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A SUPPLEMENTARY

In this supplementary, we first demonstrate the benefits of incorporating phase information for image
classification on complex-valued MRI patches.

Then, we investigate the robustness of CSR to deformations and compare it with real-valued pre-
determined scattering (S) (Bruna & Mallat, 2013) and learnable scattering (LS) (Gauthier et al.,
2022).

Furthermore, we provide supplementary analysis of H-CReLU components on various datasets to
complement the findings presented in § 4.2.

Finally, we expand the ablation studies, analyzing the impact of various H-CReLU dimensions and
presenting more ablation results in supplementary to § 4.3.

A.1 PHASE INFORMATION FOR MRI PATCH CLASSIFICATION

In § 4, we introduce a novel dataset for classifying complex-valued MRI patches. The goal is to
train a classifier that can accurately identify the anatomical orientation of the complex-valued input
patches. This section aims to analyze whether the inherent phase information can enhance patch
classification performance.

Method Phase Aug. MRI Patch
100 samples 500

CSR+
LL

✗ - 75.97±0.63 89.33±0.40
✓ ✗ 74.22±0.57 91.73±0.33
✓ ✓ 78.53±0.35 92.25 ±0.30

CSR+
CDS†

✗ - 85.60±0.73 95.60±0.19
✓ ✗ 84.80±1.06 99.18±0.15
✓ ✓ 88.95±0.78 99.32±0.11

†: CDS type-I (Singhal et al., 2022); Aug.: random and constant phase augmentation

Table S1: Classification accuracy of complex-valued MRI patch dataset with and without
phase information. To mitigate the sensitivity to phase, we also incorporate a model trained on
complex-valued inputs with phase augmentation, resulting in the highest accuracy and demonstrat-
ing the importance of phase information in MRI patch classification.

Table S1 compares the performance of the CSR+LL and CSR+CDS models trained with magnitude-
only MRI patches against the model trained using complex-valued input data.

Due to physics and acquisition factors, complex-valued MRI images can have random phase offsets.
Therefore, two phase maps, ϕ1 and ϕ2 = ϕ1+α (where α is a constant phase ranging from [0, 2π)),
provide the same phase information. To reduce the phase sensitivity, during training, we augment
the phase of the input patches on the fly by multiplying each patch with random constant phase ejθ,
where θ is uniformly distributed between [0, 2π). We include the results in table S1.

The results indicate that when trained on only 100 samples, models trained on complex-valued in-
puts without phase augmentation (second row) show slightly lower accuracy than those trained on
magnitude-only patches (first row) due to phase sensitivity. However, incorporating phase augmen-
tation can considerably enhance the performance of models trained on complex-valued inputs (third
row), resulting in the highest accuracy and highlighting the significance of phase information.

When moving to a larger training set of 500 samples, increased data diversity inherently mitigates
the phase sensitivity. In this scenario, models trained on complex-valued inputs without phase aug-
mentation already outperform those trained on magnitude-only images by a large margin, further
highlighting the advantages of incorporating phase information in patch classification.
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Figure S1: Normalized distance comparisons of different deformations (i.e.,rotating, scal-
ing, shearing). We compare the deformation stability of CSR with LS (Gauthier et al., 2022) and
S (Bruna & Mallat, 2013) evaluated on various datasets. From left to right, we evaluate CIFAR
10, CIFAR 100, xView, and MRI patch classification. The plots illustrate the change in normalized
distances with respect to deformation levels. CSR roughly matches the deformation stabilities of LS
and S.

A.2 ROBUSTNESS TO GEOMETRIC DEFORMATIONS

Scattering transforms (Bruna & Mallat, 2013; Gauthier et al., 2022) have been shown to be stable to
small deformations as a built-in feature. As described in § 3.1, CSR can be theoretically proved to
be stable to deformations and invariant to local translations.

This section explores empirical results on the stability of CSR to a wider range of geometric defor-
mations and compares it with S (Bruna & Mallat, 2013) and LS (Gauthier et al., 2022). Follow-
ing Gauthier et al. (2022), we include rotation, scaling, and shearing as our deformations.

To study the robustness of deformations, we apply deformations of strength l to a given image I ,
resulting in a deformed image denoted as Ĩ(l). When evaluating rotation and shearing, the defor-
mation angle l ranges from [0, 30◦), while the scale parameter l ranges from [1, 1.5] when assessing
scaling. All the deformations are implemented using torchvision.

We then compute the normalized Euclidean distance D(l) between CSRs of I and Ĩ(l) as a function
of l:

D(u) =
∥CSR(I)− CSR(Ĩ(l))∥2

∥CSR(I)∥2
. (1)

We compute the average D(l) across the entire dataset and plot it against l. Figure S1 depicts the
results obtained from all four datasets using CSR+LL: CIFAR 10, CIFAR 100, xView, and MRI
patch. We include the results from S and LS for comparison.
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Our observation suggests that CSR is generally on par with LS and S in terms of deformation sta-
bility across datasets. More specifically, CSR exhibits slightly better deformation robustness (lower
distance values) in CIFAR 10 rotation, CIFAR 10 scaling, CIFAR 100 scaling, xView scaling, and
shearing, while it shows slightly worse stability in some other scenarios.

A.3 ANALYSIS OF H-CRELU

In this section, we provide a comprehensive visual analysis of how H-CReLU works for complex
number to complement the findings presented in § 4.2.
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Figure S4: Visualization of H-CReLU in mapping complex-valued points. We generate an
initial set of points on a spiral trajectory on the complex plane, where each point corresponds to
a unique complex number. We then visualize how H-CReLU maps the input complex numbers to
their outputs on all four datasets (i.e., CIFAR 10, CIFAR 100, xView, MRI patch). The same color
corresponds to the same points across the figures. CReLU results in certain input points collapsing
into each other, while H-CeLU successfully avoids information loss.

Figure S4 visualizes how our learned H-CReLU fw(·) maps complex numbers. Following Sandler
et al. (2018), we generate an initial set of points on a spiral trajectory on the complex plane. Each
point of coordinate (x, y) corresponds to a unique complex number x + jy. Next, we apply two
activation functions, C-ReLU and H-CReLU, to the initial set of points. These functions transform
the input points into output points, which we plot on the complex plane.

H-CReLUs are obtained from CSRs trained with LL on different datasets (i.e., CIFAR 10, CIFAR
100, xView, MRI patch). The figure indicates that H-CReLU obtained from different datasets exhibit
very distinct patterns. The outputs of H-ReLU from CIFAR 10 provide complete coverage of the
complex plane, whereas those from xView have a limited angular span.

As a next step, we plan to improve our interpretation of the mapping results and gain a better under-
standing of the significance of different patterns.
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Method L. F. H-C. CIFAR
100 xView

CSR
+ LL

- - 41.66 75.77
✓ - 45.88 ↑4.22 78.58 ↑2.81
- ✓ 44.34↑2.68 78.20 ↑2.43
✓ ✓ 47.81 ↑6.15 80.04 ↑4.27

CSR
+ CDS†

- - 41.01 80.09
✓ - 44.30 ↑3.29 82.97 ↑2.88
- ✓ 44.17 ↑3.16 82.33 ↑2.24
✓ ✓ 46.80 ↑5.79 84.13↑4.04

†: CDS type-I (Singhal et al., 2022); L.F.: Learnable filters; H-C.: High-dimensional C-ReLU (H-
CReLU)

Table S2: Ablation studies of different CSR components. We analyze the contributions of learn-
able filtering and H-CReLU for CSRs on CIFAR 100 and xView datasets.

Method Activation CIFAR
10

CIFAR
100 xView MRI

Patch

CSR
+LL

Modulus (Bruna & Mallat, 2013) 71.23 45.88 78.58 68.85±0.68
CReLU 70.88 ↓0.35 44.34 ↓1.55 76.52 ↓2.06 65.33±0.88 ↓3.52
GTReLU (Singhal et al., 2022) 71.04 ↓0.19 45.65 ↓0.23 78.01 ↓0.57 69.08±0.45 ↑0.24
H-CReLU (non-learned) 72.39 ↑1.16 46.23 ↑0.35 78.20 ↓0.38 70.12±0.71 ↑1.27
H-CReLU (learned) 74.30 ↑3.07 47.81 ↑1.93 80.03 ↑1.45 74.22±0.57 ↑5.37

CSR
+CDS

Modulus (Bruna & Mallat, 2013) 77.60 44.30 82.97 74.03±0.56
CReLU 75.08 ↓2.52 42.02 ↓2.28 80.02 ↓2.95 71.01±0.90 ↓3.02
GTReLU (Singhal et al., 2022) 78.24 ↑0.64 44.03 ↓0.27 81.44 ↓1.53 76.40±0.78 ↑2.37
H-CReLU (non-learned) 80.63 ↑3.03 45.52 ↑1.22 82.40 ↓0.57 81.45±0.83 ↑7.42
H-CReLU (learned) 81.52 ↑3.92 46.80 ↑2.50 84.13 ↑1.16 84.80±1.06 ↑10.07

Table S3: Ablation studies of different non-linear activation functions. We compare our H-
CReLU (non-learned and learned) with other complex-valued activation functions: complex modu-
lus, CReLU, and GTReLU from Singhal et al. (2022). H-CReLU yields the best results.

A.4 ABLATION STUDIES

§ 4.3 evaluates the contribution of CSR components (learnable filters and H-CReLU) on CIFAR 10
and MRI patch datasets. Here, Table S2 further provides results evaluated on CIFAR 100 and xView
datasets. Consistent with our previous observations, both learnable filters and H-CReLU improve
classification accuracy. We observe an approximate 6% performance gain in CIFAR 100 and around
4% accuracy improvement in xView, further highlighting the effectiveness of CSR components.

To gain a deeper understanding of the H-CReLU module, we create a non-learned H-CReLU for
benchmark comparisons, where the matrix DOWNNh and UPNh are not learnable. Instead, we
construct the matrix such that the real and imaginary parts of each element are random numbers
uniformly distributed from [−1, 1].

We compare our H-CReLU (both non-learned and learned) with other complex-valued activation
functions, including complex modulus, CReLU, and GTReLU (Singhal et al., 2022), on various
datasets, as reported in Table S3.

Our results indicate that H-CReLU with learnable filters produces the highest classification accuracy
on all datasets. Notably, we observe that H-CReLU with non-learned random filters can outperform
other counterparts on all datasets, except on the xView dataset, indicating that with high-dimensional
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lifting, C-ReLU functions as a better non-linear function, even without learning. The next section
will further discuss how dimensionality impacts the results.

A.5 DIMENSIONALITY OF H-CRELU

Method H-CReLU CIFAR 10
Nh = 2 4 8 16 32 64

CSR
+LL

non-learned 66.62 68.25 70.54 72.39 72.48 70.77
learned 72.89 73.28 73.79 74.30 73.75 73.40

CSR
+CDS

non-learned 70.77 74.56 77.99 80.63 80.52 80.80
learned 79.18 80.86 81.40 81.52 81.05 80.87

Table S4: Ablation studies on different H-CReLU dimensionalities. We compare the classifi-
cation results of H-CReLU with varying dimensionalities (Nh), including non-learned and learned
H-CReLU using CSR+LL and CSR+CDS on the CIFAR 10 dataset. Bold indicates best result in
each row.

Thus far, we have set Nh = 16 for H-CReLU in all our experiments. In this section, we explore
the impact of Nh on the classification results, with a particular focus on the CIFAR 10 dataset. We
conduct experiments with both non-learned and learned H-CReLU with Nh = 2, 4, 8, 16, 32, 64.

Table S4 presents the classification results of CSR+LL and CSR+CDS on the CIFAR 10 dataset.
We note that, for learned H-CReLU, Nh = 16 yields the highest accuracy. Remarkably, the results
of Nh = 2 are only 1.41% lower than Nh = 16 (CSR+LL), and still surpass other real-valued
scattering counterparts and complex-valued networks discussed in § 4. This highlights the benefits
of H-CReLU when Nh is low. We note that, when Nh > 16, the accuracy starts to saturate and
decrease. We hypothesize that H-CReLU is more susceptible to overfitting when Nh is high.

On the other hand, for non-learned H-CReLU, we observe a significant gap in accuracy across dif-
ferent dimensionalities, where Nh = 2, 4 yields markedly poorer results. We note that the accuracy
begins to saturate when Nh ≥ 16. Specifically, for CSR+LL, Nh = 32 yields the highest results,
while for CSR+CDS, Nh = 64 produces the highest accuracy.
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