v9) s194e] uappIy d1omiau Ko1j0g
0001 0001 0001 0001 0001 0001 0001 0001 0001 T K1o100fen jo yiSua] wnwrxey
0000¢ 0000¢ 0000¢ 0000¢ 0000¢ 0000¢ 0000¢ 0000¢ 0ooot | yooda 1od sdag
00¢ 00¢ 00¢ 00¢ 00¢ 00¢ 00¢ 00¢ 00¢ N syoodg
0dOS 0ddod 0dD OVA-Od¥L OdI-Oddl TSN-Od¥L [[eed 811 1S-OddL ueiSueise-OddL Od¥L Japuesed Ad1j0d

syuowLIadxa Ino ur swyiLoS[e JuIIp Jo sivyowered-1odAy juerrodwy 4 9[qe],

24

609 The learning curves of all experiments are shown in Figures 7 to[TT}

610 A few general trends can be observed:

611 * All methods can converge to good reward performance under different task settings after
612 about 1e6 time steps. However, it often takes more time for the cost performance to get
613 converge.

614 * The reward learning speed and the cost learning rate trade off against each other because the
615 algorithms without state-wise constraints are more likely to explore unsafe state to gather
616 more rewards.

s7 E Broader Impact

618 Our SCPO algorithm has been theoretically proven to effectively enforce state-wise instantaneous
619 constraints, including safety-critical ones such as collision avoidance. However, achieving zero
620 constraint violation in practical applications requires careful fine-tuning of the implementation and
621 training process. Factors such as neural network structure, learning rate, and cost limits need to be
622 properly adjusted to the specific task at hand. It is important to note that improper implementation and
623 training of SCPO can still result in constraint violations, posing potential safety risks. Therefore, when
624 deploying SCPO policies in safety-critical applications, it is strongly recommended to incorporate
625 an explicit safety monitor, such as control saturation, to completely eliminate any potential safety
626 issues.

25

Table 5: Metrics of three Point-Hazard environments obtained from the final epoch.

(a) Point-Hazard-1

(b) Point-Hazard-4

(c) Point-Hazard-8

Algorithm J, M. pe Algorithm J, M, Pe Algorithm J, M, Pe
TRPO 25779 07340 0.0086 TRPO 25925 02412 0.0037 TRPO 25761 0.5413 0.0071
TRPO-Lagrangian | 2.6313 0.5977 0.0058 TRPO-Lagrangian | 2.5494 0.2108 0.0034 TRPO-Lagrangian | 2.5851 0.5119 0.0064
TRPO-SL 24721 117396 00116 TRPO-SL 25174 02915 0.0037 TRPO-SL 25683 0.8681 0.0071
TRPO-USL | 2.5410 0.5381 0.0083 TRPO-USL | 2.6140 02695 0.0035 TRPO-USL | 2.5808 0.5921 0.0070
TRPO-IPO 25779 07340 0.0086 TRPO-IPO 25946 02297 0.0038 TRPO-IPO 25625 0.5047 0.0071
TRPO-FAC | 25731 03263 0.0040 TRPO-FAC | 25566 0.1848 0.0028 TRPO-FAC | 26599 04819 0.0059
CPO 24988 0.1713 0.0045 CPO 25924 0.1654 0.0024 CPO 26440 0.2944 0.0041
PCPO 24928 03765 0.0054 PCPO 25575 0.1824 0.0025 PCPO 26249 03843 0.0052
SCPO 25822 0.0807 0.0013 SCPO 25607 0.0687 0.0009 SCPO 25793 0.1427 0.0020

Table 6: Metrics of three Point-Pillar experiments obtained from the final epoch.
(a) Point-Pillar-1 (b) Point-Pillar-4 (c) Point-Pillar-8

Algorithm J, M, Pe Algorithm J, M, Pe Algorithm J, M, Pe
TRPO 26059 0.2899 0.0026 TRPO 25958 0.4281 0.0061 TRPO 26095 3.4805 0.0212
TRPO-Lagrangian | 25772 0.1218 0.0020 TRPO-Lagrangian | 2.6040 02786 0.0050 TRPO-Lagrangian | 2.6164 0.6632 0.0129
TRPO-SL 25049 0.1191 0.0014 TRPO-SL 25417 0.2548 0.0031 TRPO-SL 25585 1.5260 0.0074
TRPO-USL | 25924 0.1483 0.0021 TRPO-USL | 25623 0.2977 0.0063 TRPO-USL | 2.5836 0.6743 0.0172
TRPO-IPO 26059 0.2899 0.0026 TRPO-IPO 25958 0.4281 0.0061 TRPO-IPO 26095 3.4805 0.0212
TRPO-FAC | 26362 0.0698 0.0013 TRPO-FAC | 26105 03223 0.0040 TRPO-FAC | 25701 04257 0.0068
CPO 25464 02342 0.0028 CPO 25720 05523 0.0062 CPO 2.6440 0.5655 0.0166
PCPO 25857 02088 0.0025 PCPO 25709 03240 0.0052 PCPO 25704 6.6251 0.0219
SCPO 25928 0.0040 0.0003 SCPO 25367 0.0064 0.0005 SCPO 24162 02589 0.0024

Table 7: Metrics of three Swimmer-Hazard experiments obtained from the final epoch.
(a) Swimmer-Hazard-1 (b) Swimmer-Hazard-4 (¢) Swimmer-Hazard-8

Algorithm J M, Pe Algorithm J, M, Pe Algorithm J, M, Pe
TRPO 26062 05326 0.0070 TRPO 25897 02046 0.0033 TRPO 26322 04843 0.0067
TRPO-Lagrangian | 2.6044 04060 0.0056 TRPO-Lagrangian | 2.6128 0.3953 0.0038 TRPO-Lagrangian | 2.5979 0.4205 0.0058
TRPO-SL 25269 100374 0.0382 TRPO-SL 25056 4.6391 0.0206 TRPO-SL 24930 9.6048 0.0316
TRPO-USL | 2.6296 0.3754 0.0050 TRPO-USL | 2.6103 0.2260 0.0027 TRPO-USL | 2.6133 04259 0.0059
TRPO-IPO 26062 05326 0.0070 TRPO-IPO 25844 02739 0.0033 TRPO-IPO 26322 04843 0.0067
TRPO-FAC | 25765 02439 0.0041 TRPO-FAC | 25984 0.1997 0.0028 TRPO-FAC | 26037 0.5606 0.0056
CPO 26126 04115 0.0049 CPO 26023 0.1368 0.0021 CPO 2.6335 04201 0.0045
PCPO 25741 04670 0.0051 PCPO 25922 04265 0.0033 PCPO 25895 0.7420 0.0063
SCPO 26006 0.0743 0.0009 SCPO 2.6317 01082 0.0012 SCPO 25604 0.1527 0.0030

Table 8: Metrics of three Drone-3DHazard experiments obtained from the final epoch.
(a) Drone-3DHazard-1 (b) Drone-3DHazard-4 (c) Drone-3DHazard-8

Algorithm J, M, Pe Algorithm J, M, Pe Algorithm J, M, Pe
TRPO 23777 03086 0.0014 TRPO 24163 03008 0.0025 TRPO 24206 04561 0.0057
TRPO-Lagrangian | 2.4149 0.0766 0.0007 TRPO-Lagrangian | 2.4175 0.1990 0.0022 TRPO-Lagrangian | 2.4237 0.1962 0.0034
TRPO-SL 24300 0.0044 0.0004 TRPO-SL 23748 0.0529 0.0011 TRPO-SL 24255 0.1635 0.0022
TRPO-USL | 23760 0.0690 0.0008 TRPO-USL | 2.4658 0.1264 0.0017 TRPO-USL | 24488 02052 0.0037
TRPO-IPO 23724 02032 0.0011 TRPO-IPO 24163 03008 0.0025 TRPO-IPO 24206 04561 0.0057
TRPO-FAC | 23856 0.0537 0.0007 TRPO-FAC | 23839 0.0867 0.0015 TRPO-FAC | 24600 0.1069 0.0022
CPO 2.4464 0.0706 0.0007 CPO 23995 03610 0.0026 CPO 24221 0.6941 0.0041
PCPO 21118 32450 0.0015 PCPO 24180 1.0088 0.0034 PCPO 21837 05179 0.0027
SCPO 23860 0.0423 0.0002 SCPO 24034 00545 0.0008 SCPO 23846 0.0478 0.0012

Table 9: Metrics of Ant-Hazard and Walker-Hazard experiments obtained from the final epoch.

(a) Ant-Hazard-8

(b) Walker-Hazard-8

J,

M,

J,

M,

Algorithm Pe Algorithm Pe
TRPO 2.6203 0.1869 0.0084 TRPO 2.6471 03274 0.0096
TRPO-Lagrangian | 2.6336 0.1667 0.0058 TRPO-Lagrangian | 2.6167 0.2194 0.0071
TRPO-SL 25522 4.1269 0.0510 TRPO-SL 2.6476 09863 0.0204
TRPO-USL 2.6153 0.2108 0.0083 TRPO-USL 2.6239 03148 0.0095
TRPO-IPO 2.6197 0.1990 0.0083 TRPO-IPO 2.6397 0.3115 0.0096
TRPO-FAC 2.6218 0.0955 0.0051 TRPO-FAC 2.5917 0.1283 0.0049
CPO 2.6103 0.1330 0.0066 CPO 2.6211 0.1779 0.0069
PCPO 2.6281 0.1046 0.0059 PCPO 2.6410 0.2013 0.0074
SCPO 2.5873 0.0327 0.0021 SCPO 2.5751 0.0546 0.0029

26

Reward_Performance
|
o

-2
-3
— TRPO — TRPO-USL —— CPO
~4 — TRPO-Lagrangian —— TRPO-PO —— PCOP
_5 — TRPOSL ~— TRPO-FAC —— SCPO
2 3 4 5 6
TotalEnvinteracts le6
8 — TRPO —— TRPO-USL cpo
-~ TRPO-Lagrangian ~ —— TRPO-IPO —— PCOP
TRPO-SL —— TRPO-FAC —— SCPO
e
=3
&
£
S4
b=
Q
a
ﬁI
22
o
0
1 2 3 4 5 6
TotalEnvinteracts le6
le-2
16 — TRPO —— TRPO-USL —— CPO
Iy - . PO-Lagrangian —— TRPO-IPO —— PCOP

—— TRPO-FAC —— SCPO

3 4 5

2 6
TotalEnvinteracts le6

(a) Point-Hazard-1

2
o
g o
&
E
£-2
g|
°-4
]
2
7]
@ -6 — Treo —— TRPO-USL cpo
—— TRPO-Lagrangian —— TRPO-PO —— PCOP
-8 —— TRPO-SL ~——— TRPO-FAC —— SCPO
1 2 3 4 5 6
TotalEnvinteracts le6
— TRPO —— TRPO-USL —— CPO
1.2 — TRPO-lagrangian ~—— TRPO-PO —— PCOP
— TRPO-SL —— TRPO-FAC —— SCPO

e =
® o

Cost_Performance
o
B

10.4
0.2
0.0
2 3 4 6
TotalEnvinteracts le6
le-3
40— rreo — TRPO-USL —— CPO
@ 3.5 — TRPO-lagrangian ~ —— TRPO-IPO —— PCOP

— TRPO-SL PO-FAC —— SCPO

2 3 4 6
TotalEnvinteracts 1le6

(a) Point-Pillar-1

3
T
2
o
21
&
E o
S
51
n-I
o-2
@
3-3
& — TRPO —— TRPO-USL —— CPO
—4 — TRPO-lagrangian —— TRPO-IPO —— PCOP
— TRPO-SL —— TRPO-FAC —— SCPO
2 3 4 5 6
TotalEnvinteracts le6
— TRPO — TRPO-USL —— CPO
3.0 |~ TRPO-lagrangian —— TRPO-PO —— PCOP
TRPO-SL —— TRPO-FAC — SCPO

L
[

N
o

Cost_Performance
-
&

1.0
0.5
0.0
1 2 3 4 5 6
TotalEnvinteracts 1e6
le-3
7 — TrPO — TRPO-USL —— CPO

— TRPO-IPO

-Lagrangian
L —— TRPO-FAC

3 4 5

2 6
TotalEnvinteracts le6

(b) Point-Hazard-4

Figure 7: Point-Hazard

3
o 2
s
<
© 1
E
o
£ 0
S
B
I
u;) -2
o — TRPO — TRPO-USL —— CPO
-3 —— TRPO-lagrangian ~—— TRPO-IPO —— PCOP
— TRPO-SL —— TRPO-FAC —— SCPO
1 2 3 4 5 6
TotalEnvinteracts 1le6
— TRPO —— TRPO-USL == CPO
3,0 — TRPO-lagrangian —— TRPO-IPO —— PCOP
— TRPO-SL —— TRPO-FAC —— SCPO
925
5
2.0
£
o
£ 15
@
&
='1.0
?
o
Cos
0.0
2 3 4 6
TotalEnvinteracts le6
le-3
8 — TRPO — TRPO-USL —— CPO
@7 — TRPO-lagrangian —— TRPO-IPO —— PCOP
Q7 — TRPO-SL RPO-FAC —— SCPO
G6 R i
E
o5
b=
L4
i
Q
3| WK
21
12
o
81
o
0

2 3 4 5 6
TotalEnvinteracts le6

(b) Point-Pillar-4

Figure 8: Point-Pillar

27

o

Reward_Performance
U
N

-4
—6 — TRPO — TRPO-USL —— CPO
—— TRPO-lagrangian —— TRPO-IPO —— PCOP
g — TRPOSL ~—— TRPO-FAC —— SCPO
2 3 4 5 6
TotalEnvinteracts 1le6
5 — eo — TRPO-USL —— CPO
—— TRPO-Lagrangian ~ —— TRPO-IPO —— PCOP
4 TRPO-SL —— TRPO-FAC ~ — SCPO
g
5
£3
S
52
a
ul
@
S1
[
1 2 3 4 5 6
TotalEnvinteracts le6
le-2
— TRPO —— TRPO-USL —— CPO
10 e

PO-Lagrangian —— TRPO-IPO
L

—— TRPO-FAC —— SCPO

o
@

©
:

Cost_Rate_Performance
)
o

o
~

2 3 4 5 6
TotalEnvinteracts le6

(c) Point-Hazard-8

Reward_Performance
|
L

-2
-3
TRPO — TRPO-USL —— CPO
_4 — TRPO-lagrangian —— TRPO-IPO —— PCOP
—— TRPO-SL ~——— TRPO-FAC —— SCPO
1 2 3 4 5 6
TotalEnvinteracts le6
—— TRPO —— TRPO-USL —— CPO
5 TRPO-Lagrangian ~ —— TRPO-IPO —— PCOP
TRPO-SL —— TRPO-FAC —— SCPO
8a
c
©
£s
t
ﬂJ
<,
o
@
<]
o

-

0
2 3 4 5 6
TotalEnvinteracts le6
le-2
— TRPO — TRPO-USL —— CPO
© 25 — TRPO-Lagrangian —— TRPO-IPO —— PCOP
2 —— TRPO-SL —— TRPO-FAC —
©20
E
S
S1s
bl
L0
o]
bt
%05
<]
o
0.0

2 3 4 5 6
TotalEnvinteracts 1le6

(c) Point-Pillar-8

]
o
c
©
£
s
5
]
e
©
3
4 PO —— TRPO-USL —— CPO
TRPO-Lagrangian —— TRPO-IPO —— PCOP
—0.5 — TRPO-SL ~—— TRPO-FAC —— SCPO
2 3 4 5 6
TotalEnvinteracts 1le6
5 — TRPO — TRPO-USL —— CPO
—— TRPO-Lagrgngian ~ —— TRPO-IPO —— PCOP
— TRPO-SL —— TRPO-FAC — SCPO
0d
I+
=3
&
£3
s
5
92
.ul
3
81
0
1 2 3 4 5 6
TotalEnvinteracts le6
le-3
— TRPO —— TRPO-USL —— CPO
8 —— TRPO-IPO —— PCOP

o

Cost_Rate_Performance
~ S

o

2 3 4 5 6
TotalEnvinteracts le6

(a) Swimmer-Hazard-1

lel
0.2
g 00
& 0.2
g -0
S -04
£ -o.
o
a-0.6
°
5 -038
2
&-10 — TeO —— TRPO-USL —— CPO
—— TRPO-Lagrangian —— TRPO-IPO —— PCOP
-1.2 — TRPO-SL ~—— TRPO-FAC —— SCPO
1 2 3 4 5
TotalEnvinteracts le6
14 — TRPO — TRPO-USL —— CPO
 —— TRPO-Lagrangian —— TRPO-IPO —— PCOP
1.2 — TRPOSL —— TRPO-FAC —— SCPO
g1
€ 1
Eos
£
3 0.6
bl
3?04
o
o2
0.0
2 3 4
TotalEnvinteracts le6
le-3
175 rreo —— TRPO-USL —— CPO
—— TRPO-Lagra
o1
g 150 e TRPO-SL
©1.25
E
o
£ 1.00
20.75
L
glo.so
3025
8
0.00

2 3 4 5 6
TotalEnvinteracts 1le6

(a) Drone-3DHazard-1

I3
S
e
©
£
s
b=
Q
n'I
T
©
H
0.0 (¥ rreo — TRPO-USL —— CPO
TRPO-Lagrangian —— TRPO-IPO —— PCOP.
—0.5 — TRPO-SL ~— TRPO-FAC —— SCPO
2 3 4 5 6
TotalEnvinteracts le6
— TRPO-USL —— CPO
agrangian —— TRPO-IPO —— PCOP
2.0 —— TRPO-FAC
I3
S
5
g1s
s
510
a
“;“\
Sos |
0.0
1 2 3 4 5 6
TotalEnvinteracts 1le6
5 le-3
—— TRPO —— TRPO-USL == CPO
@ —— TRPO-Lagrangian —— TRPO-IPO —— PCOP
E 4 — TRPO-SL ~— TRPO-FAC —— SCPO
©
£
o3
=
@
P
o
2
©
o
i1
7
S
0
1 2 3 4 5 6
TotalEnvinteracts 1le6
(b) Swimmer-Hazard-4
Figure 9: Swimmer-Hazard
lel
0.2
g 00
5
g-02
s it
L-04
Q
A -0.6
B 0.8
g -o.
& _10 — TRPO —— TRPO-USL —— CPO
—— TRPO-Lagrangian —— TRPO-IPO —— PCOP
—1.2 — TRPO-SL ~—— TRPO-FAC —— SCPO
1 2 3 4 5
TotalEnvinteracts le6
3.0 — TRPO —— TRPO-USL —— CPO
~— TRPO-Lagrangian ~—— TRPO-IPO —— PCOP
2.5 — TRPO-SL ~—— TRPO-FAC —— SCPO
i
2
520
£
S15
g1
&
Tito
7
o
Cos
0.0
2 3 4 6
TotalEnvinteracts 1le6
le-3
6 —— TRPO ~—— TRPO-USL ~— CPO
—— TRPO-Lagrangian —— TRPO-IPO —— PCOP
5 —— TRPO-SL ~— TRPO-FAC —— SCPO

IS

e

oL

Cost_Rate_Performance
w

o

2 3 4 5 6
TotalEnvinteracts le6

(b) Drone-3DHazard-4

Figure 10: Drone-3DHazard

28

g AL
e
g 2.0
£
S 15
§ .
1 1.0
<4
2 os
1]
< 0o TRPO —— TRPO-USL —— CPO
g TRPO-Lagrangian —— TRPO-IPO —— PCOP
o5 — TRPOSL ~—— TRPO-FAC —— SCPO
’ 2 3 4 5 6
TotalEnvinteracts le6
5 — TRPO — TRPO-USL —— CPO
—— TRPO-Lagrpngian ~ —— TRPO-IPO —— PCOP
—— TRPO-FAC —
o
]
c
©
£3
S
5
&2
ul
3
o1
0
1 2 3 4 5 6
TotalEnvinteracts le6
le-3
— TRPO J — TRPO-USL —— CPO
Y 7 — TRP — TRPO-IPO —— PCOP
= TRPO-FAC ———SCPO-
56
Es
2
o4
4
'3
©
22
“;‘,I
21
o
0
1 2 3 4 5 6
TotalEnvinteracts 1le6

(c) Swimmer-Hazard-8

o
]
=
®
E
o
5
a
2
o
2
Q
« — TRPO —— TRPO-USL —— CPO

—— TRPO-lagrangian —— TRPO-PO —— PCOP

—6 — TRPO-SL —— TRPO-FAC —— SCPO

1 2 3 4 5 6

TotalEnvinteracts le6

4 — TRPO — TRPOUSL —— CPO
—— TRPO-lagrangian —— TRPOPO —— PCOP
— TRPO-SL —— TRPO-FAC —— SCPO

w

Cost_Performance
~

1
0
2 3 4 5 6
TotalEnvinteracts le6
le-3
— TRPO — TRPO-USL —— CPO
o — TRPO-Lagrangian
26 — TRPOSL
m
Es
o
ta
g|
'3
]
a2
o
é 1
0

2 3 4 5 6
TotalEnvinteracts 1le6

(c) Drone-3DHazard-8

I+ g2
c c
& ®
5 £
g| &
° To
© ©
H H
< 0.0 TRPO —— TRPO-USL —— CPO o _; — TRPO —— TRPO-USL —— CPO
—— TRPO-Lagrangian —— TRPO-IPO —— PCPO —— TRPO-Lagrangian —— TRPO-IPO —— PCPO
—0.5 — TRPO-SL —— TRPO-FAC —— SCPO —— TRPO-SL ~—— TRPO-FAC —— SCPO
05 10 15 20 25 30 10 15 20 25 30
TotalEnvinteracts le7 TotalEnvinteracts le7
7 — TRPO — TRPO — TRPO-USL —— CPO
TRPO-Lagrangian ~ —— TRPO-IPO —— PCPO
6 TRPO-SL —— TRPO-FAC —— SCPO
g 8
c5 c6
& m
£y £4
& &
'y o
% B
o o2
O, o
0 0
0.5 1.0 15 2.0 25 3.0 0.5 1.0 15 2.0 2.5 3.0
TotalEnvinteracts le7 TotalEnvinteracts le7
le-2 le-2
12 — e — TRPO-USL —— CPO — TRPO —— TRPO-USL —— CPO
@ —— TRPO-IPO 8 igh —— TRPO-IPO —— PCPO
210 ~— TRPO-FAC ~—— TRPO-FAC —— SCPO
© ©
E
508
b=
Q
n-I
2'0:6
L
&
104
%
S
0.2
05 10 15 20 25 3.0 05 10 15 20 25 3.0
TotalEnvinteracts le7 TotalEnvinteracts le7

(a) Ant-Hazard-8 (b) Walker-Hazard-8

Figure 11: High dimensional hazard tasks

29

	Introduction
	Related Work
	Cumulative Safety
	State-wise Safety

	Problem Formulation
	Preliminaries
	State-wise Constrained Markov Decision Process
	Maximum Markov Decision Process

	State-wise Constrained Policy Optimization
	Practical Implementation
	Experiments
	Experiment Setups
	Evaluating SCPO and Comparison Analysis

	Conclusion and Future Work
	Proof for theo: state wise cost
	Cost Increment Bound
	Divergence Bound
	New Policy Improvement Bound

	Proof for prop: scpo performance guarantee
	KL Divergence Relationship Between dk and k
	Proof for theo: reward
	PRELIMINARIES
	MAIN RESULTS
	Proof of theo: reward

	SCPO Pseudocode
	Expeiment Details
	Environment Settings
	Policy Settings
	Metrics Comparison

	Broader Impact

