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ABSTRACT

In this paper, we leverage the power of latent diffusion models to generate synthetic
time series tabular data. Along with the temporal and feature correlations, the
heterogeneous nature of the feature in the table has been one of the main obstacles
in time series tabular data modeling. We tackle this problem by combining the
ideas of the variational auto-encoder (VAE) and the denoising diffusion proba-
bilistic model (DDPM). Our model named as TimeAutoDiff has several key
advantages including (1) Generality: the ability to handle the broad spectrum of
time series tabular data with heterogeneous, continuous only, or categorical only
features; (2) Fast sampling speed: entire time series data generation as opposed to
the sequential data sampling schemes implemented in the existing diffusion-based
models, eventually leading to significant improvements in sampling speed, (3)
Time varying metadata conditional generation: the implementation of time series
tabular data generation of heterogeneous outputs conditioned on heterogenous, time
varying features, enabling scenario exploration across multiple scientific and engi-
neering domains. (4) Good fidelity and utility guarantees: numerical experiments
on eight publicly available datasets demonstrating significant improvements over
state-of-the-art models in generating time series tabular data, across four metrics
measuring fidelity and utility; Codes for model implementations are available at
the supplementary materials.

1 INTRODUCTION

Synthesizing tabular data is crucial for data sharing and model training. In the healthcare domain,
synthetic data enables the safe sharing of realistic but non-sensitive datasets, preserving patient
confidentiality while supporting research and software testing (Yoon et al.l 2023). In fields like
fraud detection (Padhi et al.,[2021b; Hsieh et al., 2024} |Cheng et al., 2024}, where anomalous events
are rare, synthetic data can provide additional examples to train more effective detection models.
Synthetic datasets are also vital for scenario exploration, missing data imputation (Tashiro et al.,
2021;|Ouyang et al., 2023)), and practical data analysis experiences across various domains.

Given the importance of synthesizing tabular data, many researchers have put enormous efforts into
building tabular synthesizers with high fidelity and utility guarantees. For example, CTGAN (Xu
et al.| 2019)) and its variants (Zhao et al,[2021};[2022) (e.g., CTABGAN, CTABGAN+) have gained
popularity for generating tabular data using Generative Adversarial Networks (Goodfellow et al.,
2020) (GANs). Recently, diffusion-based tabular synthesizers, like Stasy (Kim et al., [2022), have
shown promise, outperforming GAN-based methods in various tasks. Yet, diffusion models (Ho et al.|
2020; |Song et al., 2020b) were not initially designed for heterogeneous features. New approaches,
such as those using Doob’s h-transform (Liu et al.,[2022), TabDDPM (Kotelnikov et al., |2022), and
CoDi (Lee et al., |2023)), aim to address this challenge by combining different diffusion models (Song
et al., |2020bj; |Hoogeboom et al., [2022) or leveraging contrastive learning (Schroff et al.| 2015) to
co-evolve models for improved performance on heterogeneous data. Most recently, researchers have
used the idea of a latent diffusion model, i.e., AutoDiff (Suh et al.|[2023)) and TabSyn (Zhang et al.|
2023a), to model the heterogeneous features in tables and prove its empirical effectiveness in various
tabular generation tasks.

However, the tabular synthesizers mentioned above focus solely on generating tables with independent
and identically distributed (i.i.d.) rows. They face difficulties in simulating time series tabular data
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Figure 1: The overview of TimeAutoDiff: the model has three components: (1) pre- and post-
processing steps for the original and synthesized data; (2) VAE for training encoder and decoder,
and for projecting the pre-processed data to the latent space; (3) Diffusion model for learning the
distribution of projected data in latent space and generating new latent data. Note that the dimension
of the latent matrix Z§ € RT*¥ s set to be the same as that of the original data.

due to the significant inter-dependences among features and the intricate temporal dependencies that
unfold over time. In this paper, motivated from (Suh et al.l 2023} [Zhang et al.} [2023a)), we propose
a new model named TimeAutoDiff, which combines Variational Auto-encoder (VAE)
and Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., to tackle
the above challenges in time series tabular modeling. In the remainder of this section, we define our
problem formulation, introduce motivations of TimeAutoDiff, outline the contributions of our work,
and review relevant literature to establish the context of our paper.

1.1 PROBLEM FORMULATION, MOTIVATION, AND CONTRIBUTIONS

Problem Formulation. Our goal is to learn the joint distribution of time series tabular data of a
T-sequence (X1, ...,xr7). Each observation x;, where X; := [Xcont,j, XDisc,j] 1s an F-dimensional
feature vector that includes both continuous (Xcon,;) and discrete variables (Xpisc, ;), reflecting the
heterogeneous nature of the dataset. Throughout this paper, we assume there are B i.i.d. observed
sequences sampled from P(x1, ..., xr). We additionally assume that each record in the time-series
tabular data includes a timestamp, formatted as "YEAR-MONTH-DATE-HOURS’. This timestamp
serves as an auxiliary variable to aid an training / inference step in TimeAutoDiff, which will be
detailed shortly. The overview of TimeAutoDiff is provided in Figure[T]

Motivation of TimeAutoDiff. The main motivation for combining the two models, VAE and DDPM,
is to accurately capture the distribution of heterogeneous features in the data. Diffusion model
has recently gained a lot of attentions in a time series community, because of its ability generating
complex and high quality sequences. (See|Lin et al.|(2024)); | Yang et al.|(2024b) and references therein
for more detailed reasons.) Nonetheless, current literatures only focus on modeling continuous time
series data. This is mainly attributed to the fact that the diffusion model is originally designed for
capturing distributions on continuous space. In our work, to deal with heterogeneous features, the
B-VAE (Higgins et al} 2017) is employed for projecting the time series data to continuous latent
space. The autoencoder framework has been widely employed in tabular data modeling to address
heterogeneity, leveraging the reconstruction error in its objective function (Desai et al.} 2021}
et all 2023} [Zhang et al| [2023a)). Inspired from this observation, we combine these two models for
modeling a time-series data with heterogeneous features. Furthermore, dependencies along temporal
and feature dimensions can be captured through the sophisticated architectural designs of VAE and
DDPM denoiser. Specifically, in both models, we use the inductive bias of Recurrent Neural Network
(RNN) (Hochreiter & Schmidhuber,[1997) and Bi-directional RNN (Bi-RNN) (Schuster & Paliwall,
to capture the temporal dependences of sequences. Our unique design of DDPM denoiser
captures the feature dependences. More details are provided in Section[2]

Contribution 1. Sampling time for new data sequence generation is significantly reduced compared
to other SOTA diffusion-based time series models like TSGM and diffusion-
ts (Yuan & Qiaol [2023)), which rely on sequential sampling. Existing synthesizers typically model
the conditional distribution P(x¢|x:—1,...,x1) and generate x; sequentially for ¢t € {2,...,T}.
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In contrast, our model learns the entire distribution P(x7,x7_1,...,x1) and generates the whole
sequence at once. The difference in sampling times becomes more pronounced as 7" increases since
diffusion models require multiple denoising steps for each sample. For verifications, our model
generates long sequential data (i.e., 7' = 900 in Appendix [[), while other diffusion baseline methods
suffer from generating much shorter sequential data (i.e., T = 24 in Table[T). Additionally, our
approach avoids the accumulating errors commonly associated with sequential sampling.

Contribution 2. TimeAutoDiff accommodates conditional generation. The model can be condi-
tioned on heterogeneous sequential metadata. |I| Given B i.i.d. pairs of multivariate time series x;
and time-varying metadata c; (i.e., D, . = {(x;,¢;)}2 ), our model learns the conditional distribu-
tion p(x|c). Notably, both x; and ¢; can represent multivariate heterogeneous and sequential data.
Additionally, static variables (e.g., gender, ethnicity) can also be incorporated as conditions ¢ in our
model. This capability unlocks significant potential for the model to be employed in counterfactual
scenario exploration across diverse scientific and engineering domains. We demonstrate this potential
through two specific examples under synthetic and real-world (Traffic dataset) settings in Section4.3]

Contribution 3. Numerical comparisons of TimeAutoDif f with other models (with publicly avail-
able codes), namely, TimeGAN (Yoon et al.|[2019), Diffusion-ts (Yuan & Qiao, [2023), TSGM (Lim
et al.l 2023)), CPAR (Zhang et al., [2022), and Doppel GANger (Lin et al., 2020) are conducted
comprehensively across eight real-world datasets under various metrics. (See Appendix [C|for de-
scriptions of the datasets.) Specifically, for measuring the fidelities of temporal correlations between
synthetic and real heterogeneous timeseries tabular data, we develop a new metric, named Temporal
Discriminative Score. Inspired from the paper (Yoon et al.l 2019; Zhang et al.l [2022), this metric
computes discriminative scores (Yoon et al.,[2019) of distributions of inter-row differences (Zhang
et al.| 2022) in generated and original sequential data.

1.2 RELEVANT LITERATURE

To our knowledge, not many models in literature can deal with time series tabular data with a
heterogeneous nature. We categorize the incomplete list of existing models into three parts: (1)
GAN-based models, (2) Diffusion-based models, and (3) GPT-based / Parametric models.

GAN-based models. TimeGAN (Yoon et al) 2019) is one of the most popular time series
data synthesizers based on the GAN framework. Notably, they used the idea of latent GAN
employing the auto-encoder for projecting the time series data to latent space and model the
distribution of the data in latent space through the GAN framework. Recently proposed Electric
Health Record (in short EHR)-Safe (Yoon et al.||2023)) integrates a GAN with an encoder-decoder
module to generate realistic time series and static variables in EHRs. EHR-M-GAN (Li et al.,
2023) employs distinct encoders for each data type, enhancing the generation of mixed-type time
series in EHRs. Despite these advancements, GAN-based methods still encounter challenges
such as non-convergence, mode collapse, generator-discriminator imbalance, and sensitivity to
hyperparameter selection, underscoring the need for ongoing refinement in time series data synthesis.

Diffusion-based models. Most recently, TimeDiff (Tian et al., 2023) adopts the idea from
TabDDPM combining the multinomial and Gaussian diffusion models to generate a synthetic
EHR time series tabular dataset. DPM-EHR (Kuo et al., [2023) suggested another diffusion-based
mixed-typed EHR time series synthesizer, which mainly relies on Gaussian diffusion and U-net
architecture. TSGM (Lim et al.} 2023)) used the idea of the latent conditional score-based diffusion
model to generate continuous time series data. However, TSGM is highly overparameterized and
its training, inference, and sampling steps are quite slow. Diffusion-TS (Yuan & Qiaol 2023) takes
advantage of the latent diffusion model employing transformer-based auto-encoder to capture the
temporal dynamics of complicated time series data. Specifically, they decompose the seasonal-trend
components in time series data making the generated data highly interpretable. One important model
in the literature, CSDI (Tashiro et al.l [2021)), uses a 2D-attention-based conditional diffusion model
to impute the missing continuous time series data.

"During the preparation of this manuscript, TimeWeaver (Narasimhan et al.,[2024) was introduced in the
literature. While it is also designed for time-varying metadata conditional generation, it focuses solely on the
conditional generation of continuous outputs, and its code is not publicly available yet.
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Figure 2: The schematic architecture of the encoder in VAE. The encoder has three main parts:
(1) encoding of heterogeneous features having both discrete and continuous data; (2) learning the
correlations of features through MLP block; (3) learning the temporal dependence through two RNNSs.

GPT-based / Parametric models. TabGPT (Padhi et all 2021b) is a GPT2-based tabular
data synthesizer, which can deal with both single and multi-sequence mixed-type time series datasets.
Data generation of TabGPT is performed by first inputting initial rows of data, then generating
synthetic rows based on the context of previous rows. CPAR (Zhang et al.| |2022) is an autoregressive
model designed for synthesizing multi-sequence tabular data, i.e., sequences from multiple entities in
one table. They use different parametric models (i.e., Gaussian, Negative Binomial) for modeling
different datatypes (i.e., continuous, discrete). However, independent parametric design of each
feature ignores the correlations among features.

2 PROPOSED MODEL: TIMEAUTODIFF

In this section, the constructions on variational auto-encoder (VAE) and diffusion models are provided.
The pre- and post-processing steps of data are deferred in the Appendix

Encoder in VAE: The pre-processed input data x"¢ = [xFroc; xProc) ¢ REXTXF jg fed into the
VAE. The architecture of the encoder is illustrated in Figure[2] Motivated by TabTransformer (Huang
et al., 2020), we encode the discrete feature x; € xp¢ with j € {1,...,m} into a d-dimensional

(where d is consistently set at 128 in this paper) continuous representation. This is achieved using
a lookup table e(-) € R? with m representing the total number of discrete features. The goal of
introducing embedding for the discrete variables is to allow the model to differentiate the classes in one
column from those in the other columns. To embed the continuous features, we employ a frequency-
based representation. Let v be a scalar value of the i-th continuous feature in x2%¢ € RBxTxe,
Similar to (Luetto et al.l 2023)), v is projected to the embedding spaces as follows:

n;(v) := Linear(SiLU (Linear([sin(2°7v), cos(27v), - - - , sin(277v), cos(277v)]))) € R%. (1)

The embedding dimensions of discrete and continuous features are set to be the same as d for
simplicity. The sinusoidal embedding in equation [I] plays a crucial role in reconstructing the
heterogeneous features. Our empirical observations indicate that omitting this embedding degrades
the reconstruction fidelity of continuous features compared to their discrete counterparts, which
will be verified in the ablation test in the following section. We conjecture this is attributed to
the fact that deep networks are biased towards learning the low-frequency functions (i.e., spectral
bias (Rahaman et al.| 2019)), while the values in continuous time series features often have higher
frequency variations.

The embedded vectors ey, ..., ey, n1,...,Nn. of each row in the input data are concatenated into a
vector of dimension (m + ¢)d and are inputted to the MLP block. The output tensor from the MLP
block, denoted as [£\", £{7, ..., f]B | € REXT*F s fed to two separate RNNs for modeling the

mean and covariance of the latent distribution. Each RNN is unfolded over 1" time horizons, and
the vectors { f; } 7. j=1 are fed to each network to capture the temporal dependencies of the input data.
Henceforth, we omit the notation for the batch index when it is clear from context. The two RNNs’
outputs are j := [u1, fi2, - . ., pr]’ € RT*F and logo? := [logo?,log o3, ..., logo2]T € RT*F,
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Figure 3: The schematic architecture of the eg(ZL*, n, t, ts) in diffusion model. The inputs to the
architecture €y include the noisy latent matrix ZL* at the nth diffusion step, the diffusion step n, the
normalized time points t, and the time stamps (ts) The embedded inputs are processed through a
Bi-directional RNN, which captures temporal dependencies in both forward and backward directions.

respectively. Then, we have a latent embedding tensor Z := ;1 + E© o € RT*F where each entry
in E € RT*¥ is from standard Gaussian distribution, and & denotes an element-wise multiplication.
The size of Z* is set to be the same as that of the input tensor through fully-connected (FC) layers
topped on the outputs of two RNNs.

Dencoder in VAE: We found a simple MLP block and linear layers work well as a decoder of VAE.
First, we apply MLP to Z as in equation [2}

MLPBlock(x) := Linear(ReLU(Linear(x))), x"°" = MLPBlock(Z""). 2

Additional linear layers are applied to xe-Ou

with separate layers, designed for each of the data types;
that is, x2" := Sigmoid(Linear(x"®0u)), xu := Linear(x"*"), and x2%, := Linear(x"O")
denoting continuous, binary, and categorical outputs of the decoder. Here, we divide the discrete
variables into two groups: [Xgin, Xcate|, Where Xp;, represents binary variables, and Xcqe represents
categorical variables with more than two labels. For numerical features, a sigmoid activation function

scales the outputs to [0, 1], matching the pre-processed input. The dimensions of x2% and x{' match

their respective inputs, while x9 has a dimension of ), K;, where K is the number of categories
in each categorical variable. Output dimensions are set to align with the requirements of MSE, BCE,

and CE losses in PyTorch. The decoder structure is provided in Appendix [}

>

Obj. function & Training of VAE: The reconstruction error in the VAE is defined as the sum of
mean-squared error (MSE), binary cross entropy (BCE), and cross-entropy (CE) between the input

Proc |, Proc < Proc 3 Out ,Out Out
tuple [XBm X(Cate> XCom} and the Ol’ltpl’lt tuple from decoder [XBm XCate XCom]

P Out P Out P Out P Out
Crecons (X%, x7") = BCE(Xgjn , Xgin) + CE(Xpjses Xpise) + MSE(Xconts Xcont)- (3)

Following (Zhang et all [2023a)), we use 3-VAE (Higgins et al.,[2017) instead of ELBO loss, where a

coefficient 3(> 0) balances between the reconstruction error and KL-divergence of N'(0, Zrpx7r)
(Zrrx7F denotes an identity matrix of dimension R *T¥) and ZM ~ N (vec(), diag(vec(a?)).
The notations vec(-) and diag(+) are vectorization of input matrix and diagonalization of input vector,
respectively. Finally, we minimize the following objective function £ay, for training VAE:

»CAuto = grecons(xpmcvxom) + BDKL (N(Vec(u)7 diag(vec(oz))) || N(OvaFXTF))- (4)

Similar to (Zhang et al., 2023a), our model does not require the distribution of embeddings Z“*
to follow a standard normal distribution strictly, as the diffusion model additionally handles the
distributional modeling in the latent space. Following [Zhang et al|(2023a), we adopt the adaptive
schedules of 8 with its maximum value set as 0.1 and minimum as 10~°, decreasing the 3 by a
factor of 0.7 (i.e., A"Y = 0.74°9) from maximum to minimum whenever {,.cons fails to decrease for
a predefined number of epochs. The effects of S-scheduling will be more detailed in Section 4]

Diffusion for Time Series: TimeAutoDiff is designed to generate the entire time series at once,
taking the data of shape T x F' as an input. This should be contrasted to generating rows in the
table sequentially (i.e., for instance, (2023)). We extend the idea of DDPM to make it
accommodate the time series data of shape T x F' at one time. For readers’ convenience, we provide
the framework of DDPM in the Appendix [
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Figure 4: In Traffic dataset, “Weather Main’ (categorical, textual weather description) and ‘Traffic
Volume’ (continuous, hourly traffic on westbound I-94, Minneapolis-St. Paul) are generated condi-
tionally on remaining variables over 96 hourly timestamps (i.e., 7' = 96). The generated data shows
great fidelity to the real data. (Both variables are pre-processed. See Appendix @] for more details)

Let Zi™ € R™** denote the input latent matrix from VAE and let ZL* := [z, 2%, . . ., z;"%] be
the noisy matrix after n € {1,2,..., N} diffusion steps, where zI;La;» € RT is the j-th column of ZLAt.

The perturbation kernel ¢(z,%;|26% ) = N (v/@n2§%, (1 —@n)Zrxr) is applied independently to each
column zl(;“ljt Jj € [F], where &, := II7_; ov; with {e;}7—; € [0, 1]™ being a decreasing sequence over
i. (We use the linear noise scheduling from DDPM. Refer to the Appendix [K]for details.) Here, we
treat each column of Z5 as a discretized measurement of univariate time series function in the latent
space, adding noises independently. But this does not mean we do not model the correlations along
the feature dimension in Z{;a‘ (Bilos et al., [2023)). The reverse process for sampling takes an entire
latent matrix and captures these correlations. A similar idea has been used in TabDDPM (Kotelnikov:
et al., 2022) for modeling categorical variables. Under this setting, Z-* can be succinctly written as
Van Zg" + /T — a,E", where E" := [}, ¢4, ..., ep] € RT*F with €} ~ N(0,Zrxr). Finally,
the ELBO loss we aim to minimize is:

L = En g [|le0 (VanZg" + V1 — a,E", n, t,ts) — E[3]. 5)
The neural network ey predicts the error matrix E™ added in every diffusion step n ~
Unif({1,2,..., N}). It takes noisy matrix Z-*, normalized time-stamps t := {t{,ts,...,t7} =

{ % }E_ |, diffusion step n, and the original time-stamps ts in the tabular dataset as inputs.

Design of ¢5: The architecture of €y is given in Fig. 3| Diffusion step n and a set of normalized
time points t are encoded through positional encoding (in short PE) introduced in |Vaswani et al.
(2017). PE of n lets the diffusion model know at which diffusion step the noisy matrix is, and
PE of t encodes the sequential order of rows in the input matrix. But normalized time stamps
provide only limited information on the orders of rows, and we find incorporating the encodings
of timestamps in date-time format (i.e., YEAR-MONTH-DATE-HOURS), which can be commonly
found in time series tabular data, significantly helps the diffusion training process. (See Table[3]
in subsection [[]) Cyclic encodings with sine and cosine functions are used for converting the
date-time data to dense vectors: specifically, for x € {YEAR,MONTH, DATE, HOURS} with
Period € {total number of years in the dataset, 12, 365, 24}, the conversion we used is as :

(sin(x/(Period x 27)), cos(x/(Period x 27))). (6)

Through equation[6] cyclic encodings give 8-dimensional unique representations of timestamps of
the observed data in the table, and the encoded vector is fed to an MLP block equation E] to match
the dimension with those of the other inputs’ encodings. The concatenated encodings of (Z5*, n,
t, ts) are fed into an MLP block, which gives a tensor N = [Ny, Na, ..., Np]T € RT*F | Inspired
from [Tian et al.| (2023)), Bi-directional RNN (Bi-RNN) (Schuster & Paliwal,[1997) is employed and
N is fed to Bi-RNN as in Figure[3] After the applications of layer-normalization and FC layer, the
network ey outputs [eg(t1), . .., eg(tr)]T € RTXF (o estimate E". The sampling process of the new
latent matrix is deferred to Appendix [H]

3  APPLICATION OF TIMEAUTODIFF: CONDITIONAL GENERATION ON
TIME-VARYING SEQUENTIAL METADATA

In this section, we introduce C-TimeAutoDiff (‘C’ for conditional), where the model can generate
heterogeneous outputs conditionally on time varying metatdata. Same with unconditional generation,
the model consists of two learning stages on VAE and diffusion model. But unlike TimeAutoDiff,
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VAE only needs to be trained on the output variables x, as we need the trained decoder for the
generation only. The metadata c can be conditioned on diffusion model directly without going
through encoder layers. With a slight abuse of notation, let Zi* be the latent matrix of the x the
output of conditional generation, and we model p(Z5"|c) through the diffusion model.

Metadata Conditioning: Instead of directly conditioning ¢ = (cgisc, Ceont) to the network architecture
€9, a preprocessing module on the condition is devised. Discrete metadata, cgisc, is encoded through
look-up table, and c.op is processed trough an MLP block. Another MLP block is applied on the
combined encoded metadata to learn the correlations among the discrete and continuous metadata
features. For learning the temporal dependences, Bi-RNN and FC-layer are employed, where FC-layer
is used to match the dimension of the encodings of ZL. Visualizations of the network architecture
€p of C-TimeAutoDiff are provided in the Appendix

4 NUMERICAL EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: We select eight real-world time series tabular datasets consisting of both numerical and
categorical features: Traffic, Pollution, Hurricance, AirQuality, ETTh1, Energy (single-sequence),
and nasdaq100, card fraud (multi-sequence: sequences from multiple entities in one table). We
provide the overall statistics and descriptions of these datasets in the Appendix [C]

Baselines: To assess the quality of unconditionally generated time series data, we use 5 baseline
models: (1) GAN based methods: TimeGAN (Yoon et al., 2019), Doppel GANger (Lin et al., |[2020).
(2) Diffusion based methods: Diffusion-TS (Yuan & Qiaol 2023)), TSGM (Lim et al., 2023), (3)
Parametric model: CPAR (Zhang et al., [2022).

Evaluation Methods: For the comprehensive quantitative evaluation of the synthesized data, we
mainly focus on four criteria: (1) Low-order statistic- pair-wise column correlations and row-wise
temporal dependences in the table are evaluated via feature correlation score (Kotelnikov et al.,
2022) and temporal discriminative score (devised by us), respectively. (2) High-order statistic- the
overall fidelities of the synthetic data in terms of joint distributional modeling are measured through
discriminative score (Yoon et al.,2019). (3) The effectiveness of the synthetic data for downstream
tasks is assessed through the predictive score (Yoon et al., [2019), where a predictive model (i.e.,
regressor or classifier) is trained using synthesized data and tested on real data (Mogren, [2016). (4)
Sampling times (in sec.) are compared with other base-line methods. Detailed explanations for
each metric are deferred in the Appendix |G| Additionally, generalizability of the model is evaluated
under “Distance to the Closest Record” (DCR; Park et al.|(2018)) metric to ensure it draws samples
from the distribution rather than memorizing the training data points (Appendix[l). To evaluate the
conditionally generated samples x*°™*Y* ~ P(x | ¢), we employ the above metrics on the two datasets:
Dl = {(x"*¥, c)} and DYE" := {(x°"", c)} with ¢ being fixed. As P(x,c) = P(c)P(x | c), in

this way, we measure conditional relations of x°°™¥" and c as well as the fidelity of x°™Y" to x!,

Parameter setting: In Appendix [K] we present the parameter settings of VAE and DDPM in our
model. Unless otherwise specified, they are universally applied to the entire dataset in the experiments
conducted in this paper. Additionally, we study how the sizes of network architectures in DDPM and
VAE, training epochs for both models, and noise schedulers (linear vs quadratic) in DDPM affect the
performances of the model.

4.2 FIDELITY AND UTILITY GUARANTEES OF SYNTHETIC DATA

Unconditional Generation: Table [T] shows that our TimeAutoDiff consistently outperforms
other baseline models in terms of almost all metrics both for single- and multi-sequence generation
tasks. It significantly improves the (temporal) discriminative and feature correlation scores in all
datasets over the baseline models. TimeAutoDiff also dominates the predictive score metric. (We
train a classifier to predict a column in the dataset to measure the predictive score. The columns
predicted in each dataset are listed in Table 4 in Appendix [C]) But for some datasets, the performance
gaps with the second-best model are negligible, for instance, TSGM for Hurricane and AirQuality
datasets. It is intriguing to note that the predictive scores can be good even when the data fidelity is
low. The GAN-based models are faster in terms of sampling time compared to the diffusion-based
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. Single-Sequence Multi-Sequence
Metric Methods Traffic Pollution Hurricane AirQuality Card Transaction nasdaq100
TimeAutoDiff | 0.026(0.014) | 0.016(0.009) | 0.047(0.016) | 0.061(0.013) | 0.215(0.058) | 0.067(0.046)
Diffusion-ts 0.202(0.021 0.133(0.015 0.181(0.018 0.134(0.016 N.A. N.A.

Discriminative

N.A. N.A.
Score

0.267(0.115

) ) ) )

TSGM 0.500(0.000) ) ) (0.009)

TimeGAN 0.413(0.057) | 0.351(0.053) | 0.254(0.062) | 0.460(0.020) | 0.482(0.037) (0.115)

DoppelGANger | 0.258(0.215) | 0.100(0.103) | 0.176(0.099) | 0.211(0.116) | 0.485(0.025) 0.071(0.032)
) ) ) ) ) (0.120)
) ) ) ) )

0.488(0.010 0.482(0.020 0.452(0.009

(The lower, the better)

(
0500%0 000
(

CPAR 0.498(0.002) | 0.500(0.000) | 0.500(0.000) | 0.499(0.001 0.143(0.120
Real vs Real 0.053(0.009) | 0.048(0.017) | 0.034(0.011) | 0.040(0.011 0.225(0.094) 0.190(0.051
TimeAutoDiff | 0.203(0.014) | 0.008(0.000) | 0.098(0.026) | 0.005(0.001) | 0.001(0.000) | 10.863(0.716)
Predictive Diffusion-ts 0.231(0.007) | 0.013(0.000) | 0.306(0.076) | 0.017(0.002) NA. NA.
eore TSGM 0.247(0.002) | 0.009(0.000) | 0.290(0.007) | 0.006(0.000) NA. NA.
TimeGAN 0.297(0.008) | 0.043(0.000) | 0.180(0.027) | 0.057(0.011) | 0.130(0.022) 9.597(0.016)
(The lower, the bettery | POPPEIGANger | 0.300(0.005) | 0.282(0.028) | 0.214(0.000) | 0.060(0.009) | ~0.004(0.006) | 11.556(1.093)
’ CPAR 0.263(0.003) | 0.032(0.009) | 0.420(0.055) | 0.030(0.007) | 0.132(0.035) | 8.270(0.019)
Real vs Real 0.206(0.012) | 0.010(0.000) | 0.098(0.026) | 0.005(0.001) | 0.001(0.000) 9.281(0.009)
( (
Temporal Diffusion-ts 0.199(0.028) | 0.165(0.084) | 0.247(0.093) | 0.183(0.064 NA. NA.
Discriminative TSGM 0.499(0.001) | 0.499(0.001) | 0.497(0.002) | 0.499(0.000 NA. NA.

0.497(0.007

)

)

) 0.419(0.140
5(0.091) | 0.362(0.097

)

)

) ) )
) ) )
Score TimeGAN 0.429(0.050) | 0.397(0.060) | 0.465(0.025) | 0.457(0.014
DoppelGANger | 0.400(0.039) | 0.444(0.050) | 0.464(0.028) | 0.: 0.497(0.007
) ) )
) ) )

(0.007) (0.140)
(0.097) (0.007)
0.470(0.041) 0.404(0.099)
(0.051) (0.090)
( ) ( )

(The lower, the better) CPAR 0.436(0.073 0.492(0.021 0.497(0.009 0.493(0.010

Real vs Real 0.061(0.011 0.044(0.009 0.039(0.012 0.050(0.017 0.360(0.051
TimeAutoDiff | 0.022(0.014) | 1.244(0.844) | 0.074(0.013) | 0.463(0.080) 0.078(0.137
(

Feature Diffusion-ts 2.148(1.439 1.716(1.096 1.881(1.208 0.716(0.141

0.150(0.090
0.243(0.012

) ) ) )
Correlation TSGM 2.092(1.485) ) ) ) N.A. N.A.
Score TimeGAN 1.243(0.535) 2.068(1.093) 2.151(1.113) 0.865(0.123) 2.301(0.723
DoppelGANger | 0.885(0.737) | 2.371(0.875) | 2.380(0.798) 1 628(0.231) 1.550(1.034 1.035(0.818
) ) ) )
) ) ) )

(0.723) (1.069)
(1.034) (0.818)
0.295(0.294) 0.514(0.445)
(0.000) (0.000)
(0.064) (0.129)

1.710(0.705 0.424(0.249

(
(
0.543(0.077
( 1.488(1.069
(
1.280(0.931
0.000(0.000

0.965(0.287
0.000(0.000

( ( (
( ( (
( ( (
( ( (
( ( (
( ( (
( ( (
( ( (
( ( (
( ( (
( ( (
(| s | i
TimeAutoDiff | 0.047(0.018) [ 0.014(0.013) | 0.026(0.024) | 0.033(0.014) 0.290(0.040) 0.159(0.140)
( ( (
( ( (
( ( (
( ( (
( ( (
( ( (
( ( (
( ( (
( ( (
( ( (
( ( (
( ( (

(The lower, the better) CPAR 0.538(0.336
Real vs Real 0.000(0.000

1.552(0.220

0.000(0.000 0.000(0.000 0.000(0.000

TimeAutoDiff | 3.512(0.065) 3.947 (0.070) 3.740 (0.132) 3.945 (0.103) 3.384(0.064 3.133(0.129
Sampling Time Diffusion-ts > > > > N.A. N.A.
(in Sec) TSGM > > > > NA. NA.
TimeGAN 0.127(0.056) | 0.113(0.058) | 0.125(0.060) | 0.131(0.060) | 0.051(0.051) | 0.047(0.039)
(The lower, the better) | DoppelGANger | 0.011(0.002) | 0.014(0.001) | 0.010(0.003) | 0.017(0.003) | 0.018(0.004) 0.041(0.001)
CPAR 17.466(0.734) | 18.597(0.558) | 15.830(0.324) | 29.816(0.846) | 141.425(2.435) | 112.506(2.152)

Table 1: The experimental results of single-sequence and multi-sequence time series tabular data
generations under the Discriminative, Predictive, Temporal Discriminative, and Feature Correlation
scores. Sampling times of each model over 6 datasets are recorded in seconds. The symbol > denotes
that the sampling time exceeds 300 seconds, and ‘N.A.” means ‘Not Applicable’. The bolded number
indicates the best-performed result. For each metric, the mean and standard deviation (in parenthesis)
of 10 scores from one generated synthetic data are recorded in the table. For recording the sampling
time, 10 synthetic data are generated from the trained diffusion model. The ‘Real Data’ serves as a
baseline, where each metric is computed under Real vs Real.

. Single-Sequence
Metric Methods Traffic Pollution Hurricane AirQuality ETThl Energy
Discriminative | C-TimeAutoDiff | 0.078(0.038) | 0.056(0.017) | 0.014(0.005) | 0.090(0.007) | 0.036(0.008) | 0.113(0.070)
Score Real vs Real 0.091(0.021) | 0.067(0.020) | 0.081(0.009) | 0.085(0.027) | 0.051(0.011) | 0.270(0.028)
Predictive | C-TimeAutoDiff | 0.113(0.007) | 0.008(0.000) | 0.060(0.009) | 0.004(0. 000) 0.048(0.002) | 0.228(0.005)
Score Real vs Real 0.107(0.001) | 0.008(0.000) | 0.058(0.010) | 0.004(0.000) | 0.051(0.001) | 0.230(0.003)
Di:;‘:‘fg;’jive C-TimeAutoDiff | 0.123(0.034) | 0.081(0.027) | 0.048(0.025) | 0.116(0.018) | 0.045(0.015) | 0.224(0.013)
oo Real vs Real 0.134(0.015) | 0.083(0.019) | 0.072(0.019) | 0.138(0.014) | 0.074(0.014) | 0.300(0.031)
C:rer‘:l‘;fon C-TimeAutoDiff | 0.012(0.003) | 0.026(0.008) | 0.175(0.032) | 0.011(0.002) | 0.014(0.002) | 0.029(0.007)
Seore Real vs Real 0.000(0.000) | 0.000(0.000) | 0.000(0.000) | 0.000(0.000) | 0.000(0.000) | 0.000(0.000)

Table 2: Time varying metadata conditional generations: the experiments conducted over 6 single-
sequence datasets with sequence length set as 7' = 96. See the caption of Figure[I4] (Appendix [N]) for
output and condition pairs for each dataset used for the experiments. Overall, C-TimeAutoDiff
performs well, achieving results comparable to the Real vs Real baseline over the test dataset.

models. These results are expected, as diffusion-based models require multiple denoising steps for
sampling, whereas GAN-based models generate samples in a single step. Among diffusion-based
models, our model shows the best performance for sampling time. In the Appendix [O]and [J] we
provide additional experiments on more metrics such as volatility, moving averages, Maximum Mean
Discrepancy (MMD) and entropy for diversity (Nikitin et al.} [2023).

Conditional Generation: To test if C-TimeAutoDiff generalizes to unseen conditions, we
randomly split the dataset into train/test (80%/20%) sets. Synthetic data is generated with the same
size as the test dataset. The sequence length is set as 96. Qualities of the data are evaluated under the
introduced metrics in Table[5] To the best of our knowledge, there are no existing baseline methods
that perform similar tasks as C-TimeAutoDi f f. Instead, metrics computed over Real vs Real are
used as the baseline. Our model performs on-par or even better than the Real vs Real baseline.
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Figure 5: Real (left) vs. Synthetic (right): Autocorrelation plots with a time lag of 300 (hours) for the
AirQuality (Top) and the ETTh1 (Bottom) datasets. Sequence length is set as T' = 500.

Temporal & Feature Dependences: Aside from quantitative evaluations under the mentioned
metrics, as illustrated in Fig. [5} autocorrelation plots for both real (AirQuality and ETTh1) and
synthetic data reveal that the TimeAutoDiff successfully captures the complex and long temporal
correlations of sequences, i.e., ' = 500. Additionally, the similar patterns observed for each feature
in the real and synthetic data demonstrate the model’s ability to capture the correlations along the
feature dimension. We provide more visualizations across various datasets in the Appendix [M]

Additional experiments on ablation, scalability and the adaptive choices on 3 in VAE are deferred in
the Appendix

4.3 TIME-VARYING METADATA CONDITIONAL GENERATION

We further provide numerical validations that C-TimeAutoDiff indeed learn the conditional
distribution P(x|c) of both P(* ) and P( ") under synthetic
data setting. Additionally, we explore its application in counterfactual scenario analysis with real-
world Traffic data, investigating how weather sequences affect traffic volume.

Synthetic Setting: Real-world data often involves complex correlations and confounding factors,
making it difficult to establish strict causal relationships. To validate that C-TimeAutoDiff can
effectively learn conditional rules, we use a synthetic dataset with variables ‘Temperature’ and
‘Weather’. The “Temperature’ is generated over 10,000 time points as:

Temp(t) = 15 + 10sin (27t/365) + N (0,2%),

where Temp(t) follows a sinusoidal pattern with added Gaussian noise. Based on the generated
‘Temperature’, the categorical “Weather’ variable is derived as follows: ‘Sunny’ if Temp > 20,
‘Cloudy’ if 10 < Temp < 20, and ‘Rainy’ if 0 < Temp < 10. We set the time window as T' = 48
(hours) and train the model to learn two conditional distributions: P(Temp|Weather), which predicts
temperature given weather, and [P(Weather| Temp), which predicts weather given temperature.

Fig[f](top 3) demonstrates the model’s ability to generate ‘Temperature’ sequences corresponding
to specific weather conditions under three scenarios: (1) constant weather conditions over three
consecutive 48-time periods (‘Sunny’, ‘Cloudy’, ‘Rainy’), (2) a repeating pattern of weather labels
(e.g., 16 ‘Rainy’, 16 ‘Cloudy’, 16 ‘Sunny’), and (3) random alternating patterns of ‘Cloudy’ and
‘Rainy’. The results show distinct separations in the temperature sequences generated for each weather
condition, validating the model’s ability to learn P(Cont Var.|Disc Var.). Similarly, Fig|§| (bottom 3)
demonstrates the reverse case. When conditioned on ‘Temperature’ values generated in the previous
scenarios, the model correctly predicts the corresponding ‘Weather’ labels at each time step, further
validating its ability to learn [P(Disc Var.|Cont Var.).

Traffic Data: To evaluate C—TimeAutoDi f £ on real-world data, we use the Traffic dataset with
‘Traffic Volume’ (continuous) as the output and ‘Weather-main’ (categorical) as the conditional
variable. “Weather-main’ includes labels such as { ‘Clear’, ‘Rain’, ‘Squall’, ‘Cloudy’ }, among others.
Intuitively, we expect lower traffic volumes during adverse weather conditions (e.g., ‘Squall’, ‘Rain’)
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and higher traffic volumes during good weather (e.g., ‘Clear’, ‘Cloudy’). We test the model under
three weather scenarios: ‘Cloudy’, ‘Squall’, and ‘Clear’, using six different timestamp sequences
to observe patterns. As shown in the results, ‘Traffic Volume’ is consistently lower during ‘Squall’
compared to ‘Cloudy’ and ‘Clear’, while no significant differences are observed between ‘Clear’ and
‘Cloudy’. These findings confirm the model’s ability to reflect expected traffic patterns under different
weather conditions.

5 DISCUSSIONS

This paper introduces TimeAutoDiff, a novel time series tabular data synthesizer designed for
multi-dimensional, heterogeneous features. Leveraging a latent diffusion model with a specialized
VAE, it achieves high fidelity and utility guarantees. The model supports time-varying metadata
conditional generation, enabling applications across scientific and engineering domains. It also lays
the groundwork for tasks such as missing data imputation, privacy guarantees, interpretability, and
extension to foundational models, all of which rely on precise modeling of P(x7,X7_1,...,X1).
Further discussions are provided in Appendix [A]
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A DISCUSSIONS ON FUTURE TOPICS WITH RELEVANT LITERATURE

In this subsection, we further discuss about the four possible extensions of TimeAutoDiff in
sequel: (1) Missing data imputation; (2) Privacy guarantees; (3) Interpretability of generated time
series data; (4) Extension to foundational model.

(1) Missing data imputation is an important application of tabular data synthesis. In the literature,
CSDI (Tashiro et al., 2021) study the imputations of continuous time series tabular data through
diffusion-based framework. The main idea is to employ the specially designed masks; masking
the observed data, and to let the model predict the masked values in the observations, i.e.,
self-supervised learning. Then, the trained model can impute the real missing parts of the table by
thinking them as masked observations. We conjecture the similar idea can be easily adopted in
the framework of TimeAutoDiff. Inii.d. row setting (each row from the same distribution),
several papers (Zhang et al., 2023a; [2024) study the imputation problem of tabular data with
heterogeneous features through diffusion-based synthesizers. [Zhang et al.| (2023a) directly used
the pre-trained unconditional latent diffusion model, analogous to inpainting tasks of images,
for the imputation. |[Zhang et al.| (2024) employed the concept of EM-algorithm. Specifically,
the former work, |[Zhang et al.| (2023a)), utilized the fact that the transformer maps the input data
to latent space deterministically, where transformer is used for the main backbone architecture in VAE.

(2) Privacy Guarantees is one of the main motivations of synthetic data. Specifically, in
the time series domain, data from the healthcare and financial sectors is ubiquitous, but it often
comes with significant privacy concerns. We hope the synthetic data does not leak any private
information of the original data, while preserving good fidelities. TimeAutoDiff lays the
foundation for guaranteeing such privacy concerns with the generated synthetic data. In the vision
domain, differential privacy guarantees (Dwork] 2006) of synthetic images from diffusion-based
models have been investigated by several researchers (Dockhorn et al., [2022; |Ghalebikesabi et al.,
2023; Lyu et al.l [2023)). Specifically, [Lyu et al.| (2023) studied DP-guarantees of latent diffusion
model by fine-tuning the attention module of noise predictor in their diffusion model, and claim their
synthetic images both have good fidelities and DP-guarantees.

Nonetheless, it is still not clear how the same idea can be applied to time series synthetic
data (or regular tabular data), as differentially private time series data is frequently challenging to
interpret (Yoon et al., 2020). In this regard, another privacy criterion, e-identifiability (Yoon et al.|
2020) (with ¢ € [0, 1]) can be considered as another alternative. The distance between synthetic and
original data is measured through Euclidean distance, and we want at least (1 — ¢)-proportion of the
synthetic data to be distinguishable (or different enough) from the original data. Under this criterion,
we conjecture TimeAutoDiff can be extended to the synthesizer with a (theoretically-provable)
privacy guarantees. The idea can be underpinned around several recent results on diffusion
model (Zhang et al., [2023b; Bodin et al.| 2024). |Zhang et al.| (2023b) showed that there exist
closed-form solutions of noise predictors for every diffusion step of noisy training data points. This
means that we can trace back the latent vectors (or matrix) where the original training data points
are generated from. Recent findings (Bodin et al., [2024)) suggest that a proper linear combination
of data in the latent space can produce a new semantically meaningful dataset in the original
space. Combining the fact that the mapping from the latent space to the original space is Lipschitz
continuous (Zhang et al., [2023b) through deterministic sampling (probability-flow), we might be
able to have controls over the generations of time series synthetic data, whose Euclidean distances
from training data points are away from the training data points. This idea is naturally related to the
diversity of generated data as well.

(3) Interpretability of the generated time series data is another crucial aspect that time se-
ries synthesizer should possess. In many practical applications, for instance, in financial sector,
stakeholders and domain experts may be hesitant to rely on synthesis models that are difficult to
interpret, as they need to understand and trust the model’s behavior, especially when dealing with
critical or high-risk scenarios. The current version of TimeAutoDiff does not have the luxury
of generating interpretable results, but this can be easily adopted by following the previous works.
Specifically, we want to point out readers TimeVAE (Desai et al., 2021)) and Diffusion-TS (Yuan &
Qiao, [2023)), which both focus on building a synthesizer with interpretability. Specifically, TimeVAE
adopted a sophisticatedly designed decoder in VAE, which has trend, seasonality, and residual
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blocks for signal decompositions. Similarly, Diffusion-TS also design a sophisticated decoder for the
decomposition of signals into trend, seasonality, and residual, where they employ the latent diffusion
framework. Both of these ideas can be directly employed in TimeAutoD1iff, where the current
decoder is set as an MLP block for simplicity.

(4) Extension to foundational model is another promising route the TimeAutoDiff can
take. Recently, we have been seeing a wave of foundational models research on time series
domain (Cao et al} 2024} [Liu et al., 2024} Das et al.| 2023}; [Yang et al,[2024d). These models can
accommodate multiple tables from cross domains, enabling multiple time series tasks in one model,
for instance, forecasting, anomaly detection, imputation, and synthetic data generation (See
(2024).) Among them, (2024) devised cleverly designed masks, which provide
the unifying framework to do the four abovementioned tasks under diffusion-based framework.
Nonetheless, their methods are confined to the continuous data modality, and not clear how
the model can be extended to heterogeneous features, leaving the great future opportunities for
TimeAutoDiff to be extended. We also conjecture the synthetic data from TimeAutoDiff can be
beneficial to improving quality of forecasting foundation model i.e., see Section 5 in (Das et al.,[2023).

(5) Bias from conditional metadata generation: Generated data can indeed be biased
with respect to conditional metadata, arising from various factors. Bias in the training data, such as
inherent associations between metadata and outputs, may lead the model to replicate these biases, for
instance, generating disproportionately high traffic volumes for "Clear" weather even when the true
relationship is less deterministic. Imbalanced metadata distributions further exacerbate this issue, as
underrepresented conditions in the training set often result in less reliable outputs for those conditions,
such as biased outcomes for minority demographic groups in healthcare datasets. Simplified
assumptions in the model, such as assuming linear relationships between metadata and outputs, can
overlook complex dependencies, producing data that fails to reflect the true conditional distribution.
Noise injection, a feature of models like diffusion models and VAEs, can introduce additional
bias if the noise interacts with metadata in unexpected ways, particularly for rare metadata values.
Furthermore, limitations in conditional architectures, such as inadequate metadata encoding, can
prevent the model from capturing nuanced dependencies, leading to misaligned outputs. To mitigate
such biases, ensuring balanced training data, employing robust metadata encoding techniques,
applying regularization or fairness constraints, performing post-generation bias audits, and designing
disentangled latent spaces are crucial steps. While conditional generative models aim to align
generated data with metadata, addressing these biases is essential to ensure fairness and reliability.

B COMPUTING RESOURCES

We ran the main model on a computer equipped with an Intel(R) Core(TM) i9-14900KF 3.20 GHz,
an NVIDIA GeForce RTX 4090 with 24GB VRAM.

C DATASETS AND DATA PROCESSING STEPS

We used six single-sequence and two multi-sequence time-series datasets for our experiments. The
statistical information of datasets used in our experiments is in Table [3]

Single-sequence: We select the first 2000 rows from each single sequence dataset for our experiments.
We split our data into windows of size T, leading us to have the tensor of size (2000—T7"'+1) x T x F'.
(We truncate the rows of the tables because of the memory issues we encounter for large 7' (e.g.,
T = 900).) Recall the F' denote the number of features in the table.

» Traffic (UCI) is a single-sequence, mixed-type time-series dataset describing the
hourly Minneapolis-St Paul, MN traffic volume for Westbound I-94. The
dataset includes weather features and holidays for evaluating their impacts on traf-
fic volume. (URL: https://archive.ics.uci.edu/dataset/492/metro+
interstate+traffic+volume)

¢ Pollution (UCI) is a single-sequence, mixed-type time-series dataset containing the PM2.5
data in Beijing between Jan 1st, 2010 to Dec 31st, 2014. (URL: https://archive)
ics.uci.edu/dataset/381/beijing+pm2+5+datal
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Dataset # of Rows #-Cont. #-Disc. Seq. Type Pred Score Col.
Traffic 48205 3 5 Single traffic volume
Pollution 43825 5 3 Single 1r
Hurricane 9937 4 4 Single seasonal
AirQuality 9358 1 12 Single AH
ETThl 17431 7 0 Single oT
Energy 19736 27 1 Single rv2
Card Transaction 20000 2 6 Multi Is Fraud?
nasdaq100 18231 3 4 Multi Industry

Table 3: Datasets used for our experiments. The date time column is considered as neither continuous
nor categorical. The ‘*Seq. Type’ denotes the time series data type: single- or multi-sequence data.
The ‘Pred Score Col’ denotes columns in each dataset used for measuring predictive scores.

* Hurricane (NHC) is a single sequence, mixed-type time-series dataset of the monthly
sales revenue (2003-2020) for the tourism industry for all 67 counties of Florida which are
prone to annual hurricanes. This dataset is used as a spatio-temporal benchmark dataset
for forecasting extreme events and anomalies (Farhangi et al.l 2023). (URL: https:
//www.nhc.noaa.gov/data/)

* AirQuality (UCI) is a single sequence, mixed-type time-series dataset containing the hourly
averaged responses from a gas multisensor device deployed on the field in an Italian city.
(URL: https://archive.ics.uci.edu/dataset/360/air+quality)

* ETTh1 (Github: Zhou et al.|(2021)) is a single sequence, continuous only time-series dataset,
recording hourly level ETT (i.e., Electricity Transformer Temperature), which is a crucial
indicator in the electric power long-term deployment. Specifically, the dataset combines
short-term and long-term periodical patterns, long-term trends, and many irregular patterns.
(URL:https://github.com/zhouhaoyi/ETDataset/tree/main)

* Energy (Kaggle) is a single sequence time-series dataset. = The dataset, span-
ning 4.5 months, includes 10-minute interval data on house temperature and hu-
midity via a ZigBee sensor network, energy data from m-bus meters, and weather
data from Chievres Airport, Belgium, with two random variables added for regres-
sion model testing. (URL: https://www.kaggle.com/code/gaganmaahi224/
appliances—-energy-time-series—analysis)

Multi-sequence: The sequences in the multi-sequence data vary in length from one entity to another,
so we selected entities with sequences longer than 7' = 200 and T' = 177 and truncated them to a
uniform length of 7" for the "card transaction" and "nasdaq100" datasets.

* Card Transaction is a multi-sequence, synthetic mixed-type time-series dataset created
by [Padhi et al|(2021a) using a rule-based generator to simulate real-world credit card
transactions. We selected 100 users (i.e., entities) for our experiment. In the dataset, we
choose {’Card’, ’Amount’, "Use Chip’, "Merchant’, ’MCC’, ’Errors?’, ’Is Fraud?’} as fea-
tures for the experiment. (URL: https://github.com/IBM/TabFormer/tree/
main)

» nasdaq100 is a multi-sequence, mixed-type time-series dataset consisting of stock prices
of 103 corporations (i.e., entities) under nasdaq 100 and the index value of nasdaq 100.
This data covers the period from July 26, 2016 to April 28, 2017, in total 191 days. (URL:
https://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.html)

D PRE- AND POST-PROCESSING STEPS IN TIMEAUTODIFF

It is essential to pre-process the real tabular data in a form that the machine learning model can
extract the desired information from the data properly. We divide the heterogeneous features into two
categories; (1) continuous, and (2) discrete. Following is how we categorize the variables and process
each feature type. Let x be the column of a table to be processed.
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1. Continuous feature: If xX’s entries are real-valued continuous, we categorize x as a numerical
feature. Moreover, if the entries are integers with more than 25 distinct values (e.g., “Age”),
then x is categorized as a continuous variable. Here, 25 is a user-specified threshold. We

employ min-max scaler (Yoon et al, to ensure the pre-processed numerical features

are within the range of [0, 1]. Hereafter, we denote xX'¢ as the processed column.

2. Discrete / Categorical feature: 1f x’s entries have string datatype, we categorize x as a
discrete feature (e.g., “Gender”). Additionally, the x with less than 25 distinct integers is
categorized as a discrete feature. For pre-processing, we simply map the entries of x to the
integers greater than or equal to 0, and further divide the data type into two parts; binary and
categorical, denoting them as x5 and xgr9°. Here, x09° denotes the discrete variables with

more than 3 labels or categories.

3. Post-processing step: After the TimeAutoD1iff model generates a synthetic dataset, it
must be restored to its original format. For continuous features, this is achieved through
inverse transformations, (i.e., reversing min-max scaling). Integer labels in discrete features
are mapped back to their original categorical or string values.

E COMPARISON TABLE OF TIMEAUTODIFF WITH CURRENT LITERATURE

Table [E| compares TimeAutoDiff with other time series synthesizers in the literature under seven
different aspects. Additionally, we provide further detailed comparisons between our model and
Diffusion-TS (Yuan & Qiao} 2023)) / TimeDiff [2023)). Diffusion-TS’s main purpose is to
generate time series data with interpretability. They employ the Autoencoder + DDPM framework,
employing transformers as encoder and decoder for obtaining the disentangled representations of
time series. The main difference between Diffusion-TS and ours is on the problem setting that their
assumption on the signal is only restricted to continuous time series, whereas ours is focused on
the heterogeneous features. Diffusion-TS lies on the assumption that the signal is decomposable
into three main parts: trend, seasonality, and noise. However, the decomposition of heterogeneous
features, specifically discrete variables is not well defined in the literature, it is beyond the scope of
our work, requiring further research. TimeDiff integrates two types of diffusion models to handle
heterogeneous features in EHR datasets, employing DDPM for continuous variables and multinomial
diffusion (Hoogeboom et al., 2021) for discrete variables. In contrast, our approach leverages a VAE
to project time series data into a latent space and utilizes DDPM exclusively for modeling the time
series within this latent representation, which is continuous.

Models Hetero. Single-Seq. Multi-Seq. Cond. Gen. Applicability Code Sampling Time
TimeAutoDiff v v v v v v 3

4 v X X X X -

X 4 X X 4 4 5

X 4 X X 4 4 6

X v X X v 4 2

X v X X v v 1

4 v X X X 4 -

v X 4 X v 4 4

v X v X X 4 N

Table 4: A comparison table that summarizes TimeAutoD1iff against baseline methods, evaluat-
ing metrics like heterogeneity, single- and multi-sequence data generation, conditional generation,
applicability (i.e., whether the model is not designed for specific domains), code availability, and
sampling time. Baseline models without domain specificity and with available code are used for
numerical comparisons. The sampling time column ranks models by their speed, with lower numbers
indicating faster sampling.

F DENOISING DIFFUSION PROBABILISTIC MODEL

(2020) proposes the denoising diffusion probabilistic model (DDPM) which gradually
adds fixed Gaussian noise to the observed data point x, via known variance scales 3, € (0,1),
n € {1,..., N} at the diffusion step n. This process is referred as forward process in the diffusion
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model, perturbing the data point and defining a sequence of noisy data x1,Xa, ... ,Xy:

N
(% | %n-1) = N (%5 /1= Buxn1,BaT),  q(x1n | %0) := [ [ a(xn | %0-1)-
n=1

Since the transition kernel is Gaussian, the conditional probability of the x,, given its original
observation x( can be succinctly written as:
q(xn | %0) :/\/(xn | vV, xo, (1 — dn)I),

where o, = 1 — 3, and &, = II}}_; a. Setting 3, to be an increasing sequence, for large enough
N, leads x v to the isotropic Gaussian.

Training objective of DDPM is to maximize the evidence lower bound (in short ELBO) of the
log-likelihood E,, [log pg(x0)] as follows;

N
E, | logpo(xo | x1) — Dkr(g(xn | %0) || p(xn)) = Y Pru(a(xn-1 | %n,%0) || po(xn-1 | Xn))}

n=1

The first two terms in the expectation are constants, and the third KL-divergence term needs to
be controlled. Interestingly, the conditional probability ¢(x,—1 | Xn,Xo) can be driven in the
closed-form solution:

/Cpn—15n Vo (1 — ap,— 1—a,—
q(Xp—1 | Xn,Xo) :/\/<an | 1— }ﬁ Xo + ( ) — lﬁnI)

— )y
Qp 1—a, 1—a,

Noticing the covariance is a constant matrix and KL-divergence between two Gaussians has closed-
form solution; DDPM models pg(x,_1 | x,) := N(xn_1 | po(xn,n), 11115”1 BrZ). The mean
vector pg(X,,n) is parameterized by a neural network.

The trick used in (Ho et al., 2020) is to reparameterize jg(X,,n) in terms of €y(x,,n) where it
predicts the noise € added to x,, from xq. (Note that x,, = ﬁnxo + V1 — aye withe ~ N(0,7).)

Given this, the final loss function DDPM wants to minimize is:

Lt = Eyp e | |leo (vVanxo + V1 — ane,n) — €3],

where the expectation is taken over € ~ N (0,Z) and n ~ Unif({0, ..., N}).

The generative model learns the reverse process. To generate new data from the learned distribution,
the first step is to sample a point from the easy-to-sample distribution x ~ A(0,Z) and then
iteratively denoise (xy — Xy_1 — -+ - — Xp) it using the above model.

G EVALUATION METRIC

For the quantitative evaluation of synthesized data, we mainly focus on three criteria (1) the distribu-
tional similarities of the two tables; (2) the usefulness for predictive purposes; (3) the temporal and
feature dependencies; We employ the following evaluation metrics:

Discriminative Score (Yoon et al.,|2019) measures the fidelity of synthetic time series data to original
data, by training a classification model (optimizing a 2-layer LSTM) to distinguish between sequences
from the original and generated datasets.

Predictive Score (Yoon et al., 2019) measures the utility of generated sequences by training a posthoc
sequence prediction model (optimizing a 2-layer LSTM) to predict next-step temporal vectors under
a Train-on-Synthetic-Test-on-Real (TSTR) framework.

Temporal Discriminative Score measures the similarity of distributions of inter-row differences
between generated and original sequential data. This metric is designed to see if the generated data
preserves the temporal dependencies of the original data. For any fixed integer ¢t € {1,...,7 — 1},
the difference of the n-th row and (n + t)-th row in the table over n € {1,...,T — t} is computed
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for both generated and original data and discriminative score (Yoon et al.,[2019) is computed over
the differenced matrices from original and synthetic data. We average discriminative scores over 10
randomly selected ¢t € {1,...,7 — 1}.

Feature Correlation Score measures the averaged L?-distance of correlation matrices computed on
real and synthetic data. Following (Kotelnikov et al., |2022), to compute the correlation matrices,
we use the Pearson correlation coefficient for numerical-numerical feature relationships, Theil’s U
statistics between categorical-categorical features, and the correlation ratio for categorical-numerical
features. We use the following metrics to calculate the feature correlation score:

* Pearson Correlation Coefficient: Used for Numerical to Numerical feature relationship.
Pearson’s Correlation Coefficient r is given by

>z —Z)(y —9)
V(@ -2y —9)?

T =

where

— x and y are samples in features X and Y, respectively
— T and ¥ are the sample means in features X and Y, respectively

* Theil’s U Coefficient: Used for Categorical to Categorical feature relationship. Theil’s U
Coefficient U is given by
H(X) - HX|Y)
H(X)

where

— entropy of feature X is defined as

ZPX )log Px ()

— entropy of feature X conditioned on feature Y is defined as

v(z

,Y)
(y)

Px
H(X|Y)= ZPXyajylog P

— Px and Py are empirical PMF of X and Y, respectively
— Px y is the joint distribution of X and Y’

* Correlation Ratio: Used for Categorical to Numerical feature relationship. The correlation
ratio 7 is given by
pe [Ceral =9
> i Wei — 9)?
where
— n, is the number of observations of label x in the categorical feature
— Yz 1s the ¢-th observation of the numerical feature with label x
— Y, is the mean of observed samples y; € Y with label x
— ¢ is the sample mean of Y’

20



BOW N =

=_ &

[ N

®

Under review as a conference paper at ICLR 2025

H SAMPLING OF THE LATENT MATRIX FROM (C) ~-TIMEAUTODIFF AND
NETWORK ARCHITECTURE OF C-TIMEAUTODIFF

Algorithm 1: Sampling (Unconditional generation of TimeAutoDiff)
Input: ts, t = {t1,...,tr}
ZR ~ N (0, Zrrxrr) reshape(T, F)
whilen = N,...,1do
z ~ N(0,Zrrxrr).reshape(T, F)

Zat — _1 <Z"L‘t — Lloan (Z';j“,n,t,ts)) + Bnz.reshape(T, F),

n—1 =" &, n T—a, €6
end
return Z5* .reshape(T, F)

Algorithm 2: Sampling (Conditional generation of TimeAutoDiff)

Input: ts,c,t = {¢t1,...,tr}
Z5 ~ N(0, Zrpxrr ) reshape(T, F)
whilen = N,...,1do
z ~ N (0, Zrrxrr).reshape(T, F)
€0 := €9 (25", n, t,ts,c),
Zha = \/LT (ZTIZM _ %wann -€9> + Bnz.reshape(T, F),
end

return Z5 reshape(T, F)

- €g(t1) €g(t2) €g(tr)

zp MLP  —

| BARNNFC LN/FC LN/FC LN/FC
___t
MLP N -
.« o e RNN

e
2 = RNN RNN
Concatenate e e
o
3
t ————— PE — |®
e es —> RNN
WE MLP T
t. I
t t s —» CE — MLP N N, e

Caisc Ccont - -

Figure 8: Network architecture of €y in C-TimeAutoDiff.
I GENERALIZABILITY OF TIMEAUTODIFF

In generative modeling, it is essential to check whether the learned model can generate the datasets
not seen in the training set. If model memorizes and reproduces data points from the training
dataset (Zhang et al., |2023b), this can undermine the primary motivation of data synthesizing:
increasing dataset diversity. To investigate further in this regard, we design an experiment using the
notion of Distance to the Closest Record (DCR) (Park et al.l |2018]), which computes the Euclidean
distance between a data point 7 € RT*¥ in the synthesized dataset and the closest record to 7 in
the original table. We split the data into training (50%) / testing (50%) sets, where we only use the
training set for model training.

Interpretations of DCR scores: DCR scores for both training and testing datasets can be
used to evaluate the model’s performance. Significant overlap between the DCR distributions of
the training and testing datasets suggests that the model is drawing data from the data distribution,
ie., Pixq,xa,... ,x7). However, even with substantial overlap between the distributions, if the
distances to the origin are small, this suggests that the patterns in the training and testing sets are
alike, implying the model may have memorized specific training data points. If the DCR distribution
of the training data is notably closer to zero compared to the testing data, it indicates that the model
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Figure 9: The leftmost column demonstrates that the DCR distributions for the training and testing
sets exhibit significant overlap across four datasets (from top): Traffic, Pollution, Hurricane, and
AirQuality. For each dataset, two variables are selected for visualizations. The second and third
columns illustrate these chosen features over timestamps (sequence length = 48) for an arbitrary
synthetic data point. The fourth and fifth columns present the same features for the closest data point
in the training dataset. The model trained on the Traffic and Pollution datasets clearly generates new
data points with distinct patterns, while the models trained on Hurricane and AirQuality datasets
replicate their training data points, as indicated by DCR distributions being close to zero.

has memorized the training dataset. Last but not least, it’s important to recognize that random noise
can also produce similar DCR distributions. Therefore, the DCR score should be evaluated in
conjunction with other measures of fidelity, such as the discriminative score, and utility measures,
such as the predictive score, to provide a comprehensive assessment of the model’s generalization
capabilities. We provide the interpretations of DCR distributions of TimeAutoDiff for Traffic,
Pollution, Hurricane, and AirQuality datasets in the caption of Fig. [0}

J VOLATILITY AND MOVING AVERAGE: COMPARISON BETWEEN REAL AND
SYNTHETIC UNDER STOCK DATA

We provide the performance of our model in terms of volatility and moving average. We first provide
the brief descriptions on Simple Moving Average, Exponential Moving Average, and Volatility.

Simple Moving Average (SMA): The Simple Moving Average (SMA) is computed as the arithmetic
mean of values over a sliding window of size w = 5. For a given time step ¢, the SMA is given by:

t
1
SMA; = = > Value;

i=t—4

ot

where Value; represents the value of the time series at time ¢. This metric smooths short-term
fluctuations and highlights the overall trend by averaging values in the specified window.
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Exponential Moving Average (EMA) The Exponential Moving Average (EMA) is a weighted
average of values where recent data points have exponentially greater weight. For a window size of
w = 5, the smoothing factor « is computed as: o = %H = 5_%—1 = % The EMA at time ¢ is then
computed recursively as:

EMA; = « - Value; + (1 — o) - EMA;_;4

where Value, is the current value of the time series, and EMA,_; is the EMA from the previous time
step. This method emphasizes recent changes while retaining some information from the historical
trend.

Volatility Volatility measures the degree of variation in the time series over a sliding window of size
w = b. It is calculated as the rolling standard deviation of the percentage changes (returns). First, the
percentage change (return) between consecutive values is computed as:

Value; — Value;_;
Valuei —1

Return; =

For a given time step ¢, the volatility over the window w = 5 is given by: Volatility, =

\/ i Zﬁzt* 4 (Return; — Retfurn)2 where Return is the mean of the returns within the window.

Results: We work on the stock data. The figure [T2] provide a clear side-by-side comparison between
the synthetic and real data, with the left column displaying the synthetic data and the right column
showcasing the corresponding real data for two selected features (Open & Close prices) over 200
timestamps (i.e.,T=200). Each row focuses on one feature, allowing for a detailed examination of the
behavior across key metrics: Simple Moving Average (SMA), Exponential Moving Average (EMA),
and Volatility. The SMA and EMA curves, plotted alongside the raw time series data, highlight the
ability of the synthetic data to replicate the long-term trends (SMA) and short-term responsiveness
(EMA) observed in the real data. Volatility, overlaid as a secondary y-axis in each plot, demonstrates
the synthetic data’s capacity to reproduce the temporal variability, including periods of high and low
uncertainty, as reflected in the real data. The remarkable alignment across all metrics suggests that
the synthetic data closely mirrors the real data’s dynamics, effectively capturing both the overall
patterns and nuanced fluctuations. This visual comparison underscores the robustness and reliability
of the synthetic data generation process.

Synth Feature 3 Real Feature 3

— Synth Feature 3 - wolatility | 0.07 — Real Feature 3 . - Volatility
-~ sma(s) i ~=- sMA(5) 1
=== EMA(5) === EMA(5) H 0.07

o 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
Time step Time step

Synth Feature 0 Real Feature 0

— synth Feature 0 - — Real Feature 0
“ sMA(s) i 007 )
-=- EMA(S) i i3 == EMA(5)
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050 : i
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Figure 10: Comparison of synthetic (left) and real (right) data across two features, illustrating
alignment in trends (SMA, EMA) and variability (Volatility: secondary y-axis).
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K MODEL PARAMETER SETTINGS, TRAINING & HYPER-PARAMETER CHOICES

Our model consists of two components: VAE and DDPM. We present the sizes of networks in both
components that are applied entirely across the experiments in the paper.

VAE-Encoder = {Dimension of first FC-layer in MLP-block for encoded features:
(Num of disc var.x 128+Num of cont var.x16) x 128,
Dimension of second FC-layer in MLP-block for encoded features:128 x F,
Dimension of hidden layer for the 2-RNNs for i and o: 200,
Number of layers for the 2-RNNs for 4 and o 2,

Dimension of fully-connected layer topped on 2-RNNs: 200 x F }

VAE-Decoder = {Dimension of first FC-layer in MLP-block for latent matrix Zg: F x 128,
Dimension of second FC-layer in MLP-block for latent matrix Zg: 128 x 128}

DDPM = {Output dimensions of encodings of (Z5, n, t, ts): 200,
Dimension of hidden layer for the Bi-RNNs: 200,
Number of layers for the Bi-RNNs: 2,
Dimension of FC-layer of the output of Bi-RNNs: 400 x F,

Diffusion Steps: 100}

Training for both the VAE and DDPM models is set to 25,000 epochs. The batch size for VAE
training is 100, while the batch size for DDPM training matches the number of diffusion steps. We
use the Adam optimizer, with a learning rate of 2 x 10~* decaying to 10~° for the VAE, and a
learning rate of 10~2 for the DDPM. For stabilization of diffusion training, we employ Exponential
Moving Average (EMA) with decay rate 0.995. We employ linear noise scheduling for 3,, := 1 — ay,,
n € {1,2,..., N} with 8 = 10~* and By = 0.2:

B = (1 - ;>ﬂl + B

In the following, we investigate the robustness of our models to the various hyper-parameter choices in
VAE and DDPM. Specifically, we studied the effects of (1) feature dimension of Z5* (F/2, F/4), (2)
number of diffusion steps (75, 50, 25), (3) training epochs of VAE and DDPM (20000, 15000, 10000),
(4) dimension of hidden layers of two RNNs (for x and o) in VAE (150, 100, 50), (5) dimension of
hidden layers of Bi-RNNs in DDPM (150, 100, 50), (6) the number of layers of two RNNs (for 4 and
o) in VAE (1), (7) the number of layers of Bi-RNNs in DDPM (1). (8) the quadratic noise scheduler
used in Song et al.|(2020a); [Tashiro et al.| (202 1)):

2
n n
= 1-— — .
o= (1 2) i+ 2m)
with the minimum noise level 81 = 0.0001, and the maximum noise level 35 = 0.5.

The experiments are conducted over the varying parameters (in the paranthesis), while the remaining
parameters in the model are being fixed as in the above settings. The first 2000 rows of Traffic data
are used for the experiments with sequence length 24. (i.e., the dimensions of tensors used in the
experiments are [B, T, F ] = [1977, 24, 8])

Results Interpretations: Table 5] presents the performance of the models across four metrics, with
variations in hyperparameter settings. Overall, larger models yield better results. Reducing the
diffusion steps, dimensions, and the number of hidden layers in RNNs within the VAE and Bi-RNN
components of DDPM significantly degrades model performance. Longer training of both VAE
and DDPM consistently enhances results. The linear noise scheduler outperforms the quadratic
noise scheduler. While reducing the feature dimension to F'/2 slightly improves discriminative and
temporal discriminative scores, further compression to F'/4 leads to information loss during signal
reconstruction, resulting in poorer performance.
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Method Disc. Score | Pred. Score | Temp. Disc Score | Feat. Correl.

TimeAutoDiff 0.015(0.012) | 0.229(0.010) 0.034(0.020) 0 043(0 000)

Latent Feature Dimension = F/2 0.009(0.004) | 0.227(0.009) 0.096(0.061) 55(0.000)

Latent Feature Dimension = F/4 0.038(0.021) | 0.233(0.007) 0.099(0.171) 0 048(0 000)
Diffusion Steps = 75 0.016(0.009) | 0.224(0.015) 0.014(0.009) 0.039(0.000)

Diffusion Steps = 50 0.118(0.019) | 0.241(0.003) 0.092(0.046) 0.109(0.000)

Diffusion Steps = 25 0.150(0.027) | 0.248(0.006) 0.111(0.065) 0.100(0.000)

VAE Training = 15000 0.075(0.009) | 0.243(0.005) 0.035(0.007) 0.091(0.000)

VAE Training = 10000 0.068(0.018) | 0.242(0.007) 0.038(0.038) 0.050(0.000)

VAE Training = 5000 0.195(0.025) | 0.245(0.002) 0.039(0.019) 0.077(0.000)

DDPM Training = 15000 0.098(0.014) | 0.237(0.015) 0.062(0.038) 0.086(0.000)

DDPM Training = 10000 0.220(0.025) | 0.246(0.004) 0.165(0.045) 0.195(0.000)

DDPM Training = 5000 0.267(0.021) | 0.255(0.001) 0.216(0.031) 0.190(0.000)

Hidden Dimension of RNNs (VAE) = 150 0.013(0.008) | 0.240(0.007) 0.031(0.009) 0.015(0.000)
Hidden Dimension of RNNs (VAE) = 100 0.030(0.009) | 0.236(0.017) 0.017(0.011) 0.039(0.000)
Hidden Dimension of RNNs (VAE) = 50 0.082(0.023) | 0.238(0.004) 0.051(0.038) 0.064(0.000)
Hidden Dimension of Bi-RNNs (DDPM) = 150 0.031(0.010) | 0.243(0.011) 0.028(0.013) 0.035(0.000)
Hidden Dimension of Bi-RNNs (DDPM) = 100 0.167(0.012) | 0.248(0.003) 0.094(0.054) 0.119(0.000)
Hidden Dimension of Bi-RNNs (DDPM) = 50 0.174(0.014) | 0.251(0.005) 0.157(0.072) 0.132(0.000)
Number of layers in RNNs (VAE) = 1 0.024(0.013) | 0.245(0.009) 0.042(0.018) 0.028(0.000)
Number of layers in Bi-RNNs (DDPM) = 1 0.097(0.009) | 0.250(0.002) 0.245(0.009) 0.086(0.000)
Quadratic Noise Scheduler 0.109(0.017) | 0.234(0.013) 0.072(0.025) 0.106(0.000)

Table 5: Performances measured with various choices of hyper-parameters in TimeAutoDiff. The
experiments are conducted on Traffic dataset with T' = 24.

L RESULTS ON ABLATION TEST, $-SCHEDULING & SCALABILITY

Ablation: The ablation test results are summarized in Table[7] A single model alone (i.e., only VAE
or DDPM) cannot accurately capture the statistical properties of the distributions of tables, which
strongly supports the motivation of our model. The components related to the diffusion model, such
as timestamp encoding and Bi-RNN, impact the generative performance across most cases as models
lacking these components do not exhibit optimal performance. The encodings for continuous features
in the VAE notably enhance the fidelity and temporal dependences of the generated data.

Additionally, we consider the following scenarios:

1. Replacing the MLP with an RNN in the decoder of the VAE.
2. Replacing the two RNNs with an MLP in the encoder of the VAE.
3

. Inspired by [Bilos et al.| (2023)), we explore injecting continuous noise from a stochastic
process (Gaussian process) into the DDPM. Specifically, the perturbation kernel

(2 |26%) = N (Vanzgs, (1 — 6,) %)

is applied independently to each column of Z5% € RT>*F

with v = 0.2.

s where Z” = CXp(f’y“L,; — tj|)

The experimental results show that none of the ablated models outperformed the original configuration
significantly. Specifically, the second configuration demonstrates the benefits of modeling temporal
relations twice in the VAE and DDPM due to the following reasons:

Hierarchical Temporal Dependency Modeling: The VAE encoder captures compact latent repre-
sentations with temporal dependencies, providing a structured input for the diffusion model. This
allows the diffusion process to refine finer-grained patterns without redundantly encoding high-level
temporal structures, resulting in more realistic outputs.

Noise-Tolerant Latent Representation: Encoding temporal dependencies early in the VAE encoder
ensures that the latent variable z is robust to noise. This noise resilience helps maintain critical
temporal structures during the diffusion process, enhancing the fidelity of the generated data.

The effect of adaptive 5-VAE: Motivated from (Zhang et al. 20235|), we evaluate the effects of
scheduling on 3 coefficients in VAE in terms of fradeoffs between reconstruction error and KL-
divergence. In Fig we observe that while large S can ensure the close distance between the
embedding and standard normal distributions, its reconstruction loss is relatively larger than that of
smaller ones, and vice versa. The adaptive 5-scheduling ensures both the lowest reconstruction error
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KL Divergence Loss Reconstruction Loss Reconstruction Loss (Zoom-In)
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Figure 11: KL-Divergence (left) and Reconstruction (middle)
losses over 20000 training iterations of VAE on Traffic dataset.
The zoomed-in panel (right) displays the scheduled-/ reaches
the lowest reconstruction error stably without any spikes.

Table 6: The results of discrimina-
tive scores with varying (3 values
on the Traffic dataset.

and relatively lower KL-divergence, preserving the shape of embedding distribution. The adaptive
[-scheduling achieves the fastest and the most stable signal reconstructions among other 3-choices.
Table[6]shows the effectiveness of S-scheduling for quality of synthetic data in discriminative score.

Scalability: We investigate the scalability of TimeAutoD1i ff by varying the sequence length (i.e.,
T") and the number of features (i.e., F'). For the experiment, we follow the sine wave synthetic setting

in TimeGAN paper (Yoon et al.,[2019).

Sine Waves. We simulate multivariate sinusoidal sequences of different frequencies n and
phases 6, providing continuous-valued, periodic, multivariate data where each feature is independent
of others. For each dimension ¢ € {1, ..., F}, x;(¢t) = sin(27nt + 0), where 1 ~ Unif]0, 1] and
0 ~ Unif[—, 7].

We train the model with data of size [Batch Size x SeqLen x Feature Dim| and draw the
samples with same sizes. In the following Tables, training time for VAE, Diffusion models, and
sampling time for data are recorded in seconds. Allocated GPU memory for sampling (in MB),
discriminative score and temporal discriminative score are also recorded.

Under the model configurations stated in the Appendix [K] TimeAutoDiff can generate the se-
quence of length 900 with 5 features with good fidelities. (See Table[8]) In contrast, we observe a
performance drop when the feature sizes increase (30 to 50 features) with a sequence length of 200.
To address this, we reduce the dimension of the feature axis in the latent space to F'/2, resulting in a
significant performance increase in the high-dimensional feature setting.

Out Out Out Out

Xcont,1 Xcont2 Xcont3 Xcont,T
— { Sigmoid } { Sigmoid } { Sigmoid }
T T T cevcce xg;‘fl”. € R4cont
{ FC for Cont } { FC for Cont} { FC for Cont} FC for Cont
0 Out Out
XB#J XBin2 XBin3 xgi‘,{r
zkat t t t
l { FC for Bin } { FC for Bin } { FC for Bin } [RR XN FC for Bin xgg:i € R4Bin
MLP
N/ Out Out Out
XCate1 XCate,2 XCate3 xg:ftte,r
— { FC for Cat } { FC for Cat } { FC for Cat } ceccns FC for Cat x0ut, ; € REiKi

Figure 12: Decoder has a simple design: the latent matrix Z5 is fed to a shared MLP blcock, and the
output of the MLP block is fed to the different linear layers based on the data type. Sigmoid function
is used to match the scale of continuous input data.
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Metric Method Traffic Pollution Hurricane AirQuality
TimeAutoDiff 0.027(0.014) | 0.014(0.011) | 0.035(0.010) | 0.035(0.016)

only VAE 0.476(0.010) | 0.491(0.010) | 0.490(0.010) | 0.494(0.007)

Diseriminative only DDPM 0.283(0.131) | 0.313(0.163) | 0.252(0.034) | 0.266(0.048)
Score w/o Encoding equation 0.029(0.017) | 0.062(0.015) | 0.063(0.018) | 0.072(0.020)

w/o Timestamps 0.095(0.016) | 0.105(0.012) | 0.171(0.085) | 0.074(0.013)
(The lower, the better) w/o Bi-directional RNN 0.049(0.015) 0.021(0.020) 0.300(0.036) | 0.019(0.015)
’ RNN in decoder (VAE) 0.186(0.019) 0.185(0.020) 0.198(0.031) 0.124(0.018)

MLP in encoder (VAE) | 0.017(0.011) | 0.072(0.020) | 0.117(0.019) | 0.067(0.025)

Smooth Noise (DDPM) | 0.015(0.009) | 0.078(0.013) | 0.140(0.016) | 0.140(0.016)
TimeAutoDiff 0.229(0.010) | 0.008(0.000) | 3.490(0.097) | 0.004(0.000)

only VAE 0.241(0.001) | 0.008(0.000) | 4.566(0.041) | 0.019(0.002)

Predictive only DDPM 0.241(0.012) | 0.016(0.000) | 0.034(0.007) | 0.009(0.002)
Score w/o Encoding equauonl 0.219(0.011) | 0.008(0.000) 3.611(0.216) 0.005(0.000)

w/o Timestamps 0.241(0.003) | 0.008(0.000) | 4.228(0.248) | 0.004(0.000)

(The lower, the better) w/o Bi-directional RNN | 0.231(0.008) | 0.008(0.000) | 3.549(0.047) | 0.004(0.000)
’ RNN in decoder (VAE) | 0.232(0.008) | 0.008(0.000) | 3.598(0.095) | 0.012(0.004)

MLP in encoder (VAE) | 0.220(0.011) | 0.008(0.000) | 3.365(0.072) | 0.061(0.002)

Smooth Noise (DDPM) 0.221(0.011) 0.008(0.000) 0.091(0.027) 0.059(0.001)

TimeAutoDiff 0.047(0.017) | 0.008(0.005) | 0.020(0.010) | 0.035(0.024)

only VAE 0.368(0.107) | 0.484(0.043) | 0.490(0.014) | 0.493(0.006)

Temporal only DDPM 0.197(0.127) | 0.135(0.131) | 0.213(0.096) | 0.242(0.122)
Discriminative w/o Encoding equation 0.036(0.016) 0.052(0.019) 0.049(0.022) | 0.008(0.005)
Score w/o Timestamps 0.084(0.047) 0.053(0.018) 0.117(0.065) 0.064(0.019)

w/o Bi-directional RNN | 0.031(0.021) | 0.047(0.057) | 0.404(0.013) | 0.023(0.015)

(The lower, the better) | RNN in decoder (VAE) 0.130(0.025) 0.133(0.019) 0.324(0.072) 0.331(0.130)
MLP in encoder (VAE) | 0.037(0.017) | 0.060(0.018) | 0.094(0.019) | 0.045(0.032)

Smooth Noise (DDPM) | 0.020(0.007) | 0.059(0.029) | 0.090(0.027) | 0.091(0.027)
TimeAutoDiff 0.022(0.014) | 1.104(0.900) | 0.069(0.027) | 0.147(0.230)

only VAE 0.404(0.339) | 1.320(0.757) | 0.427(0.371) | 0.702(1.001)

Feature only DDPM 2.238(1.530) 2.020(1.460) 2.380(1.513) 0.198(0.298)
Correlation w/o Encoding equatlonl 0.029(0.021) 1.148(0.850) 0.077(0.034) 0.266(0.405)
Score w/o Timestamps 0.247(0.521) 1.303(0.793) | 0.097(0.044) | 0.231(0.349)

w/o Bi-directional RNN | 0.048(0.024) 1.227(0.863) | 0.090(0.043) | 0.155(0.256)

(The lower, the better) | RNN in decoder (VAE) | 0.413(0.544) 1.187(0.820) 0.247(0.123) 0.913(1.302)
MLP in encoder (VAE) | 0.025(0.015) | 1.240(0.853) | 0.122(0.058) | 1.217(1.745)

Smooth Noise (DDPM) | 0.059(0.037) | 1.246(0.843) | 0.882(1.271) | 1.215(1.345)

Table 7: The experimental results of ablation test in TimeAutoDiff. The bolded number indicates
the best-performing model.

Batch Size | SeqLen | VAE | Diff | Sampling | GPUMem | Disc Ser | Temp Disc Scr
500 100 187.23 94.32 1.294 910.47 0.067 (0.034) | 0.143 (0.114)
400 300 420.23 | 201.47 3.585 1991.75 0.040 (0.023) | 0.064 (0.059)
300 500 665.69 | 315.92 5.511 2572.63 0.032 (0.016) | 0.078 (0.078)
200 700 928.83 | 415.36 7.303 2466.91 0.048 (0.016) | 0.193 (0.122)
100 900 1209.34 | 530.36 8.499 1670.75 0.16 (0.094) 0.13 (0.143)

Table 8: The number of feature is fixed as 5. The sequence length increases up to 900.

Batch Size | Feat Dim | VAE |

Diff | Sampling | GPUMem | Disc Scr | Temp Disc Scr

800
800
800
800
800

10
20
30
40
50

128.11 | 355.03
132.48 | 359.32
134.02 | 371.38
134.72 | 364.85
135.95 | 374.61

5.36
4.12
3.99
3.97
5.35

4696.21
5080.84
5540.96
6003.00
6464.41

0.24 (0.08)
0.26 (0.05)
0.31 (0.08)
0.39 (0.14)
0.48 (0.02)

0.26 (0.09)
0.38 (0.08)
0.33 (0.17)
0.41 (0.14)
0.49 (0.00)

Table 9: The sequence length is fixed as 200. The feature dimension increases up to 50.

Batch Size | Feat Dim | VAE |

Diff | Sampling | GPUMem | Disc Scr | Temp Disc Scr

800
800
800
800
800

10
20
30
40
50

131.65 | 365.81
128.34 | 344.86
130.92 | 363.41
132.03 | 359.15
134.96 | 367.05

4.63
4.53
4.61
4.58
4.70

3288.57
3947.75
4358.76
4771.51
5185.07

0.20 (0.12)
0.25 (0.13)
0.17 (0.11)
0.24 (0.19)
0.32 (0.18)

0.23 (0.14)
0.29 (0.09)
0.34 (0.14)
0.38 (0.09)
0.41 (0.10)

Table 10: Same setting with Table@], but the dimension of latent matrix is set as 200 x 7.
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M ADDITIONAL PLOTS: AUTO-CORRELATION / PERIODIC, CYCLIC PATTERNS
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Figure 13: The first four plots from the top are auto-correlation plots of lag 300 for real (left)
and synthetic (right) of “Traffic’,‘Hurricane’, ‘Pollution’, and ‘Energy’. The last three plots are
[‘Observed’, ‘Seasonal’, ‘Trend’] variables of Hurricane dataset The sequence length of generated
synthetic data for AC (first four) and cyclic / trend pattern (last three) are 500 and 200, respectively.
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N METADATA CONDITIONAL GENERATION FROM C-TIMEAUTODIFF

C-TimeAutoDiff can conditionally generate heterogeneous outputs that include both categorical
and continuous variables.
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Figure 14: Datasets: (output variables) from top to bottom: Traffic: (‘Weather main’, ‘temp’),
Pollution: (‘cbwd’, ‘Iws’), Hurricane: (‘year’, ‘trend’), AirQuality: (‘NOx(GT)’, ‘NO2(GT)’),
ETThI: (‘'LULL, ‘OT’), Energy: (‘lights’, ‘rv1’). The output is chosen to be heterogeneous (except
AirQuality & ETTh1) both having discrete and continuous variables. Conditional variables c are set
as remaining variables from the entire features. See the list of entire features of each dataset through
the link in Appendix |[C}
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O MAXIMUM MEAN DISCREPANCY & ENTROPY

We used two metrics proposed by TSGM (Nikitin et al'} 2023)): Maximum Mean Discrepancy (MMD)
and Entropy. MMD measures the similarity (or fidelity) between synthetic and real time series data,
while Entropy assesses the diversity of the synthetic data. The results are summarized in Table[TT]
and are consistent with those in Table 1l

TimeAutoDiff achieves the lowest MMD scores across all four datasets, aligning with the discrimina-
tive scores reported in Table[I] This indicates that TimeAutoDiff effectively generates synthetic data
that closely resembles real data. For diversity, higher Entropy values indicate a dataset with more
diverse samples. However, as noted in (Nikitin et al.| [2023), Entropy should be considered alongside
other metrics, as random noise can also result in high Entropy values. TimeAutoDiff produces
synthetic data with higher Entropy values than the real data, though not as excessively as other
baseline models. This suggests that our model generates synthetic data that preserves the statistical
properties of the original data, maintaining diversity without introducing excessive deviation.

Metric Method Traffic Pollution | Hurricane | AirQuality
TimeAutoDiff | 0.000629 | 0.000895 0.000891 0.001531
MMD TimeGAN 0.001738 | 0.009791 0.002775 0.042986
Score

DoppelGANer 0.000644 | 0.000960 0.005489 0.017038

(The lower, the better) Diffusion-TS 0.005099 | 0.037102 0.078387 0.004144

TSGM 0.001484 | 0.006322 0.031971 0.013777

real vs. real 0.000000 | 0.000000 0.000000 0.000000

TimeAutoDiff | 6419.404 | 8472.642 7129.152 16570.016

Entropy Score TimeGAN 6714.156 | 11021.597 | 7804.343 15343.967

DoppelGANer 3941.083 8656.403 6946.678 8708.616
(Needs to be considered Diffusion-TS 9763.042 7372.591 9861.151 15934.365

with other metrics) TSGM 11899.225 | 11854.764 | 6535.306 15766.673
Real 5983.576 6976.253 6613.284 14952.996

Table 11: Maximum Mean Discrepancy (MMD) and Entropy of TimeAutoDiff, TimeGAN, Dop-
pelGANer, Diffusion-TS, TSGM and Real data. The experimental setting is same with that of
Table ??.
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