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ABSTRACT

Synthetic data generation has recently emerged as a promising approach for en-
hancing the capabilities of large language models (LLMs) without the need for
expensive human annotations. However, existing methods often generate data
that can be low quality or contrived. In this paper, we introduce Source2Synth, a
scalable approach for synthetic data generation and curation that is grounded in
real-world data sources. Source2Synth takes as input a custom data source and
produces synthetic data points with intermediate reasoning steps. Our method
improves the dataset quality by discarding low-quality generations based on their
answerability. We demonstrate the generality of this approach by applying it to two
tasks that leverage two different types of sources: multi-hop question answering
(MHQA), where we test complex reasoning abilities leveraging documents, and
tabular question answering (TQA), where we test tool usage leveraging tables. Our
method improves performance by 25.51% for TQA on WikiSQL and 22.57% for
MHQA on HotpotQA compared to the fine-tuned baselines.

1 INTRODUCTION

Large Language Models (LLMs) (Devlin et al., 2019; Chowdhery et al., 2022; Brown et al., 2020;
Vaswani et al., 2017) have risen to popularity due to their remarkable ability to digest and generate
human-like text (Radford et al., 2018). However, it is difficult to unlock new capabilities for LLMs
to solve more complex tasks due to the unavailability of task-specific data. Some examples of such
complex tasks are multi-step reasoning, tool use and manipulating or processing structured data,
among others. Enriching the data with human annotations collected for specific tasks is an expensive
and time-consuming process (Touvron et al., 2023) which is subject to human-errors and bias.

In this paper, we propose the Source2Synth self-augmentation and self-improvement approach
to produce high quality synthetic data grounded in external real-world sources. Basing the data
generation process on real-world sources steers the examples to be more realistic, diverse, and
factually correct. The self-improvement step via curation enables to filter out low quality data.
We showcase our method on two challenging tasks that leverage different data sources: multi-hop
question-answering (based on documents to test multi-step reasoning and information extraction), and
tabular question answering (based on tables, testing tool-use via SQL). In both cases, models trained
with Source2Synth’s pipeline achieve improved performance without relying on human annotations,
resulting in a scalable data generation method for complex tasks. To summarize, our key contributions
are: 1) a new scalable method for generating synthetic data grounded in a real data source for a given
task, and 2) a curation method based on filtering and imputation which yields higher quality data and
improved task performance.

2 RELATED WORK

Synthetic Data Generation using LLMs A number of works propose leveraging language models
to generate synthetic datasets. Some rely on knowledge-probing, by generating a continuation or
predicts missing words in a close-style template (Schick & Schütze, 2020; Schick & Schütze, 2021;
Petroni et al., 2019; Jiang et al., 2019), while others improve the quality of synthetic data by using
different model-based or human filtering techniques (Schick & Schütze, 2021; Liu et al., 2022; Li
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et al., 2024; Thoppilan et al., 2022). Our method improves the quality of the synthetic data by
leveraging the LLM itself bypassing human-in-the-loop steps, thus being cheaper and more scalable.
Our seed selection topic is automated, and we leverage real data as a starting point, which steers the
examples to be more realistic, diverse, and factually correct. Please see Appendix C for a review of
works that leverage real-world data sources and a comparison to our method.

Teaching LLMs to Use Tools Enabling LLMs with tool-use extends their abilities to manipulating
structured data, retrieving information from external sources, or interacting with APIs. Various
works augment LLMs with general tools or API calls (Parisi et al., 2022; Schick et al., 2023; Tang
et al., 2023), possibly interleaving reasoning steps with API calls (Gao et al., 2023; Cai et al., 2024;
Paranjape et al., 2023). Finally, some works investigate the use of unseen tools at test time (Paranjape
et al., 2023; Mekala et al., 2024). See Mialon et al. (2023) and Qin et al. (2023) for an in-depth
review of augmented language models research. In the above approaches tool usage is restricted to
inputs that are strings or numbers. However, using structured data (like tables and graphs) during
post-training can be useful to enhance the LLM’s capabilities in complex tasks. A particular tool of
interest is SQL since it enables aggregating information from tabular data, see Appendix C for more
information on using SQL as a tool in LLMs.

3 METHOD

Source2Synth provides a way to generate high-quality synthetic datasets for a given application
leveraging different types of real-world data sources by self-augmentation and self-improvement. The
generated synthetic examples can then be used as augmented step-by-step examples for fine-tuning
the LLM. Source2Synth is composed of three stages: Dataset Generation, Dataset Curation, and
Model Fine-tuning.
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Figure 1: Source2Synth Method. During Dataset Generation, we choose a
data source to build the dataset. For each example, we select a seed topic
to condition the generation on, and use the data source and seed together
to construct the example. The resulting synthetic dataset is sliced in two:
slice 0, used to fine-tune an intermediate version of the LLM (LLMSynth),
which is then used to curate slice 1 through filtering and/or imputation
during Dataset Curation step. The curated dataset is of higher quality and
aligned with the user’s design. At Model Fine-tuning stage, the final LLM
(LLMCurated) is trained on the curated synthetic dataset.

Dataset
Generation
Data source selection
We first select a data
source. The source can
be an already existing
dataset re-purposed for
the task of interest, a
collection of existing
data points, or struc-
tured information (e.g.
graphs, tables). There
is no need for human
annotations on the en-
tries, as Source2Synth
enriches it with ex-
tra instructions by self-
augmentation.

Seed To create a syn-
thetic example, we
first generate a seed
topic. The seed is cho-
sen at random from the
source data. The seeds anchors the creation of the entry, making it consistent through the succesive
steps of the generation process.

Dataset construction In order to leverage complex tasks with LLMs, typically we can resort to
Chain-Of-Thought (Wei et al., 2022) prompting. Analogously, in Source2Synth we leverage the
seed to build synthetic step-by-step data, decomposing the generation into intermediate steps. This
reasoning chain augmentation can be used as supervision (for reasoning or for learning tool-use) by
providing it as the target in the synthetically generated training examples.
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Dataset Curation
During curation, the dataset is split in two halves: the first half is used to fine-tune a LLM (LLMSynth),
LLMSynth is then used to self-improve the quality of the second slice of the dataset by performing
imputation plus a filtering step. After these steps, we obtain the final curated dataset (in purple in
Figure 1).
Data filtering The finetuned model LLMSynth is used to predict the output of the given synthetic
example using k tries. If the output cannot be predicted at least once, it is assumed the example is
low quality and is not included in the final curated dataset.
Data Imputation We also consider an imputation process, which involves blanking parts of the
augmented data points and using the LLM to fill in the blanks, to replace those fields.

Model Fine-tuning
We fine-tune a pretrained or instruction-tuned version of the LLM using the Source2Synth synthetic
dataset. We use our dataset for supervised training of both the reasoning chain and the final answer.
The resulting LLMCurated model is then equipped with the relevant capability for the task of interest.

4 APPLICATIONS

D1_text :
'Apollo 11 (July 16–24, 1969) was the 
American spaceflight that first landed 
humans on the Moon.’

D1_title: ‘The Moon’

D2_text :
'Neil Armstrong became the first person to walk
on the Moon as the commander of the American 
mission Apollo 11 by first setting foot on the
Moon at 02:56 UTC on July 21,1969'

D2_title: ‘Neil Armstrong’

Seed: 'Apollo 11'

Q1 : 'What was the spaceflight that   . 
     .first landed humans on the Moon?'

Q2 : 'Who was the commander of Apollo 11?
A2 : 'Neil Armstrong'

Q : 'Who was the commander of the spaceflight that first landed humans on the Moon?'
A : 'Neil Armstrong' Dataset entry
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Figure 2: MHQA synthetic data generation process:. randomly
pick one article D1, e.g. "The Moon" article. Next, at Seed stage,
an entity E is retrieved from D1 - e.g. "Apollo 11". Then, we
sample from the pool of related documents of D1 where E is
present e.g. we select D2 titled "Neil Armstrong". A question Q1

is generated from D1, with the constraint that the answer A1 is
the entity E. A second question Q2 is generated from D2, with
the constraint that its main topic is the entity E. We then prompt
an LLM to merge the two questions into a multi-hop one Q, based
on their common entity. The training example comprises of Q, A,
the sub-questions, reasoning chain, and the entity.

The general pipeline described
above can be used to produce
custom synthetic examples tai-
lored for the task at hand (like
teaching LLMs new skills). We
evaluate Source2Synth on two
challenging tasks: multi-hop
question answering (leveraging
documents as sources, to test rea-
soning), and tabular question an-
swering(leveraging tables, to test
tool-use).

4.1 MULTI-HOP
QUESTION ANSWERING

For the multi-hop question an-
swering task (MHQA), we gener-
ate a synthetic dataset consisting
of a multi-hop question Q with
its answer A, the decomposition
into sub-questions with answers
and the relative reasoning chain,
plus the entity that links the sub
questions. See Figure 2 for an
overview of the procedure and
Figure 4 - Right for an example response from the model finetuned with the Source2Synth approach.

Dataset Generation
Data source selection We use English Wikipedia (Wikipedia contributors, 2004) as the data source
for MHQA, since it contains articles in natural language and additional meta-information like links
to related articles. Firstly, we randomly select an initial article, denoted as D1, among all available
Wikipedia articles. For each D1 we collect n ≥ 2 related articles.

Seed An MHQA seed topic corresponds to an entity E retrieved from D1. The seed topic in MHQA
is also used as the “hop” in the multi-hop question Q that we aim to generate, since E links the
n = 2 sub-questions that compose Q. In Figure 2, we sample the article D1 ="The Moon" at
random and sample a corresponding entity, E ="Apollo 11" in this case. Then, we pick D2 ="Neil
Armstrong" from the pool of related articles, since it contains a paragraph where the entity "Apollo
11" is included.
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Dataset construction
We prompt an instruction-tuned language model to generate two questions: a question Q1 based on
D1, whose answer is the selected entity E; and a second question Q2, based on D2 such that its main
topic is E. See Figures 16 and 17 for the prompts. In Figure 2, Q1 = "What was the spaceflight that
first landed humans on the Moon?", the hop is E = "Apollo 11" and Q2 = "Who was the commander
of Apollo 11?". We then prompt the LLM to merge the two questions, in order to generate the final
two-hop question Q by using the entity as a conceptual link (hop). The prompt is given in Figure 15.

Dataset Curation
Data filtering We check if the predicted answer matches the answer deterministically extracted in the
synthetically generated example, and if after k = 3 tries tries the LLM has not supplied the correct
answer we filter out the entry entirely. See Figure 4 - Left for an example of model inference.

Data Imputation For MHQA, we blank Q1 and provide the LLM with Q, Q2, E, and the relative
doc sample D1 as context when asking it to reconstruct Q1. The new candidate Q′

1 for Q1 is then
assessed: if A′ (the answer to the new multi-hop question Q′ resulting from assembling Q′

1 and Q2)
matches A (the original answer to Q) then we keep the example. We find that asking the model to
reconstruct parts of the multi-hop question in-context results in a more natural and cohesive question,
thus removing some of the unnaturalness of the text that can occur from automatically generated
and merged examples (see Appendix E.4 for a study on the advantages of imputation). In total, the
curation step removes around 13% of the questions originally generated.

4.2 TABULAR QUESTION ANSWERING

In Tabular question answering (TQA), we generate a question-answer dataset where each question
is based on a table from the data source. Generated training examples are hence augmented with
annotations built from automatically-generated interesting facts retrieved from the table.

Dataset Generation

|     |  Year  |  Country  |  Arrivals |
|-----|--------|-----------|------------------|
|  0  |  2012  |   USA     |   21.7 million   |
|  1  |  2012  |   Mexico  |   12.4 million   |
|  2  |  2013  |   Canada  |   29.3 million   |

>> sql_table

SQL: 'SELECT MAX(Arrivals) FROM.
      sql_table WHERE Year=2012'

Q : 'What country had the most tourist arrivals in 2012?'
A : 'USA'

Seed: 

 A: 'USA'

Q: 'What country had.the...
    most arrivals in 2012?’

Dataset entry
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'The country with most arrivals in 2012.'           

Figure 3: TQA synthetic data generation process. Firstly,
generate the seed: a fact based on the table (in blue). Given
the seed and table, an SQL query is generated (in green) as
well as its translation into natural language Q. Then, the SQL
is executed to obtain the answer A.

Data source selection In the TQA
case, we use 4k unlabeled tables from
the WikiSQL (Zhong et al., 2017)
training dataset as sources.

Seed For each table, we prompt an
instruction-tuned language model to
generate a statement based on the ta-
ble. This statement is the seed topic
for the generation and is a pertinent in-
teresting fact or set of observations in
natural language that can be derived
from the table. The prompt is given
in Figure 11.

Dataset construction We next gener-
ate an SQL-statement by zero-shot
prompting the LLM: we provide the
table and the seed (factual statement)
as context, see Figure 12 for the
prompt. Given the produced SQL statement, it is then executed using the Python library sqlite31 to
obtain an SQL answer formatted as a table. If the generated statement is invalid, we discard it and
re-generate. We generate a total of 10k SQL statements based on the source tables. We execute the
statements to filter for validity (i.e. discarding non-executable SQL statements) and the final dataset
size is 8k per slice.

Dataset Curation
Data filtering We check if the predicted answer of LLMSynth fine-tuned on slice 0 matches the answer
in the synthetically generated example, and if after k = 3 tries the model has not supplied the correct

1https://www.sqlite.org
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answer we filter out the entry entirely. See Figure 4 - Right for an example of model inference. In
TQA, the curation process consists only of the filtering step. After curation, we keep 27% of the
original examples in slice 1.

5 EXPERIMENTAL SETUP

We test our method on two tasks that leverage two different data-types as sources: tabular question
answering, which uses tables, and multi-hop question answering, which uses documents. We use
Source2Synth to generate and curate a high-quality data set suitable for fine-tuning and compare our
method with a number of baselines.see Appendix D for more details on the data source, metrics, and
model used in both applications.

Multi-Hop QA Setup - Baselines
We compare Source2Synth to the following baselines (for all the listed models, we use two prompt
templates, a zero-shot and a three-shot CoT, see Figure 14, Appendix G):
Instruction-tuned LLM: we prompt LLama-2 70B-Chat for the task.
Fine-tuned LLM (HotpotQA only): we fine-tune Llama-2 70B-Chat model with 500 examples from
the HPQA training split.
LLMSynth (Synthetic dataset only): we fine-tune LLama-2 70B-Chat model with 1250 synthetic
examples from Slice 0 (see Figure 1), without the data curation step.
LLMSynth-datamix (Synthetic and HotpotQA): we fine-tune LLama-2 70B-Chat with the uncurated
synthetic data in addition to the 500 HPQA examples.

Tabular QA Setup - Baselines
We compare the performance of our Source2Synth method against a variety of baselines consisting
of prompting the Starchat-beta instruction-tuned language model:
Zero-shot Table QA (Figure 7): zero-shot prompt with task instruction, table and question.
One-Shot No Context QA (Figure 8): one-shot example with a question and answer prompt with task
instruction and the actual question to answer.
One-Shot Table QA (Figure 9): prompt including the table for the one-shot example and the question
to answer. We use one-shot only due to context-length limitations and the large size of tables.
One-shot Table+SQL QA ( Figure 10): the prompt includes an example containing the table and
question, and an instruction suggesting that the model can leverage an SQL tool. We then execute the
predicted SQL to obtain the answer.
LLMSynth: Fine-tune the model with synthetic data without applying the data curation step.

6 RESULTS

Multi-Hop question answering

Table 1: Evaluation of Source2Synth on Multi-hop question answering.
The models shown are fine-tuned with 500 entries from HotpotQA and/or
1250 entries from the Source2Synth Synthetic data. Using Source2Synth cu-
rated synthetic data in combination with HotpotQA (LLMCurated-datamix,
last row) works best.

Method 0-shot 3-shot CoT
Instruction-tuned LLM (LLama 2 70B-Chat) 40.45% 44.13%
Fine-tuned LLM (HotpotQA data only) 53.22% 58.40%
LLMSynth (Synthetic data only) 52.31% 56.70%
LLMSynth-datamix (Synthetic and HotpotQA) 57.46% 62.73%
LLMCurated (Synthetic data only) 64.07% 64.68%
LLMCurated-datamix (Synthetic and HotpotQA ) 65.23% 66.05%

We report the ex-
perimental results
in Table 1. We
include the follow-
ing baselines and
use a zero-shot and
three-shot promps,
see Figure 14): 1)
prompting a standard
instruction-tuned
LLM (first row), 2) a
fine-tuned LLM using
only the HotpotQA
500 examples from the train split (second row), and 3) LLMSynth which only uses the uncurated
synthetic data for fine-tuning (third row), and lastly LLMSynth-datamix that is fine-tuned on both Hot-
potQA and the uncurated synthetic dataset (fourth-row). All fine-tuned methods outperform the first
baseline where we prompt the instruction-tuned model. Using only synthetic data or only HotpotQA
data for fine-tuning demonstrates worse performance than when combined, whether the synthetic
data is curated (LLMCurated, fifth row), or not (LLMSynth, third row). All models where we use the
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full Source2Synth pipeline we see further performance improvements ( LLMCurated, LLMCurated-
datamix, fifth and sixth rows) vs not curating the data ( LLMSynth, LLMSynth-datamix, third and
fourth row).

Source2Synth on grounded synthetic data points only (without HotpotQA training examples)
We fine-tune Llama2-70B-Chat only on grounded synthetic data, to simulate the no-data regime

(i.e. the data points come solely from Source2Synth’s pipeline starting from a real-world source).
In Table 1 we see that fine-tuning without those additional 500 entries from HotpotQA minimally
hinders performance. Furthermore, we evaluate LLMCurated on the difficulty splits in Table 3. While
the model achieves comparable performance on bridge questions, the model shows slightly worse
performance on comparison questions (Table 3, row 3).

Other experiments 1) In Appendix E.1 we break down the model’s performance with respect to the
difficulty levels of the questions, and show that the model not only improved in multi-hop QA, but
by fine-tuning with data from our pipeline it gained better reasoning abilities on harder questions;
2) In Appendix E.2 we present an analysis of Source2Synth’s performance (both LLMSynth and
LLMCurated) with respect to the training dataset size.

Other ablations 1) In Appendix E.3, we apply the whole pipeline using an ungrounded synthetic
dataset to showcase the benefit of using real-world data as a source to generate the synthetic dataset. 2)
In Appendix E.4 we measure the naturalness of generated MHQA questions by measuring perplexity
before and after imputation. 3) In Appendix E.5, we study how Source2Synth performs when using a
smaller model (Llama3-8B instruct) and/or on synthetic data not generated in a monolithic fashion.

Tabular question answering

We report the experimental results for TQA in Table 2. We see that providing no context about the
table when prompting the instruction-tuned StarChat language model has very poor performance
(first row). This is expected, since questions in WikiSQL require information contained in the table
to answer, while the model does not have any other information except for the general knowledge
stored in its parameters. However, even if we pass the table as part of the prompt, the performance
does not improve much due to its difficulties to digest structured data (second row). While passing an
example of table usage in a one-shot fashion (third row) improves the soft-EM metric, the EM metric
is still very low (model gathers the correct info but does not understand it correctly).

Table 2: Tabular question answering. The models are fine-tuned using
Source2Synth curated synthetic data only. Performance comparison on the
WikiSQL evaluation dataset.

Method Exact Match Soft-EM
One-Shot No Context QA (Starchat-beta LLM) 0.25% 16.22%
Zero-shot Table QA (Starchat-beta LLM) 1.83% 20.07%
One-Shot Table QA (Starchat-beta LLM) 2.03% 31.06%
One-shot Table+SQL QA (Starchat-beta LLM) 12.30% 34.13%
LLMSynth (Synthetic data only) 23.86% 34.21%
LLMCurated (Synthetic data only) 34.50% 42.80%

The performance
increases once we
provide a one-shot
example containing
the relevant table and
SQL query (fourth
row). This means that
the model’s ability to
leverage the SQL tool
improves performance
markedly. When we
use the Source2Synth
curated data to fine-tune the StarChat model (last row), we observe a significant increase in
performance: indeed, our full method performs significantly better than fine-tuning the StarChat
language model using synthetic data without curation, LLMSynth (second to last row), although
that still outperforms the other baselines by a large margin as well, indicating the utility of our
Source2Synth synthetic data generation scheme.

7 CONCLUSIONS

We introduce Source2Synth, a new method for generating and curating high-quality synthetic data
grounded in real data sources. We demonstrate its utility on two tasks, that leverage two different data
source types, and pose significant challenges for LLMs: multi-hop reasoning and tabular question
answering with SQL. We see our method as a first step towards building high-quality automatic data
generation methods without human input.
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A LIMITATIONS

In this paper, our applications use a single seed or table per query to derive questions. However,
Source2Synth can be extended to more complex scenarios e.g. multiple hops or queries that require
multi-table tool-use. This can be done by looping the dataset generation steps and feeding the result
of the previous step as input to the next one. Our method could also be improved with more clever
sampling techniques. We consider this to be an interesting avenue of future research.

B ETHICS STATEMENT

Although our work does not directly deal with private or sensitive data and we showcase applications
starting on public sources, it can be used to create new datasets and/or stronger model starting from
private data - for example, using Source2Synth to create a QA dataset on medical data. We believe
that while this is of help to the community because it provides a way to self-generate synthetic data
for an ad-hoc application / private source data, we encourage the user to be mindful of the context of
deployment and take necessary precautions to preserve privacy.

C EXTENDED RELATED WORK

Using real-world sources Similarly, some recent works leverage real-world data in document form
from the web to construct high-quality synthetic data (Nguyen et al., 2024; Ziegler et al., 2024) or
open-source code snippets to generate diverse instruction data for code generation (Wei et al., 2024;
Dubey et al., 2024). See Liu et al. (2024) for an overview of synthetic data research. Our general
framework can be applied using data sources of different types. In contrast to these approaches, we
do not require a back-translation approach or initial fine-tuning to generate the seed.

Teaching LLMs to use SQL In the above approaches usually tool usage is restricted to inputs that
are strings or numbers. However, using structured data (like tables and graphs) during post-training
can be useful to enhance the LLM’s capabilities in complex tasks. A particular tool of interest is SQL
since it enables aggregating information from tabular data. A variety of benchmarks (Pasupat &
Liang, 2015) have been proposed to assess LLMs’ abilities to generate SQL and their performance
on tabular-based question answering with SQL (Li et al., 2023a; Zhong et al., 2017). Alternatively,
other works studied how LLMs directly handle tabular data (Herzig et al., 2020; Gemmell & Dalton,
2023).

C.1 INFERENCE OUTPUT - ILLUSTRATION

D MORE DETAILS ON THE EXPERIMENTAL SETUP

D.1 MULTI-HOP QA

Data We evaluate Source2Synth on MHQA using the HotpotQA (Yang et al., 2018) (HPQA) bench-
mark: it contains 113,000 examples of multi-hop QA pairs based on Wikipedia, split in train, test, and
validation sets. Yang et al. (2018) recommend the FullWiki setting to test multi-hop reasoning abilities
of models. We use this setup in our evaluation with the test set. Each entry in HotpotQA is constructed
such that: 1) each question requires finding and reasoning over multiple supporting documents in
order to answer; 2) each entry provides sentence-level supporting facts for strong supervision and
explain-ability of the prediction; 3) each question can be classified as either a comparison or bridge
question. A comparison question entails comparing the same concept between n objects (e.g. "Who
is the tallest student in class?"), while a bridge question builds on a logical and/or causal link and
requires deriving statements to get to the answer (e.g. "What is the height of the student that topped
the entry exam?" - this requires first identifying the student that topped the exam). The hop length
is the number of comparison objects, for comparison questions, or the number of links, for bridge
questions. We chose n = 2 to be consistent with HotpotQA . The test set consists of 7, 405 entries,
split evenly between bridge and comparison questions. We only generate synthetic data for bridge
questions, since they pose a bigger challenge to current LLMs and to counterbalance this disparity,
we include 500 comparison questions from HotpotQA’s training dataset in our fine-tuning dataset.
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INPUT

Answer the following question `Q` by 
decomposing it into `Q1` and `Q2` and 
solving them step-by-step.

Q: “It Takes a Family is a response to . .  
this 1996 book that was published by who?”

OUTPUT

1. Splitting `Q` into `Q1` and `Q2`:
`Q1` : “To which book published in 1996 is
        It Takes a Family a response to?”.
`Q2` : “Who published [A1]?”

2. Answering Q1:
The answer `A1` to `Q1` : “To which book 
published in 1996 is It Takes a Family a 
response to?” is “It Takes a Village”
`A1` : “It Takes a Village”

3. Substituting A1 to Q2:
`Q2`: “Who Published It Takes a Village?” 

4. Answering Q2:
`A2` = `A`= “Hillary Clinton”

Since I don’t know the schema of the table,
I will inspect the first two rows.

|   | Train | Day |   Distance travelled  | 
|---|-------|-----|-----------------------|
| 0 |   A   |  2  |        23.5 km        |

I will make an SQL statement to answer the 
question.

SELECT MIN(Kilometers) FROM sql_table WHERE 
Day = 2 

A : 'Train A'

Answer the following question using the SQL
table `sql_table`.

Q: “What train travelled the minimum
   distance on day 2?”

|   | Train | Day |   Distance travelled  | 
|---|-------|-----|-----------------------|
| 0 |   A   |  2  |        23.5 km        |
| 1 |   B   |  1  |        67.4 km        |
| 2 |   C   |  2  |        36.3 km        |
|...|  ...  | ... |          ...          |

INPUT

OUTPUT

Figure 4: Left: Example Source2Synth Response on MHQA (closed book inference). Model’s
response (reasoning steps and answer) to a multi-hop input question (yellow). The colours highlight
the generation of the augmented entries: the decomposition into sub questions, in green, the seed, in
blue, and the final answer, in pink.
Right: Example Source2Synth Response on TQA. Model’s response (SQL call and final answer) to
the tabular input question (yellow). The coloured parts highlight the generation of the corresponding
augmented entries: SQL, in green, the seed, in blue, and the final answer, in pink.

Metrics We measure the performance using soft exact match (soft-EM) as the metric. Soft-EM is 1 if
the generated output contains the golden answer and 0 otherwise.

Model In MHQA experiments we use the Llama-2 70B-Chat LLM and we fine-tune Source2Synth
and various other baseline methods starting from this model. Source2Synth is trained with 1250
synthetic examples, unless noted otherwise, in addition to the 500 HotpotQA examples above. The
1250 synthetic examples are generated starting from a collection of 50 randomly selected Wikipedia
articles.

D.2 TABULAR QA

Data We evaluate Source2Synth on TQA using the WikiSQL (Zhong et al., 2017) benchmark: it
consists of a corpus of 80,654 hand-annotated examples of natural language questions, SQL queries,
and tables created from 24,241 tables extracted from Wikipedia. The validation split contains 7,857
examples after removing non-executable SQL tables, see Appendix F for more details.

Metrics We measure performance using the exact match (EM) and the soft-EM metrics. The EM
metric equals 1 if the golden answer is equal to the generated answer and 0 otherwise.

Model For TQA, we use the Starchat-beta language model (Li et al., 2023b) from Huggingface as
the initial language model (batch size 32, 100 steps, lr 0.0001, linear warm-up). The Starchat model
is an instruction-tuned LLM with 16 billion parameters trained to act as a helpful coding assistant.
This model is a fine-tuned version of StarCoder (Li et al., 2023b), a LLM pre-trained on a large code
corpus, which contains SQL statements, and fine-tuned on 35B Python tokens.

E FURTHER EXPERIMENTS

E.1 ANALYSIS OF PERFORMANCE ON DIFFERENT QUESTION TYPES AND LEVELS OF
DIFFICULTY

In Table 3, we study the capabilities of our model by analysing the performance of LLM-Curated-
1250 with a particular focus on the type and difficulty of the questions: hard/medium/easy bridge
and comparison questions. We compare the performance of the base model, the model fine-tuned
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on HotpotQA only, and the model finetuned using Source2Synth, according to the difficulty level,
provided in the HotpotQA train dataset. We also subdivide the results according to the type of
question (bridge vs. comparison).

We observe that Source2Synth performs better across all types of questions and difficulties, with an
average overall gain of 12.4% on the base LLM and a 7.5% gain compared to the LLM fine-tuned
on HotpotQA. In particular, by applying our method, the resulting model is able to achieve +16.8%
and +16.5% on hard bridge and comparison questions respectively, when comparing to the baseline.
Furthermore, it is interesting to see substantial improvement on comparison-type questions, despite
not explicitly targeting those during synthetic generation. Hard questions pose a greater challenge to
the reasoning abilities of LLMs and these results introduce Source2Synth as a possible method for
further improvement.
Table 3: Analysis of MHQA bridge and comparison questions with respect to level of difficulty.
We evaluate models on the full HPQA train dataset (where questions are labelled with easy, medium
and hard). Source2Synth outperforms the baseline and the fine-tuned on HotpotQA model, yielding a
LLM capable of handling hard questions of both types.

Bridge Comparison
Model Hard Medium Easy Hard Medium Easy
Llama2-70B-Chat 14.5% 27.2% 30.1% 66.6% 71.3% 73.2%
Fine-tuned LLM (HotpotQA data only) 20.1% 29.8% 34.3% 74.5% 78.3% 82.1%
LLMCurated-1250 (Synthetic data only) 27.6% 32.3% 36.2% 79.1% 82.3% 88%
LLMCurated-datamix-1250 (Synthetic and HotpotQA) 31.3% 35.6% 39.7% 83.1% 85.7% 87.8%
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E.2 SCALING PERFORMANCE
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Figure 5: Synthetic Data scaling performance.
Source2Synth’s performance with respect to
MHQA’s data mix size, before and after curation.
Sample sizes after curation: 7% for 500, 8% for
750, 11% for 1250.

Source2Synth can be leveraged when the
amount of available data is low. In Figure 5, we
study how performance changes when adding
more synthetic data in the fine-tuning data mix -
which already includes 500 samples from the
HPQA train split. We perform the analysis
on both LLMSynth-datamix and LLMCurated-
datamix to showcase the impact of the cura-
tion technique. In both cases and uniformly
over all data mix sizes, we see that applying
the Source2Synth pipeline results in a stronger
model. For the LLMSynth-datamix model (fine-
tuned on uncurated samples), providing more
synthetic examples leads to a steady improve-
ment in performance across all data sizes, for
both zero-shot and three-shot prompting vari-
ants. The LLMCurated-datamix model follows
a similar trend, consistently outperforming the
uncurated version of the model, for all data mix
set sizes. Overall, we observe that using our
synthetic data generation pipeline to construct
more synthetic data brings further performance
gains.

E.3 APPLYING SOURCE2SYNTH ON
UNGROUNDED DATA ONLY

Model Accuracy
Base LLM (Llama3-8B) 57.80%
LLMSynth 60.45%
LLMCurated 66.37%

Model Accuracy
Base LLM (LLama2-70B) 40.45%
LLMSynth 51.90%
LLMCurated 59.70%

We deploy Source2Synth on an ungrounded
synthetic dataset, consisting of 1250 synthetic
data points (no real-world source) for fine-
tuning plus 500 entries from HotpotQA. To
ensure diversity in the generation, we ask the
model to generate a question based on two top-
ics A and B picked from the following list:
[“Moon”, “Ocean”, “Water”, “Wolf”, “Tides”,
“Day”, “Light”, “Apple”, “United States”, “Eu-
rope”, “Roman Empire”, “Chocolate”, “Envi-
ronment”, “India”, “Strawberries”, “Physics”,
“Pen”, “Sugar”, “History”, “Jelly”, “Mug”,
“Cat”, “Lion”, “Flower”, “Purple”, “Red”, “Stars”, “Electricity”, “Paper”, “Snow”, “Mount Everest”,
“Table”, “Friendship”, “Book”, “Laptop”, “Phone”, “Mushroom”, “Hat”, “Coffee”, “Pasta”, “Island”,
“Volcano”, “Storm”, “Key”, “Candle”, “Asia”, “Desert”, “Tree”, “River”]

The resulting 2-hop questions are of bridge type and have lower perplexity than those generated
starting from a grounded source. The model trained on ungrounded samples performs worse than the
one trained on grounded ones. Since they are generated by the model without any other seed/input,
there are repeating patterns in the structure of the questions generated, which we hypothesize hinders
generalization. For example, many of the synthetically ungrounded questions follow this structure:
’What / Who [Q1] and / or What [Q2]?’ ” (i.e. "What is the name of the ancient mythological figure
that is often depicted as being able to transform into a wolf, and is also associated with the full moon
that occurs in March, which is also known as the Worm Moon?"). We test this setting on Llama2 and
Llama3 using the 0-shot prompt.

E.4 ON THE IMPACT OF IMPUTATION

We studied the perplexity of questions before and after imputation for 1) synthetic data generated
from a grounded source (like Wikipedia) and 2) for synthetic ungrounded data. In both cases, the
imputation step lowers perplexity and reduces the unnaturalness of the question. In Table 4 we report
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Comparing Q pre- and post- imputation

Before imputation:
Q: "What pet did the poet and father of mathematician Ada Lovelace had when he
was a student at Trinity out of resentment for rules forbidding pet dogs like his beloved
Boatswain?"
Q1: "What pet did the poet Lord Byron had when he was a student at Trinity out of
resentment for rules forbidding pet dogs like his beloved Boatswain?"
Q2: "Who is the father of mathematician Ada Lovelace?"
E: "Lord Byron"
A: "A bear"
D1: "Lord Byron also kept a tame bear while he was a student at Trinity out of resentment
for rules forbidding pet dogs like his beloved Boatswain."

After imputation:
Q′: "What pet did the poet and father of mathematician Ada Lovelace had when he was a
student at Trinity?"
Q′

1 : "What pet did the poet Lord Byron had when he was a student at Trinity?"

Figure 6: Comparing Q pre- and post- imputation

the average perplexity score and in Figure 6 we showcase an example of how imputation leads to
rephrasing sentences in a more natural way.

Table 4: Average perplexity of generated questions before and after imputation

Model PPL before imputation PPL after imputation
Synthetic grounded data 24.7 13.6
Synthetic ungrounded data 15.51 8.33

E.5 NON-MONOLITHIC SETTING: SMALLER MODELS AND AND DIFFERENT MODELS AS DATA
GENERATORS

Model Accuracy
Base LLM (Llama3-8B) 57.8%
LLMSynth 64.46%
LLMCurated 71.13%

We finetuned Llama3-8B instruct on 1250
synthetically-generated grounded examples re-
sulting from the Source2Synth pipeline and 500
entries from HotpotQA. We used the 0-shot
prompt from Figure 14 for evaluation and the
soft-EM as a metric. Compared to the perfor-
mance of the base model, LLMCurated shows an increase in accuracy of 1̃2%.
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E.6 MORE RESULTS ON PROMPT ENGINEERING
Table 5: MHQA using different prompts. Llama-2-70B-Chat accuracy across different prompts.
Role "You are a QA-robot. Answer the following question:".

Prompt Type Model Accuracy (soft-EM, hotpotQA test set)
0-shot 40.45%
Role 22.34%
1-shot 26.65%
Few-shots (5-shots) 21.83%
Role (1-shot) 28.29%
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F SQL NON-EXECUTABLE CODE FILTERING

We discard incorrect SQL statements - i.e. whose execution with sqlite32 leads to an error. Discarded
proportion: out of 50 tables, we generate 800 seed statements and the number of valid (executable)
SQL statements was 658.

G PROMPTS

Zero-shot Table QA prompt.

Answer the following question using the table below. You may leverage an SQL tool.

{table}

Q: {question}

Figure 7: Zero-shot Table QA prompt for the TQA task.One-Shot No context QA prompt.

– Example –
Q: What was the last year where this team was part of the US A-league?
A: 2004

Now do the same for the following question.
Q: {question}

Figure 8: One-Shot No context QA prompt for the TQA task.One-shot Table QA prompt.

-- Example --
Answer the following question using the table below.
Your answer should be short and concise.

Season | Team | League_apps | Goals
1923 |Swindon Town | 55 | 3
1922 |Swindon Town | 14 | 4
1921 |Swindon Town | 24 | 11
1920 |Swindon Town | 26 | 16
1919 |Swindon Town | 20 | 10
1914 |Swindon Town | 23 | 12
1913 |Swindon Town | 24 | 18
1912 |Swindon Town | 12 | 9
1911 |Swindon Town | 20 | 16
1910 |Swindon Town | 30 | 19
1909 |Swindon Town | 33 | 19
1908 |Swindon Town | 34 | 28
1907 |Swindon Town | 30 | 17

Q: How many league appearances were there between 1907 and 1909 (inclusive)?
A: 97

Now do the same for the following table and question.

{table}

Q: {question}

Figure 9: One-shot Table QA prompt for the TQA task.

2https://www.sqlite.org
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One-shot Table+SQL QA prompt.

-- Example --
Answer the following question using the table below.
You may leverage an SQL tool.
The table is stored in a variable ‘sql_table’ and has the following schema:
Season | Team | League_apps | Goals
1923 |Swindon Town | 55 | 3
1922 |Swindon Town | 14 | 4

Q: How many league appearances were there between 1907 and 1909 (inclusive)?

SQL: SELECT SUM(League_apps) FROM sql_table WHERE Season BETWEEN 1907 AND 1909

| Result
result | 97

Now do the same for the following table and question.

{table}

Q: {question}

Figure 10: One-shot Table+SQL QA prompt for the TQA task.

Generating a seed in TQA.

Please generate an interesting statement about this table. The statement is a fact about one
of the columns in the following table.
{table}

An interesting statement as a result of this is:

Figure 11: Prompt used to induce a pertinent and interesting seed topic in TQA. This is done zero-shot.

Generating meaningful SQL in TQA.

Please generate SQL statements for the following table:

{table}

Seed: {seed}

An interesting SQL statement as a result of this is

Figure 12: Prompt used to induce a meaningful SQL statement given the table and seed for the TQA
task. This is done zero-shot.

Generating a question in TQA.

I want to convert an SQL statement into a question.
Here is the original table:
{table}

SQL: {SQL}

What is the question that this SQL statement would be the answer to?

Figure 13: Prompt used to induce a meaningful question using the table and generated SQL query for
the TQA task. This is done zero-shot.
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Three-shot CoT prompt used at evaluation time on MHQA.

Answer the following multi-hop question ‘Q’ by decomposing it into ‘Q1’ and ‘Q2’ and
solving them step-by-step. Learn from the following 3 examples. As shown in the following
example:

-- Example #1 --
‘Q’ = ‘Who was the commander of the spaceflight that first landed humans on the Moon?’

1. Splitting ‘Q’ into ‘Q1’ and ‘Q2’:
‘Q1’ : ‘What was the spaceflight that first landed humans on the Moon?’;
‘Q2’ : ‘Who was the commander of [A1]?’;

2. Answering Q1:
The answer ‘A1’ to ‘Q1’ : ‘What was the spaceflight that first landed humans on the Moon?’
is ‘Apollo 11’. ‘A1’ = ‘Apollo 11’

3. Substituting A1 to Q2:
‘Q2’ : ‘Who was the commander of Apollo 11?’,

4. Answers Q2:
The answer ‘A2’ to Q2’ : ‘Who was the commander of Apollo 11?’ is ‘Neil Armstrong’.
‘A2’ = ‘A’ = ‘Neil Armstrong’

-- Example #2 --
‘Q’ = ‘What is the main ingredient in the flagship product of Ferrero?’

1. Splitting ‘Q’ into ‘Q1’ and ‘Q2’:
‘Q1’: ‘What is the flagship product of Ferrero?’
‘Q2’: ‘What is the main ingredient in [A1]?’

2. Answering Q1:
The answer ‘A1’ to ‘Q1’ : ‘What is the flagship product of Ferrero?’ is Nutella’.‘A1’ = Nutella’

3. Substituting A1 to Q2:
‘Q2’ : ‘What is the main ingredient in Nutella?’,

4. Answers Q2:
The answer ‘A2’ to Q2’ : ‘What is the main ingredient in Nutella?’.
‘A2’ = ‘A’ = ‘Hazelnuts

--Example #3 --

‘Q’ = ‘Who was the Roman Emperor when Jesus was born?’
1. Splitting ‘Q’ into ‘Q1’ and ‘Q2’:
‘Q1’: ‘When was Jesus born? ‘
‘Q2’: ‘Who was the Roman Emperor in [A1]?’

2. Answering Q1:
The answer ‘A1’ to ‘Q1’ : ‘When was Jesus born?’ is 1 BCE. ‘A1’ = 1 BCE

3. Substituting A1 to Q2:
‘Q2’ : ‘Who was the Roman Emperor in 1 BCE?’,

4. Answers Q2:
The answer ‘A2’ to Q2’ : ‘Who was the Roman Emperor in 1 BCE?’.
‘A2‘ = ‘A‘ = ‘Caesar Augustus‘

You MUST apply this structure when asked to answer a multi-hop question ‘Q’. Now
answer the multi-hop question ‘Q‘ as shown in the examples above.
Q: {question}

Figure 14: Three-shot CoT prompt used at evaluation time in MHQA.
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Prompt used to merge Q1 and Q2 in MHQA.

Merge ‘Q1‘ and ‘Q2’ into a single multi-hop bridge question ‘Q’.
Learn from the following 3 examples. As shown in the following example:

-- Example #1 --

‘Q1’ : "What was the spaceflight that first landed humans on the Moon?”
‘Q2’: "Who was the commander of Apollo 11?”

Solution:
1. Answer Q1; ‘A1’ is "Apollo 11”
2. If ‘A1’ is in ‘Q2’ print(A1); ‘A1’ = Apollo 11 is in ‘Q2’ so I print "Apollo 11”
3. Since you found ‘A1’ in ‘Q2’, rewrite ‘Q2’ so that you delete ‘A1’ and substitute ‘Q1’
there;
Rewriting Q2. Original ‘Q2’: "Who was the commander of Apollo 11?”. Since ‘A1’ is in
‘Q2’, I delete it and write ‘Q1’ there. Rewritten ‘Q2’: "Who was the commander of the
spaceflight that first landed humans on the Moon?”

The single multi-hop question is therefore the rewritten ‘Q2’.
‘Q2‘ = ‘Q‘ = "Who was the commander of the spaceflight that first landed humans on the
Moon?”

-- Example #2 --

‘Q1’: What is the flagship product of Ferrero?
‘Q2’: What is the main ingredient in Nutella?
Solution:
1. Answer Q1; ‘A1’ is "Nutella”
2. If ‘A1’ is in ‘Q2’ print(A1); ‘A1’ = "Nutella” is in ‘Q2’ so I print "Nutella”
3. Since you found ‘A1’ in ‘Q2’, rewrite ‘Q2’ so that you delete ‘A1’ and substitute ‘Q1’
there;
Rewriting Q2. Original ‘Q2’: "What is the main ingredient in Nutella?”.
Since ‘A1’ is in ‘Q2’, I delete it and write ‘Q1’ there.
Rewritten ‘Q2’: "What is the main ingredient in the flagship product of Ferrero?”

The single multi-hop question is therefore the rewritten ‘Q2’. ‘Q2’ = ‘Q’ = "What is
the main ingredient in the flagship product of Ferrero?”

-- Example #3 --

‘Q1’: "When was Jesus born?”
‘Q2’: "Who was the Roman Emperor in 1 BCE?”

Solution:
1. Answer Q1; ‘A1’ is "1 BCE”
2. If ‘A1’ is in ‘Q2’ print(A1); ‘A1’ = 1 BCE is in ‘Q2’ so I print “1 BCE”
3. Since you found ‘A1’ in ‘Q2’, rewrite ‘Q2’ so that you delete ‘A1’ and substitute ‘Q1’
there;
Rewriting Q2. Original ‘Q2’: "Who was the Roman Emperor in 1 BCE?”. Since ‘A1’ is in
‘Q2’, I delete it and write ‘Q1’ there. Rewritten ‘Q2’: "Who was the Roman Emperor when
Jesus was born?"

The single multi-hop question is therefore the rewritten ‘Q2’.
‘Q2’ = ‘Q’ = "Who was the Roman Emperor when Jesus was born?”

You MUST apply this structure when asked to merge ‘Q1’ and ‘Q2’.
Now merge ‘Q1’ and ‘Q2’ into a single multi-hop bridge question ‘Q’.
‘Q2’ : {question1}
‘Q2’ : {question2}

Figure 15: Prompt used to merge Q1 and Q2 in MHQA.
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Generating Q1 in MHQA.

Identify one entity in the following text. Come up with a question so that the answer to
this question is the entity chosen earlier. The question must be based on the following text.
Write your results as ’Question:’ and then the question and ’Entity:’ and then the entity.

Text: {document_one}

Figure 16: Prompt used to generate Q1. Q1 is generated such that its answer A1 = E where E is the
entity retrieved.

Generating Q2 in MHQA.

Come up with a question based on the following text that contains the word:
{entity}

Text: {document_two}

Figure 17: Prompt used to generate Q2. Q2 is generated such that its main topicis E where E is the
entity retrieved.
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