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Abstract

Reinforcement Learning (RL) algorithms have shown tremendous success in simu-1

lation environments, but their application to real-world problems faces significant2

challenges, with safety being a major concern. In particular, enforcing state-wise3

constraints is essential for many challenging tasks such as autonomous driving4

and robot manipulation. However, existing safe RL algorithms under the frame-5

work of Constrained Markov Decision Process (CMDP) do not consider state-wise6

constraints. To address this gap, we propose State-wise Constrained Policy Opti-7

mization (SCPO), the first general-purpose policy search algorithm for state-wise8

constrained reinforcement learning. SCPO provides guarantees for state-wise con-9

straint satisfaction in expectation. In particular, we introduce the framework of10

Maximum Markov Decision Process, and prove that the worst-case safety violation11

is bounded under SCPO. We demonstrate the effectiveness of our approach on12

training neural network policies for extensive robot locomotion tasks, where the13

agent must satisfy a variety of state-wise safety constraints. Our results show14

that SCPO significantly outperforms existing methods and can handle state-wise15

constraints in high-dimensional robotics tasks.16

1 Introduction17

Reinforcement learning (RL) has achieved remarkable progress in games and control tasks [Mnih18

et al., 2015, Vinyals et al., 2019, Brown and Sandholm, 2018, He et al., 2022, Zhao et al., 2019].19

However, one major barrier that limits the application of RL algorithms to real-world problems is20

the lack of safety assurance. RL agents learn to make reward-maximizing decisions, which may21

violate safety constraints. For example, an RL agent controlling a self-driving car may receive high22

rewards by driving at high speeds but will be exposed to high chances of collision. Although the23

reward signals can be designed to penalize risky behaviors, there is no guarantee for safety. In other24

words, RL agents may sometimes prioritize maximizing the reward over ensuring safety, which can25

lead to unsafe or even catastrophic outcomes [Gu et al., 2022].26

Emerging in the literature, safe RL aims to provide safety guarantees during or after training. Early27

attempts have been made under the framework of constrained Markov Decision Process, where the28

majority of works enforce cumulative constraints or chance constraints [Ray et al., 2019, Achiam29

et al., 2017a, Liu et al., 2021]. In real-world applications, however, many critical constraints are30

instantaneous. For instance, collision avoidance must be enforced at all times for autonomous31

cars [Zhao et al., 2023]. Another example is that when a robot holds a glass, the robot can only32

release the glass when the glass is on a stable surface. The violation of those constraints will lead to33

irreversible failures of the task. In this work, we focus on state-wise (instantaneous) constraints.34

The State-wise Constrained Markov Decision Process (SCMDP) is a novel formulation in reinforce-35

ment learning that requires policies to satisfy hard state-wise constraints. Unlike cumulative or36

probabilistic constraints, state-wise constraints demand full compliance at each time step as for-37

malized by Zhao et al. [2023]. Existing state-wise safe RL methods can be categorized based on38
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whether safety is ensured during training. There is a fundamental limitation that it is impossible to39

guarantee hard state-wise safety during training without prior knowledge of the dynamic model. The40

best we can achieve in a model free setting is to learn to satisfy the constraints using as few samples41

as possible, which is the focus of this paper. We aim to provide theoretical guarantees on state-wise42

safety violation and worst case reward degredation during training.43

Our approach is underpinned by a key insight that constraining the maximum violation is equivalent44

to enforcing state-wise safety. This insight leads to a novel formulation of MDP called the Maximum45

Markov Decision Process (MMDP). With MMDP, we establish a new theoretical result that provides46

a bound on the difference between the maximum cost of two policies for episodic tasks. This result47

expands upon the cumulative discounted reward and cost bounds for policy search using trust regions,48

as previously documented in literature [Achiam et al., 2017b]. We leverage this result to design a49

policy improvement step that not only guarantees worst-case performance degradation but also ensures50

state-wise cost constraints. Our proposed algorithm, State-wise Constrained Policy Optimization51

(SCPO), approximates the theoretically-justified update, which achieves a state-of-the-art trade-off52

between safety and performance. Through experiments, we demonstrate that SCPO effectively53

trains neural network policies with thousands of parameters on high-dimensional simulated robot54

locomotion tasks; and is able to optimize rewards while enforcing state-wise safety constraints. This55

work represents a significant step towards developing practical safe RL algorithms that can be applied56

to many real-world problems.57

2 Related Work58

2.1 Cumulative Safety59

Cumulative safety requires that the expected discounted return with respect to some cost function is60

upper-bounded over the entire trajectory. One representative approach is constrained policy optimiza-61

tion (CPO) [Achiam et al., 2017a], which builds on a theoretical bound on the difference between62

the costs of different policies and derives a policy improvement procedure to ensure constraints63

satisfaction. Another approach is interior-point policy optimization (IPO) [Liu et al., 2019], which64

augments the reward-maximizing objective with logarithmic barrier functions as penalty functions65

to accommodate the constraints. Other methods include Lagrangian methods [Ray et al., 2019]66

which use adaptive penalty coefficients to enforce constraints and projection-based constrained67

policy optimization (PCPO) [Yang et al., 2020a] which projects trust-region policy updates onto the68

constraint set. Although our focus is on a different setting of constraints, existing methods are still69

valuable references for illustrating the advantages of our SCPO. By utilizing MMDP, SCPO breaks70

the conventional safety-reward trade-off, which results in stronger convergence of state-wise safety71

constraints and guaranteed performance degradation bounds.72

2.2 State-wise Safety73

Hierarchical Policy One way to enforce state-wise safety constraints is to use hierarchical policies,74

with an RL policy generating reward-maximizing actions, and a safety monitor modifying the actions75

to satisfy state-wise safety constraints. Such an approach often requires a perfect safety critic to76

function well. For example, conservative safety critics (CSC) [Bharadhwaj et al., 2020] propose77

a safe critic QC(s, a), providing a conservative estimate of the likelihood of being unsafe given a78

state-action pair. If the safety violation exceeds a predefined threshold, a new action is re-sampled79

from the policy until it passes the safety critic. However, this approach is time-consuming. On80

the other hand, optimization-based methods such as gradient descent or quadratic programming81

can be used to find a safe action that satisfies the constraint while staying close to the reference82

action. Unrolling safety layer (USL) [Zhang et al., 2022a] follows a similar hierarchical structure as83

CSC but performs gradient descent on the reference action iteratively until the constraint is satisfied84

based on learned safety critic QC(s, a). Finally, instead of using gradient descent, Lyapunov-based85

policy gradient (LPG) [Chow et al., 2019] and SafeLayer [Dalal et al., 2018] directly solve quadratic86

programming (QP) to project actions to the safe action set induced by the linearized versions of some87

learned critic QC(s, a). All these approaches suffer from safety violations due to imperfect critic88

QC(s, a), while those solving QPs further suffer from errors due to the linear approximation of the89

critic. To avoid those issues, we propose SCPO as an end-to-end policy which does not explicitly90

maintain a safety monitor.91
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End-to-End Policy End-to-end policies maximize task rewards while ensuring safety at the same92

time. Related work regarding state-wise safety after convergence has been explored recently. Some93

approaches [Liang et al., 2018, Tessler et al., 2018] solve a primal-dual optimization problem to94

satisfy the safety constraint in expectation. However, the associated optimization is hard in practice95

because the optimization problem changes at every learning step. Bohez et al. [2019] approaches96

the same setting by augmenting the reward with the sum of the constraint penalty weighted by the97

Lagrangian multiplier. Although claimed state-wise safety performance, the aforementioned methods98

do not provide theoretical guarantee and fail to achieve near-zero safety violation in practice. He99

et al. [2023] proposes AutoCost to automatically find an appropriate cost function using evolutionary100

search over the space of cost functions as parameterized by a simple neural network. It is empirically101

shown that the evolved cost functions achieve near-zero safety violation, however, no theoretical102

guarantee is provided, and extensive computation is required. FAC [Ma et al., 2021] does provide103

theoretically guaranteed state-wise safety via parameterized Lagrange functions. However, FAC104

replies on strong assumptions and performs poorly in practice. To resolve the above issues, we105

propose SCPO as an easy-to-implement and theoretically sound approach with no prior assumptions106

on the underlying safety functions.107

3 Problem Formulation108

3.1 Preliminaries109

In this paper, we are especially interested in guaranteeing safety for episodic tasks, which falls within110

in the scope of finite-horizon Markov Decision Process (MDP). An MDP is specified by a tuple111

(S,A, γ, R, P, µ), where S is the state space, and A is the control space, R : S × A 7→ R is the112

reward function, 0 ≤ γ < 1 is the discount factor, µ : S 7→ R is the initial state distribution, and113

P : S×A×S 7→ R is the transition probability function. P (s′|s, a) is the probability of transitioning114

to state s′ given that the previous state was s and the agent took action a at state s. A stationary115

policy π : S 7→ P(A) is a map from states to a probability distribution over actions, with π(a|s)116

denoting the probability of selecting action a in state s. We denote the set of all stationary policies by117

Π. Subsequently, we denote πθ as the policy that is parameterized by the parameter θ.118

The standard goal for MDP is to learn a policy π that maximizes a performance measure J0(π) which119

is computed via the discounted sum of reward:120

J0(π) = Eτ∼π

[
H∑
t=0

γtR(st, at, st+1)

]
, (1)

where H ∈ N is the horizon, τ = [s0, a0, s1, · · · ], and τ ∼ π is shorthand for that the distribution121

over trajectories depends on π : s0 ∼ µ, at ∼ π(·|st), st+1 ∼ P (·|st, at).122

3.2 State-wise Constrained Markov Decision Process123

A constrained Markov Decision Process (CMDP) is an MDP augmented with constraints that restrict124

the set of allowable policies. Specifically, CMDP introduces a set of cost functions, C1, C2, · · · , Cm,125

where Ci : S ×A×S 7→ R maps the state action transition tuple into a cost value. Analogous to (1),126

we denote127

JCi
(π) = Eτ∼π

[
H∑
t=0

γtCi(st, at, st+1)

]
(2)

as the cost measure for policy π with respect to cost function Ci. Hence, the set of feasible stationary128

policies for CMDP is then defined as follows, where di ∈ R:129

ΠC = {π ∈ Π
∣∣ ∀i,JCi

(π) ≤ di}. (3)

In CMDP, the objective is to select a feasible stationary policy πθ that maximizes the performance130

measure:131

max
π
J0(π), s.t. π ∈ ΠC . (4)
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In this paper, we are interested in a special type of CMDP where the safety specification is to persis-132

tently satisfy a hard cost constraint at every step (as opposed to cumulative costs over trajectories),133

which we refer to as State-wise Constrained Markov Decision Process (SCMDP). Like CMDP,134

SCMDP uses the set of cost functions C1, C2, · · · , Cm to evaluate the instantaneous cost of state135

action transition tuples. Unlike CMDP, SCMDP requires the cost for every state action transition to136

satisfy a hard constraint. Hence, the set of feasible stationary policies for SCMDP is defined as137

Π̄C = {π ∈ Π
∣∣∀i, E(st,at,st+1)∼τ,τ∼π

[
Ci(st, at, st+1)

]
≤ wi} (5)

where wi ∈ R. Then the objective for SCMDP is to find a feasible stationary policy from Π̄C that138

maximizes the performance measure. Formally,139

max
π
J0(π), s.t. π ∈ Π̄C (6)

3.3 Maximum Markov Decision Process140

Note that for (6), every state-action transition pair corresponds to a constraint, which is intractable to141

solve using conventional reinforement learning algorithms. Our intuition is that, instead of directly142

constraining the cost of each possible state-action transition, we can constrain the expected maximum143

state-wise cost along the trajectory, which is much easier to solve. Following that intuition, we define144

a novel Maximum Markov-Decision Process (MMDP), which further extends CMDP via (i) a set of145

up-to-now maximum state-wise costs M .
= [M1,M2, · · · ,Mm] where Mi ∈M ⊂ R, and (ii) a set146

of cost increment functions, D1, D2, · · · , Dm, where Di : (S,Mm)×A× S 7→ [0,R+] maps the147

augmented state action transition tuple into a non-negative cost increment. We define the augmented148

state ŝ = (s,M) ∈ (S,Mm)
.
= Ŝ, where Ŝ is the augmented state space. Formally,149

Di

(
ŝt, at, ŝt+1

)
= max{Ci(st, at, st+1)−Mit, 0}. (7)

By setting Di

(
ŝ0, a0, ŝ1

)
= Ci(s0, a0, s1), we have Mit =

∑t−1
k=0 Di

(
ŝk, ak, ŝk+1

)
for t ≥ 1.150

Hence, we define expected maximum state-wise cost (or Di-return) for π:151

JDi(π) = Eτ∼π

[
H∑
t=0

Di

(
ŝt, at, ŝt+1

)]
. (8)

Importantly, (8) is the key component of MMDP and differs our work from existing safe RL ap-152

proaches that are based on CMDP cost measure (2). With (8), (6) can be rewritten as:153

max
π
J (π), s.t.∀i,JDi(π) ≤ wi, (9)

where J (π) = Eτ∼π

[∑H
t=0 γ

tR(ŝt, at, ŝt+1)
]

and R(ŝ, a, ŝ′)
.
= R(s, a, s′). With R(τ) being the154

discounted return of a trajectory, we define the on-policy value function as V π(ŝ)
.
= Eτ∼π[R(τ)|ŝ0 =155

ŝ], the on-policy action-value function as Qπ(ŝ, a)
.
= Eτ∼π[R(τ)|ŝ0 = ŝ, a0 = a], and the advantage156

function as Aπ(ŝ, a)
.
= Qπ(ŝ, a)− V π(ŝ). Lastly, we define on-policy value functions, action-value157

functions, and advantage functions for the cost increments in analogy to V π, Qπ, and Aπ, with Di158

replacing R, respectively. We denote those by V π
Di

, Qπ
Di

and Aπ
Di

.159

4 State-wise Constrained Policy Optimization160

To solve large and continuous MDPs, policy search algorithms search for the optimal policy within a161

set Πθ ⊂ Π of parametrized policies. In local policy search [Peters and Schaal, 2008], the policy is162

iteratively updated by maximizing J (π) over a local neighborhood of the most recent policy πk. In163

local policy search for SCMDPs, policy iterates must be feasible, so optimization is over Πθ

⋂
Π̄C .164

The optimization problem is:165

πk+1 = argmax
π∈Πθ

J (π), (10)

s.t.Dist(π, πk) ≤ δ,

JDi
(π) ≤ wi, i = 1, · · · ,m.
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where Dist is some distance measure, and δ > 0 is a step size. For actual implementation, we need166

to evaluate the constraints first in order to determine the feasible set. However, it is challenging to167

evaluate the constraints using samples during the learning process. In this work, we propose SCPO168

inspired by recent trust region optimization methods Schulman et al. [2015]. SCPO approximates169

(10) using (i) KL divergence distance metric Dist and (ii) surrogate functions for the objective and170

constraints, which can be easily estimated from samples on πk. Mathematically, SCPO requires171

the policy update at each iteration is bounded within a trust region, and updates policy via solving172

following optimization:173

πk+1 = argmax
π∈Πθ

E
ŝ∼dπk

a∼π

[Aπk(ŝ, a)] (11)

s.t. Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ,

JDi
(πk) + E

ŝ∼d̄πk

a∼π

[
Aπk

Di
(ŝ, a)

]
+ 2(H + 1)ϵπDi

√
1

2
δ ≤ wi, i = 1, · · · ,m.

where DKL(π
′∥π)[ŝ] is KL divergence between two policy (π′, π) at state ŝ, the set {π ∈174

Πθ : Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ} is called trust region, dπk
.
= (1 − γ)

∑H
t=0 γ

tP (ŝt = ŝ|πk),175

d̄πk
.
=

∑H
t=0 P (ŝt = ŝ|πk) and ϵπDi

.
= maxŝ|Ea∼π[A

πk

Di
(ŝ, a)]|. We then show that SCPO guaran-176

tees (i) worst case maximum state-wise cost violation, and (ii) worst case performance degradation177

for policy update, by establishing new bounds on the difference in returns between two stochastic178

policies π and π′ for MMDPs.179

Theoretical Guarantees for SCPO We start with the theoretical foundation for our approach,180

i.e. a new bound on the difference in state-wise maximum cost between two arbitrary policies. The181

following theorem connects the difference in maximum state-wise cost between two arbitrary policies182

to the total variation divergence between them. Here total variation divergence between discrete183

probability distributions p, q is defined as DTV (p∥q) = 1
2

∑
i |pi − qi|. This measure can be easily184

extended to continuous states and actions by replacing the sums with integrals. Thus, the total variation185

divergence between two policy (π′, π) at state ŝ is defined as: DTV (π
′∥π)[ŝ] = DTV (π

′(·|ŝ)∥π(·|ŝ)).186

Theorem 1 (Trust Region Update State-wise Maximum Cost Bound). For any policies π′, π, with187

ϵπ
′

D
.
= maxŝ|Ea∼π′ [Aπ

D(ŝ, a)]|, and define d̄π =
∑H

t=0 P (ŝt = ŝ|π) as the non-discounted aug-188

mented state distribution using π, then the following bound holds:189

JD(π′)− JD(π) ≤ E
ŝ∼d̄π

a∼π′

[
Aπ

D(ŝ, a) + 2(H + 1)ϵπ
′

DDTV (π
′||π)[ŝ]

]
. (12)

The proof for Theorem 1 is summarized in Appendix A. Next, we note the following relationship190

between the total variation divergence and the KL divergence [Boyd et al., 2003, Achiam et al., 2017a]:191

Eŝ∼d̄π [DTV (p∥q)[ŝ]] ≤
√

1
2Eŝ∼d̄π [DKL(p∥q)[ŝ]]. The following bound then follows directly from192

Theorem 1:193

JD(π′) ≤ JD(π) + E
ŝ∼d̄π

a∼π′

[
Aπ

D(ŝ, a) + 2(H + 1)ϵπ
′

D

√
1

2
Eŝ∼d̄π [DKL(π′∥π)[ŝ]]

]
. (13)

By Equation (13), we have a guarantee for satisfaction of maximum state-wise constraints:194

Proposition 1 (SCPO Update Constraint Satisfaction). Suppose πk, πk+1 are related by (11), then195

Di-return for πk+1 satisfies196

∀i,JDi(πk+1) ≤ wi.

197

Proposition 1 presents the first constraint satisfaction guarantee under MMDP. Unlike trust region198

methods such as CPO and TRPO, which assume a discounted sum characteristic, MMDP’s non-199

discounted sum characteristic invalidates these theories. As the maximum state-wise cost is calculated200
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through a summation of non-discounted increments, analysis must be performed on a finite horizon to201

upper bound the worst-case summation. In contrast, the theory behind CPO relies on infinite horizon202

analysis with discounted constraint assumptions, which is not applicable for MMDP settings.203

Next, we provide the performance guarantee of SCPO. Previous analyses of performance guarantees204

have focused on infinite-horizon MDP. We generalize the analysis to finite-horizon MDP, inspired205

by previous work [Kakade and Langford, 2002, Schulman et al., 2015, Achiam et al., 2017a], and206

prove it in Appendix B. The infinite-horizon case can be viewed as a special case of the finite-horizon207

setting.208

Proposition 2 (SCPO Update Worst Performance Degradation). Suppose πk, πk+1 are related by209

(11), with ϵπk+1
.
= maxŝ|Ea∼πk+1

[Aπk(ŝ, a)]|, then performance return for πk+1 satisfies210

J (πk+1)− J (πk) ≥ −
√
2δγϵπk+1

1− γ
.

5 Practical Implementation211

In this section, we show how to (a) implement an efficient approximation to the update (11), (b)212

encourage learning even when (11) becomes infeasible, and (c) handle the difficulty of fitting213

augmented value V π
Di

which is unique to our novel MMDP formulation. The full SCPO pseudocode214

is given as algorithm 1 in appendix C.215

Practical implementation with sample-based estimation We first estimate the objective and216

constraints in (11) using samples. Note that we can replace the expected advantage on rewards using217

an importance sampling estimator with a sampling distribution πk [Achiam et al., 2017a] as218

Eŝ∼dπk , a∼π[A
πk(ŝ, a)] = Eŝ∼dπk , a∼πk

[
π(a|ŝ)
πk(a|ŝ)

Aπk(ŝ, a)

]
. (14)

(14) allows us to replace Aπk with empirical estimates at each state-action pair (ŝ, a) from rollouts219

by the previous policy πk. The empirical estimate of reward advantage is given by R(ŝ, a, ŝ′) +220

γV πk(ŝ′) − V πk(ŝ). V πk(ŝ) can be computed at each augmented state by taking the discounted221

future return. The same can be applied to the expected advantage with respect to cost increments, with222

the sample estimates given by Di(ŝ, a, ŝ
′) + V πk

Di
(ŝ′)− V πk

Di
(ŝ). V πk

Di
(ŝ) is computed by taking the223

non-discounted future Di-return. To proceed, we convexify (11) by approximating the objective and224

cost constraint via first-order expansions, and the trust region constraint via second-order expansions.225

Then, (11) can be efficiently solved using duality [Achiam et al., 2017a].226

Infeasible constraints An update to θ is computed every time (11) is solved. However, due to227

approximation errors, sometimes (11) can become infeasible. In that case, we follow [Achiam228

et al., 2017a] to propose an recovery update that only decreases the constraint value within the trust229

region. In addition, approximation errors can also cause the proposed policy update (either feasible230

or recovery) to violate the original constraints in (11). Hence, each policy update is followed by231

a backtracking line search to ensure constraint satisfaction. If all these fails, we relax the search232

condition by also accepting decreasing expected advantage with respect to the costs, when the cost233

constraints are already violated. Denoting ci
.
= JDi

(πk)+2(H+1)ϵπD
√
δ/2−wi, the above criteria234

can be summarized as235

Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ (15)

Eŝ∼d̄πk ,a∼π

[
Aπk

Di
(ŝ, a)

]
− Eŝ∼d̄πk ,a∼πk

[
Aπk

Di
(ŝ, a)

]
≤ max(−ci, 0). (16)

Note that the previous expected advantage Eŝ∼d̄πk ,a∼πk

[
Aπk

Di
(ŝ, a)

]
is also estimated from rollouts236

by πk and converges to zero asymptotically, which recovers the original cost constraints in (11).237

Imbalanced cost value targets A critical step in solving (11) is to fit the cost increment value238

functions V πk

Di
(ŝt). By definition, V πk

Di
(ŝt) is equal to the maximum cost increment in any future239

state over the maximal state-wise cost so far. In other words, the true V πk

Di
will always be zero for all240

ŝt:H when the maximal state-wise cost has already occurred before time t. In practice, this causes241

the distribution of cost increment value function to be highly zero-skewed and makes the fitting very242

hard. To mitigate the problem, we sub-sample the zero-valued targets to match the population of243

non-zero values. We provide more analysis on this trick in Q3 in section 6.2.244
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6 Experiments245

(a) Ant-Hazard-8 (b) Walker-Hazard-8

Figure 1: Comparison of results from two repre-
sentative test suites in high dimensional systems
(Ant and Walker).

In our experiments, we aim to answer these questions:246

Q1 How does SCPO compare with other state-of-the-247

art methods for safe RL?248

Q2 What benefits are demonstrated by constraining249

the maximum state-wise cost?250

Q3 How do the sub-sampling trick of SCPO impact251

its performance?252

6.1 Experiment Setups253

New Safety Gym To showcase the effectiveness254

of our state-wise constrained policy optimization ap-255

proach, we enhance the widely recognized safe rein-256

forcement learning benchmark environment, Safety257

Gym Ray et al. [2019], by incorporating additional258

robots and constraints. Subsequently, we perform a259

series of experiments on this augmented environment.260

Our experiments are based on five different robots: (i)261

Point: Figure 2a A point-mass robot (A ⊆ R2) that262

can move on the ground. (ii) Swimmer: Figure 2b263

A three-link robot (A ⊆ R2) that can move on the264

ground. (iii) Walker: Figure 2d A bipedal robot265

(A ⊆ R10) that can move on the ground. (iv) Ant: Figure 2c A quadrupedal robot (A ⊆ R8) that266

can move on the ground. (v) Drone: Figure 2e A quadrotor robot (A ⊆ R4) that can move in the air.267

All of the experiments are based on the goal task where the robot must navigate to a goal. Additionally,268

since we are interested in episodic tasks (finite-horizon MDP), the environment will be reset once the269

goal is reached. For the robots that can move in 3D spaces (e.g, the Drone robot), we also design a270

new 3D goal task with a sphere goal floating in the 3D space. Three different types of constraints are271

considered: (i) Hazard: Dangerous areas as shown in Figure 3a. Hazards are trespassable circles on272

the ground. The agent is penalized for entering them. (ii) 3D Hazard: 3D Dangerous areas as shown273

in Figure 3b. 3D Hazards are trespassable spheres in the air. The agent is penalized for entering them.274

(iii) Pillar: Fixed obstacles as shown in Figure 3c. The agent is penalized for hitting them.

(a) Point (b) Swimmer (c) Ant (d) Walker (e) Drone

Figure 2: Robots for benchmark problems in upgraded Safety Gym.

(a) Hazard (b) 3D Hazard (c) Pillar

Figure 3: Constraints for benchmark problems in upgraded Safety Gym.

275

7



(a) Point-Hazard-8 (b) Point-Pillar-4 (c) Swimmer-Hazard-8 (d) Drone-3DHazard-8

Figure 4: Comparison of results from four representative test suites in low dimensional systems (Point, Swimmer,
and Drone).

Considering different robots, constraint types, and constraint difficulty levels, we design 14 test suites276

with 5 types of robots and 9 types of constraints, which are summarized in Table 1 in Appendix. We277

name these test suites as {Robot}-{Constraint Type}-{Constraint Number}.278

Comparison Group The methods in the comparison group include: (i) unconstrained RL algorithm279

TRPO [Schulman et al., 2015] (ii) end-to-end constrained safe RL algorithms CPO [Achiam et al.,280

2017a], TRPO-Lagrangian [Bohez et al., 2019], TRPO-FAC [Ma et al., 2021], TRPO-IPO [Liu et al.,281

2020], PCPO [Yang et al., 2020b], and (iii) hierarchical safe RL algorithms TRPO-SL (TRPO-Safety282

Layer) [Dalal et al., 2018], TRPO-USL (TRPO-Unrolling Safety Layer) [Zhang et al., 2022b]. We283

select TRPO as our baseline method since it is state-of-the-art and already has safety-constrained284

derivatives that can be tested off-the-shelf. For hierarchical safe RL algorithms, we employ a warm-up285

phase (1/3 of the whole epochs) which does unconstrained TRPO training, and the generated data286

will be used to pre-train the safety critic for future epochs. For all experiments, the policy π, the value287

(V π, V π
D) are all encoded in feedforward neural networks using two hidden layers of size (64,64)288

with tanh activations. More details are provided in Appendix D.289

Evaluation Metrics For comparison, we evaluate algorithm performance based on (i) reward290

performance, (ii) average episode cost and (iii) cost rate. Comparison metric details are provided291

in Appendix D.3. We set the limit of cost to 0 for all the safe RL algorithms since we aim to avoid292

any violation of the constraints. For our comparison, we implement the baseline safe RL algorithms293

exactly following the policy update / action correction procedure from the original papers. We294

emphasize that in order for the comparison to be fair, we give baseline safe RL algorithms every295

advantage that is given to SCPO, including equivalent trust region policy updates.296

6.2 Evaluating SCPO and Comparison Analysis297

Low Dimension System We select four representative test suites on low dimensional system298

(Point, Swimmer, Drone) and summarize the comparison results on Figure 4, which demonstrate299

that SCPO is successful at approximately enforcing zero constraints violation safety performance300

in all environments after the policy converges. Specifically, compared with the baseline safe RL301

methods, SCPO is able to achieve (i) near zero average episode cost and (ii) significantly lower302

cost rate without sacrificing reward performance. The baseline end-to-end safe RL methods (TRPO-303

Lagrangian, TRPO-FAC, TRPO-IPO, CPO, PCPO) fail to achieve the near zero cost performance304
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even when the cost limit is set to be 0. The baseline hierarchical safe RL methods (TRPO-SL,305

TRPO-USL) also fail to achieve near zero cost performance even with an explicit safety layer to306

correct the unsafe action at every time step. End-to-end safe RL algorithms fail since all methods307

rely on CMDP to minimize the discounted cumulative cost while SCPO directly work with MMDP308

to restrict the state-wise maximum cost by Proposition 1. We also observe that TRPO-SL fails to309

lower the violation during training, due to the fact that the linear approximation of cost function310

C(ŝt, a, ŝt+1) [Dalal et al., 2018] becomes inaccurate when the dynamics are highly nonlinear like311

the ones we used in MuJoCo [Todorov et al., 2012]. More detailed metrics for comparison and312

experimental results on test suites with low dimension systems are summarized in Appendix D.3.313

Figure 5:
Maximum state-wise cost

High Dimension System To demonstrate the scalability and per-314

formance of SCPO in high-dimensional systems, we conducted ad-315

ditional tests on the Ant-Hazard-8 and Walker-Hazard-8 suites, with316

8-dimensional and 10-dimensional control spaces, respectively. The317

comparison results for high-dimensional systems are summarized in318

Figure 1, which show that SCPO outperforms all other baselines in319

enforcing zero safety violation without compromising performance320

in terms of return. SCPO rapidly stabilizes the cost return around321

zero and significantly reduces the cost rate, while the other baselines322

fail to converge to a policy with near-zero cost. The comparison323

results of both low dimension and high dimension systems answer324

Q1.325

Maximum State-wise Cost As pointed in Section 3.3, the under-326

lying magic for enabling near-zero safety violation is to restrict the maximum state-wise cost to stay327

around zero. To have a better understanding of this process, we visualize the evolution of maximum328

state-wise cost for SCPO on the challenging high-dimensional Ant-Hazard-8 and Walker-Hazard-8329

test suites in Figure 5 , which answers Q2.330

Figure 6: SCPO sub-sampling ablation study with
Drone-3DHazard-8

Ablation on Sub-sampling Imbalanced Cost Incre-331

ment Value Targets As pointed in Section 5, fit-332

ting V πk

Di
(ŝt) is a critical step towards solving SCPO,333

which is challenging due to zero-skewed distribution334

of cost increment value function. To demonstrate335

the necessity of sub-sampling for solving this chal-336

lenge, we compare the performance of SCPO with337

and without sub-sampling trick on the aerial robot338

test suite, summarized in Figure 6. It is evident that339

with sub-sampling, the agent achieves higher rewards340

and more importantly, converges to near-zero costs.341

That is because sub-sampling effectively balances the cost increment value targets and improves342

the fitting of V πk

Di
(ŝt). We also attempted to solve the imbalance issue via over-sampling non-zero343

targets, but did not observe promising results. This ablation study provides insights into Q3.344

7 Conclusion and Future Work345

This paper proposed SCPO, the first general-purpose policy search algorithm for state-wise con-346

strained RL. Our approach provides guarantees for state-wise constraint satisfaction at each iteration,347

allows training of high-dimensional neural network policies while ensuring policy behavior, and is348

based on a new theoretical result on Maximum Markov Decision Process. We demonstrate SCPO’s349

effectiveness on robot locomotion tasks, showing its significant performance improvement compared350

to existing methods and ability to handle state-wise constraints.351

Limitation and future work One limitation of our work is that, although SCPO satisfies state-wise352

constraints, the theoretical results are valid only in expectation, meaning that constraint violations353

are still possible during deployment. To address that, we will study absolute state-wise constraint354

satisfaction, i.e. bounding the maximal possible state-wise cost, which is even stronger than the355

current result (satisfaction in expectation).356
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A Proof for Theorem 1431

To prove Theorem 1, we bound the new policy improvement in Lemma 4, which relies on bounding432

the cost increment (given in Lemma 2) and the divergence (given in Lemma 3).433

Then Theorem 1 can be proven by letting f = V π
D in Lemma 4, which leads to following inequality:434

435

For any policies π′, π, with ϵπ
′

D
.
= maxŝ|Ea∼π′ [Aπ

D(ŝ, a)]|, the following bound holds:

JD(π′)− JD(π) ≤ E
ŝ∼d̄π

a∼π′

[
Aπ

D(ŝ, a) + 2(H + 1)ϵπ
′

DDTV (π
′||π)[ŝ]

]

Next, we present the cost increment bound and the divergence bound, then follows by the new policy436

improvement bound.437

A.1 Cost Increment Bound438

To introduce the cost increment bound, we first give an equivalent representation of the cost.439

Lemma 1. For any function f : Ŝ 7→ R and any policy π,440

JD(π) = E
ŝ∼µ̂

[f(ŝ)] + E
ŝ∼d̄π

a∼π
ŝ′∼P

[D(ŝ, a, ŝ′) + f(ŝ′)− f(ŝ)] . (17)

441

Proof. d̄π is defined as442

d̄π(ŝ) =

H∑
t=0

P (ŝt = ŝ|π), (18)

then it allows us to express the expected non-discounted total reward compactly as:443

JD(π) = E
ŝ∼d̄π

a∼π
ŝ′∼P

[D(ŝ, a, ŝ′)] , (19)

where by a ∼ π, we mean a ∼ π(·|ŝ), and by ŝ′ ∼ P ,we mean ŝ′ ∼ P (·|ŝ, a). We drop the explicit444

notation for the sake of reducing clutter, but it should be clear from context that a and ŝ′ depend on ŝ.445

Define P (ŝ′|ŝ, a) is the probability of transitioning to state ŝ′ given that the previous state was ŝ and446

the agent took action a at state ŝ, and µ̂ : Ŝ 7→ [0, 1] is the initial augmented state distribution. Let447

ptπ ∈ R|Ŝ| denote the vector with components ptπ(ŝ) = P (ŝt = ŝ|π), and let Pπ ∈ R|Ŝ|×|Ŝ| denote448

the transition matrix with components Pπ(ŝ
′|ŝ) =

∫
P (ŝ′|ŝ, a)π(a|ŝ)da; then ptπ = Pπp

t−1
π = P t

πµ̂449

, we have:450

d̄π =

H∑
t=0

(Pπ)
tµ̂ (20)

= (I − (Pπ)
H+1)(I − Pπ)

−1µ̂

= (µ̂− pH+1
π )(I − Pπ)

−1

= (I − Pπ)
−1µ̂

Noticing that the finite MDP ends up at step H , thus pH+1
π = 0.451

452
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By multiplying (I − Pπ) for both sides of (20), the following equality holds:453

−(I − Pπ)d̄
π + µ̂ = 0, (21)

then take the inner product with the vector f ∈ R|Ŝ| to both sides of (21), we have454

E
ŝ∼µ̂

[f(ŝ)] + E
ŝ∼d̄π

a∼π
ŝ′∼P

[f(ŝ′)]− E
ŝ∼d̄π

[f(ŝ)] = 0.

Combining this with (19) gives (17).455

Lemma 2. For any function f 7→ D and any policies π′ and π, define456

LD
π,f (π

′)
.
= E

ŝ∼d̄π

a∼π
ŝ′∼P

[(
π′(a|ŝ)
π(a|ŝ)

− 1

)
(D(ŝ, a, ŝ′) + f(ŝ′)− f(ŝ))

]
, (22)

and ϵ̄π′f
.
= maxŝ |Ea∼π′,ŝ′∼P [D(ŝ, a, ŝ′) + f(ŝ′)− f(ŝ)]|. Then the following bounds hold:457

JD(π′)− JD(π) ≥ Lπ,f (π
′)− 2ϵ̄π

′

f DTV (d
π′
||dπ), (23)

JD(π′)− JD(π) ≤ Lπ,f (π
′) + 2ϵ̄π

′

f DTV (d
π′
||dπ), (24)

where DTV is the total variational divergence. Furthermore, the bounds are tight(when π′ = π, the458

LHS and RHS are identically zero).459

Proof. First, for notational convenience, let δ̄f (ŝ, a, ŝ′)
.
= D(ŝ, a, ŝ′) + f(ŝ′)− f(ŝ). By Lemma 1,460

we obtain the identity461

JD(π′)− JD(π) = E
ŝ∼d̄π′

a∼π′

ŝ′∼P

[δ̄f (ŝ, a, ŝ
′)]− E

ŝ∼d̄π

a∼π
ŝ′∼P

[δ̄f (ŝ, a, ŝ
′)] (25)

Now, we restrict our attention to the first term in this equation. Let †δπ′

f ∈ R|Ŝ| denote the vector of462

components †δπ′

f (ŝ) = Ea∼π′,ŝ′∼P [δ̄f (ŝ, a, ŝ
′)|ŝ]. Observe that463

E
ŝ∼d̄π′

a∼π′

ŝ′∼P

[δ̄f (ŝ, a, ŝ
′)] =

〈
d̄π

′
, †δπ

′

f

〉
(26)

=
〈
d̄π, †δπ

′

f

〉
+

〈
d̄π

′
− d̄π, †δπ

′

f

〉
With the Hölder’s inequality; for any p, q ∈ [1,∞] such that

1

p
+

1

q
= 1, we have464 〈

d̄π, †δπ
′

f

〉
+
∥∥∥d̄π′

− d̄π
∥∥∥
p

∥∥∥†δπ′

f

∥∥∥
q
≥ E

ŝ∼d̄π′

a∼π′

ŝ′∼P

[δ̄f (ŝ, a, ŝ
′)] ≥

〈
d̄π, †δπ

′

f

〉
−
∥∥∥d̄π′

− d̄π
∥∥∥
p

∥∥∥†δπ′

f

∥∥∥
q

(27)

We choose p = 1 and q =∞; With
∥∥∥d̄π′ − d̄π

∥∥∥
1
= 2DTV (d̄

π′ ||d̄π) and
∥∥∥†δπ′

f

∥∥∥
∞

= ϵ̄π
′

f , and by the465

importance sampling identity, we have466 〈
d̄π, †δπ

′

f

〉
= E

ŝ∼d̄π

a∼π′

ŝ′∼P

[δ̄f (ŝ, a, ŝ
′)] (28)

= E
ŝ∼d̄π

a∼π
ŝ′∼P

[

(
π′(a|ŝ)
π(a|ŝ)

)
δ̄f (ŝ, a, ŝ

′)]

After bringing (28),
∥∥∥d̄π′ − d̄π

∥∥∥
1
,
∥∥∥†δπ′

f

∥∥∥
∞

into (27), then substract E
ŝ∼d̄π

a∼π
ŝ′∼P

[δ̄f (ŝ, a, ŝ
′)], the bounds467

are obtained. The lower bound leads to (23), and the upper bound leads to (24).468
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A.2 Divergence Bound469

Then we will bound the divergence term, ||d̄π′ − d̄π||1, i.e. 2DTV (d̄
π′ ||d̄π).470

Lemma 3. The divergence between future state visitation distributions, ||d̄π′ − d̄π||1, is bounded by
an average divergence of the policies π′ and π:

∥d̄π
′
− d̄π∥1 ≤ 2(H + 1) E

ŝ∼d̄π
[DTV (π

′||π)[ŝ]] ,

where DTV (π
′||π)[ŝ] = 1

2

∑
a |π′(a|ŝ)− π(a|ŝ)|.471

Proof. Firstly, we introduce an identity for the vector difference of the non-discounted future state472

visitation distributions on two different policies, π′ and π. Define the matrices Ḡ .
= (I−Pπ)

−1, Ḡ′ .
=473

(I − Pπ′)−1, and ∆ = Pπ′ − Pπ . Then:474

Ḡ−1 − Ḡ′−1 = (I − Pπ)− (I − Pπ′) (29)
= ∆

left-multiplying by Ḡ and right-multiplying by Ḡ′, we obtain475

Ḡ′ − Ḡ = Ḡ′∆Ḡ. (30)

According to (30) and (20),476

d̄π
′
− d̄π =

(
Ḡ′ − Ḡ

)
µ̂ (31)

= Ḡ′∆Ḡµ̂

= Ḡ′∆d̄π.

Using (31), we obtain477

∥d̄π
′
− d̄π∥1 = ∥Ḡ′∆d̄π∥1 (32)

≤ ∥Ḡ′∥1∥∆d̄π∥1,

where ||Ḡ′||1 is bounded by:478

∥Ḡ′∥1 = ∥(I − Pπ′)−1∥1 = ∥
∞∑
t=0

P t
π′∥1 =

∥
∑∞

t=0 P
t
π′∥1∥µ̂∥1

∥µ̂∥1
(33)

=
∥
∑∞

t=0 P
t
π′ µ̂∥1

∥µ̂∥1
=
∥
∑H

t=0 P
t
π′ µ̂∥1

∥µ̂∥1
= ∥

H∑
t=0

P t
π′∥1

≤
H∑
t=0

∥Pπ′∥t1 = H + 1

To conclude the lemma, we further bound ∥∆d̄π∥1 as:479
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∥∆d̄π∥1 =
∑
ŝ′

∣∣∣∣∑
ŝ

∆(ŝ′|ŝ)d̄π(ŝ)
∣∣∣∣ (34)

≤
∑
ŝ,ŝ′

∣∣∣∣∆(ŝ′|ŝ)
∣∣∣∣d̄π(ŝ)

=
∑
ŝ,ŝ′

∣∣∣∣∑
a

P (ŝ′|ŝ, a) (π′(a|ŝ)− π(a|ŝ))
∣∣∣∣d̄π(ŝ)

≤
∑
ŝ,a,ŝ′

P (ŝ′|ŝ, a)
∣∣∣∣π′(a|ŝ)− π(a|ŝ)

∣∣∣∣d̄π(ŝ)
=

∑
ŝ,a

∣∣∣∣π′(a|ŝ)− π(a|ŝ)
∣∣∣∣d̄π(ŝ)

= 2 E
ŝ∼d̄π

[DTV (π
′||π)[ŝ]]

By taking (34) and (33) into (32), this lemma is proved.480

481

A.3 New Policy Improvement Bound482

The new policy improvement bound follows immediately.483

Lemma 4. For any function f : Ŝ 7→ R and any policies π′ and π, define δ̄f (ŝ, a, ŝ′)
.
= D(ŝ, a, ŝ′)+

f(ŝ′)− f(ŝ),
ϵ̄π′f

.
= max

ŝ
|Ea∼π′,ŝ′∼P [δ̄f (ŝ, a, ŝ

′)]|,

L̄π,f (π
′)

.
= E

ŝ∼d̄π

a∼π
ŝ′∼P

[(
π′(a|ŝ)
π(a|ŝ)

− 1

)
δ̄f (ŝ, a, ŝ

′)

]
, and

D̄±
π,f (π

′)
.
= L̄π,f (π

′)± 2(H + 1)ϵ̄π
′

f E
ŝ∼d̄π

[DTV (π
′||π)[ŝ]],

where DTV (π
′||π)[ŝ] = 1

2

∑
a |π′(a|ŝ)− π(a|ŝ)| is the total variational divergence between action

distributions at ŝ. The following bounds hold:

D̄+
π,f (π

′) ≥ JD(π′)− JD(π) ≥ D̄−
π,f (π

′).

Furthermore, the bounds are tight (when π′ = π, all three expressions are identically zero)484

Proof. Begin with the bounds from Lemma 2 and bound the divergence DTV (d̄
π′ ||d̄π) by Lemma 3.485

486
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B Proof for Proposition 2487

Proof. Here we first present a new bound on the difference in returns between two arbitrary policies488

in the context of finite-horizon MDP:489

Theorem 2 (Trust Region Update Performance). For any policies π′, π, with ϵπ
′ .

=490

maxŝ|Ea∼π′ [Aπ(ŝ, a)]|, and define dπ = (1− γ)
H∑
t=0

γtP (ŝt = ŝ|π) as the discounted augmented491

state distribution using π, then the following bound holds:492

J (π′)− J (π) ≥ 1

1− γ
E

ŝ∼dπ

a∼π′

[
Aπ(ŝ, a)− 2γϵπ

′

1− γ
DTV (π

′∥π)[ŝ]
]

(35)

493

We provide the proof for Theorem 2 in Appendix B.2.1. The following bound then follows directly494

from Theorem 2 using the relationship between the total variation divergence and the KL divergence:495

J (π′)− J (π) ≥ 1

1− γ
E

ŝ∼dπ

a∼π′

[
Aπ(ŝ, a)− 2γϵπ

′

1− γ

√
1

2
Eŝ∼dπ [DKL(π′∥π)[ŝ]]

]
. (36)

In (11), the reward performance between two policies is associated with trust region, i.e.496

πk+1 = argmax
π∈Πθ

E
ŝ∼dπk

a∼π

[Aπk(ŝ, a)] (37)

s.t. Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ.

Due to Lemma 5 (proved in Appendix B.1), if two policies are related with Equation (37), they are497

related with the following optimization:498

πk+1 = argmax
π∈Πθ

E
ŝ∼dπk

a∼π

[Aπk(ŝ, a)] (38)

s.t. Eŝ∼dπk [DKL(π∥πk)[ŝ]] ≤ δ.

By (36) and (38), if πk, πk+1 are related by (11), then performance return for πk+1 satisfies499

J (πk+1)− J (πk) ≥ −
√
2δγϵπk+1

1− γ
.

500

B.1 KL Divergence Relationship Between dπk and d̄πk501

Lemma 5. E
ŝ∼dπ

[DKL(π
′∥π)[ŝ]] < E

ŝ∼d̄π

[DKL(π
′∥π)[ŝ]]502

Proof.

E
ŝ∼dπ

[DKL(π
′∥π)[ŝ]] =

∑
ŝ

(1− γ)

H∑
t=0

γtP (ŝt = ŝ|π)DKL(π
′∥π)[ŝ]

<
∑
ŝ

H∑
t=0

γtP (ŝt = ŝ|π)DKL(π
′∥π)[ŝ]

<
∑
ŝ

H∑
t=0

P (ŝt = ŝ|π)DKL(π
′∥π)[ŝ]

= E
ŝ∼d̄π

[DKL(π
′∥π)[ŝ]].

503
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B.2 Proof for Theorem 2504

B.2.1 PRELIMINARIES505

dπ we used is defined as506

dπ(ŝ) = (1− γ)

H∑
t=0

γtP (ŝt = ŝ|π). (39)

Then it allows us to express the expected discounted total reward compactly as:507

J (π) = 1

1− γ
E

ŝ∼dπ

a∼π
ŝ′∼P

[R(ŝ, a, ŝ′)] , (40)

where by a ∼ π, we mean a ∼ π(·|ŝ), and by ŝ′ ∼ P ,we mean ŝ′ ∼ P (·|ŝ, a). We drop the explicit508

notation for the sake of reducing clutter, but it should be clear from context that a and ŝ′ depend on ŝ.509

Define P (ŝ′|ŝ, a) is the probability of transitioning to state ŝ′ given that the previous state was ŝ and510

the agent took action a at state ŝ, and µ̂ : Ŝ 7→ [0, 1] is the initial augmented state distribution. Let511

ptπ ∈ R|Ŝ| denote the vector with components ptπ(ŝ) = P (ŝt = ŝ|π), and let Pπ ∈ R|Ŝ|×|Ŝ| denote512

the transition matrix with components Pπ(ŝ
′|ŝ) =

∫
P (ŝ′|ŝ, a)π(a|ŝ)da; then ptπ = Pπp

t−1
π = P t

πµ̂513

and514

dπ = (1− γ)

H∑
t=0

(γPπ)
tµ̂ (41)

= (1− γ)(I − (γPπ)
H+1)(I − γPπ)

−1µ̂

= (1− γ)(µ̂− γH+1pH+1
π )(I − γPπ)

−1

= (1− γ)(I − γPπ)
−1µ̂

Noticing that the finite MDP ends up at step H , thus pH+1
π = 0.515

516

This formulation helps us easily obtain the following lemma.517

Lemma 6. For any function f : Ŝ 7→ R and any policy π,518

(1− γ) E
ŝ∼µ̂

[f(ŝ)] + E
ŝ∼dπ

a∼π
ŝ′∼P

[γf(ŝ′)]− E
ŝ∼dπ

[f(ŝ)] = 0. (42)

Proof. Multiply both sides of (41) by (I − γPπ) and take the inner product with the vector f ∈519

R|Ŝ|.520

Combining Lemma 6 with (40), we obtain the following, for any function f and any policy π:521

J (π) = E
ŝ∼µ̂

[f(ŝ)] +
1

1− γ
E

ŝ∼dπ

a∼π
ŝ′∼P

[R(ŝ, a, ŝ′) + γf(ŝ′)− f(ŝ)] (43)

B.2.2 MAIN RESULTS522

In this section, we will derive and present the new policy improvement bound. We will begin with a523

lemma:524

Lemma 7. For any function f 7→ R and any policies π′ and π, define525

Lπ,f (π
′)

.
= E

ŝ∼dπ

a∼π
ŝ′∼P

[(
π′(a|ŝ)
π(a|ŝ)

− 1

)
(R(ŝ, a, ŝ′) + γf(ŝ′)− f(ŝ))

]
, (44)
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and ϵπ′f
.
= maxŝ |Ea∼π′,ŝ′∼P [R(ŝ, a, ŝ′) + γf(ŝ′)− f(ŝ)]|. Then the following bounds hold:526

J (π′)− J (π) ≥ 1

1− γ

(
Lπ,f (π

′)− 2ϵπ
′

f DTV (d
π′
||dπ)

)
, (45)

J (π′)− J (π) ≤ 1

1− γ

(
Lπ,f (π

′) + 2ϵπ
′

f DTV (d
π′
||dπ)

)
, (46)

where DTV is the total variational divergence. Furthermore, the bounds are tight(when π′ = π, the527

LHS and RHS are identically zero).528

Proof. First, for notational convenience, let δf (ŝ, a, ŝ′)
.
= R(ŝ, a, ŝ′) + γf(ŝ′)− f(ŝ). By (43), we529

obtain the identity530

J (π′)− J (π) = 1

1− γ

 E
ŝ∼dπ′

a∼π′

ŝ′∼P

[δf (ŝ, a, ŝ
′)]− E

ŝ∼dπ

a∼π
ŝ′∼P

[δf (ŝ, a, ŝ
′)]

 (47)

Now, we restrict our attention to the first term in (47). Let †δπ′

f ∈ R|Ŝ| denote the vector of
components, where †δπ′

f (ŝ) = Ea∼π′,ŝ′∼P [δf (ŝ, a, ŝ
′)|ŝ]. Observe that

E
ŝ∼dπ′

a∼π′

ŝ′∼P

[δf (ŝ, a, ŝ
′)] =

〈
dπ

′
, †δπ

′

f

〉

=
〈
dπ, †δπ

′

f

〉
+

〈
dπ

′
− dπ, †δπ

′

f

〉
With the Hölder’s inequality; for any p, q ∈ [1,∞] such that

1

p
+

1

q
= 1, we have531 〈

dπ, †δπ
′

f

〉
+
∥∥∥dπ′

− dπ
∥∥∥
p

∥∥∥†δπ′

f

∥∥∥
q
≥ E

ŝ∼dπ′

a∼π′

ŝ′∼P

[δf (ŝ, a, ŝ
′)] ≥

〈
dπ, †δπ

′

f

〉
−
∥∥∥dπ′

− dπ
∥∥∥
p

∥∥∥†δπ′

f

∥∥∥
q

(48)

We choose p = 1 and q =∞; With
∥∥∥dπ′ − dπ

∥∥∥
1
= 2DTV (d

π′ ||dπ) and
∥∥∥†δπ′

f

∥∥∥
∞

= ϵπ
′

f , and by the532

importance sampling identity, we have533 〈
dπ, †δπ

′

f

〉
= E

ŝ∼dπ

a∼π′

ŝ′∼P

[δf (ŝ, a, ŝ
′)] (49)

= E
ŝ∼dπ

a∼π
ŝ′∼P

[

(
π′(a|ŝ)
π(a|ŝ)

)
δf (ŝ, a, ŝ

′)]

After bringing (49),
∥∥∥dπ′ − dπ

∥∥∥
1
,
∥∥∥†δπ′

f

∥∥∥
∞

into (48), then substract E
ŝ∼dπ

a∼π
ŝ′∼P

[δf (ŝ, a, ŝ
′)], the bounds534

are obtained. The lower bound leads to (45), and the upper bound leads to (46).535

Then we will bound the divergence term, ||dπ′ − dπ||1, i.e. 2DTV (d
π′ ||dπ).536

Lemma 8. The divergence between discounted future state visitation distributions, ||dπ′ − dπ||1, is537

bounded by an average divergence of the policies π′ and π:538

∥dπ
′
− dπ∥1 ≤

2γ

1− γ
E

ŝ∼dπ
[DTV (π

′||π)[ŝ]] , (50)

where DTV (π
′||π)[ŝ] = 1

2

∑
a |π′(a|ŝ)− π(a|ŝ)|.539
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Proof. Firstly, we introduce an identity for the vector difference of the discounted future state540

visitation distributions on two different policies, π′ and π. Define the matrices G .
= (I−γPπ)

−1, Ḡ
.
=541

(I − γPπ′)−1, and ∆ = Pπ′ − Pπ . Then:542

G−1 − Ḡ−1 = (I − γPπ)− (I − γPπ′) (51)
= γ∆,

left-multiplying by G and right-multiplying by Ḡ, we obtain543

Ḡ−G = γḠ∆G. (52)

Thus, the following equality holds:544

dπ
′
− dπ = (1− γ)

(
Ḡ−G

)
µ̂ (53)

= γ(1− γ)Ḡ∆Gµ̂

= γḠ∆dπ.

Using (53), we obtain545

∥dπ
′
− dπ∥1 = γ∥Ḡ∆dπ∥1 (54)

≤ γ∥Ḡ∥1∥∆dπ∥1,

where ||Ḡ||1 is bounded by:546

∥Ḡ∥1 = ∥(I − γPπ′)−1∥1 ≤
∞∑
t=0

γt∥Pπ′∥t1 = (1− γ)−1. (55)

Next, we bound ∥∆dπ1∥ as following:547

∥∆dπ∥1 =
∑
ŝ′

∣∣∣∣∣∑
ŝ

∆(ŝ′|ŝ)dπ(ŝ)

∣∣∣∣∣ (56)

≤
∑
ŝ,ŝ′

|∆(ŝ′|ŝ)|dπ(ŝ)

=
∑
ŝ,ŝ′

∣∣∣∣∣∑
a

P (ŝ′|ŝ, a) (π′(a|ŝ)− π(a|ŝ))

∣∣∣∣∣ dπ(ŝ)
≤

∑
ŝ,a,ŝ′

P (ŝ′|ŝ, a)|π′(a|ŝ)− π(a|ŝ)|dπ(ŝ)

=
∑
ŝ,a

|π′(a|ŝ)− π(a|ŝ)|dπ(ŝ)

= 2 E
ŝ∼dπ

[DTV (π
′||π)[ŝ]].

By taking (56) and (55) into (54), this lemma is proved.548

549

The new policy improvement bound follows immediately.550
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Lemma 9. For any function f : Ŝ 7→ R and any policies π′ and π, define δf (ŝ, a, ŝ′)
.
= R(ŝ, a, ŝ′)+

γf(ŝ′)− f(ŝ),
ϵπ

′

f
.
= max

ŝ
|Ea∼π′,ŝ′∼P [δf (ŝ, a, ŝ

′)]|,

Lπ,f (π
′)

.
= E

ŝ∼dπ

a∼π
ŝ′∼P

[(
π′(a|ŝ)
π(a|ŝ)

− 1

)
δf (ŝ, a, ŝ

′)

]
, and

D±
π,f (π

′)
.
=

Lπ,f (π
′)

1− γ
±

2γϵπ
′

f

(1− γ)2
E

ŝ∼dπ
[DTV (π

′||π)[ŝ]],

where DTV (π
′||π)[ŝ] = 1

2

∑
a |π′(a|ŝ)− π(a|ŝ)| is the total variational divergence between action

distributions at ŝ. The following bounds hold:

D+
π,f (π

′) ≥ J (π′)− J (π) ≥ D−
π,f (π

′).

Furthermore, the bounds are tight (when π′ = π, all three expressions are identically zero)551

Proof. Begin with the bounds from lemma 7 and bound the divergence DTV (d
π′ ||dπ) by lemma 8.552

553

B.2.3 Proof of Theorem 2554

The choice of f = Vπ in lemma 9 leads to following inequality:555

556

For any policies π′, π, with ϵπ
′ .
= maxŝ|Ea∼π′ [Aπ(ŝ, a)]|, the following bound holds:

J (π′)− J (π) ≥ 1

1− γ
E

ŝ∼dπ

a∼π′

[
Aπ(ŝ, a)−

2γϵπ
′

1− γ
DTV (π

′||π)[ŝ]

]
At this point, the theorem 2 is proved.557
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C SCPO Pseudocode558

Algorithm 1 State-wise Constrained Policy Optimization

Input: Initial policy π0 ∈ Πθ.
for k = 0, 1, 2, . . . do

Sample trajectory τ ∼ πk = πθk
Estimate gradient g ← ∇θEŝ,a∼τ [A

π(ŝ, a)]|θ=θk
▷ section 5

Estimate gradient bi ← ∇θEŝ,a∼τ

[
Aπ

Di
(ŝ, a)

]∣∣
θ=θk

, ∀i = 1, 2, . . . ,m ▷ section 5
Estimate Hessian H ← ∇2

θEŝ∼τ [DKL(π∥πk)[ŝ]]
∣∣
θ=θk

Solve convex programming ▷ Achiam et al. [2017a]

θ∗k+1 = argmax
θ

g⊤(θ − θk)

s.t.
1

2
(θ − θk)

⊤H(θ − θk) ≤ δ

ci + b⊤i (θ − θk) ≤ 0, i = 1, 2, . . . ,m

Get search direction ∆θ∗ ← θ∗k+1 − θk
for j = 0, 1, 2, . . . do ▷ Line search

θ′ ← θk + ξj∆θ∗ ▷ ξ ∈ (0, 1) is the backtracking coefficient
if Eŝ∼τ [DKL(πθ′∥πk)[ŝ]] ≤ δ and ▷ Trust region
Eŝ,a∼τ

[
A

πθ′
Di

(ŝ, a)
]
− Eŝ,a∼τ

[
Aπk

Di
(ŝ, a)

]
≤ max(−ci, 0), ∀i and ▷ Costs

(Eŝ,a∼τ [A
πθ′ (ŝ, a)] ≥ Eŝ,a∼τ [A

πk(ŝ, a)]or infeasible (11)) then ▷ Rewards
θk+1 ← θ′ ▷ Update policy
break

end if
end for

end for
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Table 1: The test suites environments of our experiments

Ground robot Aerial robot
Task Setting Low dimension High dimension

Point Swimmer Walker Ant Drone
Hazard-1 ✓ ✓
Hazard-4 ✓ ✓
Hazard-8 ✓ ✓ ✓ ✓
Pillar-1 ✓
Pillar-4 ✓
Pillar-8 ✓

3DHazard-1 ✓
3DHazard-4 ✓
3DHazard-8 ✓

D Expeiment Details559

D.1 Environment Settings560

Goal Task In the Goal task environments, the reward function is:561

r(xt) = dgt−1 − dgt + 1[dgt < Rg] ,

where dgt is the distance from the robot to its closest goal and Rg is the size (radius) of the goal.562

When a goal is achieved, the goal location is randomly reset to someplace new while keeping the rest563

of the layout the same. The test suites of our experiments are summarized in Table 1.564

Hazard Constraint In the Hazard constraint environments, the cost function is:565

c(xt) = max(0, Rh − dht ) ,

where dht is the distance to the closest hazard and Rh is the size (radius) of the hazard.566

Pillar Constraint In the Pillar constraint environments, the cost ct = 1 if the robot contacts with567

the pillar otherwise ct = 0.568

State Space The state space is composed of two parts. The internal state spaces describe the569

state of the robots, which can be obtained from standard robot sensors (accelerometer, gyroscope,570

magnetometer, velocimeter, joint position sensor, joint velocity sensor and touch sensor). The details571

of the internal state spaces of the robots in our test suites are summarized in Table 2. The external572

state spaces are describe the state of the environment observed by the robots, which can be obtained573

from 2D lidar or 3D lidar (where each lidar sensor perceives objects of a single kind). The state574

spaces of all the test suites are summarized in Table 3. Note that Vase and Gremlin are two other575

constraints in Safety Gym Ray et al. [2019] and all the returns of vase lidar and gremlin lidar are zero576

vectors (i.e., [0, 0, · · · , 0] ∈ R16) in our experiments since none of our test suites environments has577

vases.578

Control Space For all the experiments, the control space of all robots are continuous, and linearly579

scaled to [-1, +1].580

D.2 Policy Settings581

The hyper-parameters used in our experiments are listed in Table 4 as default.582

Our experiments use separate multi-layer perception with tanh activations for the policy network,583

value network and cost network. Each network consists of two hidden layers of size (64,64). All of584

the networks are trained using Adam optimizer with learning rate of 0.01.585
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Table 2: The internal state space components of different test suites environments.

Internal State Space Point Swimmer Walker Ant Drone
Accelerometer (R3) ✓ ✓ ✓ ✓ ✓

Gyroscope (R3) ✓ ✓ ✓ ✓ ✓
Magnetometer (R3) ✓ ✓ ✓ ✓ ✓
Velocimeter (R3) ✓ ✓ ✓ ✓ ✓

Joint position sensor (Rn) n = 0 n = 2 n = 10 n = 8 n = 0
Joint velocity sensor (Rn) n = 0 n = 2 n = 10 n = 8 n = 0

Touch sensor (Rn) n = 0 n = 4 n = 2 n = 8 n = 0

Table 3: The external state space components of different test suites environments.

External State Space Goal-Hazard 3D-Goal-Hazard Goal-Pillar
Goal Compass (R3) ✓ ✓ ✓

Goal Lidar (R16) ✓ ✗ ✓
3D Goal Lidar (R60) ✗ ✓ ✗
Hazard Lidar (R16) ✓ ✗ ✗

3D Hazard Lidar (R60) ✗ ✓ ✗
Pillar Lidar (R16) ✗ ✗ ✓
Vase Lidar (R16) ✓ ✗ ✓

Gremlin Lidar (R16) ✓ ✗ ✓

We apply an on-policy framework in our experiments. During each epoch the agent interact B times586

with the environment and then perform a policy update based on the experience collected from the587

current epoch. The maximum length of the trajectory is set to 1000 and the total epoch number N is588

set to 200 as default. In our experiments the Walker and the Ant were trained for 1000 epochs due to589

the high dimension.590

The policy update step is based on the scheme of TRPO, which performs up to 100 steps of back-591

tracking with a coefficient of 0.8 for line searching.592

For all experiments, we use a discount factor of γ = 0.99, an advantage discount factor λ = 0.95,593

and a KL-divergence step size of δKL = 0.02.594

For experiments which consider cost constraints we adopt a target cost δc = 0.0 to pursue a zero-595

violation policy.596

Other unique hyper-parameters for each algorithms are hand-tuned to attain reasonable performance.597

Each model is trained on a server with a 48-core Intel(R) Xeon(R) Silver 4214 CPU @ 2.2.GHz,598

Nvidia RTX A4000 GPU with 16GB memory, and Ubuntu 20.04.599

For low-dimensional tasks, we train each model for 6e6 steps which takes around seven hours. For600

high-dimensional tasks, we train each model for 3e7 steps which takes around 60 hours.601

D.3 Metrics Comparison602

In Tables 5 to 9, we report all the 14 results of our test suites by three metrics:603

• The average episode return Jr.604

• The average episodic sum of costs Mc.605

• The average cost over the entirety of training ρc.606

All of the three metrics were obtained from the final epoch after convergence. Each metric was607

averaged over two random seed.608
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The learning curves of all experiments are shown in Figures 7 to 11.609

A few general trends can be observed:610

• All methods can converge to good reward performance under different task settings after611

about 1e6 time steps. However, it often takes more time for the cost performance to get612

converge.613

• The reward learning speed and the cost learning rate trade off against each other because the614

algorithms without state-wise constraints are more likely to explore unsafe state to gather615

more rewards.616

E Broader Impact617

Our SCPO algorithm has been theoretically proven to effectively enforce state-wise instantaneous618

constraints, including safety-critical ones such as collision avoidance. However, achieving zero619

constraint violation in practical applications requires careful fine-tuning of the implementation and620

training process. Factors such as neural network structure, learning rate, and cost limits need to be621

properly adjusted to the specific task at hand. It is important to note that improper implementation and622

training of SCPO can still result in constraint violations, posing potential safety risks. Therefore, when623

deploying SCPO policies in safety-critical applications, it is strongly recommended to incorporate624

an explicit safety monitor, such as control saturation, to completely eliminate any potential safety625

issues.626
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Table 5: Metrics of three Point-Hazard environments obtained from the final epoch.

(a) Point-Hazard-1

Algorithm J̄r M̄c ρ̄c

TRPO 2.5779 0.7340 0.0086
TRPO-Lagrangian 2.6313 0.5977 0.0058

TRPO-SL 2.4721 11.7396 0.0116
TRPO-USL 2.5410 0.5381 0.0083
TRPO-IPO 2.5779 0.7340 0.0086
TRPO-FAC 2.5731 0.3263 0.0040

CPO 2.4988 0.1713 0.0045
PCPO 2.4928 0.3765 0.0054
SCPO 2.5822 0.0807 0.0013

(b) Point-Hazard-4

Algorithm J̄r M̄c ρ̄c

TRPO 2.5925 0.2412 0.0037
TRPO-Lagrangian 2.5494 0.2108 0.0034

TRPO-SL 2.5174 0.2915 0.0037
TRPO-USL 2.6140 0.2695 0.0035
TRPO-IPO 2.5946 0.2297 0.0038
TRPO-FAC 2.5566 0.1848 0.0028

CPO 2.5924 0.1654 0.0024
PCPO 2.5575 0.1824 0.0025
SCPO 2.5607 0.0687 0.0009

(c) Point-Hazard-8

Algorithm J̄r M̄c ρ̄c

TRPO 2.5761 0.5413 0.0071
TRPO-Lagrangian 2.5851 0.5119 0.0064

TRPO-SL 2.5683 0.8681 0.0071
TRPO-USL 2.5808 0.5921 0.0070
TRPO-IPO 2.5625 0.5047 0.0071
TRPO-FAC 2.6599 0.4819 0.0059

CPO 2.6440 0.2944 0.0041
PCPO 2.6249 0.3843 0.0052
SCPO 2.5793 0.1427 0.0020

Table 6: Metrics of three Point-Pillar experiments obtained from the final epoch.

(a) Point-Pillar-1

Algorithm J̄r M̄c ρ̄c

TRPO 2.6059 0.2899 0.0026
TRPO-Lagrangian 2.5772 0.1218 0.0020

TRPO-SL 2.5049 0.1191 0.0014
TRPO-USL 2.5924 0.1483 0.0021
TRPO-IPO 2.6059 0.2899 0.0026
TRPO-FAC 2.6362 0.0698 0.0013

CPO 2.5464 0.2342 0.0028
PCPO 2.5857 0.2088 0.0025
SCPO 2.5928 0.0040 0.0003

(b) Point-Pillar-4

Algorithm J̄r M̄c ρ̄c

TRPO 2.5958 0.4281 0.0061
TRPO-Lagrangian 2.6040 0.2786 0.0050

TRPO-SL 2.5417 0.2548 0.0031
TRPO-USL 2.5623 0.2977 0.0063
TRPO-IPO 2.5958 0.4281 0.0061
TRPO-FAC 2.6105 0.3223 0.0040

CPO 2.5720 0.5523 0.0062
PCPO 2.5709 0.3240 0.0052
SCPO 2.5367 0.0064 0.0005

(c) Point-Pillar-8

Algorithm J̄r M̄c ρ̄c

TRPO 2.6095 3.4805 0.0212
TRPO-Lagrangian 2.6164 0.6632 0.0129

TRPO-SL 2.5585 1.5260 0.0074
TRPO-USL 2.5836 0.6743 0.0172
TRPO-IPO 2.6095 3.4805 0.0212
TRPO-FAC 2.5701 0.4257 0.0068

CPO 2.6440 0.5655 0.0166
PCPO 2.5704 6.6251 0.0219
SCPO 2.4162 0.2589 0.0024

Table 7: Metrics of three Swimmer-Hazard experiments obtained from the final epoch.

(a) Swimmer-Hazard-1

Algorithm J̄r M̄c ρ̄c

TRPO 2.6062 0.5326 0.0070
TRPO-Lagrangian 2.6044 0.4060 0.0056

TRPO-SL 2.5269 10.0374 0.0382
TRPO-USL 2.6296 0.3754 0.0050
TRPO-IPO 2.6062 0.5326 0.0070
TRPO-FAC 2.5765 0.2439 0.0041

CPO 2.6126 0.4115 0.0049
PCPO 2.5741 0.4670 0.0051
SCPO 2.6006 0.0743 0.0009

(b) Swimmer-Hazard-4

Algorithm J̄r M̄c ρ̄c

TRPO 2.5897 0.2046 0.0033
TRPO-Lagrangian 2.6128 0.3953 0.0038

TRPO-SL 2.5056 4.6391 0.0206
TRPO-USL 2.6103 0.2260 0.0027
TRPO-IPO 2.5844 0.2739 0.0033
TRPO-FAC 2.5984 0.1997 0.0028

CPO 2.6023 0.1368 0.0021
PCPO 2.5922 0.4265 0.0033
SCPO 2.6317 0.1082 0.0012

(c) Swimmer-Hazard-8

Algorithm J̄r M̄c ρ̄c

TRPO 2.6322 0.4843 0.0067
TRPO-Lagrangian 2.5979 0.4205 0.0058

TRPO-SL 2.4930 9.6048 0.0316
TRPO-USL 2.6133 0.4259 0.0059
TRPO-IPO 2.6322 0.4843 0.0067
TRPO-FAC 2.6037 0.5606 0.0056

CPO 2.6335 0.4201 0.0045
PCPO 2.5895 0.7420 0.0063
SCPO 2.5604 0.1527 0.0030

Table 8: Metrics of three Drone-3DHazard experiments obtained from the final epoch.

(a) Drone-3DHazard-1

Algorithm J̄r M̄c ρ̄c

TRPO 2.3777 0.3086 0.0014
TRPO-Lagrangian 2.4149 0.0766 0.0007

TRPO-SL 2.4300 0.0044 0.0004
TRPO-USL 2.3760 0.0690 0.0008
TRPO-IPO 2.3724 0.2032 0.0011
TRPO-FAC 2.3856 0.0537 0.0007

CPO 2.4464 0.0706 0.0007
PCPO 2.1118 3.2450 0.0015
SCPO 2.3860 0.0423 0.0002

(b) Drone-3DHazard-4

Algorithm J̄r M̄c ρ̄c

TRPO 2.4163 0.3008 0.0025
TRPO-Lagrangian 2.4175 0.1990 0.0022

TRPO-SL 2.3748 0.0529 0.0011
TRPO-USL 2.4658 0.1264 0.0017
TRPO-IPO 2.4163 0.3008 0.0025
TRPO-FAC 2.3839 0.0867 0.0015

CPO 2.3995 0.3610 0.0026
PCPO 2.4180 1.0088 0.0034
SCPO 2.4034 0.0545 0.0008

(c) Drone-3DHazard-8

Algorithm J̄r M̄c ρ̄c

TRPO 2.4206 0.4561 0.0057
TRPO-Lagrangian 2.4237 0.1962 0.0034

TRPO-SL 2.4255 0.1635 0.0022
TRPO-USL 2.4488 0.2052 0.0037
TRPO-IPO 2.4206 0.4561 0.0057
TRPO-FAC 2.4600 0.1069 0.0022

CPO 2.4221 0.6941 0.0041
PCPO 2.1837 0.5179 0.0027
SCPO 2.3846 0.0478 0.0012

Table 9: Metrics of Ant-Hazard and Walker-Hazard experiments obtained from the final epoch.

(a) Ant-Hazard-8

Algorithm J̄r M̄c ρ̄c

TRPO 2.6203 0.1869 0.0084
TRPO-Lagrangian 2.6336 0.1667 0.0058

TRPO-SL 2.5522 4.1269 0.0510
TRPO-USL 2.6153 0.2108 0.0083
TRPO-IPO 2.6197 0.1990 0.0083
TRPO-FAC 2.6218 0.0955 0.0051

CPO 2.6103 0.1330 0.0066
PCPO 2.6281 0.1046 0.0059
SCPO 2.5873 0.0327 0.0021

(b) Walker-Hazard-8

Algorithm J̄r M̄c ρ̄c

TRPO 2.6471 0.3274 0.0096
TRPO-Lagrangian 2.6167 0.2194 0.0071

TRPO-SL 2.6476 0.9863 0.0204
TRPO-USL 2.6239 0.3148 0.0095
TRPO-IPO 2.6397 0.3115 0.0096
TRPO-FAC 2.5917 0.1283 0.0049

CPO 2.6211 0.1779 0.0069
PCPO 2.6410 0.2013 0.0074
SCPO 2.5751 0.0546 0.0029
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(a) Point-Hazard-1 (b) Point-Hazard-4 (c) Point-Hazard-8

Figure 7: Point-Hazard

(a) Point-Pillar-1 (b) Point-Pillar-4 (c) Point-Pillar-8

Figure 8: Point-Pillar

27



(a) Swimmer-Hazard-1 (b) Swimmer-Hazard-4 (c) Swimmer-Hazard-8

Figure 9: Swimmer-Hazard

(a) Drone-3DHazard-1 (b) Drone-3DHazard-4 (c) Drone-3DHazard-8

Figure 10: Drone-3DHazard
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(a) Ant-Hazard-8 (b) Walker-Hazard-8

Figure 11: High dimensional hazard tasks
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