A Additional Experiments

A.1 Regression

Figure 4 shows the results of a linear model in the regression setting. Figure 5 shows the performance
of Tanh MLP in the regression setting. The complete posterior collapse is well predicted by our
theory.
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Figure 4: Training loss L and o; versus [ for linear regression. The theoretical prediction is plotted
as vertical dashed lines.
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Figure 5: Training loss L and o; versus [ for MLP encoder and decoder with Tanh activation
function. The theoretical prediction is plotted as vertical dashed lines.
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B Effect of Bias

Here, we study a general linear encoding and decoding model equipped with a bias term. Following
the previous notation, the encoder is 2 = W'z + b, + € and the decoded distribution is p(y|z) =
N(Uz +bg,n3,.I). Then, the objective of general VAE reads

1 2
Lvar(W.Ube,ba, ) =55 Eae [|U(WT33 $be+€) +bg—yl? + B [Ty b 2| (20)

dec enc
dy ﬁ 0'.2 0'.2
S5 ) 0

One can show that at optima, the learned biases must take the following form.
Proposition 4. The optimal biases are b} = -W E,[z] and b}, = E,[y].

Proof. The gradient of Lyag with respect to b, and by are zero when b, and b, are optimal. That is,

L 1 2
aazAE = —E,. [UT(U(WT:U #be +€) + by —y) + Bdee (W Ty 4 be)] (22)
€ dec enc
1 2
= 2[(UTU+BU‘;€CI) (WT]EIx+be)+UT(bd—]EIy)] =0, (23)
ndec enc
and,
oL 1
VAR - B, (U(WTz+b+€)+bg—y) (24)
abd dec
1
= —— [UW E,z +be) + (ba - Egy)] = 0. (25)
dec
Those condition holds if and only if b} = -WTE,z and b; = E,y. O]

In particular, this means that the effect of a learnable encoder bias is the same as a data-preprocessing
scheme of making x zero-mean. The effect of a learnable decoder bias is the same as a data-
preprocessing scheme of making y zero-mean.

C Case of a Data-Dependent Encoding Variance

For completeness, we extend the result in Section 4.3 and consider the case when the learnable
variance of the latent variable z is xz-dependent, which is common in practice. Meanwhile, one
might also consider the case when the variance in the decoder is learned: for concision, we do not
consider this case because it is rather rare in practice.

In the same spirit, we consider the simplest case of a data-dependent variance, where the standard
derivation of z linearly depends on . We will see that in this case, the system is no longer analyti-
cally solvable. The standard deviation is

o(z) = diag(|Cz + f|) == diag(o1 (), ..., 04, (2)), (26)

where C' € R%*% and f € R% are the learnable parameters. The latent variable z is thus generated
by

z=Wzx+o(x)e=Wazx+diag(Cz + f)e, 27

where € ~ N(0, I4,). To emphasize the important terms, we further assume that x is zero-mean:
E[z] =0.2

2As we have shown, this can be precisely achieved when the encoder and encoder have a learnable bias.
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Using this definition of o in Eq. (4), one obtains the following objective with Data-Dependent (en-
coding) Variance (DDV):

LyRg (U.W,C, f) (28)
1
o B [UW )+ Vo) 520 |
ndec nenc
B&L (i) o (x)
B h A 2
1
= “[|UWT9£ y|? + Te(Uo(x)ee o (2)UT) + 2Te(U(W - y)e o (2)UT)
ndec
n3 o (x o (x
+5’geC||WTx|2] ZE ( i(@) 1—log1;2( )). (30)
The relevant expectation values can be computed easily:
E,07(z) = [} + o AC] = PPV (31)
E.  Tr(Uo(z)ec'o(z)UT) = Tr(Udiag(E,07 (), -+, Epoy, (2))UT) (32)
E, Te(UW'z-y)e o(z)U") =E, Te(UW 'z -y)Ece o(z)UT) =0, (33)

where i, is the mean vector of input variable x, and f;C;.u, is the inner product of the i-th row of
C and p,, multiplied by a scalar f;. This corollary means that the loss function can be written in the
following form:

1 2
LORY (U WG, ) = B [ JUW T - g2+ Te(UsPPYOT) e |WTx|2]
77

dec enc
8 & o?(z o?(z
+§ZE1 #—1—@# . (34
=1 enc enc

What makes the problem analytical intractable is the term E, log(c?(x)). However, we can still
obtain some very insightful qualitative results from it.

The following lemma will help us show that it is always better to have C' = 0.
Lemma 1. For any C, f, there exists [’ such that Ezaf(:v; C,f)= Emgf(gc; C=0,f".5
Proof. By definition,
Eqof (2;C, f) = f7 + C1.AC], (35)

and

E,o?(x;C =0, f) = (f))* (36)

fi=A\/[}+C.AC] (37)

We can now prove that it is always better to have C' = 0.
Proposition 5. For any U, W, C, f, there exists [’ such that

LYy (UW,C, £) > Lysy (U, W,0, f'). (38)

Now, setting

is sufficient to make the two equal. O

Proof. Throughout, we let f” equal to the form given by Lemma 1.

By E%(3l) the loss function can be written as the sum of a term L that depends only on U, W
and X and the logarithmic term:

B

LyRe (U, W, C, f) = Ly (U, W, ZPPY) = TR, log o7 (x). (39)

*Note that we have now explicitly written out C' and f to emphasize that o is also a function of C and f
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However, by Lemma (1), we have
LN (U, W,0, f') = L1 (U, W, £PPV) - logE o?(x). (40)

Noting that —log o7() is convex, we have, for any C and f,
~E,logo(z) > ~logE,07 (). 41)
This implies that
LYRE (UW.C, ) = LYRE (U.W,0, f) = ~E; log o} (2) + log B0 () 20. (42)
This completes the proof. O

When C' = 0, the encoder variance becomes data-independent, and the global minimum is thus,
again, given by the main results in the main text. This result shows that a learnable data-dependent
encoder variance does not have any quantitative difference at the global minimum when compared
with the case of a data-independent encoder variance. This result is directly supported by our numer-
ical results in Section 5, where the experiments are done for the case where the encoder variances
are actually learned.

D Case of Learnable Decoding Variance 73 .

We first give an explicit form of the loss function at the global minimum found in Theorem 2. Using
the optimal U™, W*, 3%, the analytical formulation of the minimal Lyag can be obtained.

Corollary 2. The minimal value of the objective function Lyax is

leg?— dZ c?(uﬁ’f;“(logﬂz‘}“l))], (43)
=1 1 7

#CF>AN5,,

[in, Lyae(U,W,X) =

dec

where (? are sorted in non-increasing order. For convenience, we let (? = 0 for d* < i < dy when

dl > d*.

Corollary 2 gives the global minimum of the objective for a fixed decoding variance 73... The first
summation considers all eigenvalues (? while the second summation considers non-zero first dy
eigenvalues.

Here, we discuss the VAE with a Learnable Decoding Variance (LDV) n3,.. For shorthand, we
denote 73, := s € (0,00). When we want to optimize over s, we also need to include the partition
function, d2 log s, of the decoder in the loss LVA We note that this partition function has been

ignored in the main text because s has been treated as a constant for Lyag. The loss function L{J,Eg

with the optimal U*, W*, and ¥* is thus given by combining Eq. (43) and the partition function
da log s:
5 :

G(s) = L¥R¥(U = U*,W =W =2 12.=5)

d* dy 2
_ 1 ZC S |:+ﬁ(10g6—1):|+d210g8. (44)
z{f>ﬂé § ? 2

Next, we investigate how [ affects the learnable decoding variance s and identify the optimal s*
under various conditions. Then, we show that, even with a learnable nﬁec, the specific choice of 3
can lead to or avoid the posterior collapse.

Moreover, for clarity, let d* be the number of non-zero Cf for 1 <4 < d*, and dl be the number of
non-zero Cf for 1 <4 < d;. Itis easy to see that d; < d*. The loss is

(j*

1
G(s) = % Z ZF (s) + logs 45)
i=1
where ) )
Fi(s) = C 5(10g 1) when s < Cﬂ, (46)
0 otherwise.
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Lemma 2. G(s) is differentiable.

Proof. Tt suffices to check that F;(s) is differentiable on (0, o) for all i. By definition, F;(s) is
differentiable except at (? = 3s, and thus it suffices to check its differentiability at (/8.

First of all, F' is continuous:

lim F(s)=0= Ilim F(s @7
s=(¢2/8)~ () s=(¢2/8)* (2
Then, F'is differentiable:
lim F s lim s=C7/p O— lim F s (48)
s=(¢2/B)" (s) = ~(¢2/8)" 52( GIR- ~(¢2/8)* (s).
This finishes the proof. O

Therefore, we only need to check the stationary points and the right limit of G(s) at 0 and the left
limit at co. We proceed by first considering the monotonicity over intervals defined by the piecewise
function and then narrowing down the solution of G’(s) = 0 into a specific interval.

Let s, := BC2 forp=1,- a?l. We define s; ., = 0 and so = co. Because the (; are listed in non-

_ - _
increasing order, we have 0 = s; , <5 < <81 <8g=+00. Then (0,+00) = UL [sp+1,5p) =
{0} can be decomposed into the union of a set of intervals. For each interval [s,.1,5p),

1 &
G'(s)=55 l(d2 -Bp)s— ). CE] ; (49)
2s i=p+1
where we implicitly define Zf:p .1 ¢?:=0whenp> d*.

The following lemma states the number of stationary point of G(s) in an interval [$,41, Sp).

Lemma 3. At each interval [sp.1,5p),0 < p < dy, &' (s) has at most one stationary point when
(do - ﬁdl) # 0 or infinite stationary points when (dg — Bdl) 0 and p = dy = d*.

Proof. The existence of stationary points requires G’ (s) = 0, which is equivalent to (ds — 8p)s =
Zf:pﬂ ¢?. When p < dy, Z’lLi:p+1 ¢? > 0 holds. Therefore, G’(s) = 0 has at most one solution.

When p = d; = d*, G'(s) = 0 holds only if (dy — 3d;) = 0. Then, Vs € (0, s4,) is the stationary
point. O

Moreover, by Eq. (49), we have the following corollary.
Corollary 3. If there is a unique stationary point at [Sp.1,5p), G'(sp)G'(sps1) < 0.

The derivative at the endpoints can be computed as

G(p)_wl(?_ - )C —ZC] 2t (ﬂ )C —Eﬂc] (50)

Furthermore, once G’(s,) is non-negative at some endpoint s,, G'(s) > 0 holds over (s, o).
Lemma 4. Let p,t be such that p < dz/3 and t > s,. Then, t*G'(t) > SIQJG'(SP).

Proof. Lett € (s4+1,54] such that g+1 < p. We thus have t > s441 > -+ > 5,,. Because %—(p—l) >0,
we have

a'(t) = l(dz—BQ)t— 2 c} 32 [(dz Blp- 1))t—Zﬁt—ZC] (51)

i=q+1

J*
= l(dz—ﬁ(P—l))t— Zc? = %G’(sp). (52)

O
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Proposition 6. G(s) has at most one stationary point over (0, 00) when (ds — Bd,) # 0.

Proof. We prove this by contradiction. Let s, < s; are two stationary points. Lemma 3 implies
these two stationary points are located in two intervals [s,, 11, 5p, ) and [Sp,+1, Sp, ) With pg > pp.
By Corollary 3 there exists s; € {s,,+1,5p, } such that G'(s;) > 0, and s, € {Sp,+1,Sp, } such
that G’(s,) < 0. Noticing that s 1 < sp, < Sp,+1 < Sp,, we conclude that s; < s,.. If 5; < sy,
it contradicts to Lemma 4. If s; = s, = s,_, then there is no stationary points in the interval
[Sp+1, Sp, )» which contradicts to the assumption. O

I
Now, we check whether 0 and co are minima. For s, = s; + Zf-lzl ¢? € [s1,+00), we have

, 1 dsr 1 (isr
G(S+)=28%[dz&r—;gz‘l:%%ld281+(d2—1);C?]>0, (53)

which implies that the oo is not a minimum.

The behavior of G'(s) in (0, s ) is more complicated.

G'(s)=2i2l(d; czl)s— z c] (54)

= d1+1

the sign of which is different for the following three different cases:

1. Cil:dA* andd2/5—621>0;
2. dlsz* andd2/ﬁ—cf1:0
3. 621<G?* Ordg/ﬂ—d1<0.

Case 1: dy = d* and da/f - dy > 0. When d; = d* and dg//)’—d> 0, Zidn ¢? =0 and thus G'(s) >

0in (0,s; ]. By Lemma 4, G’(s) > 0 for s > s; . Therefore, G’(s) > 0 for s € (0, +00). Then,

there is no global minima for s € (0, +o0). The loss function LYYV is ill-posed. Even though s* is

converged to 0, the model is deterministic.

Case 2: zfl =d* and da/B - ch = 0. When cil =d* and dg/ﬁ—d =0, we have Z?;J+1 Cf = 0 and thus
G'(sg) = 0forall s € (0,55 ). G'(sz) = 0 also holds by the continuity of G'(s). For any s > s; ,
G'(s) > 0 by Lemma 4. Then the global minima for of G/(s) is the entire set of (0,s; ]. Insuch a
case, no posterior collapse happens.

Case 3: cil <d* or do/B - ch <0.* The following proposition shows that the global minimum of
G'(s) is unique.

Proposition 7. When dy < d* or dy/8 - dy < 0, G(s) has a unique global minimum, which is the
unique stationary point.

Proof. We first prove the existence. Let s_ = min {sjl , Z’(ii:(i1+1 Cf/ (% - cfl)} Then,

~ d*
G- (% -a)e- £ |« 5

1—31+1

holds in (0, s_). Recall that G'(s,) > 0 in Eq. (53). Then,

G’(s)=212[ Z c] 1[s+ Z c] (56)

i= d +1 i= d1+1

*The case where d1 < d* and B =1 is the case discussed in Lucas et al. (2019) and a variant of the case
considered in (Nakajima et al., 2015)
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holds in (s, o). Meanwhile, the continuous function G has minima in the closed interval [s_, s, ].
Then, there exists global minima of G(s) in (0, c0).

We prove the uniqueness by contradiction. Suppose there are two different global minima such that
sy < sp. On the one hand, if there are two p, < py, such that s}, € [sp,+1,5p,) and s; € [sp, 11, 5p, ),
we have G’ (sp,+1) > 0. At the same time, s;, is the global minimum implies G’(sp,+1) < 0, which
contradicts to the Lemma 4. On the other hand, if there is a unique p, such that s}, s; € [sp,+1, Sp, )»
G'(s}) =G'(s;) =0, thatis (do/B—pa)s; = (da/B —Pa)s;. This implies da /5 - p, = 0. Therefore,

G'(s;) = —29%2 Zf:ﬁa .1 (2 = 0, which contradicts the proposition assumption.
“b

By Proposition 6, the global minimum of differentiable function G is also the stationary point. [

Now, we are ready to find the optimal s*
Theorem 4. When d; < d* or do/B - dy <0,

. , g Thaa€ : :
* The optimal decoding variance is 0%, = d;l—liﬁ(l% €(0,s4, ) ifand only if
d2C%
B < (57)

2 2
dlcﬁl + i= d +1C

da* 2 "
* The optimal decoding variance is 32, = z&z‘fﬂfi € (8p+1, Sp), for 1 < p < dy if and only if

doC? dyC?
— 2opn1 <B<— AV (58)
icps2 G+ (p+ 1)C§+1 Dimpil G+ 26
» The optimal decoding variance is r]dec —2 Z?:l ¢? € (s1,00) if and only if
d 2
B> d27gl (59)
Y ¢

Proof. To ensure s* € (0,5 ), then the condition for 3 can be derived by letting G'(s;, ) > 0, that
is

dy - d
(G -d)g - X >0 (60)
i=di+1
The optimal s is solved by G’(s) = 0, that is
d"x—
(do=Bdi)s— . ¢ =0. (61)
i=dy+1

To ensure s* € [Sp11, Sp), then the condition for 3 can be derived by letting G'(s,) >0 > G'(sp+1),
that is

d
(g—p)cﬁ— Z ¢ >0>( —(p+ 1) - Zc (62)
1=p+1 i=p+2
Then the optimal s* is solved by G’(s) = 0, that is
dx—
(do=Bp)s— 3 ¢F=0. (63)
i=p+1

To ensure s* € [s1,+00), that is, G'(s1) < 0. The condition for 5 can be derived by solving

d*
fcl Zc <0. (64)
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Table 1: The effect of 5 for posterior collapse with learnable decoding variance

Dimension 3 Range Posterior Collapse négc
dy =d* (0,da/dy) NA NA
dy =d* {da/d1} No collapse or Qg only (0,54 ]
N 22, i &
dy<d (07 W) No collapse Tda-Bdr
1 i=dp+ N
R . 2 2 a* 2
dy < d* [ T dZCP*l —, =& ¢ C’z’ - ) Partial collapse except the z;z”jé;i
Titpr2 GG Xl 0 PGS first p modes, 1 < p < d;
N A 2 i*
dy <d* [ ddiC1<2 , +oo) Complete collapse 712 ch'l=1 C?
i=1 3¢
Optimal s* can be found by solving G’(s) = 0, that is
CZ*
das™ = (7 =0. (65)
i=1

O

Remark. By Theorem 2, the posterior collapse for an eigenvalue (? happens when Bnﬁcc > (2
which is equivalent to s > s, for 1 < p < dy. Therefore, different types of posterior collapse are
related to the following conditions of s*

* No collapse: s € (0,5 );

e Partial collapse: s € [Sp41,8p) for 1 <p< di;

» Complete collapse: s € [s1,00).
Notably, our result shows that the linear VAE with learnable decoding variance does not suffice
to lead to no collapse. For an arbitrary choice of Cf, the condition for no posterior collapse is

B € (O,dg/ci*). When dy = dy = d*, dy = dy, and B = 1, the third case reduces to the result of
Lucas et al. (2019). However, posterior collapse also happens in this case. For example, when
G=..= Cg*, the condition for the complete collapse of the model in Lucas et al. (2019) is [1, 00),
which covers the current choice of 3 = 1.

To summarize, Table 1 concludes five situations for posterior collapse under various conditions.
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E Proofs

E.1 Proof of Proposition 1

Proof. Minimizing Lyag (U, W) in Eq. (5) is equivalent to the following minimization problem

2
min B, [UW Tz - y|* + Tr(USUT) + B Mee Ty (T AW). (66)

enc

It is assumed that & = ®~2 Ax, and z := PA<I>%£. By defining V' := <I>%P;‘W, we obtain

2
E, JUW 2 - y|? + Te(USUT) + BMee T (W7 AW) 67)
2
=B, |[UWTPA®23 —y|? + Te(USUT) + 5%Tr(WTPA¢>leW) (68)
2
“E, [UVE - y|* + Te(USUT) + e V|3, (69)
2
“Te(UTUVTV =207 ZV) + Ex[y y] + Te(USUT) + B e Ty (v TV (70)

enc

2
77 ec
S IVIE - 1217 +Esly'y] (71)

enc

=|UVT - Z|% + Te(USUT) + 8

2
S|UVT = Z)% + Te(USUT) + B ee 7|2, (72)

enc

where we have used the relation E[#77 ] = I and | Z|% = Ez[y"y]. Thus, the desired (U, V') can be
2

obtained from minimizing L(U,V) = |[UTV - Z|% + Tr(USUT) + ﬂ% |V'|%. This finishes the

proof. O

E.2 Proof of Proposition 2

Proof. One of the necessary conditions for the global minimum is the zero gradient of L(U, V). We
then find the global minimum under the zero gradient condition. Consider

19L(U,V) T T i
- =VUU-Z"U+ By = 73
5 oV +f 2 ) (73)
which implies
2 —1
V:ZTU[ﬂ”gecnUTU] . (74)
Plugging Eq. (74) into the objective in Eq. (6), we have
2
L(U,V) =Tr [(UTU + 377;“1) VTV - 2UTZV] +Te(USUT) + | Z||% (75)
enc
=Te(USUT) -Te(U'ZV) + | Z| % (76)

2 -1
=TH(USUT) - Tr UTZZTU(ﬁngecuUTU) +2]%. 77)

enc

=J

Consider the SVD of matrix U = QAP where Q € R%2*92 and P ¢ R¥*% are orthogonal matrices,
A € R%*%1 g the rectangular diagonal matrix. Meanwhile, consider

2 -1 2 -
(ﬁngeC]erTATAP) =PT (ﬁ77g“I+ATA) P. (78)

enc enc
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Let diagonal matrix " = 3 %I +ATA. Recall the SVD of Z = FX. G, then the Eq. (77) is rewritten
aS enc

J=Tr[ATAS] - Tr [(QAT'ATQT)(FE2ELFT)]. (79)

We note that ATAT and ¥ zX 7, are square diagonal matrices in R4z Since 3, € R92*9 and
there are only min(dy, d2) non-zero values, i.e., (;,i = 1,...,min(dp,d2). We denote {; = 0 for
min(dg,dz) < @ < dy if d; > min(dp,ds) for convenience. By von Neumann’s Trace Inequal-
ity (Von Neumann, 1962), the trace of the product of two real symmetric matrices is upper bounded
by the sum of the product of their decreasing eigenvalues, specifically,

Tr[(QAT'ATQT)(FE8LFT)| < Tr[ATT'ATE 5] (80)

The equality holds if and only if @ = F'. Then the lower bound of .J is achieved when optimal
Q =F

d1 2
J>Tr[ATAS] - T [AT AT, 5T ] = W—%. 81)
[ :| [ Z Z] ;Uz 7 Bndec"'nenc/\? (

:=JQ#

Jg+ can be further minimized over all ;. The optimal A} can be determined by setting the corre-
sponding gradients to zero. Consider ¢; = A\? > 0,

g« 0 N2t
Q - U?tl _ 2CZ nenc (82)
8ti 81‘5‘ ﬁndec + neanti

2 2 g2 1 Yop2 (22 4
20__2 C nenc(ﬂndec Nenc ) nen(:é-z Tenc (83)

’ (B1Fee *+ Mencti)?
_ 2 C?ngncﬁnglec 84
=9 2 2 12 (84)
(577(1% + 77enct7i)

_ 07 (Bec + Moneti)? = Cinenc Bl

=0. (85)
(ﬁn?iec + ngncti)z
Two solutions of the Eq. (85) are
tl(l) _ \/Bndec (Cz _ \/Bo'indec ) , (86)
Uinenc nenc
t52) _ \/Bndec (_Ci _ \/Baindec ) . (87)
OiTenc Tlenc

We see that ¢; >0 > t(Z) then the monotonicity of .J¢, with respect to ¢; over (0, +o0) only depends

on t( ). Here are two situations: @) t(l) <0: BJQ*

Then the optimal £ = 0. (1) (") > 0: 8"Q*

> 0, then J;) increases monotonically with ¢;.
>0 Whent > t(l) and 8‘]@* <0whent; < t(l) Then the

optimal t] = tgl). Therefore, optimal )\;‘ is summarized by the two situations above with \}2 = ¢

/\: _ \J max (O, \/Bndec ((:z _ \/Bo-indec))’i _ 1’ -~-ad1~ (88)

g; nenc 77enc

As aresult, U = Q*A* P where P is an arbitrary orthogonal matrix in R%*%1_ The optimal V* can
also be determined by Eq. (74)

- GoP, (89)

MNenc

where G = [g1, .-, ga, }» © = diag (1, ..., 04, ) where 0; = \/max (0 \?Y;n (C‘ VBoinace )) 0
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E.3 Proof of Corollary 1

Proof. The minimum value can be obtained by plugging in the optimal

X = J max( VBlaes ( . ﬂomdec))’ 00)

UZ nenc nenc

into the lower bound of L(u,v), i.e.,

2y *2 CancA;”
LU, V) > nL(U V)= 2%+ Jg = > (F+oiAi? - - 91)
r 9 121 577(216(; + ngncAi 2
O
E.4 Proof of Proposition 3
Proof. The optimal o; can be determined by
. 2 2 o2
of =argminl;(o) = arg min ¢ — (C, \/BUledec) L. oo + BN3ec ( % )
>0 >0 Nenc Gi> Tlelnc = cnc cnc
92)
The gradient of I;(o) reads,
2
I (O') ]l e (Cz _ \/Bndec O') \/Bndec ﬁndcc (O’ _ 77enc) (93)
G> ene Tlenc TNenc Nanc o

Since I'() is a increasing function, I'(0_) < 0 when o_ = & min(-Siene ‘/E"ec‘f“‘"de“ ),and !'(oy) >

\/777ch

0 when o_ = 2 max(%, 2Nenc ). Then the minimal value of [(+) is determined when {'(o) = 0,
dec
that is,

VBna
1M9fm;——;$g+b—1ﬂgﬁ?c]

Bndec  Menc Ndec

ﬁndec Bn?lec .

77611(3 o
The LHS of Equation (94) is a non-decreasing function while the RHS is decreasing function. Then
we claim there is a unique solution o * of Equation (94). The solution breaks down into two situations

Case 1: 0% < (; —ene—

\/Endcc

In this case, we have

(94)

\/Bndecgi _ ﬁnﬁcc )

95)
Nenc g
Then
ot = \/BWZecnenc ) (96)
This solution holds if and only if the following condition holds
\/_ndecnenc Tlenc 2 2
C’L <~ Bndec < Ci . (97)
Cz \/_ndec
> __MNenc
Case2: 0" > (; s
In this case, we have
ﬂndec Bn?lec . (98)
nenc a
Then
o= Tlenc- (99)
This solution holds when
Nenc > Ci lenc A 577360 2 sz (100)
\/Bndec
It is easy to check that the two cases above cover all solutions. O
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E.5 Proof of Theorem 3

Proof. The first-order derivatives of L are

% =2(UV'V - ZV +UX) (101)
2
% :Q(VUTU—ZTU+ﬁ77geCV) (102)

Then the second-order derivatives of L are

M =26 (g Vies Vieg + 5qso—§) (103)
W =2 U,,qu+(j2 Ui Vi —Z,,r) 54 (104)
M =2 | VpsUpq + (Jd; UiVij — er) 54 (105)

LettingU =0and V' =0

2L(U,V)

=928,,00s0> 107
aUrsaqu U0y =0 prUq: O'q ( )
2
O°L(U,V) 27,6, (108)
VrsOUpq U=0,V=0
2
O°L(U,V) 27,5 (109)
OUrs0Vpq U=0,V=0
2L(U,V) Mitec
gty ~oplecs 5 (110)
rsUVpq ly=0,v=0 Tenc

Then we consider the quadratic form at U = 0,V = 0. Consider AU and AV as the perturbation of
U and V. Then the quadratic form reads

2L(U,V) 2L(U,V)
i S A AUNAU i Sl A
p;s OU,s0Upq ( vt Z

LQ(AU,AV) =
U=0,V=0 pars OVrsOUpq

AV, AU,
U=0,V=0

(111)

2L(U,V)
OU,sOV,pq

R2L(U,V)
V7V,

>

pqgrs

AU sAV,q + Z
U=0,V=0 pqrs

AV, AV,
U=0,V=0

(112)
2
U
=2) 0P AU, =23 Zpe AUpAVig =23 Zpy AU qAVpg + 3 28-S AV
Pq pqr par pPq enc

(113)

=) [Tr(AUz(AU)T) — 9T (ZAV(AU)T) + ﬁn‘EeCTr(AV(AV)T)] (114)

enc
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It suffices to consider the case | X|% = 1. Let o® = |AU|% and |AV|% = 1 - a®. Then let
u=AU/a and v = AV /V/1 - a? be the normalized matrix. Plugging in, we obtain

2
LQAU,AV) o< 0?|[U|]* = 2Tx(ZVU") + 322 V[ (115)
U

2
T] ec
:02a2—2\/a2(1—aQ)Tr(uTZv)+ﬁn‘21—(1—a2), (116)
where we assume ¥ = o, according to the Theorem 2. Apparently, for any fixed «, the middle term

is minimized if w is the left eigenvector of Z corresponding to the largest singular value of Z, and v
is the corresponding right eigenvector. This choice gives

2
LQ(AU,AV) o< 02a? = 2\/a2(1 - a2)Cmax + ﬁ%(l -a?). (117)
n

enc

Minimizing over « shows that

2 2 \2
min LQ(AU, AV) oc 02 + g ec _ \' (02 - /3”(21) +4C2 (118)

enc enc

2 2
which is nonnegative if and only if ¢ o? B% Namely, o2 ﬂ% - (2. < 0 implies that the

aXZ

2
origin is a saddle point. Meanwhile, 02 3de« — (2 > ( implies that the origin is a local minimum.

Notice that this condition coincides with the condition that the origin is a global minimum. There-
fore, the origin is the global minimum if and only if the Hessian at the origin is PSD. This finishes
the proof. [
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