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ABSTRACT

Distributional reinforcement learning (RL) is a class of state-of-the-art algorithms
that estimate the entire distribution of the total return rather than its expected
value alone. The theoretical advantages of distributional RL over expectation-
based RL remain elusive, despite the remarkable performance of distributional
RL. Our work attributes the superiority of distributional RL to its regularization
effect stemming from the value distribution information regardless of only its ex-
pectation. We decompose the value distribution into its expectation and the re-
maining distribution part using a variant of the gross error model in robust statis-
tics. Hence, distributional RL has an additional benefit over expectation-based RL
thanks to the impact of a risk-sensitive entropy regularization within the Neural
Fitted Z-Iteration framework. Meanwhile, we investigate the role of the resulting
regularization in actor-critic algorithms by bridging the risk-sensitive entropy reg-
ularization of distributional RL and the vanilla entropy in maximum entropy RL.
It reveals that distributional RL induces an augmented reward function, which
promotes a risk-sensitive exploration against the intrinsic uncertainty of the envi-
ronment. Finally, extensive experiments verify the importance of the regulariza-
tion effect in distributional RL, as well as the mutual impacts of different entropy
regularizations. Our study paves the way towards a better understanding of distri-
butional RL, especially when looked at through a regularization lens.

1 INTRODUCTION

The intrinsic characteristics of classical reinforcement learning (RL) algorithms, such as temporal-
difference (TD) learning (Sutton & Barto, 2018) and Q-learning (Watkins & Dayan, 1992), are based
on the expectation of discounted cumulative rewards that an agent observes while interacting with
the environment. In stark contrast to the classical expectation-based RL, a new branch of algorithms
called distributional RL estimates the full distribution of total returns and has demonstrated the state-
of-the-art performance in a wide range of environments (Bellemare et al., 2017a; Dabney et al.,
2018b;a; Yang et al., 2019; Zhou et al., 2020; Nguyen et al., 2020; Sun et al., 2022). Meanwhile,
distributional RL also inherits other benefits in risk-sensitive control (Dabney et al., 2018a), policy
exploration settings (Mavrin et al., 2019; Rowland et al., 2019) and robustness (Sun et al., 2021).

Despite the existence of numerous algorithmic variants of distributional RL with remarkable em-
pirical success, we still have a poor understanding of what the effectiveness of distributional RL is
stemming from and theoretical studies on advantages of distributional RL over expectation-based
RL are still less established. An existing work (Lyle et al., 2021) investigated the impact of distri-
butional RL from the perspective of representation dynamics. Distributional RL problems was also
mapped to a Wasserstein gradient flow problem (Martin et al., 2020), treating the distributional Bell-
man residual as a potential energy functional. Offline distributional RL (Ma et al., 2021) has also
been proposed to investigate the efficacy of distributional RL in both risk-neutral and risk-averse
domains. Although the explanation from these works is not sufficient yet, the trend is encouraging
for recent works towards closing the gap between theory and practice in distributional RL.

In this paper, we illuminate the superiority of distributional RL over expectation-based RL through
the lens of regularization to explain its empirical outperformance in most practical environments.
Specifically, we simplify distributional RL into a Neural Fitted Z-Iteration framework, within which
we establish an equivalence of objective functions between distributional RL and a risk-sensitive
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entropy regularized maximum likelihood estimation (MLE) from the perspective of statistics. This
result is based on two analysis components, i.e., action-value distribution decomposition by leverage
of a variant of gross error model in robust statistics, as well as Kullback-Leibler (KL) divergence to
measure the distribution distance between the current and target value distribution in each Bellman
update. Then we establish a connection between the impact of risk-sensitive entropy regularization
of distributional RL and vanilla entropy in maximum entropy RL, yielding a Distribution-Entropy-
Regularized Actor Critic algorithm. Empirical results demonstrate the crucial role of risk-sensitive
entropy regularization effect from distributional RL in the superiority over expectation-based RL on
both Atari games and MuJoCo environments, and reveal their mutual impacts of both risk-sensitive
entropy in distributional RL and vanilla entropy in maximum entropy RL.

2 PRELIMINARY KNOWLEDGE

In classical RL, an agent interacts with an environment via a Markov decision process (MDP),
a 5-tuple (S,A, R, P, γ), where S and A are the state and action spaces, respectively. P is the
environment transition dynamics, R is the reward function and γ ∈ (0, 1) is the discount factor.

Action-value function vs Action-value distribution. Given a policy π, the discounted sum of
future rewards is a random variable Zπ(s, a) =

∑∞
t=0 γ

tR(st, at), where s0 = s, a0 = a,
st+1 ∼ P (·|st, at), and at ∼ π(·|st). In the control setting, expectation-based RL focuses on
the action-value function Qπ(s, a), the expectation of Zπ(s, a), i.e., Qπ(s, a) = E [Zπ(s, a)]. Dis-
tributional RL, on the other hand, focuses on the action-value distribution, the full distribution of
Zπ(s, a). Leveraging knowledge on the entire distribution can better capture the intrinsic uncer-
tainty of environment (Dabney et al., 2018a; Mavrin et al., 2019).

Bellman operators vs distributional Bellman operators. For the policy evaluation in expectation-
based RL, the value function is updated via the Bellman operator T πQ(s, a) = E[R(s, a)] +
γEs′∼p,a′∼π [Q (s′, a′)]. In distributional RL, the action-value distribution of Zπ(s, a) is updated
via the distributional Bellman operator Tπ

TπZ(s, a) = R(s, a) + γZ (s′, a′) , (1)

where s′ ∼ P (·|s, a) and a′ ∼ π (·|s′). The equality in Eq. 1 implies that random variables of
both sides are equal in distribution. This random-variable definition of distributional Bellman op-
erator is appealing and easily understood due to its concise form, although its value-distribution
definition is more mathematically rigorous (Rowland et al., 2018; Bellemare et al., 2022). More
importantly, both the Bellman operator T π and Bellman optimality operator T opt, defined as
T optQ(s, a) = E[R(s, a)] + γmaxa′ Es′∼p [Q (s′, a′)], in expectation-based RL are contractive
in the stationary policy case. In contrast, the distributional Bellman operator Tπ is contractive under
certain distribution divergences, but the distributional Bellman optimality operator can only con-
verge to a set of optimal non-stationary value distributions in a weak sense (Elie & Arthur, 2020).

3 REGULARIZATION EFFECT OF DISTRIBUTIONAL RL

3.1 DISTRIBUTIONAL RL: NEURAL FITTED Z-ITERATION (NEURAL FZI)

Expectation-based RL: Neural Fitted Q-Iteration (Neural FQI). Neural FQI (Fan et al., 2020;
Riedmiller, 2005) offers a statistical explanation of DQN (Mnih et al., 2015), capturing its key
features, including experience replay and the target network Qθ∗ . In Neural FQI, we update param-
eterized Qθ(s, a) in each iteration k in a regression problem:

Qk+1
θ = argmin

Qθ

1

n

n∑
i=1

[
yi −Qkθ (si, ai)

]2
, (2)

where the target yi = r(si, ai) + γmaxa∈AQ
k
θ∗ (s′i, a) is fixed within every Ttarget steps to up-

date target network Qθ∗ by letting θ∗ = θ. The experience buffer induces independent samples
{(si, ai, ri, s′i)}i∈[n]. In an ideal case when we neglect the non-convexity and TD approximation
errors, we have Qk+1

θ = T optQkθ , which is exactly the updating rule under Bellman optimality oper-
ator (Fan et al., 2020). In the viewpoint of statistics, the optimization problem in Eq. 2 can be viewed
as Least Square Estimation (LSE) in a neural network parametric regression problem regarding Qθ.

2



Under review as a conference paper at ICLR 2023

Distributional RL: Neural Fitted Z-Iteration (Neural FZI). We interpret distributional RL as a
Neural Fitted Z-Iteration owing to the fact that this iteration is by far closest to the practical algo-
rithms and more interpretable. Analogous to Neural FQI, we can simplify value-based distributional
RL algorithms parameterized by Zθ into a Neural Fitted Z-Iteration (Neural FZI) as

Zk+1
θ = argmin

Zθ

1

n

n∑
i=1

dp(Yi, Z
k
θ (si, ai)), (3)

where the target Yi = R(si, ai) + γZkθ∗ (s′i, πZ(s′i)) with the policy πZ following the greedy rule
πZ(s′i) = argmaxa′ E

[
Zkθ∗(s

′
i, a
′)
]

is fixed within every Ttarget steps to update target network Zθ∗ .
dp is a divergence between two distributions. Notably, choices of representation for Zθ and the
metric dp are pivotal for the empirical success of distributional RL algorithms. For instance, QR-
DQN (Dabney et al., 2018b) leverages quantiles to represent the distribution of Zθ and approximates
Wasserstein distance via quantile regression. C51 (Bellemare et al., 2017a) employs a categorical
parameterization on Zθ and select Kullback–Leibler (KL) divergence as dp, whose convergence has
been shown under the Cramér distance (Bellemare et al., 2017b; Rowland et al., 2018). Moment
Matching DQN (Nguyen et al., 2020) learns deterministic samples to express the distribution of Zθ
and optimize based on Maximum Mean Discrepancy (MMD), while the recent Sinkhorn distribu-
tional RL (Sun et al., 2022) is based on the “intermediate” Sinkhorn divergence as dp.

3.2 DISTRIBUTIONAL RL: ENTROPY-REGULARIZED MLE IN NEURAL FZI

In order to provide a statistical interpretation about the superiority of distributional RL as opposed
to expectation-based RL, we rewrite the objective function in Neural FZI framework of distribu-
tional RL as an entropy regularized Maximum Likelihood Estimation (MLE) from the viewpoint of
statistics under the action-value distribution decomposition and KL divergence as dp.

Analysis Component 1: Action-Value Distribution Decomposition. To separate the impact of
additional distribution information from the expectation of Zπ , we leverage a variant of gross error
model from robust statistics (Huber, 2004), which was also similarly used to analyze Label Smooth-
ing (Müller et al., 2019) and Knowledge Distillation (Hinton et al., 2015). Specifically, we denote
the one-dimensional full cumulative distribution function (cdf) of Zπ(s, a) as F s,a, and assume that
this action-value distribution F s,a satisfies the following expectation decomposition:

F s,a(x) = (1− ε)1{x≥E[Zπ(s,a)]}(x) + εF s,aµ (x), (4)

where F s,aµ can be determined by F s,a and the specified ε, aiming at characterizing the impact
of action-value distribution regardless of its expectation E [Zπ(s, a)]. ε controls the proportion of
F s,aµ (x) and the indicator function 1{x≥E[Zπ(s,a)]} = 1 if x ≥ E [Zπ(s, a)], otherwise 0. Although
we can let F s,aµ be an arbitrarily continuous and differential distribution, the function class of F s,a
is slightly restricted even discontinuous in order to satisfy the expectation decomposition in Eq. 4.
Nevertheless, in Proposition 1 we show that for an arbitrarily continuous cumulative distribution
function F , the distance between F and F s,a in the supreme norm can be upper bounded under mild
assumptions, indicating the rationale of value distribution restriction on F s,a proposed in Eq. 4.
Proposition 1. Given an arbitrarily continuous random variable Zπ(s, a) with the distribution
function F and expectation E [Zπ(s, a)], it holds that:

inf
F s,aµ
‖F − F s,a‖∞ ≤ (1− ε) max{1− F (E [Zπ(s, a)]), F (E [Zπ(s, a)])}. (5)

If Zπ is bounded in [−c, c] and has variance σ2, we have: infF s,aµ ‖F − F s,a‖∞ ≤ (1−ε)(1− σ2

2c2 ).

The proof of Proposition 1 is provided in Appendix A. In particular, F s,a will converge to F uni-
formly over x when ε→ 1. We highlight that F s,aµ would be central to the regularization analysis in
distributional RL. Under the distribution decomposition in Eq. 4, we immediately attain their den-
sity function relationship as ps,a(x) = (1− ε)δ{x=E[Zπ(s,a)]}(x) + εµs,a(x), where δ{x=E[Zπ(s,a)]}
is a Dirac function centered at E [Zπ(s, a)]. µs,a(x) is the probability density function (pdf) of
F s,aµ related to Zπ(s, a) that depends upon E [Zπ(s, a)]. Next, we use ps,a(x) to express the true
target probability density function behind {Yi}i∈[n], and qs,aθ (x) to denote the approximated one of
Zkθ (s, a) in Neural FZI in Eq. 3.
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Analysis Component 2: Kullback–Leibler (KL) Divergence as dp in Neural FZI. We find it
difficult to directly focus on the more commonly used Wasserstein distance to conduct a theoretical
analysis, and instead we shift our attention to KL divergence. Our motivations are multiple:

• As a widely-used divergence to distribution distance, the KL divergence is also successfully
applied in categorical distributional RL, e.g., C51 (Bellemare et al., 2017a), that can be
viewed as the first successful distributional RL algorithm.

• The choice of KL divergence will establish a theoretical connection between distributional
RL and maximum entropy RL, e.g., Soft Q-Learning (Haarnoja et al., 2017) and Soft Actor
Critic (SAC) (Haarnoja et al., 2018).

• In Proposition 2 (proof is given in Appendix B), we summarize that KL divergence enjoys
desirable properties in distributional RL context, including a non-expansion distributional
Bellman operator, a close link with Wasserstein distance and the expectation contraction
property. As such, KL divergence can be reasonably used for the theoretical analysis.

Proposition 2. Given two probability measures µ and ν, we define the supreme DKL as a functional
P(X )S×A × P(X )S×A → R, i.e., D∞KL(µ, ν) = sup(x,a)∈S×ADKL(µ(x, a), ν(x, a)). we have:
(1) Tπ is a non-expansive distributional Bellman operator under D∞KL, i.e., D∞KL(TπZ1,T

πZ2) ≤
D∞KL(Z1, Z2), (2) D∞KL(Zn, Z) → 0 implies the Wasserstein distance Wp(Zn, Z) → 0, (3) the ex-
pectation of Zπ is still γ-contractive under D∞KL, i.e., ‖ETπZ1 − ETπZ2‖∞ ≤ γ ‖EZ1 − EZ2‖∞.

Putting Them Together: Entropy-regularized MLE for Distributional RL. We incorporate
both value distribution decomposition and KL divergence as dp in Neural FZI (Eq. 3) of distri-
butional RL. Let H(P,Q) be the cross entropy between two probability measures P and Q, i.e.,
H(P,Q) = −

∫
x∈X P (x) logQ(x) dx. We can derive the following entropy-regularized MLE form

for distributional RL in Proposition 3. Please refer to the proof in Appendix C.

Proposition 3. Denote α as a positive constant, and based on the value distribution decomposition
in Eq. 4 and DKL as dp, Neural FZI in Eq. 3 can be explicitly expressed as

Zk+1
θ = argmin

qθ

1

n

n∑
i=1

[
− log qsi,aiθ (E [Zπ(s′i, πZ(s′i))]) + αH(µs

′
i,πZ(s′i), qsi,aiθ )

]
, (6)

where α = ε/(1 − ε) > 0 and we use qθ to denote the probability density function of Zkθ in the
k-th iteration for conciseness. For the uniformity of notation, we still use s, a in the following
analysis instead of si, ai. Concretely, we find these two intriguing terms in Eq. 6 together serve as
an entropy-regularized MLE and we call their impacts on the RL optimization as expectation effect
and distributional regularization effect, respectively.

• For the expectation effect of the first term, using the language of statistics, minimizing
it is equivalent to a variant of MLE over qs,aθ for the current state-action pair (s, a) on
the expectation E [Zπ(s′i, πZ(s′i))] of the target action-value distribution for the next state-
action pair (s′, πZ(s′i)), leading to a similar optimization impact of expectation-based RL.
This is in contrast to the classical MLE directly on observed samples, i.e., Yi ∼ F s

′
i,πZ(s′i).

• For the distributional regularization effect of the second term, it pushes qs,aθ for the
current state-action pair to approximate µs

′
i,πZ(s′i) for the next state-action pair, which

“deducts” the expectation effect from the whole action-value distribution by leverage of
the value distribution decomposition in Eq. 4. Therefore, this regularization term serves as
a crucial factor to interpret the advantage of distributional RL over expectation-based RL.

Risk-Sensitive Entropy Regularization. We attribute the superiority of distributional RL to signif-
icantly reduce intrinsic uncertainty of the environment (Mavrin et al., 2019) into the regularization
term in Eq. 6. According to the literature of risks in RL (Dabney et al., 2018a), where “risk” refers
to the uncertainty over possible outcomes and “risk-sensitive policies” are those which depend upon
more than the mean of the outcomes, we hereby call the novel cross entropy regularization for the
second term in Eq. 6 as risk-sensitive entropy regularization. This risk-sensitive entropy regulariza-
tion derived within distributional RL expands the class of policies using information provided by
the distribution over returns (i.e. to the class of risk-sensitive policies). It should also be noted that
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our risk-sensitive entropy regularization is indeed “risk-neural” in the sense of convexity or con-
caveness of utility functions, where our policy is still applying a linear utility function U , defined as
π(·|s) = arg maxa EZ(s,a)[U(z)]. Correspondingly, We can additionally vary different distortion
risk measures to explicitly lead the policy to being risk-averse or risk-seeking (Dabney et al., 2018a).

Remark on the Attainability of µs
′,πZ(s′). In practical distributional RL algorithms, we typically

use the bootstrap, e.g., TD learning, to attain the target distribution estimate F s
′,πZ(s′) and thus

immediately obtain µs
′,πZ(s′) based on Eq. 4 as long as E [Z(s, a)] exists. The leverage of µs

′,πZ(s′)

and the regularization effect revealed in Eq. 6 of distributional RL de facto establishes a bridge with
maximum entropy RL (Williams & Peng, 1991), on which we have a deeper analysis in Section 3.3.

3.3 CONNECTION WITH MAXIMUM ENTROPY RL

Vanilla Entropy Regularization in Maximum Entropy RL. Maximum entropy RL (Williams &
Peng, 1991), including Soft Q-Learning (Haarnoja et al., 2017), explicitly optimizes for policies that
aim to reach states where they will have high entropy in the future:

J(π) =
T∑
t=0

E(st,at)∼ρπ [r (st, at) + βH(π(·|st))] , (7)

where H (πθ (·|st)) = −
∑
a πθ (a|st) log πθ (a|st) and ρπ is the generated distribution following

π. The temperature parameter β determines the relative importance of the entropy term against the
cumulative rewards, and thus controls the action diversity of the optimal policy learned via Eq. 7.
This maximum entropy regularization has various conceptual and practical advantages. Firstly, the
learned policy is encouraged to visit states with high entropy in the future, thus promoting the ex-
ploration over diverse states (Han & Sung, 2021). Secondly, it considerably improves the learn-
ing speed (Mei et al., 2020) and therefore is widely used in state-of-the-art algorithms, e.g., Soft
Actor-Critic (SAC) (Haarnoja et al., 2018). Similar empirical benefits of both distributional RL and
maximum entropy RL also encourage us to probe their underlying connection.

Risk-Sensitive Entropy Regularization in Distributional RL. To make a direct comparison with
maximum entropy RL, we need to specifically analyze the impact of the regularization term in Eq. 6,
and thus we incorporate the risk-sensitive entropy regularization of distributional RL into the policy
gradient framework akin to maximum entropy RL. Concretely, we conduct our analysis by show-
ing the convergence of Distribution-Entropy-Regularized Policy Iteration, which is counterpart for
Soft Policy Iteration (Haarnoja et al., 2018), i.e., the underpinning of SAC algorithm. In principle,
Distribution-Entropy-Regularized Policy Iteration replaces the vanilla entropy regularization in Soft
Policy Iteration with our risk-sensitive entropy regularization in Eq. 6 from distributional RL. In the
policy evaluation step of distribution-entropy-regularized policy iteration, a new soft Q-value, i.e.,
the expectation of Zπ(s, a), can be computed iteratively by applying a modified Bellman operator
T πd , which we call Distribution-Entropy-Regularized Bellman Operator defined as

T πd Q (st, at) , r (st, at) + γEst+1∼ρπ [V (st+1|st, at)] , (8)

where a new soft value function V (st+1|st, at) conditioned on st, at is defined by
V (st+1|st, at) = Eat+1∼π [Q (st+1, at+1)] + f(H (µst,at , qst,atθ )), (9)

and f is a continuous increasing function over the cross entropyH. Note that in this specific tabular
setting regarding st and at, we particularly use qst,atθ (x) to approximate the true density function of
Z(st, at), and µst,at to represent the target value distribution regardless of its expectation, which can
normally be obtained via bootstrap estimate µst+1,πZ(st+1) similar in Eq. 6. The f transformation
over the cross entropy H between µst,at and qst,atθ (x) serves as our risk-sensitive entropy regular-
ization. As opposed to the vanilla entropy regularization in maximum entropy RL that encourages
the policy to explore, our risk-sensitive entropy regularization in distributional RL plays a role of the
reward correction or augmented reward, and therefore augments the action-value functionQ(st, at)
in the value-based RL and the objective function in policy gradient RL by additionally incorporating
the value distribution knowledge. As we have discussed Neural FZI above in Section 3.2, which is
established on the value-based RL, we now shift our attention to the properties of our risk-sensitive
entropy regularization in the framework of policy gradient. In Lemma 1, we firstly show that our
Distribution-Entropy-Regularized Bellman operator T πd still inherits the convergence property in the
policy evaluation phase.
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Lemma 1. (Distribution-Entropy-Regularized Policy Evaluation) Consider the distribution-
entropy-regularized Bellman operator T πd in Eq. 8 and the behavior of expectation of Zπ(s, a),
i.e., Q(s, a). Assume Hπ(µst,at , qst,atθ ) ≤ M for all (st, at) ∈ S × A, where M is a constant.
Define Qk+1 = T πsdQk, then Qk+1 will converge to a corrected Q-value of π as k → ∞ with the
new objective function defined as

J ′(π) =

T∑
t=0

E(st,at)∼ρπ [r (st, at) + γf(H (µst,at , qst,atθ ))] . (10)

In Lemma 1, we reveal that the new objective function for distributional RL can be interpreted as an
augmented reward function. Secondly, in the policy improvement for distributional RL, we keep the
vanilla policy improvement updating rules according to

πnew = arg max
π′∈Π

Eat∼π′ [Qπold(st, at)] . (11)

Next we can immediately derive a new policy iteration algorithm, called Distribution-Entropy-
Regularized Policy Iteration that alternates between distribution-entropy-regularized policy evalu-
ation in Eq. 8 and the policy improvement in Eq. 11. It will provably converge to the policy with the
optimal risk-sensitive entropy among all policies in Π as shown in Theorem 1.
Theorem 1. (Distribution-Entropy-Regularized Policy Iteration) Assume Hπ(µst,at , qst,atθ ) ≤ M
for all (st, at) ∈ S × A, where M is a constant. Repeatedly applying distribution-entropy-
regularized policy evaluation in Eq. 8 and the policy improvement in Eq. 11, the policy converges to
an optimal policy π∗ such that Qπ

∗
(st, at) ≥ Qπ (st, at) for all π ∈ Π.

Please refer to Appendix D for the proof of Lemma 1 and Theorem 1. According to Theorem 1,
it turns out that if we incorporate the risk-sensitive entropy regularization into the policy gradient
framework in Eq. 10, we are able to design a variant of “soft policy iteration” that can guarantee
the convergence to an optimal policy. As such, we provide a comprehensive comparison between
vanilla entropy in maximum entropy RL and risk-sensitive entropy in distributional RL as follows.

Figure 1: Impact of the risk-sensitive entropy
regularization in distributional RL.

Vanilla Entropy Regularization vs Risk-Sensitive
Entropy Regularization. (1) Objective function.
By comparing two objective function J(π) in Eq. 7
for maximum entropy RL and J ′(π) in Eq. 10 for
distributional RL, distributional RL tries to maxi-
mize the risk-sensitive entropy regularization w.r.t.
π. This indicates that the learned policy in distri-
butional RL is encouraged to visit state and action
pairs in the future whose action-value distributions
have a higher degree of dispersion, e.g., variance,
in spite of its expectation, thus promoting the risk-
sensitive exploration to reduce the intrinsic uncer-
tainty of the environment. An intuitive illustration is provided in Figure 1. (2) State-action depen-
dent regularization. The vanilla entropy H(π(·|st)) in maximum entropy RL is state-wise, while
our risk-sensitive regularizationH(µst,at , qst,atθ ) is state-action-wise, implying that it is a more fine-
grained regularization to characterize the action-value distribution of Z(st, at) in the future.

3.4 ALGORITHM: DISTRIBUTION-ENTROPY-REGULARIZED ACTOR-CRITIC (DERAC)

In practice, large continuous domains require us to derive a practical approximation to Distribution-
Entropy-Regularized Policy Iteration (DERPI). We thus extend DERPI from the tabular setting to
the function approximation case, yielding the Distribution-Entropy-Regularized Actor-Critic (DE-
RAC) algorithm by using function approximators for both the value distribution qθ(st, at) and the
policy πφ(at|st). The key characteristics of DERAC algorithm is that we use function approximator
to represent the whole value distribution qθ rather than only the value function, and conduct the
optimization mainly based on the value function Qθ(st, at) = E [qθ(st, at)].

Optimize the parameterized value distribution qθ. The new value function is originally trained
to minimize the squared residual error of Eq. 8. Here for a desirable interpretation, we impose the
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zero expectation assumption over the residual, i.e., T πQθ(s, a) = Qθ(s, a) + ε with E [ε] = 0. The
resulting simplified objection function Ĵq(θ) can be well interpreted as an interpolation between the
expectation effect and distributional regularization effect:

Ĵq(θ) = Es,a
[
(T πd Qθ(s, a)−Qθ(s, a))

2
]

∝ (1− λ)Es,a [(T πE [qθ(s, a)]]− E [qθ(s, a)])
2

+ λEs,a [H(µs,a, qs,aθ )] ,
(12)

where we consider a particular increasing function f(H) = (λH)
1
2 /γ and λ ∈ [0, 1] is the hyper-

parameter that controls the risk-sensitive regularization effect. Interestingly, when we leverage the
whole target value distribution F s,a to approximate the true µs,a, the objective function in Eq. 12
can be viewed as an exact interpolation of loss functions between expectation-based RL (the first
term) and distributional RL equipped with KL divergence (the second term), e.g., C51. Note that
for the target T πE [qθ(s, a)], we use the target value distribution neural network qθ∗ to stabilize the
training, which is consistent with the Neural FZI framework analyzed in Section 3.1.

Optimize the policy πφ. We optimize πφ in Eq. 11 based on the Q(s, a) and thus the new objec-
tive function Ĵπ(φ) can be expressed as Ĵπ(φ) = Es,a∼πφ [E [qθ(s, a)]]. The complete DERAC
algorithm is described in Algorithm 1 of Appendix F.

4 EXPERIMENTS

In the experiment, we firstly verify the regularization effect of distributional RL analyzed in Sec-
tion 3.2 by decomposing the value distribution via Eq. 6 on both Atari games and MuJoCo environ-
ments. Next, we demonstrate the performance of DERAC algorithm on continual control environ-
ments. Finally, an empirical extension to Quantile-Regression Distributional RL, i.e., QR-DQN, is
also provided to reveal mutual impacts of different entropy regularizations.

Environments. To demonstrate the value distribution decomposition, we mainly present results on
three Atari games, including Breakout, Seaquest, Asterix, over 3 seeds and three continuous control
MuJoCo environments in OpenAI Gym, including ant, swimmer and bipedalwalkerhardcore, over 5
seeds. For the extension to QR-DQN, we perform experiments on eight MuJoCo environments.

Baselines. To evaluate the risk-sensitive entropy regularization effect of distributional RL, we
conduct an ablation study on C51 (Bellemare et al., 2017a) on Atari games and distributional
SAC (DSAC) (Ma et al., 2020) on MuJoCo environments. The implementation of DERAC algo-
rithm is based on distributional SAC (Haarnoja et al., 2018; Ma et al., 2020).
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Figure 2: (First Row) Learning curves of C51 with value distribution decompositionH(µ, qθ) under
different ε on three Atari games over 3 seeds. (Second Row) Learning curves of C51 with value
distribution decompositionH(µ, qθ) under different ε on three MuJoCo environments over 5 seeds.
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4.1 DISTRIBUTION REGULARIZATION EFFECT OF DISTRIBUTIONAL RL

We demonstrate the rationale of value distribution decomposition in Eq. 4 and the distribution
regularization effect analyzed in Eq. 6 based on C51 algorithm equipped with KL divergence.
Firstly, it is a fact that the value distribution decomposition is based on the equivalence be-
tween KL divergence and cross entropy owing to the leverage of target networks. Therefore, we
firstly demonstrate that C51 algorithm can still achieve similar results under the cross entropy
loss across four Atari games in Figure 5 of Appendix G. As C51 utilizes discrete histogram den-
sity function to approximate the true probability function, we extend the continuous decomposition
ps,a(x) = (1− ε)δ{x=E[Zπ(s,a)]}(x) + εµs,a(x) to a discrete form by decomposing the target value
density function into an indicator function centered on the bin that contains the expectation and
the remaining density function µs,a(x). We instead replace the true target probability ps,a(x) with
µs,a(x) under different ε in the cross entropy loss, allowing to investigate the risk-sensitive regular-
ization effect of distributional RL. Concretely, with a slight abuse of notation, we redefine ε as the
proportion of probability of the bin that contains the expectation with the mass to transport to other
bins. This is because an overly large true ε in Eq. 4 will result in a negative µ in some bins, which vi-
olates the definition of probability functions. On this account, we leverage the proportion probability
ε rather than the true ε. Note that the new ε is still proportional to the true ε as a large proportion
probability ε will transport less mass to other bins. This implies that the resulting µs,a(x) would be
closer to the true probability ps,a(x), corresponding to a higher risk-sensitive regularization effect
as analyzed in Eq. 6.

As shown in Figure 2, when ε gradually decreases from 0.8 to 0.1, the learning curves of C51
H(µ, qθ) tend to degrade from vanilla C51 to DQN across both Atari and MuJoCo, although their
sensitivity in terms of ε may depend on the environment, e.g., bipedalwalkerhardcore. This em-
pirical observation corroborates the theoretical results we derive in Section 3.2, suggesting that
risk-sensitive entropy regularization is pivotal to the success of distributional RL algorithms.
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Figure 3: Learning curves of DERAC algorithms on three MuJoCo environments over 5 seeds.

4.2 CONVERGENCE OF DERAC ALGORITHM

We further demonstrate the convergence of Distribution-Entropy-Regularized Actor-Critic (DE-
RAC). Figure 3 showcases that DERAC is able to converge and achieve desirable performance on
these three MuJoCo environments compared with AC (SAC without vanilla entropy) in the blue line.
More importantly, Distribution-Entropy-Regularization (DER) in the red line could be remarkably
beneficial for learning on the complex Bipedalwalkerhardcore, where a risk-sensitive exploration
significantly improves the performance. It is worthwhile to know that our goal to introduce DERAC
algorithm is not to pursue the empirical superiority of performance, but to corroborate the theoret-
ical convergence of DERAC algorithm and DERPI in Theorem 1. Our empirical result in Figure 3
has provided strong evidence to verify our theoretical results. In addition, as we choose ε = 0.9 in
DERAC algorithm, there exists a distribution information loss, resulting in the learning performance
degradation. In practice, we can directly deploy distributional SAC to seek for a better performance.
We also provide a sensitivity analysis of DERAC regarding λ in Figure 6 of Appendix G.

4.3 EXTENSION TO QUANTILE-REGRESSION DISTRIBUTIONAL RL

Finally, due to the fact that our aforementioned theoretical analysis is established on the distri-
butional RL algorithms equipped with KL divergence, e.g., C51, in order to make a comprehen-
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Figure 4: Learning curves of AC, AC+VE, AC+RE and AC+RE+VE over 5 seeds with smooth size
5 across eight MuJoCo environments where distributional RL part is based on IQN.

sive conclusion in broader distributional RL branches, we thus heuristically extend our results in
quantile-regression-based distributional RL. Specifically, a careful ablation study is conducted to
control the effects of vanilla entropy (VE), risk-sensitive entropy (RE) and their mutual impact. We
denote SAC with and without vanilla entropy as AC and AC+VE, and distributional SAC with and
without vanilla entropy as AC+RE+VE and AC+RE, where VE and RE are short for Vanilla Entropy
and Risk-sensitive Entropy. For the implementation, we leverage the quantiles generation strategy
in IQN (Dabney et al., 2018a) in distributional SAC (Ma et al., 2020). Hyper-parameters are listed
in Appendix E. As suggested in Figure 4, although both vanilla entropy and risk-sensitive entropy
effects may vary for different environments, we make the following conclusions:

(1) Vanilla entropy effect can enhance the performance as it is easily observed that AC+VE (blue
line) outperforms AC (red lines) across most environments except on the humanoid and swimmer.
The risk-sensitive entropy effect (RE) from distributional RL is also able to benefit the learning
due to the fact that AC+RE (black lines) is more likely to bypass AC (red lines) especially on the
complex BipealWalkerHardcore environment (hard for exploration).

(2) The use of both risk-sensitive entropy and vanilla entropy may interfere with each other, e.g.,
on BipealWalkerHardcore and Swimmer games, where AC+RE+VE (orange line) is significantly
inferior to AC+RE (black line). This is because SAC encourages the policy to visit states with
high entropy to pursue the diversity of states to optimize, while distributional RL promotes the
risk-sensitive exploration to visit state and action pairs whose action-value distribution has more
degree of dispersion. We hypothesize that these two different regularization effects are likely to
lead to divergent optimization paths to optimize the policy for different exploration, e.g, gradient
directions, thus interfering with each other eventually.

5 DISCUSSIONS AND CONCLUSION

Our regularization interpretation of distributional RL is mainly established on distributional RL with
the KL divergence as dp, while a direct analysis based on Wasserstein distance is also promising,
albeit being theoretically tricky.

In this paper, we illuminate the superiority of distributional RL over expectation-based RL from
the perspective of regularization. A risk-sensitive entropy regularization in the objective function is
derived for distributional RL within Neural Fitted Z-Iteration to explain the benefit of distributional
RL. Further, we also establish a connection between distributional RL with maximum entropy RL.
Our research contributes to a deeper understanding of the advantage of distributional RL algorithms.
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Ethics Statement. As our study is related to reveal the regularization effect of distributional RL
algorithms, it is not involved with any ethics issue in our opinion.

Reproducibility Statement. Our results is based on the public implementation released in (Ma
et al., 2020) with necessary implementation details given in Appendix E. We also provide the de-
tailed proof from Appendix A to Appendix D.
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A PROOF OF PROPOSITION 1

Proof. Firstly, we denote Y = X − E(X) and thus F (E [Zπ(s, a)]) = P (X ≤ E [Zπ(s, a)]) =
1− P (Y > 0). Consider the bounded X case, we have the following inequalities:

1Y >0 ≥
cY + Y 2

2c2
, and 1Y >0 ≤

cY − Y 2

2c2
+ 1. (13)

We take expectations on two sides and they arrive

P (Y > 0) ≥ EY 2

2c2
=

σ2

2c2
, and P (Y > 0) ≤ −EY

2

2c2
+ 1 = 1− σ2

2c2
. (14)

This indicates that σ2

2c2 ≤ 1 − F (E [Zπ(s, a)]) ≤ 1 − σ2

2c2 . To put them together, we have the
following results:

inf
F s,aµ
‖F − F s,a‖∞ ≡ inf

F s,aµ
sup
x
|F (x)− F s,a(x)|

≤ sup
x
|F (x)− F s,a(x)| |F s,aµ =F

= max{sup
x

(1− ε)(1− F (x)), sup
x

(1− ε)F (x)}

= (1− ε) max{1− F (E [Zπ(s, a)]), F (E [Zπ(s, a)])}

≤ (1− ε)(1− σ2

2c2
),

(15)

where the max operation is over two cases whether x ≥ E [Zπ(s, a)] or not. The last inequality
holds when we consider the bounded X case and it is also known that σ2 ≤ c2. Therefore, in this
bounded case, we can achieve a concise and uniform upper bound.

B PROOF OF PROPOSITION 2

Proof. We firstly assume Zθ is absolutely continuous and the supports of two distributions in KL
divergence have a negligible intersection (Arjovsky & Bottou, 2017), under which the KL divergence
is well-defined.

(1) Please refer to (Morimura et al., 2012) for the proof. Therefore, we have D∞KL(TπZ1,T
πZ2) ≤

D∞KL(Z1, Z2), implying that Tπ is a non-expansive operator under D∞KL.

(2) By the definition of D∞KL, we have sups,aDKL(Zn(s, a), Z(s, a)) → 0 implies DKL(Zn, Z) →
0. DKL(Zn, Z) → 0 implies the total variation distance δ(Zn, Z) → 0 according to a straightfor-
ward application of Pinsker’s inequality

δ (Zn, Z) ≤
√

1

2
DKL (Zn, Z)→ 0

δ (Z,Zn) ≤
√

1

2
DKL (Z,Zn)→ 0

(16)

Based on Theorem 2 in WGAN (Arjovsky et al., 2017), δ(Zn, Z) → 0 implies Wp(Zn, Z) → 0.
This is trivial by recalling the fact that δ and W give the strong an weak topologies on the dual of
(C(X ), ‖ · ‖∞) when restricted to Prob(X ).

(3) The conclusion holds because the Tπ degenerates to T π regardless of the metric dp (Bellemare
et al., 2017a). Specifically, due to the linearity of expectation, we obtain that

‖ETπZ1 − ETπZ2‖∞ = ‖T πEZ1 − T πEZ2‖∞ ≤ γ‖EZ1 − EZ2‖∞. (17)

This implies that the expectation of Z under DKL exponentially converges to the expectation of Z∗,
i.e., γ-contraction.
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C PROOF OF PROPOSITION 3

Proof. Firstly, given a fixed p(x) we know that minimizing DKL(p, qθ) is equivalent to minimizing
H(p, q) by following

DKL(p, qθ) =

∫ +∞

−∞
p(x) log

p(x)

qθ(x)
dx

= −
∫ +∞

−∞
p(x) log qθ(x) dx− (−

∫ +∞

−∞
p(x) log p(x) dx)

= H(p, qθ)−H(p)

∝ H(p, qθ)

(18)

Based on H(p, qθ), we use ps
′
i,πZ(s′i)(x) to denote the target probability density function of the

random variable R(si, ai) + γZkθ∗ (s′i, πZ(s′i)). Then, we can derive the objective function within
each Neural FZI as

1

n

n∑
i=1

H(ps
′
i,πZ(s′i)(x), qsi,aiθ (x))

=
1

n

n∑
i=1

(
−
∫ +∞

−∞
ps
′
i,πZ(s′i)(x) log qsi,aiθ (x) dx

)

=
1

n

n∑
i=1

(
−
∫ +∞

−∞

(
(1− ε)δ{x=E[Zπ(s′i,πZ(s′i))]}

(x) + εµs
′
i,πZ(s′i)(x)

)
log qsi,aiθ (x) dx

)

=
1

n

n∑
i=1

[
(1− ε)

(
−
∫ +∞

−∞
δ{x=E[Zπ(s′i,πZ(s′i))]}

(x) log qsi,aiθ (x) dx

)
+ εH(µs

′
i,πZ(s′i), qsi,aiθ )

]

=
1

n

n∑
i=1

[
(1− ε)H(δ{x=E[Zπ(s′i,πZ(s′i))]}

, qsi,aiθ ) + εH(µs
′
i,πZ(s′i), qsi,aiθ )

]
∝ 1

n

n∑
i=1

H(δ{x=E[Zπ(s′i,πZ(s′i))]}
, qsi,aiθ ) + αH(µs

′
i,πZ(s′i), qsi,aiθ ), where α =

ε

1− ε
> 0

=
1

n

n∑
i=1

(
− log qsi,aiθ (E [Zπ(s′i, πZ(s′i))]) + αH(µs

′
i,πZ(s′i), qsi,aiθ )

)
,

(19)
where the last equality holds based on the fact that

∫∞
−∞ f(x)δa(x)dx = f(a) when the Dirac

function δa(x) is centered at a.

D PROOF OF CONVERGENCE OF SOFT DISTRIBUTIONAL POLICY ITERATION
IN THEOREM 1

D.1 PROOF OF SOFT DISTRIBUTIONAL POLICY EVALUATION IN LEMMA 1

Proof. Firstly, we plug in V (st+1) into RHS of the iteration in Eq. 8, then we obtain

T πd Q (st, at)

= r (st, at) + γEst+1∼ρπ [V (st+1)]

= r (st, at) + γf(H (µst,at , qst,atθ )) + γE(st+1,at+1)∼ρπ [Q (st+1, at+1)]

, rπ (st, at) + γE(st+1,at+1)∼ρπ [Q (st+1, at+1)] ,

(20)

where rπ (st, at) , r (st, at)+γf(H (µst,at , qst,atθ )) is the entropy augmented reward we redefine.
Applying the standard convergence results for policy evaluation (Sutton & Barto, 2018), we can
attain that this Bellman updating under T πsd is convergent under the assumption of |A| < ∞ and
bounded entropy augmented rewards rπ .
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D.2 POLICY IMPROVEMENT WITH PROOF

Lemma 2. (Distribution-Entropy-Regularized Policy Improvement) Let π ∈ Π and a new policy
πnew be updated via the policy improvement step in Eq. 11. Then Qπnew (st, at) ≥ Qπold (st, at) for
all (st, at) ∈ S ×A with |A| ≤ ∞.

The policy improvement in Lemma 2 implies that Eat∼πnew [Qπold(st, at)] ≥ Eat∼πold [Qπold(st, at)],
we consider the Bellman equation via the distribution-entropy-regularized Bellman operator T πsd:

Qπold (st, at) , r (st, at) + γEst+1∼ρ [V πold (st+1)]

= r (st, at) + γf(H (µst,at , qst,atθ )) + γE(st+1,at+1)∼ρπold [Qπold (st+1, at+1)]

≤ r (st, at) + γf(H (µst,at , qst,atθ )) + γE(st+1,at+1)∼ρπnew [Qπold (st+1, at+1)]

= rπnew (st, at) + γE(st+1,at+1)∼ρπnew [Qπold (st+1, at+1)]

...
≤ Qπnew (st+1, at+1) ,

(21)

where we have repeated expandedQπold on the RHS by applying the distribution-entropy-regularized
distributional Bellman operator. Convergence to Qπnew follows from Lemma 1.

D.3 PROOF OF SOFT DISTRIBUTIONAL POLICY ITERATION IN THEOREM 1

The proof is similar to soft policy iteration (Haarnoja et al., 2018). For the completeness, we provide
the proof here. By Lemma 2, as the number of iteration increases, the sequence Qπi at i-th iteration

Table 1: Hyper-parameters Sheet.

Hyperparameter Value
Shared

Policy network learning rate 3e-4
(Quantile) Value network learning rate 3e-4
Optimization Adam
Discount factor 0.99
Target smoothing 5e-3
Batch size 256
Replay buffer size 1e6
Minimum steps before training 1e4

DSAC with C51
Number of Atoms (N ) 51

DSAC with IQN
Number of quantile fractions (N ) 32
Quantile fraction embedding size 64
Huber regression threshold 1

Hyperparameter Temperature Parameter β Max episode lenght
Walker2d-v2 0.2 1000
Swimmer-v2 0.2 1000
Reacher-v2 0.2 1000
Ant-v2 0.2 1000
HalfCheetah-v2 0.2 1000
Humanoid-v2 0.05 1000
HumanoidStandup-v2 0.05 1000
BipedalWalkerHardcore-v2 0.002 2000
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is monotonically increasing. Since we assume the risk-sensitive entropy is bounded byM , theQπ is
thus bounded as the rewards are bounded. Hence, the sequence will converge to some π∗. Further,
we prove that π∗ is in fact optimal. At the convergence point, for all π ∈ Π, it must be case that:

Eat∼π∗ [Qπold (st, at)] ≥ Eat∼π [Qπold (st, at)] .

According to the proof in Lemma 2, we can attain Qπ
∗
(st, at) > Qπ(st, at) for (st, at). That is

to say, the “corrected” value function of any other policy in Π is lower than the converged policy,
indicating that π∗ is optimal.

E IMPLEMENTATION DETAILS

Our implementation is directly adapted from the source code in (Ma et al., 2020).

For Distributional SAC with C51, we use 51 atoms similar to the C51 (Bellemare et al., 2017a). For
distributional SAC with quantile regression, instead of using fixed quantiles in QR-DQN (Dabney
et al., 2018b), we leverage the quantile fraction generation based on IQN (Dabney et al., 2018a) that
uniformly samples quantile fractions in order to approximate the full quantile function. In particular,
we fix the number of quantile fractions asN and keep them in an ascending order. Besides, we adapt
the sampling as τ0 = 0, τi = εi/

∑N−1
i=0 , where εi ∈ U [0, 1], i = 1, ..., N .

E.1 HYPER-PARAMETERS AND NETWORK STRUCTURE.

We adopt the same hyper-parameters, which is listed in Table 1 and network structure as in the
original distributional SAC paper (Ma et al., 2020).

F DERAC ALGORITHM

Algorithm 1 Distribution-Entropy-Regularized Actor Critic (DERAC) Algorithm

1: Initialize two value networks qθ, qθ∗ , and policy network πφ.
2: for each iteration do
3: for each environment step do
4: at ∼ πφ(at|st).
5: st+1 ∼ p(st+1|st, at).
6: D ← D ∪ {(st, at, r (st, at) , st+1)}
7: end for
8: for each gradient step do
9: θ ← θ − λq∇θĴq(θ)

10: φ← φ+ λπ∇φĴπ(φ).
11: θ∗ ← τθ + (1− τ)θ∗

12: end for
13: end for

G EXPERIMENTS

Figure 5 suggests that C51 with cross entropy loss behaves similarly to the vanilla C51 equipped
with KL divergence.

Figure 6 shows that DERAC with different λ in Eq. 12 may behave differently on the different
environment. Learning curves of DERAC with an increasing λ will tend to DSAC (C51), e.g.,
Bipedalwalkerhardcore, where DERAC with λ = 1 in the green line tends to DSAC (C51) in the
blue line. However, DERAC with a small λ is likely to outperform DSAC (C51) by only leverage
the expectation effect of value distribution, e.g., on Bipedalwalkerhardcore, where DERAC with
λ = 0, 0.5 bypass DERAC with λ = 1.0.
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Figure 5: (First row) Learning curves of C51 under cross entropy loss on Atari games over 3
seeds. (Second row) Learning curves of DSAC with C51 under cross entropy loss on MuJoCo
environments over 5 seeds.
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Figure 6: Learning curves of DERAC algorithms across different λ on three MuJoCo environments
over 5 seeds.
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